Online Supplementary Table 8: Raw data | Title | Firt author | Journal | Year | Purpose | Patient group | Patients, n | Mean or
median age,
years (SD or
IQR) | Male, % | Mean or
median time
to
reperfusion,
hours (SD or
IQR) | T2-weighted
MRI
sequence | T2-weighted
MRI
interpretation | T1-weighted
late
gadlinium
enhancement
MRI
sequence | T1-weighted
late
gadolinium
enhancement
MRI
interpretation | Spatial extent
of myocardial
oedema on
T2-weighted
MRI, % of
LV
myocardium
(SD or IQR) | Spatial extent
of myocardial
necrosis
measured by
T1-weighted
late
gadolinium
enhancement
MRI, % of
LV
myocardium
(SD or IQR) | MSI, % (SD
or IQR) | |---|-----------------------|-------------------------------|------|---|--|-------------|--|---------|--|--|---|--|---|---|--|-----------------------| | Myocardial Extracellular
Volume Fraction Allows
Differentiation of Reversible
Versus Irreversible
Myocardial Damage and
Prediction of Adverse Left
Ventricular Remodeling of
ST-Elevation Myocardial
Infarction | Chen | J Magn
Reson
Imaging | 2020 | To evaluate the extracellular volume fraction (ECV) in the differentiation of reversible from irreversible myocardial injury and the prediction value of left ventricular adverse remodeling in patients with STEMI after reperfusion | all patients | 24 | 62 (10) | 75 | 5 (2.4) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | FWHM
algorithm | 34.4 (15.1) | 30.8 (14.9) | NA | | Acute Microvascular
Impairment Post-Reperfused
STEMI Is Reversible and
Has Additional Clinical
Predictive Value: A CMR
OxAMI Study | Borlotti | JACC
Cardiovasc
Imaging | 2019 | This study sought to
investigate the clinical
utility and the
predictive relevance of
absolute rest
myocardial blood flow
by cardiac magnetic
resonance in acute
myocardial infarction. | all patients | 64 | 60 (9) | 78.1 | 3 (2.3, 4) | T2-prepared
bright-blood
single-shot
balanced
SSFP | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 40 (33, 48) | 25 (14, 32) | NA | | Elevated serum uric acid
affects myocardial
reperfusion and infarct size
in patients with ST-segment
elevation myocardial | Mandurino-
Mirizzi | J Cardiovasc
Med | 2018 | Our aim was to
correlate eSUA with
infarct size, infarct size
shrinkage, myocardial
reperfusion grade and | elevated
serum uric
acid | 16 | 59 (12.5) | 100 | 4.1 (1.7) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 42 (14.5) | 31.8 (14.9) | 24.5 (13.2) | | infarction undergoing
primary percutaneous
coronary intervention | | | | long-term mortality in
STEMI patients
undergoing primary
percutaneous coronary
intervention. | non-
elevated
serum uric
acid | 85 | 57.6 (10.7) | 90.6 | 3.4 (1.4) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 35.2 (11.6) | 25.3 (10.3) | 28.1 (18.6) | | Dynamic changes in injured
myocardium, very early after
acute myocardial infarction,
quantified using T1 mapping
cardiovascular magnetic
resonance | Alkhalil | J Cardiov
Magn Reson | 2018 | We studied the
temporal changes in the
extent and intensity of
injured myocardium
using T1-mapping
technique within the
first week after STEMI. | all patients | 16 | 56 (8) | 100 | 2.8 (1.7, 4.2) | T2-prepared
bright-blood
single-shot
balanced
SSFP | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 42 (15) | 23 (13, 32) | NA | | CMR Native T1 Mapping
Allows Differentiation of
Reversible Versus
Irreversible Myocardial
Damage in ST-Segment
Elevation Myocardial
Infarction: An OxAMI Study
(Oxford Acute Myocardial
Infarction) | Liu | Circ
Cardiovasc
Imaging | 2017 | We sought to
investigate the ability
of acute native TI
mapping to differentiate
reversible and
injury and its predictive
value for left
ventricular remodeling. | all patients | 60 | 61 (10) | 82 | 3.9 (3.4) | T2-prepared
bright-blood
single-shot
balanced
SSFP | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | FWHM
algorithm | 41 (14) | 27 (12) | NA | | Acute Infarct Extracellular
Volume Mapping to
Quantify Myocardial Area at
Risk and Chronic Infarct Size | Garg | Circ
Cardiovasc
Imaging | 2017 | The main aim of this
study was to investigate
whether acute
extracellular volume
maps can reliably | 1.5T LGE
fwhm | 32 | 61 (12) | 81 | 3.9 (2.4, 6.4) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | FWHM
algorithm | PSIR using
segmented
FLASH
readout
(SPGR) | FWHM
algorithm | 47.3 (19.2) | 28.8 (15.7) | NA | Supplemental material | on Cardiovascular Magnetic
Resonance Imaging | | | | quantify myocardial area at risk and final infarct size. | 1.5T LGE
5SD | 32 | 61 (12) | 81 | 3.9 (2.4, 6.4) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | FWHM
algorithm | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 47.3 (19.2) | 28.1 (17) | NA | |---|----------|--------------------------------------|------|---|---|-----|---------------|----------|----------------|---|---|---|---|----------------------|----------------------|----------------------| | | | | | | 3T LGE
fwhm | 18 | 57 (11) | 89 | 3.7 (3.1, 6.8) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | FWHM
algorithm | PSIR using
segmented
FLASH
readout
(SPGR) | FWHM
algorithm | 47.5 (16.2) | 25.2 (12.2) | NA | | | | | | | 3T LGE
5SD | 18 | 57 (11) | 89 | 3.7 (3.1, 6.8) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | FWHM
algorithm | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 47.5 (16.2) | 28.6 (16.5) | NA | | Morphine Does Not Affect
Myocardial Salvage in ST-
Segment Elevation
Myocardial Infarction | Gwag | Plos One | 2017 | We investigated
myocardial salvage
index to determine
whether intravenous
morphine affects | no
morphine | 203 | 60 (52, 70) | 80.78818 | 3.7 (2.1, 6.7) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 33.4 (22.6,
42.3) | 18.3 (12.4,
25.8) | 42 (29.5,
55.3) | | | | | | myocardial injury
adversely in STEMI
patients undergoing
primary percutaneous
coronary intervention. | morphine | 96 | 58.5 (50, 66) | 80.20833 | 2.6 (1.7, 5.5) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 41.1 (28.8,
52.3) | 22.2 (12.9,
29.6) | 46.1 (34,
58.7) | | Multi-vendor, multicentre
comparison of contrast-
enhanced SSFP and T2-STIR
CMR for determining
myocardium at risk in ST-
elevation myocardial
infarction | Nordlund | Eur Heart J
Cardiovasc
Imaging | 2016 | We aimed to determine
how T2-short tau
inversion recovery and
contrast-enhanced
steady-state free
precession magnetic
resonance imaging
perform in determining
myocardium at risk
when applied in
multicentre, multi-
vendor settings. | all patients | 215 | 60.2 (40, 86) | 84 | 3.1 (1.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 36 (11) | 17 (10) | NA | | T mapping for assessment of
myocardial injury and
microvascular obstruction at
one week post myocardial
infarction | Cameron | Eur J Radiol | 2015 | To compare 3 tesla T1
mapping to
conventional T2-
weighted imaging for
delineating myocardial | microvascul
ar
obstruction | 35 | 58 (29, 88) | 80 | 4.1 (1.1, 8.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 48 (13) | NA | 59 (25) | | | | | | oedema one week after
STEMI, and to explore
the confounding effects
of microvascular
obstruction on each
technique. | no
microvascul
ar
obstruction | 27 | 60 (46, 83) | 66.66667 | 3.3 (0.8, 12) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 28 (11) | NA | 75 (17) | | Prognosis after ST-elevation
myocardial infarction: a
study on cardiac magnetic
resonance imaging versus
clinical routine | deWaha | Trials | 2014 | This study aimed to
evaluate the
incremental prognostic
value of infarct size,
microvascular | occurence
of a major
cardiovascu
lar event | 52 | 69 (60, 77) | 69.23077 | 3.5 (2.3, 6.6) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | NA | 31.5 (22.5,
40) | 27 (10, 39.7) | | | | | | obstruction, MSI, and LV ejection fraction assessed by cardiac MR imaging in comparison to traditional outcome markers in patients with STEMI reperfused by primary percutaneous intervention. | no
occurence
of a major
cardiovascu
lar event | 226 | 64 (55, 72) | 72.56637 | 3.2 (2.1, 5.6) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | NA | 13.1 (5.7,
22.4) | 67.4 (47.9,
83.3) | | Impact of overweigt on
myocardial infarct size in
patients undergoing primary
percutaneous coronary
interventions: A magnetic | Sohn | Atherosclero
sis | 2014 | We evaluated the
impact of overweight
on myocardial infarct
size in patients
undergoing primary | body mass
index
beyond 25 | 110 | 58.3 (12.6) | 84.54545 | 4.8 (2.8, 7.4) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 36 (25.7,
49.6) | 20.8 (11.4, 33.1) | 39.2 (24.6,
59.6) | | resonance imaging study | | | | percutaneous
intervention for
STEMI. | body mass
index above
25 | 83 | 56.2 (11) | 90.36145 | 4.3 (2.6, 6.8) | T2-weighted
dark-blood
TSE/FSE | Manual
contouring | PSIR using
segmented
FLASH | Manual
contouring | 29.4 (20.5,
37.6) | 17.9 (9, 24.9) | 43.2 (27.7,
54.4) | | | | 1 | 1 | | | 1 | | 1 | 1 | with IR | ı | 1 . | 1 | | | | |---|------------|--------------------------------|------|---|---|-----|--------------------|----------|----------------|---|---|---|---|----------------------|---------------------|----------------------| | | | | | | | | | | | (STIR) | | readout
(SPGR) | | | | | | Impact of white blood cell
count on myocardial salvage,
infarct size, and clinical
outcomes in patients
undergoing primary | Chung | Int J
Cardiovasc
Imaging | 2014 | We sought to determine
the relationship
between white blood
cell count and infarct
size assessed by | high white
blood cell
count | 91 | 56 (47, 66) | 91.20879 | 4.7 (2.9, 9.3) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 63.3 (47.6,
76.5) | 22 (16.7,
33.9) | 36.7 (23.5,
52.4) | | percutaneous coronary
intervention for ST-segment
elevation myocardial
infarction: a magnetic
resonance imaging study | | | | cardiovascular MR
imaging in patients
undergoing primary
percutaneous coronary
intervention for
STEMI. | low white
blood cell
count | 107 | 58 (51, 68) | 83.17757 | 4.4 (2.5, 6.7) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 52.3 (39.3,
70.7) | 14.7 (8.5,
24.7) | 47.7 (29.6,
60.7) | | Intracoronary compared with
intravenous bolus abciximab
application during primary
percutaneous coronary
intervention in ST-segment | Eitel | J Am Coll
Cardiol | 2013 | The aim of the AIDA
STEMI (Abciximab i.v.
Versus i.c. in ST-
elevation Myocardial
Infarction) cardiac | intravenous
abciximab | 401 | 61 (51, 71) | 79 | 3.2 (1.8, 5.6) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 35 (25, 48) | 17 (8, 25) | 50 (26, 48) | | elevation myocardial
infarction: cardiac magnetic
resonance substudy of the
AIDA STEMI trial | | | | magnetic resonance
substudy was to
investigate potential
benefits of
intracoronary versus | MACE | 53 | 62 (51, 71) | 76 | 3 (1.8, 5.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | NA | 24 (18, 31) | 37 (23, 55) | | | | | | intravenous abciximab
bolus administration on
infarct size and
reperfusion injury in
ST-segment elevation | no MACE | 742 | 62 (51, 71) | 76 | 3 (1.8, 5.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | NA | 16 (8, 24) | 52 (33, 69) | | | | | | myocardial infarction. | intracoronar
y abciximab | 394 | 63 (51, 71) | 73 | 2.7 (1.8, 5) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 35 (25, 47) | 16 (9, 25) | 52 (25, 47) | | Remote ischemic post-
conditioning of the lower
limb during primary
percutaneous coronary
intervention safely reduces | Crimi | JACC
Cardiovasc
Interv | 2013 | This study sought to
evaluate whether
remote ischemic post-
conditioning could
reduce enzymatic | no remote
ischemic
post-
conditionin
g | 48 | 56 (11) | 89.58333 | 3.1 (2.5, 4.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 36 (15) | 26 (13) | NA | | enzymatic infarct size in
anterior myocardial
infarction: a randomized
controlled trial | | | | infarct size in patients
with anterior STEMI
undergoing primary
percutaneous coronary
intervention. | remote
ischemic
post-
conditionin
g | 48 | 61 (11) | 85.41667 | 3 (2.3, 3.8) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 33 (11) | 24 (10) | NA | | The assessment of area at risand myocardial salvage after coronary revascularization in acute myocardial infarction: comparison between CMR and SPECT | Hadamitzky | JACC
Cardiavasc
Imaging | 2013 | This study sought to
compare cardiac
magnetic resonance and
single-photon emission
computed tomography
for assessment of area
at risk, scar size, and
salvage area after
coronary reperfusion in
acute myocardial
infarction. | STEMI | 121 | 58.6 (53.1,
70) | 81.81818 | 4.9 (3.4, 8) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 3
SD above
remote
myocardium | 31 (14.2) | 18.8 (14.5) | NA | | Right ventricular injury in
ST-elevation myocardial
infarction: risk stratification
by visualization of wall
motion, edema, and delayed- | Grothoff | Circ
Cardiovasc
Imaging | 2012 | Aims were to determine
the predictors and the
prognostic significance
of right ventricular
injury assessed by wall | right
ventricular
injury | 69 | 65 (13) | 79.7 | 4 (2.6, 7.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | NA | 21 (12) | 47 (20) | | enhancement cardiac
magnetic resonance | | | | motion abnormalities,
edema, myocardial
salvage index, and
delayed enhancement in
acute reperfused
STEMI. | no right
ventricular
injury | 69 | 65 (11) | 79.7 | 3 (2.2, 5.4) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | NA | 17 (14) | 59 (26) | | Distal protection device
aggravated microvascular
obstruction evaluated by
cardiac MR after primary
percutaneous intervention for | Yoon | Int J Cardiol | 2012 | In a prospective
randomized trial, we
investigated the
mechanism of the poor
effect of distal | no distal
protection
and no
thrombus
aspiration | 55 | 58 (11) | 78.7 | 5.2 (2.6) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 46.1 (16.4) | 35.1 (14.6) | 27.6 (20.8) | | ST-elevation myocardial infarction | | | | protection and
thrombus aspiration in
126 patients with
STEMI. | distal
protection
and
thrombus
aspiration | 55 | 58 (12) | 80 | 4.9 (2.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 50 (14.1) | 34.7 (13.6) | 31.6 (18.8) | |---|---------|---------------------------------|------|---|---|-----|-------------|----------|----------------|--|---|---|---|----------------------|----------------------|----------------------| | Comparison of magnetic resonance imaging findings in non-ST-segment elevation versus ST-segment elevation myocardial infarction patients undergoing early invasive intervention | Xu | Int J
Cardiovasc
Imaging | 2012 | To define causes and
pathological
mechanisms underlying
differences in clinical
outcomes, we
compared the findings
of contrast-enhanced
MR imaging between
STEMI and NSTEMI. | STEMI | 113 | 58 (12.3) | 85.84071 | 4.6 (2.7, 9.6) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Manual contouring | 32.9 (22.7,
45.9) | 19.2 (10.3,
30.7) | 40.5 (24.8,
83.5) | | T2-weighted cardiac MR
assessment of the myocardial
area-at-risk and salvage area
in acute reperfused
myocardial infarction:
Comparison of state-of-the- | Viallon | J Cardiov
Magn Reson | 2012 | To compare different
state-of-the-art T2-
weighted imaging
sequences combined
with late gadolinium
enhancement for | T2 Short-
Tau
Inversion
Recovery
Turbo Spin
Echo | 30 | 55 (13) | 83.33333 | 5 (3.6) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | FWHM
algorithm | PSIR using
segmented
FLASH
readout
(SPGR) | FWHM
algorithm | 48 (39, 55) | 21.2 (12.9) | NA | | art dark blood and bright
blood T2-weighted
sequences | | | | myocardial salvage area
assessment by cardiac
MR imaging. | T2 Steady
State Free
Precession | 30 | 55 (13) | 83.33333 | 5 (3.6) | T2-prepared
bright-blood
single-shot
balanced
SSFP | FWHM
algorithm | PSIR using
segmented
FLASH
readout
(SPGR) | FWHM
algorithm | 41 (28, 54) | 21.2 (12.9) | NA | | | | | | | hybrid T2
Turbo Spin
Echo and
Steady
State Free
Precession
(=Acquisiti
on for
Cardiac
Unified T2
Edema) | 30 | 55 (13) | 83.3333 | 5 (3.6) | Hybrid TSE-
SSFP
(ACUTE) | FWHM
algorithm | PSIR using
segmented
FLASH
readout
(SPGR) | FWHM
algorithm | 40 (26, 49) | 21.2 (12.9) | NA | | | | | | | T2 Turbo
Spin Echo
with blade
k-space
coverage | 30 | 55 (13) | 83.33333 | 5 (3.6) | BLADE k-
space
coverage for
dark-blood
TSE | FWHM
algorithm | PSIR using
segmented
FLASH
readout
(SPGR) | FWHM
algorithm | 46 (33, 55) | 21.2 (12.9) | NA | | A high loading dose of
clopidogrel reduces
myocardial infarct size in
patients undergoing primary
percutaneous coronary | Song | Am Heart J | 2012 | We sought to determine
whether a 600-mg
loading dose of
clopidogrel reduces
myocardial infarct size | 600mg
Clopidogrel | 117 | 59 (51, 68) | 82.90598 | 4.8 (2.8, 8) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 31.5 (22.6,
46) | 17.3 (8.9,
26.2) | 47.7 (33.7,
60.9) | | intervention: a magnetic
resonance imaging study | | | | compared with a 300-
mg dose using contrast-
enhanced magnetic
resonance imaging in
patients undergoing
primary percutaneous
coronary intervention
for STEMI. | 300mg
Clopidogrel | 81 | 55 (47, 66) | 92.59259 | 4 (2.7, 6.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 33.1 (26.2,
45.2) | 21.7 (12.9, 30) | 32 (23.6,
51.5) | | Microvascular resistance
predicts myocardial salvage
and infarct characteristics in
st-elevation myocardial
infarction | Payne | J Am Heart
Assoc | 2012 | We investigated the
relationships among
culprit artery
microvascular
resistance, myocardial
salvage, and ventricular
function. | all patients | 108 | 57.8 (10.2) | 83.33333 | 3.1 (2.3, 5.5) | Hybrid TSE-
SSFP
(ACUTE) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 2
SD above
remote
myocardium | 32.9 (12.4) | 23.5 (14.2) | 19.2 (36.3) | | Quantification of myocardial
area at risk: validation of
coronary angiographic scores
with cardiovascular magnetic
resonance methods | Moral | Rev Esp
Cardiol
(Engl Ed) | 2012 | Our objective was to
compare the myocardial
area-at-risk estimated
by Bypass Angioplasty
Revascularization
Investigation
Myocardial Jeopardy
Index (BARI) and
Alberta Provincial
Project for Outcome | all patients | 70 | 57.7 (13.9) | 88.57143 | 4.5 (1.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 36.9 (14.3) | 24.2 (13.5) | 12.8 (8.6) | | | W. | D. F. | 2012 | Assessment in
Coronary Heart Disease
(APPROACH)
angiographic scores
with those determined
by cardiovascular MR
imaging. | | 59 | 50 (12) | 77.0(() | 42.0.7 | m2 : 14 1 | G: 1 | DOID : | | | 20 (15) | NA. | |---|----------|---------------------------------|------|--|---|-----|-------------|----------|----------------|---|---|---|---|----------------------|----------------------|-------------| | Analysis of post-infarction
salvaged myocardium by
cardiac magnetic resonance.
Predictors and influence on
adverse ventricular | Monmeneu | Rev Esp
Cardiol
(Engl Ed) | 2012 | To evaluate by
cardiovascular MR
imaging those factors
related to the amount of
salvaged myocardium | median
MSI =<
31% | 59 | 58 (13) | 77.9661 | 4.3 (3, 7) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 2
SD above
remote
myocardium | 31 (16) | 28 (15) | NA | | remodeling | | | | after a myocardial
infarction and its value
in predicting adverse
ventricular remodeling. | median
MSI > 31% | 59 | 60 (12) | 72.88136 | 2.6 (1.9, 3.1) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 2
SD above
remote
myocardium | 29 (14) | 13 (9) | NA | | Aborted Myocardial
Infarction: Evaluation of
Changes in Area at Risk,
Late Gadolinium
Enhancement, and Perfusion | Lee | AJR Am J
Roentgenol | 2012 | To analyze
comprehensive MRI
findings of aborted
myocardial infarction in
terms of the area at risk, | overt
myocardial
infarction | 18 | 59 (49, 65) | 72.22222 | 3.2 (2.9, 6.1) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 39.5 (27,
60.9) | 23.5 (16.3,
39.3) | NA | | Over Time and Comparison
With Overt Myocardial
Infarction | | | | late enhancement, and
perfusion on initial and
follow-up studies
compared with overt
MI. | aborted
myocardial
infarction | 11 | 60 (52, 71) | 72.72727 | 1.7 (1.4, 2.6) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 36.8 (29.8,
43.1) | 4.8 (0, 11.9) | NA | | Cardiovascular magnetic
resonance-derived
intramyocardial hemorrhage
after STEMI: Influence on
long-term prognosis, adverse | Husser | Int J Cardiol | 2013 | The value of MR
imaging-derived
intramyocardial
hemorrhage for
predicting major | occurence
of a major
cardiovascu
lar event | 47 | 61 (13) | 76.59574 | 4.7 (3.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | IR with
single-shot
SSFP | Signal
intensity > 2
SD above
remote
myocardium | 41 (19) | 32 (18) | NA | | left ventricular remodeling
and relationship with
microvascular obstruction | | | | adverse cardiac events
and adverse cardiac
remodeling after
STEMI and its
relationship with | intramyocar
dial
haemorrhag
e | 102 | 57 (12) | 79.41176 | 4.5 (3.1) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | IR with
single-shot
SSFP | Signal
intensity > 2
SD above
remote
myocardium | 42 (15) | 35 (15) | NA | | | | | | microvascular
obstruction was
analyzed. | no
occurence
of a major
cardiovascu
lar event | 257 | 57 (12) | 80.93385 | 4.1 (3.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | IR with
single-shot
SSFP | Signal
intensity > 2
SD above
remote
myocardium | 29 (15) | 21 (14) | NA | | | | | | | no
intramyocar
dial
haemorrhag
e | 202 | 59 (12) | 80.69307 | 4 (3.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | IR with
single-shot
SSFP | Signal
intensity > 2
SD above
remote
myocardium | 25 (14) | 16 (11) | NA | | Reliability of myocardial
salvage assessment by
cardiac magnetic resonance
imaging in acute reperfused
myocardial infarction | Desch | Int J
Cardiovasc
Imaging | 2012 | The aim of this study
was to evaluate the
reliability of salvaged
myocardium
measurements by
cardiac MR imaging. | all patients | 20 | 58 (11) | 60 | 3.7 (1.7) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 33.7 (9) | 18.2 (7.5) | 43.8 (22.5) | | Dynamic Changes in ST
Segment Resolution After
Myocardial Infarction and
the Association with
Microvascular Injury on | Weaver | Heart Lung
Circ | 2011 | The aim of this study
was to assess whether
the development of
microvascular
obstruction or | no
microvascul
ar
obstruction | 17 | 60 (NA, NA) | 80.4878 | 3.8 (2.9, 5.3) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 2
SD above
remote
myocardium | 31 (26, 34) | 15 (10, 23) | NA | | Cardiac Magnetic Resonance
Imaging | | | | intramyocardial
hemorrhage has an
impact upon ST
segment resolution. | microvascul
ar
obstruction | | 58 (NA, NA) | 80.4878 | 3.2 (2.4, 5.7) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 2
SD above
remote
myocardium | 45 (35, 51) | 28 (19, 39) | NA | | Reperfusion haemorrhage as
determined by cardiovascular
MRI is a predictor of adverse
left ventricular remodelling
and markers of late
arrhythmic risk | Mather | Heart | 2011 | To assess whether the presence of myocardial haemorrhage influences ventricular remodelling and risk of late ventricular arrhythmia following percutaneous | no
microvascul
ar
obstruction
or
haemorrhag
e | 18 | 57 (9.2) | 88.88889 | 3.7 (2.5, 4.7) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 2
SD above
remote
myocardium | 29.2 (13.3) | 16.3 (9.4) | NA | Supplemental material | | | | | coronary intervention
for acute myocardial
infarction. | haemorrhag
e | 12 | 56 (11.6) | 91.66667 | 3.7 (5.2, 5.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 2
SD above
remote
myocardium | 43.2 (20.8) | 36.2 (15.3) | NA | |--|---------|-------------------------------|------|---|--|-----|-------------|----------|----------------|---|---|---|---|----------------------|----------------------|-------------| | | | | | | microvascul
ar
obstruction
only | 18 | 58 (8.1) | 88.88889 | 2.9 (3.9, 3.9) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 2
SD above
remote
myocardium | 40.7 (9.7) | 29.5 (11.1) | NA | | Timing of cardiovascular
MR imaging after acute
myocardial infarction: effect
on estimates of infarct
characteristics and prediction
of late ventricular
remodeling | Mather | Radiology | 2011 | To define the evolution of infarct characteristics with cardiovascular MR imaging and to assess which of the cardiovascular MR imaging data acquired at day 2 or at 1 week after acute myocardial infarction, is the stronger predictor of infarct size and LV function measured at 3 months. | all patients | 48 | 57 (9) | 89.58333 | 3.4 (4.2, 4.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 2
SD above
remote
myocardium | 37.9 (15.2) | 27.2 (13.9) | 27.6 (23) | | Myocardium at risk in ST-
segment elevation
myocardial infarction
comparison of T2-weighted
edema imaging with the MR-
assessed endocardial surface
area and validation against
angiographic scoring | Fuernau | JACC
Cardiovasc
Imaging | 2011 | The objective of this study was to assess the area at risk in STEMI with 2 different cardiac MR imaging methods and to compare them with the validated angiographic Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease Score (APPROACH-score) in a large consecutive patient cohort. | all patients | 197 | 65.4 (12.4) | 69.03553 | 3.9 (4.8, 4.8) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 35.6 (10.9) | 18.2 (11.7) | 49.3 (27.3) | | The evaluation of an electrocardiographic myocardial ischemia acuteness score to predict the amount of myocardial salvage achieved by early percutaneous coronary intervention Clinical validation with myocardial perfusion single photon emission computed tomography and cardiac magnetic resonance | Engblom | J
Electrocardio
1 | 2011 | The aim was to study whether acute ischemic electrocardiographic changes can predict the amount of salvageable myocardium in patients with acute STEMI. | all patients | 38 | 62 (11) | 86.84211 | 3.2 (1.8) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Heiberg's
method | 35 (11) | 12 (11) | 67 (23) | | Prognostic value and
determinants of a
hypointense infarct core in
T2-weighted cardiac
magnetic resonance in acute | Eitel | Circ
Cardiovasc
Imaging | 2011 | The aim of this study
was to evaluate
determinants and
prognostic impact of a
hypointense infarct core | hypointense
core present | | 62 (53, 72) | 77 | 3.2 (2.3, 5.7) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 38.9 (31.3,
47.4) | 27.1 (17.5,
34.9) | NA | | reperfused ST-elevation-
myocardial infarction | | | | in T2-weighted cardiac
MR images, studied in
patients after acute,
reperfused STEMI. | hypointense
core absent | 224 | 65 (54, 73) | 72 | 3 (2.1, 5.4) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 32.2 (25.5,
39.3) | 13 (5.7, 20.8) | NA | | Long-term prognostic value
of myocardial salvage
assessed by cardiovascular
magnetic resonance in acute
reperfused myocardial | Eitel | Heart | 2011 | The aim of this study
was to investigate
whether the early
prognostic significance
of myocardial salvage | low MSI
(median,
28) | 104 | 67 (55, 75) | 70.19231 | 4.8 (2.8, 7.1) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 35.2 (29.5,
43.1) | 25.7 (19.4,
32.6) | 28 (19, 38) | | infarction | | | | assessed by cardiac MR
imaging is sustained at
long-term clinical
follow-up in patients | high MSI
(median,
73) | 104 | 64 (55, 74) | 67.30769 | 3.1 (21, 5) | T2-weighted
dark-blood
TSE/FSE | Signal
intensity > 2
SD above | PSIR using
segmented
FLASH | Signal
intensity > 5
SD above | 37.3 (29.1,
47.3) | 10.3 (5.4,
14.3) | 73 (60, 82) | | | | | | with STEMI
undergoing primary
angioplasty. | | | | | | with IR
(STIR) | remote
myocardium | readout
(SPGR) | remote
myocardium | | | | |--|----------|-------------------------------|------|---|---|-----|---------|----------|-----------|---|---|---|---|---------|------------|---------| | Cardiovascular magnetic resonance of the myocardium at risk in acute reperfused myocardial infarction: comparison of T2-weighted imaging versus the circumferential endocardial extent of late gadolinium enhancement with transmural projection | Ubachs | J Cardiov
Magn Reson | 2010 | We sought to assess the ability of endocardial extent of infarction by LGE cardiac MR imaging to predict myocardium at risk as compared to T2-weighted imaging. | all patients | 37 | 62 (10) | 86.48649 | 3.3 (2.2) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Heiberg's
method | 34 (10) | 14 (10) | 58 (22) | | Myocardial salvage by CMR
correlates with LV
remodeling and early ST-
segment resolution in acute
myocardial infarction | Masci | JACC
Cardiovasc
Imaging | 2010 | The purpose of this study was to assess the association of myocardial salvage by cardiac MR imaging with left ventricular LV remodeling and early ST-segment resolution in patients with acute myocardial infarction. | all patients | 137 | 61 (12) | 81.0219 | 3.7 (2.1) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 32 (15) | 18 (13) | NA | | A pilot study of rapid cooling
by cold saline and
endovascular cooling before
reperfusion in patients with
ST-elevation myocardial | Gotberg | Circ
Cardiovasc
Interv | 2010 | We aimed to evaluate
the safety and
feasibility of rapidly
induced hypothermia
by infusion of cold | hypothermi
a | 9 | 62 (10) | 77.77778 | 2.9 (0.9) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Heiberg's
method | 44 (8) | 13.7 (6.4) | NA | | infarction | | | | saline and endovascular
cooling catheter before
reperfusion in patients
with acute myocardial
infarction. | no
hypothermi
a | 9 | 58 (7) | 77.77778 | 2.9 (1) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Manual
contouring | PSIR using
segmented
FLASH
readout
(SPGR) | Heiberg's
method | 43 (8) | 20.5 (10) | NA | | Quantification of myocardial area at risk with T2-weighted CMR: comparison with contrast-enhanced CMR and coronary angiography | Wright | JACC
Cardiovase
Imaging | 2009 | We compared the volume of hyperintense myocardium on T2- weighted cardiac MR imaging with the myocardial area at risk determined by contrast-enhanced cardiac MR imaging with infarct endocardial surface length and the area at risk estimated by conventional coronary angiography with the BARI (Bypass Angioplasty Revascularization linvestigation) risk scor. | all patients | 108 | 59 (11) | 84.25926 | 4.2 (2.3) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Manual
contouring | 32 (16) | 17 (12) | NA | | Impact of primary coronary
angioplasty delay on
myocardial salvage, infarct
size, and microvascular
damage in patients with ST-
segment elevation
myocardial infarction: insight
from cardiovascular
magnetic resonance | Francone | J Am Coll
Cardiol | 2009 | We investigated the extent and nature of myocardial damage by using cardiovascular MR imaging in relation to different time-to-reperfusion intervals. | fourth
quartile
(time
between
symptom
onset and
reperfusion
9h in the
mean) | 17 | 58 (11) | 52.94118 | 9 (3.5) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 19 (4) | 16.9 (6) | NA | | | | | | | third
quartile
(time
between
symptom
onset and
reperfusion
5h in the
mean) | 17 | 57 (13) | 58.82353 | 5 (0.9) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 15 (8) | 12.6 (10) | NA | | | | | | | second
quartile | 17 | 57 (10) | 76.47059 | 2.4 (0.4) | T2-weighted
dark-blood | Signal
intensity > 2 | PSIR using segmented | Signal
intensity > 5 | 15 (8) | 11.8 (10) | NA | | (time
between
symptom
onset and
reperfusion
2.4h in the
mean) | | | | TSE/FSE
with IR
(STIR) | SD above
remote
myocardium | FLASH
readout
(SPGR) | SD above
remote
myocardium | | | | |---|----------|----------|---------|---|---|---|---|--------|---------|----| | first quartile (time between symptom onset and reperfusion lh in the mean) | 58 (7.3) | 78.94737 | 1 (0.1) | T2-weighted
dark-blood
TSE/FSE
with IR
(STIR) | Signal
intensity > 2
SD above
remote
myocardium | PSIR using
segmented
FLASH
readout
(SPGR) | Signal
intensity > 5
SD above
remote
myocardium | 16 (9) | 7.5 (9) | NA | MRI: magnetic resonance imaging, STEMI: ST-segment elevation myocardial infarction, SD: standard deviation, TSE: turbo spin echo, FSE: fast spin echo, IR: inversion recovery, STIR: short tau inversion recovery, SSFP: steady state free precession, ACUTE: Acquisition for Cardiac Unified T2 Edema, PSIR: phase sensitive inversion recovery, FLASH: fast low angle shot, SPGR: spoiled gradient echo, FWHM: full width at half maximum; time to reperfusion = time from symptom onset until revascularization.