

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Cost-Effectiveness of Rivaroxaban Compared with Enoxaparin plus Warfarin for the Treatment of Hospitalized Acute Deep Vein Thrombosis in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038433
Article Type:	Original research
Date Submitted by the Author:	11-Mar-2020
Complete List of Authors:	YANG, Li; Peking University School of Public Health, ; Wu, Jingjing
Keywords:	Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Thromboembolism < CARDIOLOGY, Cardiology < INTERNAL MEDICINE, VASCULAR MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

> Cost-Effectiveness of Rivaroxaban Compared with Enoxaparin plus Warfarin for the Treatment of Hospitalized Acute Deep Vein Thrombosis in China

Li Yang, Ph.D.¹, Jingjing Wu, M.S.²

- 1. School of Public Health, Peking University, Beijing, China 100191.
- 2. Bayer Healthcare Company Ltd., Beijing, China 100020.

Corresponding author details

Li Yang, PhD,

Associate Professor, Department of health policy and management,

School of Public Health, Peking University

No 38 Xueyuan Rd. Haidian District, Beijing 100191, China

Phone: +86-10-82805650

Fax: +86-10-82802642

E-mail: lyang@bjmu.edu.cn

Tez oni

Abstract

Objective: Limited economic evaluation data for rivaroxaban compared with standard of care (SOC) exists in China. The objective of this analysis was to evaluate the cost-effectiveness of rivaroxaban compared with current SOC (enoxaparin overlapped with warfarin) for the treatment of acute deep vein thrombosis (DVT) in China.

Methods: A Markov model was adapted from a payer's perspective to evaluate the costs and quality-adjusted life years (QALYs) of DVT patients treated with rivaroxaban or enoxaparin/warfarin. Clinical data from the EINSTEIN DVT trial were obtained to estimate the transition probabilities. Data on Chinese health resource use, unit costs and utility parameters were collected from previously published literature and used to estimate the total costs and QALYs. The time horizon was set at 5 years and a 3-month cycle length was used in the model. A 5% discount rate was applied to the projected costs. One-way sensitivity analyses and probabilistic sensitivity analyses (PSA) were undertaken to assess the impact of uncertainty on results.

Results: Rivaroxaban therapy resulted in an increase of 0.008 QALYs and was associated with lower total costs compared with enoxaparin/warfarin (USD 4,744.4 vs USD 5,572.4, respectively), demonstrating it to be a cost-saving treatment strategy. The results were mainly sensitive to length of hospitalization due to DVT on enoxaparin/warfarin, cost per day of hospitalization and the difference in LoS of rivaroxaban and enoxaparin/warfarin treated patients.

Conclusion: Rivaroxaban therapy resulted in a cost saving compared with enoxaparin/warfarin for the anticoagulation treatment of patients with hospitalized acute DVT in China.

Keywords: China, cost-effectiveness, deep vein thrombosis, rivaroxaban, Enoxaparin/warfarin

Article summary

Strengths and limitations of this study:

1. This study evaluated the cost effectiveness of rivaroxaban for acute deep vein thrombosis treatment in China with a well-acknowledged and transparent method.

2. This study could support the decision making of stakeholders in China, including hospitals, payers and physicians.

3. In this analysis, we set a lot of assumptions, in terms of patients' characteristics, inpatient setting and the treatment duration, which may limit the results being extrapolated to whole population.

4. The utility data in the model were derived from literature and not specific to the Chinese population, which may impact the estimation of QALY.

Introduction

Deep vein thrombosis (DVT) and pulmonary embolism (PE) together constitute venous thromboembolism (VTE) – a common disorder causing substantial disease burden and mortality globally [1]. In China, the incidence of VTE (DVT and PE) is high among hospitalized patients [2,3], with incidence rate of 30.0, 8.7 and 3.0 per 100,000 reported for DVT, PE and PE with DVT in a large epidemiological study in Chinese population. In addition, mortality rates of DVT, PE and PE with DVT were 9.0%, 17.4%, and 13.3%, respectively [4]. Consistent with this, VTE is among the major causes of death in hospitals [5]. Clinical guidelines recommend the use of anticoagulant therapy to minimize the risk of mortality and VTE recurrence, with low molecular weight heparins (LMWH) overlapped with vitamin-K-antagonists (VKAs; mostly warfarin) being one of the current standard of care (SoC) [6]. However, there are several limitations to the SoC, e.g. patients requiring injection, frequent international normalization ratio (INR) monitoring and dose titrations [7], which result in unsatisfactory compliance and therapeutic outcomes in clinical practice [7].

Rivaroxaban, an orally-administered anticoagulant which does not require frequent monitoring or dose adjustments [8-10], when compared with enoxaparin plus warfarin (enoxaparin/warfarin), displayed similar efficacy and safety in preventing recurrent DVT and reducing the risk of bleeding events, as reported in the EINSTEIN DVT trial [11]. Evidence from several studies also suggests that rivaroxaban treatment results in a significant decrease in the number of hospitalizations and outpatient visits, as well as a reduction in total hospitalization costs [12, 13].

Although rivaroxaban has been approved for DVT treatment in China, its higher price [14] compared with warfarin might be a barrier for some patients and payers. To address the concern of limited cost-effectiveness evidence for rivaroxaban and enoxaparin/warfarin in DVT, this study

aimed to evaluate the cost-effectiveness of rivaroxaban vs enoxaparin/warfarin from a Chinese healthcare perspective based on findings of the EINSTEIN DVT trial [15].

Methods

A Markov model was developed to estimate the cost effectiveness of rivaroxaban compared with enoxaparin/warfarin in the treatment of patients with acute DVT in hospitals, from the Chinese healthcare payer perspective, for a duration of 5 years. The results of our study were reported using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) [17].

The patients evaluated in our model met the description of participants from the acute DVT arm of the EINSTEIN DVT trial [15]. All patients age was set to 56 years at baseline as per the EINSTEIN study. The patients entered the model in the "On Treatment" state and received oral rivaroxaban (15 mg twice daily for 21 days followed by 20 mg once daily) or enoxaparin (1.0 mg/kg subcutaneously for 8 days) plus warfarin (target INR of 2.0–3.0). Based on the perception that, in Chinese clinical practice, the actual anticoagulant treatment duration for DVT patients is <3 months, the model assumed that all patients had received 3 months of anticoagulation treatment. The model also assumed that all patients received inpatient treatment in the acute phase, because the main risk factors of acute DVT events in China were prolonged immobilization and malignant tumors [16] and those patients were most likely to get treatment in inpatient setting when DVT was provoked.

The outcomes of the model included assessment of quality-adjusted life years (QALYs) and cost of treatment with rivaroxaban or enoxaparin/warfarin. Factors affecting the cost-effectiveness model were also determined. The model allowed tracking of DVT patients through a standard treatment pathway and captured the common complications associated with DVT and its anticoagulant treatment. Probabilities of treatment discontinuation due to bleeding or non-compliance were also considered in the model. A 3-month cycle length with a 5-year time horizon

BMJ Open

was used. Total medical costs were considered from a Chinese healthcare perspective and expressed as the 2017 USD exchange rate (1 USD = 6.67 Chinese Yuan), with future costs discounted at 5% per year.

Model framework

The Markov model was developed with 12 health states (Figure 1) and presents progression between health states according to transition probabilities. The model also shows the estimates of life expectancy, health outcomes, resource use and cost of treatment. As per the model, patients were assumed to be on-treatment upon initiation of either rivaroxaban or enoxaparin treatment after an index DVT event. Post-therapy, the patients may undergo several transition states, including acute bleeding events such as major intracranial (IC) bleeding, extracranial (EC) or clinically relevant non-major (CRNM) bleeding, as well as recurrent VTE events (DVT or PE). The common long-term complications were considered in the model, including post-IC bleed state following IC bleed events, chronic thromboembolic pulmonary hypertension (CTEPH) after PE events and post-thrombotic syndrome (PTS) after DVT events. Recurrent DVT, risk of CTEPH and death were also considered in patients not receiving therapy. Each state was assigned a cost and utility weighting to calculate the total costs and QALYs of patients simulated in the model [18].

Model inputs

Core clinical data

The clinical inputs used in the model, regarding the cost, safety and probability of events for both rivaroxaban and SoC, were obtained from the EINSTEIN DVT study [15]. The trial is a multicenter, randomized, open-label, event-driven trial powered to show non-inferiority against warfarin. Total 3449 patients were included in the study: 1731 given rivaroxaban and 1718 given enoxaparin plus a vitamin K antagonist. The primary efficacy outcome was recurrent venous

thromboembolism and the principal safety outcome was major bleeding or clinically relevant nonmajor bleeding.

For the time-period of 0–3 months (cycle 1), event data for recurrent VTE, major bleeding (both IC and EC bleeding), and CRNM bleeding were considered as the baseline (Table 1) [15]. The probability of events with rivaroxaban in cycle 1 was inputted from the hazard ratio (HR) of rivaroxaban compared with enoxaparin/warfarin. Transition probabilities per cycle were calculated based on event risk. This was mainly derived from the EINSTEIN DVT trial and other published literature [19-22].

Risk of post-treatment events, including recurrent VTE, bleeding, PTS, CTEPH and event-specific mortality rates in subsequent cycles were obtained from the published literature (Table 1).

Base case	Distribution	Source
(lower-upper)		
– Enoxaparin/warfarin		
2.6% (1.8%-3.3%)	Beta	EINSTEIN-DVT [15]
48.3% (37.8%–58.8%)	Beta	EINSTEIN-DVT [15]
0.9% (0.4%-1.3%)	Beta	EINSTEIN-DVT [15]
12.5% (1%-24%)	Beta	EINSTEIN-DVT [15]
4.9% (3.9%-5.9%)	Beta	EINSTEIN-DVT [15]
/warfarin		
0.68 (0.44–1.04)	Log-normal	EINSTEIN-DVT [15]
0.65 (0.33–1.30)	Log-normal	EINSTEIN-DVT [15]
1.055 (0.828–1.342)	Log-normal	EINSTEIN-DVT [15]
Events risk – long-term complications		
39.9% (35.4%-44.4%)	Beta	Prandoni 2007 [39]
	(lower-upper) - Enoxaparin/warfarin 2.6% (1.8%-3.3%) 48.3% (37.8%-58.8%) 0.9% (0.4%-1.3%) 12.5% (1%-24%) 4.9% (3.9%-5.9%) /warfarin 0.68 (0.44-1.04) 0.65 (0.33-1.30) 1.055 (0.828-1.342) tions	(lower-upper) - Enoxaparin/warfarin 2.6% (1.8%-3.3%) Beta 48.3% (37.8%-58.8%) Beta 0.9% (0.4%-1.3%) Beta 12.5% (1%-24%) Beta 4.9% (3.9%-5.9%) Beta /warfarin 0.68 (0.44-1.04) Log-normal 0.65 (0.33-1.30) Log-normal 1.055 (0.828-1.342) Log-normal

Table 1. Model inputs

Bleeding (subsequent cycles)	0	-	Assumption
Post intracranial bleeding	56.4%	-	Linkins 2010 [20]
CTEPH (2-year risk)	1.25% (1.14%–1.63%)	Beta	Miniati 2006 [21]
PTS (1-year risk)	18% (14.7%–21.3%)	Beta	Prandoni 1997 [22]
Mortality			
PE	25.0% (17%-33%)	Beta	EINSTEIN-DVT [1:
DVT	0.0%	-	Assumption
Intracranial bleeding	43.6% (36.5%-50.7%)	Beta	Linkins 2010 [20]
Major extracranial bleeding	3.9% (2.7%–5.4%)	Beta	Linkins 2010 [20]
CTEPH (3-year mortality)	26.0% (22%-30%)	Beta	Condliffe 2008 [22]
Utility scores			
Population norm	0.929 (0.917–0.941)	Beta	Guan 2015 [23]
DVT	0.884 (0.674–1.000)	Beta	Locadia 2004 [24]
PE	0.663 (0.379–0.905)	Beta	Locadia 2004 [24]
Intracranial bleeding	0.347 (0.147–0.558)	Beta	Locadia 2004 [24
Major extracranial bleeding	0.684 (0.516–0.905)	Beta	Locadia 2004 [24
CRNM bleeding	1.000	Beta	Assumption
Post intracranial bleeding	0.713 (0.702–0.724)	Beta	Rivero-Aries 2010
			[27]
СТЕРН	0.560 (0.528–0.592)	Beta	Meads 2008 [28]
Mild PTS	1.000 (0.91–1.00)	Beta	Lenert 1997 [26]
Severe PTS	0.93 (0.76–1.00)	Beta	Lenert 1997 [26]
Warfarin (disutility)	0.988 (0.95–1.00)	Beta	Marchetti 2001 [2
Enoxaparin (disutility)	0.988 (0.95-1.00)	-	Assumption
Rivaroxaban (disutility)	1.000	-	Assumption

3 1	Drug costs (USD)			Integrated
5	Rivaroxaban (price/15 mg	4.17 (2.92–5.42)	-	Management Platform
5	tablet)			of Beijing Medicine
7	Rivaroxaban (price/20 mg	5.19 (3.63-6.75)	-	Sunshine Purchase
}	tablet)			[31]
0	Warfarin (price/3 mg	0.08 (0.06-0.10)	-	
1	tablet/day)	× , , ,		
2	Enoxaparin (6000 units: 0.6	8.71 (6.10–11.32)	_	
3 4	ml)	0.71 (0.10 11.52)		
5	Monitoring cost (USD)			
6		10.09 (7.(0.14.27)	C	T 1 . 1
7	Warfarin monitoring (per	10.98 (7.69–14.27)	Gamma	Local charge
8	time)		~	
9 0	Rivaroxaban monitoring (per	10.98 (7.69–14.27)	Gamma	Assumption
1	time)			
2	Costs of events (USD)			
3	Recurrent VTE-DVT	3853 (2697–5009)	Gamma	Li et al [32]
4 5	Recurrent VTE-PE	4083(2858–5308)	Gamma	Li et al [32]
6	CRNM bleeding	8.25 (5.77–10.72)	Gamma	Wu et al [33]
7	Major bleeding (extracranial)	2999 (2099–3898)	Gamma	Wu et al [33]
8	Major bleeding (intracranial)	3834 (2684–4984)	Gamma	Wu et al [33]
9 0	Post intracranial bleeding	339.6 (237.7-441.5)	Gamma	Wu et al [33]
1	Mild/moderate PTS	59.97 (41.98–77.96)	Gamma	Chen et al [34]
2	Severe PTS	487.3(341.1–633.4)	Gamma	Chen et al [34]
3	СТЕРН	4873 (3411–6334)	Gamma	Chen et al [34]
4 5	Resource utilization for acute I		Gainina	
6	Days of enoxaparin injection	8 (6–11)	Normal	EINSTEIN-DVT [15]
7				
8	Frequency of monitoring –	8 (5.6–10.4)	Gamma	Assumption
9 0	Enoxaparin/Warfarin			
1	Frequency of monitoring –	3 (2.1–3.9)	Gamma	Assumption
2	rivaroxaban			
3	Length of stay of patients –	14.6 (10.22–18.98)	Gamma	Wu [7]
4 5	Enoxaparin/Warfarin			
-5 -6	Difference in length of stay of	3 (2.1–3.9)	Gamma	van Bellen [30]
ŀ7	patients – rivaroxaban vs			
8	Enoxaparin/Warfarin			

CRNM, clinically relevant non-major; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; HR, hazard ratio; PE, pulmonary embolism; PTS, post-thrombotic syndrome; VTE, venous thromboembolism; rVTE, recurrent venous thromboembolism

Discontinuation rates

Based on findings from the EINSTEIN DVT study, the model assumed that all patients with IC bleeding, 40% of patients with major EC bleeding and 11.3% of those with CRNM bleeding would discontinue treatment. Complete discontinuation was assumed for patients with major bleeding events. However, for CRNM bleeding events it was assumed that patients would discontinue therapy for 1 month only and treatment costs would be incurred for the remainder of the cycle.

Utility inputs

Utility values define health state associated quality of life with a range of 0-1 (0= death and 1= best estimated health state). Evidence from published literature was used to determine the various utility values [18,23-25]. The Chinese population norm value was taken as 0.929 (95% CI 0.917– 0.941), which was established in the landmark national EQ-5D survey [23]. This value was used as the basis for calculating the utilities of every health state. The utility value used for DVT was 0.884 (95% CI 0.674–1.000), as demonstrated in the report by Locadia et al (2004) [24]. Previous studies [25] have reported increased treatment satisfaction with rivaroxaban compared with enoxaparin/warfarin; therefore, a disutility weight of 1.00 was assumed for rivaroxaban and a disutility value of 0.988 was assumed for enoxaparin/warfarin. Utilities for other states was based on values in previously published literature [26-29] (Table1).

Resource utilization and cost inputs

On entry into the model, resource utilization related to the index event (DVT) was used to analyze the difference between rivaroxaban and enoxaparin/warfarin, especially in terms of drug utilization, monitoring frequency and hospitalization. We assumed that patients received standard dosage and 3 months treatment in the absence of contraindications. It was also conservatively assumed that, in the first 3 months, patients receiving rivaroxaban would require 3 drug monitoring visits and patients receiving enoxaparin/warfarin therapy would require 8 visits. The length of stay for

BMJ Open

hospitalized patients with DVT was set as 14.6 days (range 10.22–18.98 days) with enoxaparin/warfarin treatment [7] and was assumed to be three days shorter with rivaroxaban therapy [30]. Unit costs of rivaroxaban, enoxaparin and warfarin were based on local drug tariffs in China (Table 1). The daily cost of hospitalization was based on published literature (USD 363.65, range USD 254.55–USD 472.74) [31,32], with an average length of stay (LoS) of 14.60 days (range 10.22–18.98 days) for patients receiving enoxaparin/warfarin [7]. The costs of managing the event were also based on published literature [7, 15, 31,32,33,34] and assumed to be equal across all treatment arms (Table 1).

Data analysis

Data from published studies and assumptions from Tables 1- were used to calculate mean estimates of 5-year costs and QALYs for rivaroxaban and enoxaparin/warfarin. Base case analysis – total costs and QALYs – were calculated for patients receiving rivaroxaban or SoC. Furthermore, the incremental cost effectiveness ratio (ICER) was also calculated. Besides, we assumed a willingness-to-pay threshold (WTP) of USD 14,992.5 per QALY (i.e. CNY 100,000 originally in the model), which was less than three times the gross domestic product (GDP) per capita in China in 2016 (USD 24351.8 [35]). An ICER of less than USD 14,992.5 per QALY is then an indication that rivaroxaban is cost-effectiveness [36].

To explore the effect of parameter uncertainty, we conducted one-way and probabilistic sensitivity analyses (PSA). In the one-way sensitivity analysis, the minimum and maximum estimates of clinical data, utility and costs were used in the model. For PSA, the variables were specified as distributions: the clinical input followed beta or normal distribution; costs inputs followed gamma distribution and utility data followed beta distribution . Then we run 1,000 simulations in PSA to get 1000 estimates of incremental costs and QALYs. All analyses were carried out using Microsoft Excel.

Patient and Public Involvement

Patients were not involved.

Results

Base case analysis

The results of the base case cost-effectiveness analysis are presented in Table 2. Treatment with rivaroxaban and enoxaparin/warfarin over a 3-month period, estimated for a time duration of 5 years, showed that rivaroxaban therapy was associated with a gain of 0.008 QALYs, (4.111 QALYs with rivaroxaban compared with 4.103 QALYs with enoxaparin/warfarin).. Although the drug acquisition cost of rivaroxaban was higher compared with enoxaparin/warfarin (USD 504.9 vs USD 145.8; difference of USD 359.0), the monitoring cost (USD 24.3 vs USD 64.3; difference of USD –40.0) and treatment cost for VTE events (USD vs USD 4,770.8; difference of USD – 1,145.5) with rivaroxaban were lower compared with those for enoxaparin/warfarin. This resulted in an overall lower total cost of treatment with rivaroxaban than with enoxaparin/warfarin (USD 4,744.4 vs USD 5,572.4, respectively; incremental costs USD –828.0). The cost of treating bleeding events, PTS and CTEPH were similar with both treatments and did not impact the overall cost of treatment (Table 2).

Outcomes	Rivaroxaban	Enoxaparin/warfarin	Incremental
Total cost (USD)	4744.4	5572.4	-828.0
Drug acquisition cost	504.9	145.8	359.0
Monitoring cost	24.3	64.3	-40.0
VTE event treatment	3625.2	4770.8	-1145.5
cost			

Table 2. Total costs and QALYs for rivaroxaban and enoxaparin/warfarin

Bleeding treatment cost	33.8	33.7	0.1
PTS/CTEPH	556.1	557.8	-1.6
QALY	4.111	4.103	0.008
Incremental QALY	-	-	Dominant

CTEPH, chronic thromboembolic pulmonary hypertension; PTS, post-thrombotic syndrome; VTE, venous thromboembolism; QALY, quality-adjusted life year

One-way sensitivity analysis

Since rivaroxaban was dominant in the base-case analysis, a net monetary benefit (NMB) OWSA was conducted to examine economic value. The top 10 most sensitive parameters affecting the rivaroxaban and enoxaparin/warfarin cost-effectiveness model are presented in Figure 2. According to the OWSA, the cost effectiveness of rivaroxaban compared with enoxaparin/warfarin was most sensitive to the length of hospital stay (LoS) of patients on enoxaparin/warfarin, cost per day of hospitalization and the difference in LoS between patients receiving rivaroxaban and enoxaparin/warfarin; these parameters acted as the main drivers of the cost differences. Overall, rivaroxaban showed a positive NMB irrespective of the parameters or the values used.

Probabilistic sensitivity analysis

The PSA confirmed the cost effectiveness of rivaroxaban over enoxaparin/warfarin (Figure3). The majority of simulations showed that 3 months of treatment with rivaroxaban was more cost-effective than the equivalent duration of enoxaparin/warfarin treatment, which resulted in a 99.6% likelihood of rivaroxaban being cost-effective at a WTP threshold of USD 14,992.5 per QALY.

Discussion

This study was an economic evaluation of rivaroxaban anticoagulation therapy compared with SoC for DVT treatment from a Chinese healthcare payer perspective. From the base case analysis,

BMJ Open

it was observed that, over a 5-year period, rivaroxaban appeared to be more cost-effective than SoC for the treatment of hospitalized acute DVT in China despite having a higher price per unit than warfarin. These results were mainly driven by the lower hospitalization cost of patients receiving rivaroxaban. The sensitivity analyses also showed the robustness of the model used.

Our findings show that hospitalization costs for monitoring and VTE-related events were lower with rivaroxaban compared with SoC treatment. Although only 0.008 additional QALYs were achieved with rivaroxaban treatment, the PSA suggested that the probability of rivaroxaban being more cost-effective than SoC treatment would be 99.6% per 1000 iterations, indicating that rivaroxaban has greater cost-saving potential than enoxaparin/warfarin, at a WTP threshold of USD 14,992.5 per QALY.

The results of our study are in line with those presented in previous studies. Studies in the Western population have demonstrated the cost-effectiveness of rivaroxaban over LMWH/VKA, placebo, LMWH alone and VKA alone for VTE recurrence and other transition events [18, 37–39]. In a cost-effectiveness analysis, rivaroxaban showed per-patient cost savings at 3-, 6- and 12-months compared with enoxaparin/warfarin in the EINTEIN DVT trial; the HR of VTE, discount rate and mean age were the driving factors affecting this model [18]. Coleman et al. showed greater QALYs gained with rivaroxaban treatment compared with placebo (16.167 vs 16.134) despite a higher treatment cost (USD 22,645 vs USD 22,083), suggesting the higher cost-effectiveness of rivaroxaban over placebo, assuming a willingness-to-pay threshold of USD 50,000 per QALYs gained [37]. An economic comparison of rivaroxaban and warfarin in the US showed a lower cost of treatment with rivaroxaban (USD 3195 vs USD 6188), as well as more QALYs gained (9.29 QALYs vs 9.14 QALYs). However, rivaroxaban was not more cost-effective than warfarin when major bleeding risk with rivaroxaban exceeded 3.8% [38]. Gourzoulidis G et al reported the cost-effectiveness analysis of rivaroxaban for VTE treatment in Greece from a third-party payer perspective, which also showed rivaroxaban was cost effectiveness compared SoC[39].The

BMJ Open

findings from all these studies suggest that treatment with rivaroxaban results in greater cost benefits and clinical outcomes from both payer and societal perspectives.

The findings of our study imply that, despite the cost of rivaroxaban being higher than that of warfarin, it has the potential to reduce the overall economic burden of DVT treatment by reducing hospitalization costs. This is particularly meaningful for the Chinese healthcare system and its hospitals and payers, who are struggling to reduce patient LoS and healthcare expenses [40]. With rivaroxaban, patients may have higher utility and satisfaction, as well as lower economic burden due to early discharge and convenient disease management methods. However, the duration of anti-coagulation and patients' age must be important consideration, as in previous study, recurrence of VTE was associated with shorter duration of anti-coagulation, older age and primary DVT [41].

Although methodological standards were followed for the conduct of this analysis, it has several limitations. Firstly, we set a lot of assumptions in the model which may not reflect real-world clinical practice, e.g. all patients were receiving inpatient treatment and the anticoagulant duration was only 3 months with frequent monitoring visits. We then extrapolated the results to wider populations, focusing on the high impact of hospitalizations. Secondly, clinical and utility data were derived from many sources, some of which were not specific to the Chinese population. For example, the clinical inputs on efficacy and safety were taken from the EINSTEIN DVT trial, and some of the utilities data came from international literature because of a lack of Chinese-specific sources; therefore, further validation is warranted before applying these findings in real-world treatment settings. However, including the limited economic data available from China was the best possible measure taken to address the concern. Thirdly, our model lacked analyses based on patient/societal perspectives, which may also be beneficial in evaluating the indirect cost of

BMJ Open

 rivaroxaban treatment. Real-world studies would also be useful to evaluate the actual costeffectiveness of rivaroxaban and further justify its clinical and economic value.

Conclusion

In conclusion, our study showed rivaroxaban to be a cost-saving treatment option when compared with enoxaparin/warfarin therapy for hospitalized acute DVT treatment in Chinese patients. The sensitivity of the cost-effectiveness model was mainly driven by the LoS of patients on enoxaparin/warfarin treatment, cost per day of hospitalization and the difference in LoS of rivaroxaban and enoxaparin/warfarin treated patients. aparine ...

3
4
5
6
7 8
8
9
10
11
12
13
14
15
16
17 18
18
19
20
21
22
22
∠⊃ ⊃4
24
25
26
27
28
24 25 26 27 28 29
30
31
32
33
34
35
36
37
37 38
39
40
41
41
44
45
46
47
48
49
50
51
52
54
55
56
57
58
59
60

1 2

Abbreviations

CE	Cost-effectiveness
CRNM	Clinically relevant non-major
СТЕРН	Chronic thromboembolic pulmonary hypertension
DVT	Deep vein thrombosis
HR	Hazard ratio
ICER	Incremental CE ratios
INR	International normalization ratio
ITT	Intention-to-treat
LMWH	Low molecular weight heparins
LoS	Length of stay
OWSA	One-way sensitivity analysis
PE	Pulmonary embolism
PSA	Probabilistic sensitivity analyses
PTS	Post-thrombotic syndrome
QALY	Quality-adjusted life year
RR	Relative risk
SoC	Standard of care
VKA	Vitamin-K-antagonist

Declarations

Ethics approval and consent to participate:

All procedures performed in studies involving human participants were in accordance with the ethical standards of the ethical committee of Peking University Health Science Center (IRB00001052-17006) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication

Not applicable.

Availability of data and material

No additional data available.

Competing interests

Li Yang has nothing to disclose. Jingjing Wu is an employee of Bayer Healthcare Company Ltd.

Funding

This study was funded by National Natural Science Foundation of China (Grant number71273016/G0308 and 71673004/G0406). The data collection was sponsored by Bayer Healthcare Company Ltd; however, publication of the study results was not contingent upon the sponsor's approval.

Authors' contributions

YL contributed to the design, interpretation of the data and revisions and WJ contributed to the modelling and drafting the manuscript.

Acknowledgement

The authors thank Karan Sharma and Dr Amit Bhat from Indegene Pvt. Ltd. Bangalore, for providing necessary medical writing assistance.

References

- Silva AS, Brazao ML, Granito S, Escorcio S, Jardim M, Silva S, et al. Thrombophilia/prothrombotic disorders. *Sociedade Portuguesa de Medicina interna*. 2010;17:44–58.
- Cheng G, Chan C, Liu YT, et al. Incidence of Deep Vein Thrombosis in Hospitalized Chinese Medical Patients and the Impact of DVT Prophylaxis. *Thrombosis*. 2011;2011:629383. doi: 10.1155/2011/629383.
- Hang Y, Liang L, Zhai Z, et al. Pulmonary Embolism Incidence and Fatality Trends in Chinese Hospitals from 1997 to 2008: A Multicenter Registration Study. *PLoS One*. 2011;6:e26861.
- Law Y, Chan YC, Cheng SWK. Epidemiological updates of venous thromboembolism in a Chinese population. *Asian J Surg.* 2018;41(2):176-182.
- Joynt GM, Li TST, Griffith JF, Gomersall CD, Yap FHP, Ho AMH, et al. The incidence of deep venous thrombosis in Chinese medical Intensive Care Unit patients. *Hong Kong Med J.* 2009;15:24–30.
- Kearon C, Akl EA, Ornelas J, et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. *Chest.* 2016;149:315–352
- Wu EQ, Xie J, Wu C, Du EX, Li N, Tan R, et al. Treatment, Monitoring, and Economic Outcomes of Venous Thromboembolism Among Hospitalized Patients in China. *Pharmacoeconomics*. 2014;32:305–313.
- Kubitza D, Becka M, Voith B, Zuehlsdorf M, Wensing G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. *Clin Pharmacol Ther*. 2005;78:412–421.

BMJ Open

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
 7 8 9 10 11 12 13 14 15 16 	
14	
15 16 17 18 19	
16	
10	
17	
18	
19	
20	
21	
22	
23	
19 20 21 23 24 25 26 27 28 29 30	
24	
25	
26	
27	
28	
29	
30	
31	
32 33	
33	
34 35	
35	
36 37 38	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

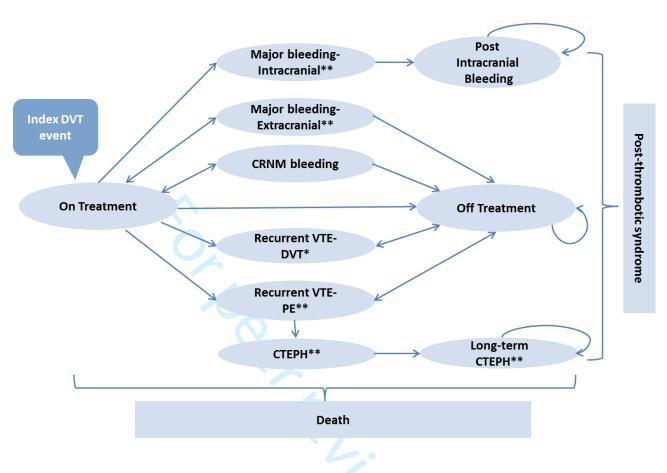
9. Eriksson BI, Kakkar AK, Turpie AGG, Gent M, Bandel TJ, Homering M, et al. Oral rivaroxaban for the prevention of symptomatic venous thromboembolism after elective hip and knee replacement. *J Bone Joint Surg Br*. 2009;91:636–644.

- Turpie AGG, Lassen MR, Davidson B, Bauer KA, Gent M, Kwong LM, et al. RECORD4 investigators. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomized trial. *Lancet*. 2009;373:1673–1680.
- 11. Wang Y, Wang C, Chen Z, Zhang J, Liu Z, Jin B, et al. Chinese EINSTEIN investigators. Rivaroxaban for the treatment of symptomatic deep-vein thrombosis and pulmonary embolism in Chinese patients: a subgroup analysis of the EINSTEIN DVT and PE studies. *Thrombosis Jour.* 2013;11:25.
- 12. Deitelzweig S, Laliberté F, Crivera C, Germain G, Bookhart BK, Olson WH, et al. Hospitalizations and Other Health Care Resource Utilization Among Patients with Deep Vein Thrombosis Treated with Rivaroxaban Versus Low-molecular-weight Heparin and Warfarin in the Outpatient Setting. *Clin Ther*. 2016;38:1803–1816.e3.
- 13. Merli GJ, Hollander JE, Lefebvre P, Laliberté F, Raut MK, Olson WH, et al. Rates of hospitalization among patients with deep vein thrombosis before and after the introduction of rivaroxaban. *Hosp Pract (1995)*. 2015;43:85–93.
- 14. Diener HC, Halperin JL, Fox K, Hankey GJ. Stroke prevention with rivaroxaban in higherrisk populations with atrial fibrillation. *Int J Clin Pract*. 2015;69:743–56.
- Bauersachs R, Berkowitz SD, Brenner B, Buller HR, Decousus H, Gallus AS, et al. Oral rivaroxaban for symptomatic venous thromboembolism. *N Engl J Med.* 2010;363:2499– 510.
- 16. Wang H, Ye J, Wang L, Jin W. Risk Characteristics of Venous Thromboembolism in Chinese Patients[J]. Clinical and applied thrombosis/hemostasis : official journal of the

 International Academy of Clinical and Applied Thrombosis/Hemostasis. 2016,22(5):490-4.

- Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. *Value Health.* 2013;16:231–50.
- 18. Bamber L, Muston D, McLeod E, Guillermin A, Lowin J, Patel R. Cost-effectiveness analysis of treatment of venous thromboembolism with rivaroxaban compared with combined low molecular weight heparin/vitamin k antagonist. *Thrombosis Jour*. 2015;13:20.
- Prandoni P, Villalta S, Bagatella P, Rossi L, Marchiori A, Piccioli A, et al. The clinical course of deep-vein thrombosis. Prospective long-term follow-up of 528 symptomatic patients. *Haematologica*. 1997;82:423–8.
- 20. Linkins L, O'Donnell M, Julian JA, Kearon C. Intracranial and fatal bleeding according to indication for long-term oral anticoagulant therapy. *J Thromb Haemost*. 2010;8:2201–7.
- 21. Miniati M, Monti S, Bottai M, Scoscia E, Bauleo C, Tonelli L, et al. Survival and restoration of pulmonary perfusion in a long-term follow-up of patients after acute pulmonary embolism. *Medicine (Baltimore)*. 2006;85:253–62.
- 22. Condliffe R, Kiely DG, Gibbs JS, Corris PA, Peacock AJ, Jenkins DP, et al. Improved outcomes in medically and surgically treated chronic thromboembolic pulmonary hypertension. *Am J Respir Crit Care Med.* 2008;177:1122–7.
- 23. Guan H, Liu G. Comparison Analysis on Health Related Quality of Life among Urban and Rural Residents in 4 Cities of China. *Chinese Health Econ*. 2015;34:5–12.
- 24. Locadia M, Bossuyt PM, Stalmeier PF, Sprangers MA, van Dongen CJ, Middeldorp S, et al. Treatment of venous thromboembolism with vitamin K antagonists: patients' health state valuations and treatment preferences. *Thromb Haemost*. 2004;92:1336–1341.

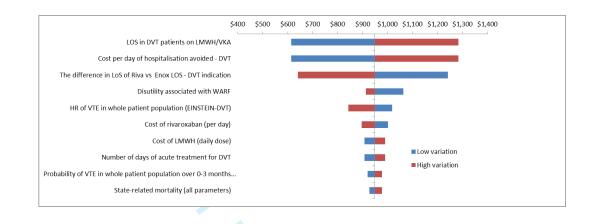
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	


25	. Bamber L, Wang MY, Prins MH, Ciniglio C, Bauersachs R, Lensing AWA, et al. Patient-
	reported treatment satisfaction with oral rivaroxaban versus standard therapy in the
	treatment of acute symptomatic deep-vein thrombosis. Thromb Haemost. 2013;110:732-
	741.

- 26. Lenert LA, Soetikno RM. Automated computer interviews to elicit utilities: potential applications in the treatment of deep venous thrombosis. *J Am Med Inform Assoc*. 1997;4:49–56.
- 27. Rivero-Arias O, Ouellet M, Gray A, Wolstenholme J, Rothwell PM, Luengo-Fernandez R. Mapping the modified Rankin scale (mRS) measurement into the generic EuroQol (EQ-5D) health outcome. *Med Decis Making*. 2010;30:341–54.
- 28. Meads DM, McKenna SP, Doughty N, Das C, Gin-Sing W, Langley J, et al. The responsiveness and validity of the CAMPHOR Utility Index. *Eur Respir J*. 2008;32:1513–9.
- 29. Marchetti M, Pistorio A, Barone M, Serafini S, Barosi G. Low-molecular-weight heparin versus warfarin for secondary prophylaxis of venous thromboembolism: a cost-effectiveness analysis. *Am J Med*. 2001;111:130–9.
- 30. van Bellen B, Bamber L, Correa de Carvalho F, Prins M, Wang M, Lensing AWA. Reduction in the length of stay with rivaroxaban as a single-drug regimen for the treatment of deep vein thrombosis and pulmonary embolism. *Curr Med Res Opin*. 2014;30:829–37.
- Integrated Management Platform of Beijing Medicine Sunshine Purchase. Unit costs of medicine. Available from: http://210.73.89.76/ServiceSelect/GetServiceSelectList (Accessed November 6 2017).
- 32. Li QY, Li YC, Zhang YQ. Analysis of clinical data of 1136 inpatients with venous thromboembolism in 2003-2013. *J Pract Med.* 2015;6:1006–1008. [Chinese.]

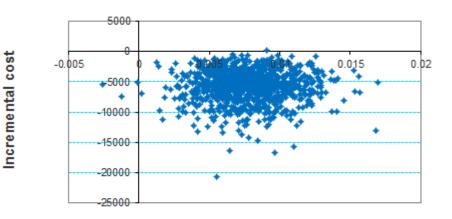
- 33. Wu B, Kun L, Liu X, et al. Cost–Effectiveness of Different Strategies for Stroke Prevention in Patients with Atrial Fibrillation in a Health Resource-Limited Setting[J]. Cardiovascular drugs and therapy, 2014, 28(1): 87-98.
- 34. Chen X, Wang C, Zhu M. Cost-effectiveness Study of Rivaroxaban for the preverention of Venous Thromboembolism in Patients Undergoing Total Knee Replacement. *China Pharmacy*. 2011; 30: 2787-2790. [Chinese.]
- GDP per capita (current US\$) [internet].Washington, DC: The World Bank; 2016. Available from: http://data.worldbank.org/indicator/NY.GDP.PCAP.CD [cited 2018 Jul 20].
- 36. [China guidelines for pharmacoeconomic evaluations]. Beijing: China Center for Health Economics Research; 2016. [Chinese.]
- 37. Coleman CI, Limone BL, Bookhart BK, Mody SH, Nutescu EA. Cost-effectiveness analysis of extended duration anticoagulation with rivaroxaban to prevent recurrent venous thromboembolism. *Thromb Res.* 2014;133:743–749.
- 38. Seaman CD, Smith KJ, Ragni MV. Cost-effectiveness of rivaroxaban versus warfarin anticoagulation for the prevention of recurrent venous thromboembolism: A U.S. perspective. *Thromb Res.* 2013;132:647–651.
- 39. Gourzoulidis G, Kourlaba G, Kakisis J, et al. Cost-Effectiveness Analysis of Rivaroxaban for Treatment of Deep Vein Thrombosis and Pulmonary Embolism in Greece. *Clin Drug Investig.* 2017 Sep;37(9):833-844.
- 40. Pan X, Dib H H, Zhu M, Zhang Y, Fang Y. Absence of appropriate hospitalization cost control for patients with medical insurance: a comparative analysis study. *Health Econ*. 2009;18:1146–1162.
- 41. Prandoni P, Noventa F, Ghirarduzzi A, Pengo V, Bernardi E, Pesavento R, et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with

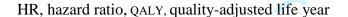
1	
2	
3	aguta maguintal daan yain thugunhagia an mulutanamy ambaliant. A muanastiya agbant atu dy
4	acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study
5	
6	in 1,626 patients. <i>Haematologica</i> . 2007;92:199–205.
7	
8	
9	
10	
10	
11	
	List of tables
13	
14	Table 1. Model inputs
15	Table 1. Woder inputs
16	
17	Table 2. Total costs and QALYs for rivaroxaban and enoxaparin/warfarin
18	
19	Figures
20	
21	
22	Figure1. Model schematic [21]
23	
24	
25	Figure 2. One-way sensitivity analysis tornado diagram for rivaroxaban compared with Standard of
26	
27	are Net monotory honofit, Quality adjusted life year haged)
28	care (Net monetary benefit, Quality-adjusted life year based)
29	
30	
31	Figure 3. Cost-effectiveness plane for rivaroxaban vs enoxaparin/warfarin, based on whole study
32	
33	Hazard ratios (5-year, Quality-adjusted life year outcome)
33	Tuzura ranos (o your, Quanty adjusted file your outcome)
34 35	
36	
37	
38	
39	



Notes: *DVT split into contralateral and ipsilateral. **Additional mortality

CRNM, clinically relevant non-major; VTE, venous thromboembolism; DVT, deep vein thrombosis; PE, pulmonary embolism; CTEPH, chronic thromboembolic pulmonary hypertension; PTS, post-thrombotic syndrome


Figure 2. One-way sensitivity analysis tornado diagram for rivaroxaban compared with Standard of care (Net monetary benefit, Quality-adjusted life year based)


LOS, length of stay; DVT, deep vein thrombosis; LMWH, low molecular weight heparin; VKA, vitamin-K-antagonists; Riva, rivaroxaban; Enox, enoxaparin; VTE, venous thromboembolism; WARF, warfarin

review only

Figure 3. Cost-effectiveness plane for rivaroxaban vs enoxaparin/warfarin, based on whole study Hazard ratios (5-year, Quality-adjusted life year outcome)

Incremental QALY

Page 29 of 30	Section/item	Item	Recommendation BMJ Open	Reported
		No		on page
1	Title and abstract			No/ line No
2	Title	1	Identify the study of an economic avaluation or use	Daga 1
3	Thie	1	Identify the study as an economic evaluation or use	Page 1
4 5			more specific terms such as "cost-effectiveness	
6			analysis", and describe the interventions compared.	
7	Abstract	2	Provide a structured summary of objectives,	Page 2
8			perspective, setting, methods (including study	
9			design and inputs), results (including base case and	
10 11			uncertainty analyses), and conclusions.	
12	Introduction			
13	Background and	3	Provide an explicit statement of the broader context	Page 4
14	objectives		for the study.	U
15 16			Present the study question and its relevance for	Page 4
17			health policy or practice decisions.	
18	Methods		nounai poney of practice accisions.	l
19		4	Describe characteristics of the base case population	Page 5
20 21	Target population	4	I	Page 3
22	and subgroups		and subgroups analysed, including why they were	
23			chosen.	
24	Setting and location	5	State relevant aspects of the system(s) in which the	Page 5
25 26			decision(s) need(s) to be made.	
27	Study perspective	6	Describe the perspective of the study and relate this	Page 6
28			to the costs being evaluated.	
29	Comparators	7	Describe the interventions or strategies being	Page 5
30 31			compared and state why they were chosen.	
32	Time horizon	8	State the time horizon(s) over which costs and	Page 5
33			consequences are being evaluated and say why	
34			appropriate.	
35 36	Discount rate	9	Report the choice of discount rate(s) used for costs	Page 6
37			and outcomes and say why appropriate.	
38	Choice of health	10	Describe what outcomes were used as the	Page 5
39	outcomes		measure(s) of benefit in the evaluation and their	
40 41			relevance for the type of analysis performed.	
42	Measurement of	11a	Single study-based estimates: Describe fully the	Page 6
43	effectiveness	114	design features of the single effectiveness study and	1 age 0
44	effectiveness			
45 46			why the single study was a sufficient source of	
40			clinical effectiveness data.	
48		11b	<i>Synthesis-based estimates:</i> Describe fully the	NA
49			methods used for identification of included studies	
50 51			and synthesis of clinical effectiveness data.	ļ
51	Measurement and	12	If applicable, describe the population and methods	NA
			CHEERS Checklist	

CHEERS Checklist

Items to include when reporting economic evaluations of health interventions

BMJ Open

1 2 3
4 5
6
7 8
9 10
11 12
12 13 14
15 16
17
18 19
20 21
22 23
24 25
26 27
28 29
30 31
32 33
34 35
36 37
38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57
58 59
60

valuation of		used to elicit preferences for outcomes.	
preference based			
outcomes			
Estimating resources	13a	Single study-based economic evaluation: Describe	NA
and costs		approaches used to estimate resource use associated	
		with the alternative interventions. Describe primary	
		or secondary research methods for valuing each	
		resource item in terms of its unit cost. Describe any	
		adjustments made to approximate to opportunity	
		costs.	
	13b	Model-based economic evaluation: Describe	Page 10
		approaches and data sources used to estimate	
		resource use associated with model health states.	
		Describe primary or secondary research methods for	
		valuing each resource item in terms of its unit cost.	
		Describe any adjustments made to approximate to	
		opportunity costs.	
Currency, price date,	14	Report the dates of the estimated resource quantities	Page 6
and conversion		and unit costs. Describe methods for adjusting	
		estimated unit costs to the year of reported costs if	
		necessary. Describe methods for converting costs	
		into a common currency base and the exchange rate.	
Choice of model	15	Describe and give reasons for the specific type of	Page 6
		decision-analytical model used. Providing a figure	
		to show model structure is strongly recommended.	
Assumptions	16	Describe all structural or other assumptions	Page 11
		underpinning the decision-analytical model.	
Analytical methods	17	Describe all analytical methods supporting the	Page 11
		evaluation. This could include methods for dealing	
		with skewed, missing, or censored data;	
		extrapolation methods; methods for pooling data;	
		approaches to validate or make adjustments (such as	
		half cycle corrections) to a model; and methods for	
		handling population heterogeneity and uncertainty.	
Results	·		
Study parameters	18	Report the values, ranges, references, and, if used,	Page 7-9
		probability distributions for all parameters. Report	
		reasons or sources for distributions used to represent	
		uncertainty where appropriate. Providing a table to	
		show the input values is strongly recommended.	
Incremental costs	19	For each intervention, report mean values for the	Page 12-
and outcomes		main categories of estimated costs and outcomes of	13
		interest, as well as mean differences between the	
		comparator groups. If applicable, report incremental	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
37 38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

		cost-effectiveness ratios.	
Characterising 20a		Single study-based economic evaluation: Describe	NA
uncertainty		the effects of sampling uncertainty for the estimated	
		incremental cost and incremental effectiveness	
		parameters, together with the impact of	
		methodological assumptions (such as discount rate,	
		study perspective).	
	20b	Model-based economic evaluation: Describe the	Page 13
		effects on the results of uncertainty for all input	
		parameters, and uncertainty related to the structure	
		of the model and assumptions.	
Characterising	21	If applicable, report differences in costs, outcomes,	NA
heterogeneity		or cost-effectiveness that can be explained by	
		variations between subgroups of patients with	
		different baseline characteristics or other observed	
		variability in effects that are not reducible by more	
		information.	
Discussion		C .	
Study findings,	22	Summaries key study findings and describe how	Page 13-
limitations,		they support the conclusions reached. Discuss	16
generalizability, and		limitations and the generalizability of the findings	
current knowledge		and how the findings fit with current knowledge.	
Other			
Source of funding	23	Describe how the study was funded and the role of	Page 18
		the funder in the identification, design, conduct, and	
		reporting of the analysis. Describe other non-	
		monetary sources of support.	
Conflicts of interest	24	Describe any potential for conflict of interest of	Page 18
		study contributors in accordance with journal	
		policy. In the absence of a journal policy, we	
		recommend authors comply with International	
		Committee of Medical Journal Editors	

BMJ Open

BMJ Open

Cost-Effectiveness of Rivaroxaban Compared with Enoxaparin plus Warfarin for the Treatment of Hospitalized Acute Deep Vein Thrombosis in China

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038433.R1
Article Type:	Original research
Date Submitted by the Author:	27-May-2020
Complete List of Authors:	YANG, Li; Peking University School of Public Health, ; Wu, Jingjing
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Health economics
Keywords:	Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Thromboembolism < CARDIOLOGY, Cardiology < INTERNAL MEDICINE, VASCULAR MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

> Cost-Effectiveness of Rivaroxaban Compared with Enoxaparin plus Warfarin for the Treatment of Hospitalized Acute Deep Vein Thrombosis in China

Li Yang, Ph.D.¹, Jingjing Wu, M.S.²

- 1. School of Public Health, Peking University, Beijing, China 100191.
- 2. Bayer Healthcare Company Ltd., Beijing, China 100020.

Corresponding author details

Li Yang, PhD,

Associate Professor, Department of health policy and management,

School of Public Health, Peking University

No 38 Xueyuan Rd. Haidian District, Beijing 100191, China

Phone: +86-10-82805650

Fax: +86-10-82802642

E-mail: lyang@bjmu.edu.cn

Tez oni

Abstract

Objective: Limited economic evaluation data for rivaroxaban compared with standard of care (SOC) exists in China. The objective of this analysis was to evaluate the cost-effectiveness of rivaroxaban compared with current SOC (enoxaparin overlapped with warfarin) for the treatment of acute deep vein thrombosis (DVT) in China.

Methods: A Markov model was adapted from a payer's perspective to evaluate the costs and quality-adjusted life years (QALYs) of DVT patients treated with rivaroxaban or enoxaparin/warfarin. Clinical data from the EINSTEIN DVT trial were obtained to estimate the transition probabilities. Data on Chinese health resource use, unit costs and utility parameters were collected from previously published literature and used to estimate the total costs and QALYs. The time horizon was set at 5 years and a 3-month cycle length was used in the model. A 5% discount rate was applied to the projected costs. One-way sensitivity analyses and probabilistic sensitivity analyses (PSA) were undertaken to assess the impact of uncertainty on results.

Results: Rivaroxaban therapy resulted in an increase of 0.008 QALYs and was associated with lower total costs compared with enoxaparin/warfarin (USD 4,744.4 vs USD 5,572.4, respectively), demonstrating it to be a cost-saving treatment strategy. The results were mainly sensitive to length of hospitalization due to DVT on enoxaparin/warfarin, cost per day of hospitalization and the difference in LoS of rivaroxaban and enoxaparin/warfarin treated patients.

Conclusion: Rivaroxaban therapy resulted in a cost saving compared with enoxaparin/warfarin for the anticoagulation treatment of patients with hospitalized acute DVT in China.

Keywords: China, cost-effectiveness, deep vein thrombosis, rivaroxaban, Enoxaparin/warfarin

Article summary

Strengths and limitations of this study:

1. This study evaluated the cost effectiveness of rivaroxaban for acute deep vein thrombosis treatment in China with a well-acknowledged and transparent method.

2. This study could support the decision making of stakeholders in China, including hospitals, payers and physicians.

3. In this analysis, we set a lot of assumptions, in terms of patients' characteristics, inpatient setting and the treatment duration, which may limit the results being extrapolated to whole population.

4. The utility data in the model were derived from literature and not specific to the Chinese population, which may impact the estimation of QALY.

Introduction

Deep vein thrombosis (DVT) and pulmonary embolism (PE) together constitute venous thromboembolism (VTE) – a common disorder causing substantial disease burden and mortality globally [1]. In China, the incidence of VTE (DVT and PE) is high among hospitalized patients [2,3], with incidence rate of 30.0, 8.7 and 3.0 per 100,000 reported for DVT, PE and PE with DVT in a large epidemiological study in Chinese population. In addition, mortality rates of DVT, PE and PE with DVT were 9.0%, 17.4%, and 13.3%, respectively [4]. Consistent with this, VTE is among the major causes of death in hospitals [5]. Clinical guidelines recommend the use of anticoagulant therapy to minimize the risk of mortality and VTE recurrence, with low molecular weight heparins (LMWH) overlapped with vitamin-K-antagonists (VKAs; mostly warfarin) being one of the current standard of care (SoC) [6]. However, there are several limitations to the SoC, e.g. patients requiring injection, frequent international normalization ratio (INR) monitoring and dose titrations [7], which result in unsatisfactory compliance and therapeutic outcomes in clinical practice [7].

Rivaroxaban, an orally-administered anticoagulant which does not require frequent monitoring or dose adjustments [8-10], when compared with enoxaparin plus warfarin (enoxaparin/warfarin), displayed similar efficacy and safety in preventing recurrent DVT and reducing the risk of bleeding events, as reported in the EINSTEIN DVT trial [11]. Evidence from several studies also suggests that rivaroxaban treatment results in a significant decrease in the number of hospitalizations and outpatient visits, as well as a reduction in total hospitalization costs [12, 13].

Although rivaroxaban has been approved for DVT treatment in China, its higher price [14] compared with warfarin might be a barrier for some patients and payers. To address the concern of limited cost-effectiveness evidence for rivaroxaban and enoxaparin/warfarin in DVT, this study

aimed to evaluate the cost-effectiveness of rivaroxaban vs enoxaparin/warfarin from a Chinese healthcare perspective based on findings of the EINSTEIN DVT trial [15].

Methods

A Markov model was developed to estimate the cost effectiveness of rivaroxaban compared with enoxaparin/warfarin in the treatment of patients with acute DVT in hospitals, from the Chinese healthcare payer perspective, for a duration of 5 years. The duration was set based on previous publication [16] and clinical practice in China. The results of our study were reported using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) [17].

The patients evaluated in our model met the description of participants from the acute DVT arm of the EINSTEIN DVT trial [15]. All patients age was set to 56 years at baseline as per the EINSTEIN study. The patients entered the model in the "On Treatment" state and received oral rivaroxaban (15 mg twice daily for 21 days followed by 20 mg once daily) or enoxaparin (1.0 mg/kg subcutaneously for 8 days) plus warfarin (target INR of 2.0–3.0). Based on the perception that, in Chinese clinical practice, the actual anticoagulant treatment duration for DVT patients is <3 months, the model assumed that all patients had received 3 months of anticoagulation treatment. The model also assumed that all patients received inpatient treatment in the acute phase, because the main risk factors of acute DVT events in China were prolonged immobilization and malignant tumors [18] and those patients were most likely to get treatment in inpatient setting when DVT was provoked.

The outcomes of the model included assessment of quality-adjusted life years (QALYs) and cost of treatment with rivaroxaban or enoxaparin/warfarin. Factors affecting the cost-effectiveness model were also determined. The model allowed tracking of DVT patients through a standard treatment pathway and captured the common complications associated with DVT and its anticoagulant treatment. Probabilities of treatment discontinuation due to bleeding or non-

Page 7 of 30

BMJ Open

 compliance were also considered in the model. A 3-month cycle length with a 5-year time horizon was used. Total medical costs were considered from a Chinese healthcare perspective and expressed as the 2017 USD exchange rate (1 USD = 6.67 Chinese Yuan), with future costs discounted at 5% per year.

Model framework

The Markov model was developed with 12 health states (Figure 1) and presents progression between health states according to transition probabilities. The model also shows the estimates of life expectancy, health outcomes, resource use and cost of treatment. As per the model, patients were assumed to be on-treatment upon initiation of either rivaroxaban or enoxaparin treatment after an index DVT event. Post-therapy, the patients may undergo several transition states, including acute bleeding events such as major intracranial (IC) bleeding, extracranial (EC) or clinically relevant non-major (CRNM) bleeding, as well as recurrent VTE events (DVT or PE). The common long-term complications were considered in the model, including post-IC bleed state following IC bleed events, chronic thromboembolic pulmonary hypertension (CTEPH) after PE events and post-thrombotic syndrome (PTS) after DVT events. Recurrent DVT, risk of CTEPH and death were also considered in patients not receiving therapy. Each state was assigned a cost and utility weighting to calculate the total costs and QALYs of patients simulated in the model [19].

Model inputs

Core clinical data

The clinical inputs used in the model, regarding the cost, safety and probability of events for both rivaroxaban and SoC, were obtained from the EINSTEIN DVT study [15]. The trial is a multicenter, randomized, open-label, event-driven trial powered to show non-inferiority against warfarin. Total 3449 patients were included in the study: 1731 given rivaroxaban and 1718 given

enoxaparin plus a vitamin K antagonist. The primary efficacy outcome was recurrent venous thromboembolism and the principal safety outcome was major bleeding or clinically relevant nonmajor bleeding.

For the time-period of 0–3 months (cycle 1), event data for recurrent VTE, major bleeding (both IC and EC bleeding), and CRNM bleeding were considered as the baseline (Table 1) [15]. The probability of events with rivaroxaban in cycle 1 was inputted from the hazard ratio (HR) of rivaroxaban compared with enoxaparin/warfarin. Transition probabilities per cycle were calculated based on event risk. This was mainly derived from the EINSTEIN DVT trial and other published literature [20-24].

Risk of post-treatment events, including recurrent VTE, bleeding, PTS, CTEPH and event-specific mortality rates in subsequent cycles were obtained from the published literature (Table 1).

Base case	Distribution	Source
(lower-upper)		
) – Enoxaparin/warfarin		
2.6% (1.8%-3.3%)	Beta	EINSTEIN-DVT [15]
48.3% (37.8%–58.8%)	Beta	EINSTEIN-DVT [15]
0.9% (0.4%-1.3%)	Beta	EINSTEIN-DVT [15]
12.5% (1%-24%)	Beta	EINSTEIN-DVT [15]
4.9% (3.9%-5.9%)	Beta	EINSTEIN-DVT [15]
n/warfarin		
0.68 (0.44–1.04)	Log-normal	EINSTEIN-DVT [15]
0.65 (0.33-1.30)	Log-normal	EINSTEIN-DVT [15]
1.055 (0.828–1.342)	Log-normal	EINSTEIN-DVT [15]
	(lower-upper)) - Enoxaparin/warfarin 2.6% (1.8%-3.3%) 48.3% (37.8%-58.8%) 0.9% (0.4%-1.3%) 12.5% (1%-24%) 4.9% (3.9%-5.9%) h/warfarin 0.68 (0.44-1.04) 0.65 (0.33-1.30)	(lower-upper)) - Enoxaparin/warfarin $2.6\% (1.8\% - 3.3\%)$ Beta $48.3\% (37.8\% - 58.8\%)$ Beta $0.9\% (0.4\% - 1.3\%)$ Beta $12.5\% (1\% - 24\%)$ Beta $4.9\% (3.9\% - 5.9\%)$ Beta $4.9\% (3.9\% - 5.9\%)$ Beta $0.68 (0.44 - 1.04)$ Log-normal $0.65 (0.33 - 1.30)$ Log-normal

Table 1. Model inputs

rVTE (10-year risk)	39.9% (35.4%-44.4%)	Beta	Prandoni 2007 [2
Bleeding (subsequent cycles)	0	-	Assumption
Post intracranial bleeding	56.4%	-	Linkins 2010 [21]
CTEPH (2-year risk)	1.25% (1.14%–1.63%)	Beta	Miniati 2006 [22]
PTS (1-year risk)	18% (14.7%–21.3%)	Beta	Prandoni 1997 [23
Mortality			
PE	25.0% (17%-33%)	Beta	EINSTEIN-DVT
DVT	0.0%	-	Assumption
Intracranial bleeding	43.6% (36.5%–50.7%)	Beta	Linkins 2010 [21]
Major extracranial bleeding	3.9% (2.7%-5.4%)	Beta	Linkins 2010 [21]
CTEPH (3-year mortality)	26.0% (22%-30%)	Beta	Condliffe 2008 [2
Utility scores			
Population norm	0.929 (0.917–0.941)	Beta	Guan 2015 [25]
DVT	0.884 (0.674–1.000)	Beta	Locadia 2004 [2
PE	0.663 (0.379–0.905)	Beta	Locadia 2004 [2
Intracranial bleeding	0.347 (0.147–0.558)	Beta	Locadia 2004 [2
Major extracranial bleeding	0.684 (0.516-0.905)	Beta	Locadia 2004 [2
CRNM bleeding	1.000	Beta	Assumption
Post intracranial bleeding	0.713 (0.702–0.724)	Beta	Rivero-Aries 20
			[27]
СТЕРН	0.560 (0.528-0.592)	Beta	Meads 2008 [28
Mild PTS	1.000 (0.91–1.00)	Beta	Lenert 1997 [29
Severe PTS	0.93 (0.76–1.00)	Beta	Lenert 1997 [29
Warfarin (disutility)	0.988 (0.95-1.00)	Beta	Marchetti 2001

Enoxaparin (disutility)	0.988 (0.95-1.00)	-	Assumption
Rivaroxaban (disutility)	1.000	-	Assumption
Drug costs (USD)			Integrated
Rivaroxaban (price/15 mg tablet)	4.17 (2.92–5.42)	-	Management Platform of Beijing Medicine
Rivaroxaban (price/20 mg tablet)	5.19 (3.63-6.75)	-	Sunshine Purchase [14]
Warfarin (price/3 mg tablet/day)	0.08 (0.06–0.10)	-	
Enoxaparin (6000 units: 0.6 ml)	8.71 (6.10–11.32)	-	
Monitoring cost (USD)			
Warfarin monitoring (per time)	10.98 (7.69–14.27)	Gamma	Local charge
Rivaroxaban monitoring (per (time)	10.98 (7.69–14.27)	Gamma	Assumption
Costs of events (USD)			
Recurrent VTE-DVT	3853 (2697-5009)	Gamma	Li et al [31]
Recurrent VTE-PE	4083(2858-5308)	Gamma	Li et al [31]
CRNM bleeding	8.25 (5.77-10.72)	Gamma	Wu et al [32]
Major bleeding (extracranial)	2999 (2099–3898)	Gamma	Wu et al [32]
Major bleeding (intracranial)	3834 (2684–4984)	Gamma	Wu et al [32]
Post intracranial bleeding	339.6 (237.7-441.5)	Gamma	Wu et al [32]
Mild/moderate PTS	59.97 (41.98–77.96)	Gamma	Chen et al [33]
Severe PTS	487.3(341.1–633.4)	Gamma	Chen et al [33]
СТЕРН	4873 (3411–6334)	Gamma	Chen et al [33]
Resource utilization for acute I	OVT treatment		
Days of enoxaparin injection	8 (6–11)	Normal	EINSTEIN-DVT [15]
Frequency of monitoring – Enoxaparin/Warfarin	8 (5.6–10.4)	Gamma	Assumption
Frequency of monitoring – rivaroxaban	3 (2.1–3.9)	Gamma	Assumption
Length of stay of patients – Enoxaparin/Warfarin	14.6 (10.22–18.98)	Gamma	Wu [7]
Difference in length of stay of patients – rivaroxaban vs Enoxaparin/Warfarin	3 (2.1–3.9)	Gamma	van Bellen [34]

CRNM, clinically relevant non-major; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; HR, hazard ratio; PE, pulmonary embolism; PTS, post-thrombotic syndrome; VTE, venous thromboembolism; rVTE, recurrent venous thromboembolism

Discontinuation rates

Based on findings from the EINSTEIN DVT study, the model assumed that all patients with IC bleeding, 40% of patients with major EC bleeding and 11.3% of those with CRNM bleeding would discontinue treatment. Complete discontinuation was assumed for patients with major bleeding events. However, for CRNM bleeding events it was assumed that patients would discontinue therapy for 1 month only and treatment costs would be incurred for the remainder of the cycle.

Utility inputs

Utility values define health state associated quality of life with a range of 0-1 (0= death and 1= best estimated health state). Evidence from published literature was used to determine the various utility values. The Chinese population norm value was taken as 0.929 (95% CI 0.917–0.941), which was established in the landmark national EQ-5D survey [25]. This value was used as the basis for calculating the utilities of every health state. The utility value used for DVT was 0.884 (95% CI 0.674–1.000), as demonstrated in the report by Locadia et al (2004) [26]. Previous studies [35] have reported increased treatment satisfaction with rivaroxaban compared with enoxaparin/warfarin; therefore, a disutility weight of 1.00 was assumed for rivaroxaban and a disutility value of 0.988 was assumed for enoxaparin/warfarin. Utilities for other states was based on values in previously published literature [26-30] (Table1).

Resource utilization and cost inputs

On entry into the model, resource utilization related to the index event (DVT) was used to analyze the difference between rivaroxaban and enoxaparin/warfarin, especially in terms of drug utilization, monitoring frequency and hospitalization. We assumed that patients received standard dosage and 3 months treatment in the absence of contraindications. It was also conservatively assumed that, in the first 3 months, patients receiving rivaroxaban would require 3 drug monitoring visits and patients receiving enoxaparin/warfarin therapy would require 8 visits. The length of stay for

BMJ Open

hospitalized patients with DVT was set as 14.6 days (range 10.22–18.98 days) with enoxaparin/warfarin treatment [7] and was assumed to be three days shorter with rivaroxaban therapy [34]. Unit costs of rivaroxaban, enoxaparin and warfarin were based on local drug tariffs in China (Table 1). The daily cost of hospitalization was based on published literature (USD 363.65, range USD 254.55–USD 472.74) [31], with an average length of stay (LoS) of 14.6 days (range 10.22–18.98 days) for patients receiving enoxaparin/warfarin [7]. The costs of managing the event were also based on published literature [31-33] and assumed to be equal across all treatment arms (Table 1).

Data analysis

Data from published studies and assumptions from Tables 1- were used to calculate mean estimates of 5-year costs and QALYs for rivaroxaban and enoxaparin/warfarin. Base case analysis – total costs and QALYs – were calculated for patients receiving rivaroxaban or SoC. Furthermore, the incremental cost effectiveness ratio (ICER) was also calculated. Besides, we assumed a willingness-to-pay threshold (WTP) of USD 14,992.5 per QALY (i.e. CNY 100,000 originally in the model), which was less than three times the gross domestic product (GDP) per capita in China in 2016 (USD 24351.8 [36]). An ICER of less than USD 14,992.5 per QALY is then an indication that rivaroxaban is cost-effectiveness [37].

To explore the effect of parameter uncertainty, we conducted one-way and probabilistic sensitivity analyses (PSA). In the one-way sensitivity analysis, the minimum and maximum estimates of clinical data, utility and costs were used in the model. For PSA, the variables were specified as distributions: the clinical input followed beta or normal distribution; costs inputs followed gamma distribution and utility data followed beta distribution. Then we run 1,000 simulations in PSA to get 1000 estimates of incremental costs and QALYs. All analyses were carried out using Microsoft Excel.

Patient and Public Involvement

Patients were not involved.

Results

Base case analysis

The results of the base case cost-effectiveness analysis are presented in Table 2. Treatment with rivaroxaban and enoxaparin/warfarin over a 3-month period, estimated for a time duration of 5 years, showed that rivaroxaban therapy was associated with a gain of 0.008 QALYs, (4.111 QALYs with rivaroxaban compared with 4.103 QALYs with enoxaparin/warfarin). Although the drug acquisition cost of rivaroxaban was higher compared with enoxaparin/warfarin (USD 504.9 vs USD 145.8; difference of USD 359.0), the monitoring cost (USD 24.3 vs USD 64.3; difference of USD –40.0) and treatment cost for VTE events (USD vs USD 4,770.8; difference of USD – 1,145.5) with rivaroxaban were lower compared with those for enoxaparin/warfarin. This resulted in an overall lower total cost of treatment with rivaroxaban than with enoxaparin/warfarin (USD 4,744.4 vs USD 5,572.4, respectively; incremental costs USD –828.0). The cost of treating bleeding events, PTS and CTEPH were similar with both treatments and did not impact the overall cost of treatment (Table 2).

Outcomes	Rivaroxaban	Enoxaparin/warfarin	Incremental
Total cost (USD)	4744.4	5572.4	-828.0
Drug acquisition cost	504.9	145.8	359.0
Monitoring cost	24.3	64.3	-40.0
VTE event treatment	3625.2	4770.8	-1145.5
cost			

Table 2. Total costs and QALYs for rivaroxaban and enoxaparin/warfarin

Bleeding treatment cost	33.8	33.7	0.1
PTS/CTEPH	556.1	557.8	-1.6
QALY	4.111	4.103	0.008
Incremental QALY	-	-	Dominant

CTEPH, chronic thromboembolic pulmonary hypertension; PTS, post-thrombotic syndrome; VTE, venous thromboembolism; QALY, quality-adjusted life year

One-way sensitivity analysis

Since rivaroxaban was dominant in the base-case analysis, a net monetary benefit (NMB) OWSA was conducted to examine economic value. The top 10 most sensitive parameters affecting the rivaroxaban and enoxaparin/warfarin cost-effectiveness model are presented in Figure 2. According to the OWSA, the cost effectiveness of rivaroxaban compared with enoxaparin/warfarin was most sensitive to the length of hospital stay (LoS) of patients on enoxaparin/warfarin, cost per day of hospitalization and the difference in LoS between patients receiving rivaroxaban and enoxaparin/warfarin; these parameters acted as the main drivers of the cost differences. Overall, rivaroxaban showed a positive NMB irrespective of the parameters or the values used.

Probabilistic sensitivity analysis

The PSA confirmed the cost effectiveness of rivaroxaban over enoxaparin/warfarin (Figure3). The majority of simulations showed that 3 months of treatment with rivaroxaban was more cost-effective than the equivalent duration of enoxaparin/warfarin treatment, which resulted in a 99.6% likelihood of rivaroxaban being cost-effective at a WTP threshold of USD 14,992.5 per QALY.

Discussion

This study was an economic evaluation of rivaroxaban anticoagulation therapy compared with SoC for DVT treatment from a Chinese healthcare payer perspective. From the base case analysis,

BMJ Open

it was observed that, over a 5-year period, rivaroxaban appeared to be more cost-effective than SoC for the treatment of hospitalized acute DVT in China despite having a higher price per unit than warfarin. These results were mainly driven by the lower hospitalization cost of patients receiving rivaroxaban. The sensitivity analyses also showed the robustness of the model used.

Our findings show that hospitalization costs for monitoring and VTE-related events were lower with rivaroxaban compared with SoC treatment. Although only 0.008 additional QALYs were achieved with rivaroxaban treatment, the PSA suggested that the probability of rivaroxaban being more cost-effective than SoC treatment would be 99.6% per 1000 iterations, indicating that rivaroxaban has greater cost-saving potential than enoxaparin/warfarin, at a WTP threshold of USD 14,992.5 per QALY.

The results of our study are in line with those presented in previous studies. Studies in the Western population have demonstrated the cost-effectiveness of rivaroxaban over LMWH/VKA, placebo, LMWH alone and VKA alone for VTE recurrence and other transition events [19, 38–40]. In a cost-effectiveness analysis, rivaroxaban showed per-patient cost savings at 3-, 6- and 12-months compared with enoxaparin/warfarin in the EINTEIN DVT trial; the HR of VTE, discount rate and mean age were the driving factors affecting this model [19]. Coleman et al. showed greater QALYs gained with rivaroxaban treatment compared with placebo (16.167 vs 16.134) despite a higher treatment cost (USD 22,645 vs USD 22,083), suggesting the higher cost-effectiveness of rivaroxaban over placebo, assuming a willingness-to-pay threshold of USD 50,000 per QALYs gained [38]. An economic comparison of rivaroxaban and warfarin in the US showed a lower cost of treatment with rivaroxaban (USD 3195 vs USD 6188), as well as more QALYs gained (9.29 QALYs vs 9.14 QALYs). However, rivaroxaban was not more cost-effective than warfarin when major bleeding risk with rivaroxaban exceeded 3.8% [39]. Gourzoulidis G et al reported the cost-effectiveness analysis of rivaroxaban for VTE treatment in Greece from a third-party payer perspective, which also showed rivaroxaban was cost effectiveness compared SoC[40]. The

BMJ Open

findings from all these studies suggest that treatment with rivaroxaban results in greater cost benefits and clinical outcomes from both payer and societal perspectives.

The findings of our study imply that, despite the cost of rivaroxaban being higher than that of warfarin, it has the potential to reduce the overall economic burden of DVT treatment by reducing hospitalization costs. This is particularly meaningful for the Chinese healthcare system and its hospitals and payers, who are struggling to reduce patient LoS and healthcare expenses [41]. With rivaroxaban, patients may have higher utility and satisfaction, as well as lower economic burden due to early discharge and convenient disease management methods. However, the duration of anti-coagulation and patients' age must be important consideration, as in previous study, recurrence of VTE was associated with shorter duration of anti-coagulation, older age and primary DVT [20].

Although methodological standards were followed for the conduct of this analysis, it has several limitations. Firstly, we set a lot of assumptions in the model which may not reflect real-world clinical practice, e.g. all patients were receiving inpatient treatment and the anticoagulant duration was only 3 months with frequent monitoring visits. We then extrapolated the results to wider populations, focusing on the high impact of hospitalizations. Secondly, clinical and utility data were derived from many sources, some of which were not specific to the Chinese population. For example, the clinical inputs on efficacy and safety were taken from the EINSTEIN DVT trial, and some of the utilities data came from international literature because of a lack of Chinese-specific sources; therefore, further validation is warranted before applying these findings in real-world treatment settings. However, including the limited economic data available from China was the best possible measure taken to address the concern. Thirdly, our model lacked analyses based on patient/societal perspectives, which may also be beneficial in evaluating the indirect cost of

BMJ Open

 rivaroxaban treatment. Real-world studies would also be useful to evaluate the actual costeffectiveness of rivaroxaban and further justify its clinical and economic value.

Conclusion

In conclusion, our study showed rivaroxaban to be a cost-saving treatment option when compared with enoxaparin/warfarin therapy for hospitalized acute DVT treatment in Chinese patients. The sensitivity of the cost-effectiveness model was mainly driven by the LoS of patients on enoxaparin/warfarin treatment, cost per day of hospitalization and the difference in LoS of rivaroxaban and enoxaparin/warfarin treated patients. aparine ...

3
4
5
6
7 8
8
9
10
11
12
13
14
15
16
17 18
18
19
20
21
22
22
∠⊃ ⊃4
24
25
26
27
28
24 25 26 27 28 29
30
31
32
33
34
35
36
37
37 38
39
40
41
41
44
45
46
47
48
49
50
51
52
54
55
56
57
58
59
60

1 2

Abbreviations

CE	Cost-effectiveness
CRNM	Clinically relevant non-major
СТЕРН	Chronic thromboembolic pulmonary hypertension
DVT	Deep vein thrombosis
HR	Hazard ratio
ICER	Incremental CE ratios
INR	International normalization ratio
ITT	Intention-to-treat
LMWH	Low molecular weight heparins
LoS	Length of stay
OWSA	One-way sensitivity analysis
PE	Pulmonary embolism
PSA	Probabilistic sensitivity analyses
PTS	Post-thrombotic syndrome
QALY	Quality-adjusted life year
RR	Relative risk
SoC	Standard of care
VKA	Vitamin-K-antagonist

Declarations

Ethics approval and consent to participate:

All procedures performed in studies involving human participants were in accordance with the ethical standards of the ethical committee of Peking University Health Science Center (IRB00001052-17006) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication

Not applicable.

Availability of data and material

No additional data available.

Competing interests

Li Yang has nothing to disclose. Jingjing Wu is an employee of Bayer Healthcare Company Ltd.

Funding

This study was funded by National Natural Science Foundation of China (Grant number71273016/G0308 and 71673004/G0406). The data collection was sponsored by Bayer Healthcare Company Ltd; however, publication of the study results was not contingent upon the sponsor's approval.

Authors' contributions

YL contributed to the design, interpretation of the data and revisions and WJ contributed to the modelling and drafting the manuscript.

Acknowledgement

The authors thank Karan Sharma and Dr Amit Bhat from Indegene Pvt. Ltd. Bangalore, for providing necessary medical writing assistance.

References

- Silva AS, Brazao ML, Granito S, Escorcio S, Jardim M, Silva S, et al. Thrombophilia/prothrombotic disorders. *Sociedade Portuguesa de Medicina interna*. 2010;17:44–58.
- Cheng G, Chan C, Liu YT, et al. Incidence of Deep Vein Thrombosis in Hospitalized Chinese Medical Patients and the Impact of DVT Prophylaxis. *Thrombosis*. 2011;2011:629383. doi: 10.1155/2011/629383.
- Hang Y, Liang L, Zhai Z, et al. Pulmonary Embolism Incidence and Fatality Trends in Chinese Hospitals from 1997 to 2008: A Multicenter Registration Study. *PLoS One*. 2011;6:e26861.
- Law Y, Chan YC, Cheng SWK. Epidemiological updates of venous thromboembolism in a Chinese population. *Asian J Surg.* 2018;41(2):176-182.
- Joynt GM, Li TST, Griffith JF, Gomersall CD, Yap FHP, Ho AMH, et al. The incidence of deep venous thrombosis in Chinese medical Intensive Care Unit patients. *Hong Kong Med J.* 2009;15:24–30.
- Kearon C, Akl EA, Ornelas J, et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. *Chest.* 2016;149:315–352
- Wu EQ, Xie J, Wu C, Du EX, Li N, Tan R, et al. Treatment, Monitoring, and Economic Outcomes of Venous Thromboembolism Among Hospitalized Patients in China. *Pharmacoeconomics*. 2014;32:305–313.
- Kubitza D, Becka M, Voith B, Zuehlsdorf M, Wensing G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. *Clin Pharmacol Ther*. 2005;78:412–421.

BMJ Open

2	
3	
4	
5	
6	
6 7 8 9 10 11 12 13 14 15	
/	
8	
9	
10	
11	
12	
13	
11	
15	
10	
10	
17	
18	
 16 17 18 19 20 21 22 23 24 25 	
20	
21	
22	
23	
2/	
24	
25	
26	
26 27 28 29 30	
28	
29	
30	
31 32 33 34 35 36 37 38	
32	
33	
31	
24	
35	
36	
37	
38	
39	
40	
41	
42	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

9.	Eriksson BI, Kakkar AK, Turpie AGG, Gent M, Bandel TJ, Homering M, et al. Oral
	rivaroxaban for the prevention of symptomatic venous thromboembolism after elective hip
	and knee replacement. J Bone Joint Surg Br. 2009;91:636–644.

- 10. Turpie AGG, Lassen MR, Davidson B, Bauer KA, Gent M, Kwong LM, et al. RECORD4 investigators. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomized trial. Lancet. 2009;373:1673-1680.
- 11. Wang Y, Wang C, Chen Z, Zhang J, Liu Z, Jin B, et al. Chinese EINSTEIN investigators. Rivaroxaban for the treatment of symptomatic deep-vein thrombosis and pulmonary embolism in Chinese patients: a subgroup analysis of the EINSTEIN DVT and PE studies. Thrombosis Jour. 2013;11:25.
- 12. Deitelzweig S, Laliberté F, Crivera C, Germain G, Bookhart BK, Olson WH, et al. Hospitalizations and Other Health Care Resource Utilization Among Patients with Deep Vein Thrombosis Treated with Rivaroxaban Versus Low-molecular-weight Heparin and Warfarin in the Outpatient Setting. Clin Ther. 2016;38:1803–1816.e3.
- 13. Merli GJ, Hollander JE, Lefebvre P, Laliberté F, Raut MK, Olson WH, et al. Rates of hospitalization among patients with deep vein thrombosis before and after the introduction of rivaroxaban. Hosp Pract (1995). 2015;43:85-93.
- 14. Integrated Management Platform of Beijing Medicine Sunshine Purchase. Unit costs of medicine. Available from: http://210.73.89.76/ServiceSelect/GetServiceSelectList (Accessed November 6 2017).
- 15. Bauersachs R, Berkowitz SD, Brenner B, Buller HR, Decousus H, Gallus AS, et al. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2010;363:2499-510.

- 16. Lefebvre P, Coleman C I, Bookhart B K, et al. Cost-effectiveness of rivaroxaban compared with enoxaparin plus a vitamin K antagonist for the treatment of venous thromboembolism[J]. Journal of medical economics, 2014, 17(1): 52-64
- Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. *Value Health.* 2013;16:231–50.
- Wang H, Ye J, Wang L, Jin W. Risk Characteristics of Venous Thromboembolism in Chinese Patients[J]. Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis. 2016,22(5):490-4.
- 19. Bamber L, Muston D, McLeod E, Guillermin A, Lowin J, Patel R. Cost-effectiveness analysis of treatment of venous thromboembolism with rivaroxaban compared with combined low molecular weight heparin/vitamin k antagonist. *Thrombosis Jour*. 2015;13:20.
- 20. Prandoni P, Noventa F, Ghirarduzzi A, Pengo V, Bernardi E, Pesavento R, et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1,626 patients. Haematologica. 2007;92:199–205.
- 21. Linkins L, O'Donnell M, Julian JA, Kearon C. Intracranial and fatal bleeding according to indication for long-term oral anticoagulant therapy. *J Thromb Haemost*. 2010;8:2201–7.
- 22. Miniati M, Monti S, Bottai M, Scoscia E, Bauleo C, Tonelli L, et al. Survival and restoration of pulmonary perfusion in a long-term follow-up of patients after acute pulmonary embolism. *Medicine (Baltimore)*. 2006;85:253–62.

BMJ Open

2
3
4
5
6
-
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
5 0
50
51
52
53
54
55
56
57
58
59
60

23. Prandoni P, Villalta S, Bagatella P, Rossi L, Marchiori A, Piccioli A, et al. The clinical course of deep-vein thrombosis. Prospective long-term follow-up of 528 symptomatic patients. *Haematologica*. 1997;82:423–8.

- 24. Condliffe R, Kiely DG, Gibbs JS, Corris PA, Peacock AJ, Jenkins DP, et al. Improved outcomes in medically and surgically treated chronic thromboembolic pulmonary hypertension. *Am J Respir Crit Care Med.* 2008;177:1122–7.
- 25. Guan H, Liu G. Comparison Analysis on Health Related Quality of Life among Urban and Rural Residents in 4 Cities of China. *Chinese Health Econ*. 2015;34:5–12.
- 26. Locadia M, Bossuyt PM, Stalmeier PF, Sprangers MA, van Dongen CJ, Middeldorp S, et al. Treatment of venous thromboembolism with vitamin K antagonists: patients' health state valuations and treatment preferences. *Thromb Haemost*. 2004;92:1336–1341.
- 27. Rivero-Arias O, Ouellet M, Gray A, Wolstenholme J, Rothwell PM, Luengo-Fernandez R.
 Mapping the modified Rankin scale (mRS) measurement into the generic EuroQol (EQ-5D) health outcome. *Med Decis Making*. 2010;30:341–54.
- 28. Meads DM, McKenna SP, Doughty N, Das C, Gin-Sing W, Langley J, et al. The responsiveness and validity of the CAMPHOR Utility Index. *Eur Respir J*. 2008;32:1513–9.
- 29. Lenert LA, Soetikno RM. Automated computer interviews to elicit utilities: potential applications in the treatment of deep venous thrombosis. *J Am Med Inform Assoc*. 1997;4:49–56.
- 30. Marchetti M, Pistorio A, Barone M, Serafini S, Barosi G. Low-molecular-weight heparin versus warfarin for secondary prophylaxis of venous thromboembolism: a cost-effectiveness analysis. *Am J Med*. 2001;111:130–9.
- 31. Li QY, Li YC, Zhang YQ. Analysis of clinical data of 1136 inpatients with venous thromboembolism in 2003-2013. *J Pract Med.* 2015;6:1006–1008. [Chinese.]

- 32. Wu B, Kun L, Liu X, et al. Cost–Effectiveness of Different Strategies for Stroke Prevention in Patients with Atrial Fibrillation in a Health Resource-Limited Setting[J]. Cardiovascular drugs and therapy, 2014, 28(1): 87-98.
- 33. Chen X, Wang C, Zhu M. Cost-effectiveness Study of Rivaroxaban for the preverention of Venous Thromboembolism in Patients Undergoing Total Knee Replacement. *China* Pharmacy. 2011; 30: 2787-2790. [Chinese.]
- 34. Van Bellen B, Bamber L, Correa de Carvalho F, Prins M, Wang M, Lensing AWA. Reduction in the length of stay with rivaroxaban as a single-drug regimen for the treatment of deep vein thrombosis and pulmonary embolism. Curr Med Res Opin. 2014;30:829–37.
- 35. Bamber L, Wang MY, Prins MH, Ciniglio C, Bauersachs R, Lensing AWA, et al. Patientreported treatment satisfaction with oral rivaroxaban versus standard therapy in the treatment of acute symptomatic deep-vein thrombosis. Thromb Haemost. 2013;110:732– 741.
- 36. GDP per capita (current US\$) [internet].Washington, DC: The World Bank; 2016. Available from: http://data.worldbank.org/indicator/NY.GDP.PCAP.CD [cited 2018 Jul 20].
- 37. [China guidelines for pharmacoeconomic evaluations]. Beijing: China Center for Health Economics Research; 2016. [Chinese.]
- 38. Coleman CI, Limone BL, Bookhart BK, Mody SH, Nutescu EA. Cost-effectiveness analysis of extended duration anticoagulation with rivaroxaban to prevent recurrent venous thromboembolism. *Thromb Res.* 2014;133:743–749.
- 39. Seaman CD, Smith KJ, Ragni MV. Cost-effectiveness of rivaroxaban versus warfarin anticoagulation for the prevention of recurrent venous thromboembolism: A U.S. perspective. *Thromb Res.* 2013;132:647–651.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
~ ~
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
49 50
51
52
53
54
55
56
57
58
50

59 60

40. Gourzoulidis G, Kourlaba G, Kakisis J, et al. Cost-Effectiveness Analysis of Rivaroxaba	an
for Treatment of Deep Vein Thrombosis and Pulmonary Embolism in Greece. Clin Dru	ug
Investig. 2017 Sep;37(9):833-844.	

41. Pan X, Dib H H, Zhu M, Zhang Y, Fang Y. Absence of appropriate hospitalization cost control for patients with medical insurance: a comparative analysis study. *Health Econ*. 2009;18:1146–1162.

List of tables

 Table 1. Model inputs

Table 2. Total costs and QALYs for rivaroxaban and enoxaparin/warfarin

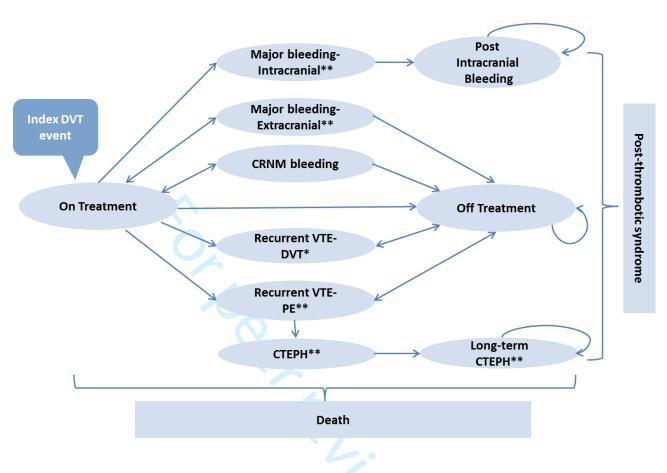
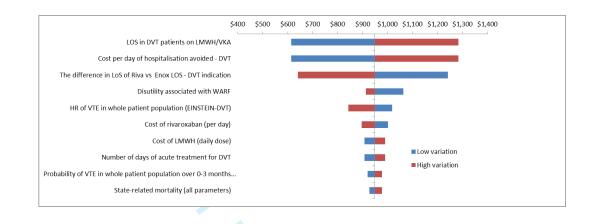

Figures

Figure1. Model schematic [21]

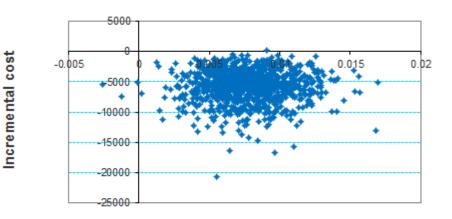
Figure 2. One-way sensitivity analysis tornado diagram for rivaroxaban compared with Standard of care (Net monetary benefit, Quality-adjusted life year based)

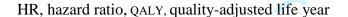
Figure 3. Cost-effectiveness plane for rivaroxaban vs enoxaparin/warfarin, based on whole study Hazard ratios (5-year, Quality-adjusted life year outcome)



Notes: *DVT split into contralateral and ipsilateral. **Additional mortality

CRNM, clinically relevant non-major; VTE, venous thromboembolism; DVT, deep vein thrombosis; PE, pulmonary embolism; CTEPH, chronic thromboembolic pulmonary hypertension; PTS, post-thrombotic syndrome


Figure 2. One-way sensitivity analysis tornado diagram for rivaroxaban compared with Standard of care (Net monetary benefit, Quality-adjusted life year based)


LOS, length of stay; DVT, deep vein thrombosis; LMWH, low molecular weight heparin; VKA, vitamin-K-antagonists; Riva, rivaroxaban; Enox, enoxaparin; VTE, venous thromboembolism; WARF, warfarin

review only

Figure 3. Cost-effectiveness plane for rivaroxaban vs enoxaparin/warfarin, based on whole study Hazard ratios (5-year, Quality-adjusted life year outcome)

Incremental QALY

CHEERS Checklist Items to include when reporting economic evaluations of health interventions

Section/item	Item	Recommendation	Reported
	No		on page No/
			line No
Title and abstrac	et		
Title	1	Identify the study as an economic evaluation or use	Page 1
		more specific terms such as "cost-effectiveness	
		analysis", and describe the interventions compared.	
Abstract	2	Provide a structured summary of objectives,	Page 2
		perspective, setting, methods (including study design	
		and inputs), results (including base case and	
		uncertainty analyses), and conclusions.	
Introduction			
Background and	3	Provide an explicit statement of the broader context	Page 4
objectives		for the study.	
		Present the study question and its relevance for health	Page 4-5
		policy or practice decisions.	
Methods			
Target	4	Describe characteristics of the base case population	Page 5
population and		and subgroups analysed, including why they were	
subgroups		chosen.	
Setting and	5	State relevant aspects of the system(s) in which the	Page 5
location		decision(s) need(s) to be made.	
Study	6	Describe the perspective of the study and relate this	Page 5
perspective		to the costs being evaluated.	
Comparators	7	Describe the interventions or strategies being	Page 5
		compared and state why they were chosen.	
Time horizon	8	State the time horizon(s) over which costs and	Page 5
		consequences are being evaluated and say why	
		appropriate.	
Discount rate	9	Report the choice of discount rate(s) used for costs	Page 6
		and outcomes and say why appropriate.	
Choice of health	10	Describe what outcomes were used as the measure(s)	Page 5
outcomes		of benefit in the evaluation and their relevance for the	
		type of analysis performed.	
Measurement of	11a	Single study-based estimates: Describe fully the	Page 6-7
effectiveness		design features of the single effectiveness study and	
		why the single study was a sufficient source of	
		clinical effectiveness data.	
	11b	Synthesis-based estimates: Describe fully the	NA
		methods used for identification of included studies	
		and synthesis of clinical effectiveness data.	

2	
3 4	
4	
5	
6	
7	
6 7 8	
0	
9 10	
10	
11	
12	
13	
14	
15	
10	
10	
17	
12 13 14 15 16 17 18	
19	
20	
22	
21 22 23	
23 24	
24	
25	
26	
26 27	
28	
29	
20	
20	
31	
32	
33	
34	
35	
30 31 32 33 34 35 36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
59	

Measurement 12 If applicable, describe the population and methods N	NA
and valuation of used to elicit preferences for outcomes.	
preference	
based outcomes	
Estimating 13a <i>Single study-based economic evaluation:</i> Describe	NA
resources and approaches used to estimate resource use associated	
costs with the alternative interventions. Describe primary	
or secondary research methods for valuing each	
resource item in terms of its unit cost. Describe any	
adjustments made to approximate to opportunity	
costs.	
13bModel-based economic evaluation: DescribeH	Page 10-11
approaches and data sources used to estimate	
resource use associated with model health states.	
Describe primary or secondary research methods for	
valuing each resource item in terms of its unit cost.	
Describe any adjustments made to approximate to	
opportunity costs.	
Currency, price 14 Report the dates of the estimated resource quantities F	Page 6
date, and and unit costs. Describe methods for adjusting	
conversion estimated unit costs to the year of reported costs if	
necessary. Describe methods for converting costs into	
a common currency base and the exchange rate.	
Choice of model 15 Describe and give reasons for the specific type of F	Page 6
decision-analytical model used. Providing a figure to	
show model structure is strongly recommended.	
Assumptions 16 Describe all structural or other assumptions H	Page 11
underpinning the decision-analytical model.	
Analytical17Describe all analytical methods supporting theH	Page 11
methods evaluation. This could include methods for dealing	
with skewed, missing, or censored data; extrapolation	
methods; methods for pooling data; approaches to	
validate or make adjustments (such as half cycle	
corrections) to a model; and methods for handling	
population heterogeneity and uncertainty.	
Results	
Study 18 Report the values, ranges, references, and, if used, H	Page 7-9
parameters probability distributions for all parameters. Report	
reasons or sources for distributions used to represent	
uncertainty where appropriate. Providing a table to	
show the input values is strongly recommended.	
Incremental19For each intervention, report mean values for theH	Page 12-13
costs and main categories of estimated costs and outcomes of	
outcomes interest, as well as mean differences between the	

1 2
3
4 5
5 6 7 8 9 10
8
9 10
11 12
13
14 15
16 17
18
20 21
22
23 24
25 26
27 28
20 21 22 23 24 25 26 27 28 29 30 31 32
30 31
33
34 35
36 37
38
39 40
41 42
43 44
45
46 47
48 49
50 51
52
53 54
55 56
57 58
50

	1		1
		comparator groups. If applicable, report incremental	
		cost-effectiveness ratios.	
Characterising	20a	Single study-based economic evaluation: Describe	NA
uncertainty		the effects of sampling uncertainty for the estimated	
		incremental cost and incremental effectiveness	
		parameters, together with the impact of	
		methodological assumptions (such as discount rate,	
		study perspective).	
	20b	Model-based economic evaluation: Describe the	Page 13
		effects on the results of uncertainty for all input	
		parameters, and uncertainty related to the structure of	
		the model and assumptions.	
Characterising	21	If applicable, report differences in costs, outcomes, or	NA
heterogeneity		cost-effectiveness that can be explained by variations	
		between subgroups of patients with different baseline	
		characteristics or other observed variability in effects	
		that are not reducible by more information.	
Discussion			
Study findings,	22	Summaries key study findings and describe how they	Page 14-16
limitations,		support the conclusions reached. Discuss limitations	
generalizability,		and the generalizability of the findings and how the	
and current		findings fit with current knowledge.	
knowledge			
Other		-	
Source of	23	Describe how the study was funded and the role of	Page 18
funding		the funder in the identification, design, conduct, and	
		reporting of the analysis. Describe other non-	
		monetary sources of support.	
Conflicts of	24	Describe any potential for conflict of interest of study	Page 18
interest		contributors in accordance with journal policy. In the	
		absence of a journal policy, we recommend authors	
		comply with International Committee of Medical	
		Journal Editors recommendations.	