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ABSTRACT
Introduction Our aim is to develop a novel approach 
to hyperkinetic movement disorder classification, 
that combines clinical information, electromyography, 
accelerometry and video in a computer- aided classification 
tool. We see this as the next step towards rapid and 
accurate phenotype classification, the cornerstone of both 
the diagnostic and treatment process.
Methods and analysis The Next Move in Movement 
Disorders (NEMO) study is a cross- sectional study at 
Expertise Centre Movement Disorders Groningen, University 
Medical Centre Groningen. It comprises patients with single 
and mixed phenotype movement disorders. Single phenotype 
groups will first include dystonia, myoclonus and tremor, and 
then chorea, tics, ataxia and spasticity. Mixed phenotypes 
are myoclonus- dystonia, dystonic tremor, myoclonus ataxia 
and jerky/tremulous functional movement disorders. Groups 
will contain 20 patients, or 40 healthy participants. The gold 
standard for inclusion consists of interobserver agreement 
on the phenotype among three independent clinical experts. 
Electromyography, accelerometry and three- dimensional 
video data will be recorded during performance of a set of 
movement tasks, chosen by a team of specialists to elicit 
movement disorders. These data will serve as input for the 
machine learning algorithm. Labels for supervised learning 
are provided by the expert- based classification, allowing the 
algorithm to learn to predict what the output label should 
be when given new input data. Methods using manually 
engineered features based on existing clinical knowledge will 
be used, as well as deep learning methods which can detect 
relevant and possibly new features. Finally, we will employ 
visual analytics to visualise how the classification algorithm 
arrives at its decision.
Ethics and dissemination Ethical approval has been 
obtained from the relevant local ethics committee. The 
NEMO study is designed to pioneer the application of 
machine learning of movement disorders. We expect to 
publish articles in multiple related fields of research and 
patients will be informed of important results via patient 
associations and press releases.

INTRODUCTION
The hyperkinetic movement disorders myoc-
lonus, dystonia, tremor, chorea and tics are 

all characterised by excessive, involuntary 
movements (table 1).1 In a patient presenting 
with such a disorder, it is crucial to classify 
the movement disorder phenotype promptly 
and accurately, because the phenotype classi-
fication will guide clinical decisions on diag-
nostic testing and (symptomatic) treatment.1 
Current clinical algorithms on hyperkinetic 
movement disorder diagnosis, whether aimed 
at dystonia,2 myoclonus3 or tremor,4 all start 
with the same step: make sure to establish 
the main movement disorder phenotype in 
the patient. The subsequent diagnostic steps 
consist of additional tests such as laboratory, 
imaging and genetic tests, which can greatly 
aid the patient’s aetiological diagnosis. 
The same holds for treatment: decisions 
on which medication to prescribe or which 
target to choose for deep brain stimulation 
are directed by the main clinical movement 
disorder phenotype.

Strengths and limitations of this study

 ► This cross- sectional study addresses a real need in 
classification of hyperkinetic movement disorders 
and may revolutionise our clinical approach.

 ► Representative patients from the entire hyperkinet-
ic movement disorders spectrum will participate, 
including myoclonus, dystonia, tremor, chorea and 
tics, as well as ataxia, spasticity and functional 
movement disorders.

 ► An extensive data set will be collected and used for 
analysis: clinical information and data from electro-
myography, accelerometry and three- dimensional 
video.

 ► The project is a collaboration between movement 
disorders specialists at an acknowledged expertise 
centre and computer scientists in the corporate and 
academic world.

 ► Calculation of the needed sample size is hampered 
by the absence of previous studies in this exact field.
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Given the importance of clinical phenotype recogni-
tion, it is unfortunate that correct classification is difficult 
in many patients. While each phenotype of movement 
disorder has its own clinical presentation, complex and 
mixed forms occur. Moreover, the big five hyperkinetic 
phenotypes (myoclonus, dystonia, tremor, chorea and 
tics) may share overlapping clinical features with ataxia, 
spasticity and functional movement disorders. Presently, 
the classification of involuntary movements is based on 
clinical definitions and therefore on expert opinion. 
However, research demonstrated large interobserver and 
intraobserver variability of clinical classification.5–8 This 
is a major problem that impairs correct phenotyping of 
patients which subsequently delays aetiological diagnosis, 
deliverance of tailored treatment and evaluation of treat-
ment effects.

To improve the classification of hyperkinetic move-
ment disorders we set- up the current study, Next Move 
in Movement Disorders (NEMO). Our aim is to combine 
electromyography (EMG), motion sensors and three- 
dimensional (3D) video with machine learning to develop 
a computer- aided classification tool for hyperkinetic 
movement disorders, which will help healthcare profes-
sionals establish the movement disorders phenotype. The 
algorithm of this computer- aided classification tool will 
be trained with the input data from patients who have a 
hyperkinetic movement disorders phenotype on which a 
panel of blinded independent experts agree.

Currently, EMG and accelerometry are applied in 
clinical practice to support the clinical classification of 
movement disorders, particularly myoclonus, tremor 
and dystonia. This is done by assessment of features 
such as muscle activation pattern, burst duration and 
frequency. While not all applications are supported by 
extensive evidence, there is a long tradition and ample 
experience with these methods.9 Despite the frequently 
incorporated clinical application of video to discuss cases 
among panels of experts, the use of video to automatically 
detect, quantify and classify involuntary movements is still 
in its infancy. Some advances have recently been made 
in using video for assessment of tremor frequency in a 
research setting.10 While these first steps are encouraging, 
application in other movement disorders is still lacking. 
Moreover, until now, investigations of machine learning 

in movement disorders have mainly focused on quantifi-
cation of the hyperkinetic movements11 and optimisation 
of adaptive deep brain stimulation.12 Efforts to classify 
different types of hyperkinetic movement disorders have 
not yet been made, to our knowledge.

In the NEMO project, we combine EMG, accelerom-
etry and video recordings to develop an innovative new 
approach to movement disorder classification. We see the 
development of a computer- aided classification tool as 
the next step towards swift and accurate phenotype classi-
fication of hyperkinetic movement disorders, the corner-
stone of both the diagnostic and treatment process.

METHODS
Study population
The NEMO study protocol comprises patients with both 
single and mixed phenotype movement disorders. Single 
phenotype groups will primarily include dystonia, myoc-
lonus and tremor, and in the future chorea, tics, ataxia 
and spasticity will be added. Although spasticity is not 
typically classified as a movement disorder, this group 
is added for distinction from dystonia, as these two 
neurological conditions are sometimes confused with 
one another.6 Similarly, ataxia is not usually listed as a 
hyperkinetic movement disorder, but signs of ataxia can 
overlap with symptoms of hyperkinetic movement disor-
ders, making it a relevant phenotype to include.13 Mixed 
phenotype groups will consist of myoclonus- dystonia, 
dystonic tremor, myoclonus ataxia and jerky/tremu-
lous functional movement disorders. All patient groups 
will consist of 20 participants. In addition, a group of 
40 healthy participants will be included. Patients will be 
carefully selected based on all clinical information (MRK, 
AMMvdS and MAJT): after participating in the experi-
ment, their data will be reviewed by a panel of experts to 
assess their phenotype and whether they meet the gold 
standard for inclusion.

Participants will only be eligible for inclusion if they are 
at least 16 years old. Exclusion criteria consist of comorbid 
conditions that lead to impaired upper extremity func-
tion, and a silver allergy or implanted pacemaker due to 
incompatibility with the EMG device. Moreover, healthy 

Table 1 Hyperkinetic movement disorders and related disorders

Disorder Clinical characteristics

Dystonia Persistent or intermittent muscle contractions that lead to abnormal movements and/or postures.

Myoclonus Sudden, brief, shock- like movements.

Tremor Rhythmic, oscillatory movement of a body part.

Chorea Continuous, abrupt, unpredictable non- rhythmic jerky movements.

Tics Stereotyped, repeating, shock- like movements, which can be temporarily repressed. Patients feel an urge 
preceding the movements.

Ataxia Inability to perform smooth, coordinated, targeted movements.

Spasticity Variable combination of paresis, elevated reflexes and increased muscle tone.
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participants cannot be first- degree relatives of patients 
with hyperkinetic movement disorders.

Recruitment
Patients will be selected from the University Medical 
Center Groningen (UMCG) hyperkinetic movement 
disorders database and recruited at the UMCG outpa-
tient clinic. If patient inclusion using these two sources 
does not lead to the targeted number of patients, we will 
recruit at other hospitals and via patient associations. 
Healthy participants will also be recruited at the UMCG. 
Participants will receive written information about the 
study and will have the opportunity to ask the investigators 
questions beforehand. Prospective participants can also 
call on an independent neurologist, who is not involved 
in the NEMO study, if they have any remaining questions. 
All participants will give written informed consent before 
enrolment.

Study setting
Movement Disorders Groningen, based at the UMCG, 
is uniquely positioned for the conduction of the NEMO 
study, as we treat patients with a broad range of hyper-
kinetic movement disorders. Movement Disorders 
Groningen is acknowledged by the Dutch Federation of 
University Medical Centres (NFU) as an official centre 
of expertise, and it is part of the European Reference 
Network for rare diseases. Data analysis will be performed 
in collaboration with ZiuZ Visual Intelligence BV (IG 
and JC), and the departments of computing science at 
the University of Utrecht (ACT) and the University of 
Groningen.

Experimental set-up
Clinical information
Clinical information such as age at onset, family history, 
disease progression, medication use, symptom influ-
encing factors and psychological reports will be acquired 
from the participants during their study visit. Moreover, 
the influence of their movement disorder on activities 
of daily life will be assessed using the Fahn- Tolosa- Marin 
Essential Tremor Rating Scale part C,14 with additional 
questions that originate from the Burke- Fahn- Marsden 
Dystonia Rating Scale,15 SARA Ataxia Scale,16 Unified 
Myoclonus Rating Scale,17 Shapiro Tourette’s Syndrome 
Severity Scale18 and Abnormal Involuntary Movement 
Scale.19 Additionally, patients will be asked to indicate the 
perceived severity of their movement disorder on a Visual 
Analogue Scale.

Movement tasks
Data will be collected while participants are performing 
several movement tasks. These tasks are selected from 
the Fahn- Tolosa- Marin Essential Tremor Rating Scale,14 
Burke- Fahn Marsden Dystonia Rating Scale,15 SARA 
Ataxia Scale,16 Unified Myoclonus Rating Scale,17 Shapiro 
Tourette’s Syndrome Severity Scale18 and Abnormal 
Involuntary Movement Scale.19 All of these are validated 
scales, used both in clinical practice and in experimental 

settings to assess the severity of specific movement disor-
ders. As such, they contain tasks that are designed to elicit 
the movement disorder in a patient, enabling assessment 
of severity. Selection of tasks was discussed in depth with 
seven movement disorders, neuropaediatric and neurore-
habilitation specialists with particular experience in the 
field of dystonia, myoclonus, tremor, chorea, tics, ataxia 
or spasticity to ensure comprehensive coverage of all 
disorders. Table 2 lists the set of tasks to be included. A 
trained investigator will instruct the participant before 
the recording of each task. If the task is not performed 
as instructed or the data collection was suboptimal, the 
patient is asked to repeat the task. Version control of tasks 
is used to ensure that the correct version of the task is 
included in the data analysis.

Data collection
Data from EMG, motion sensors and 3D video will be 
collected simultaneously using custom made software 
(Visual Studio, Microsoft, USA). Surface EMG and 
motion sensor data will be recorded using the Trigno 
system (Delsys, Massachusetts, USA). Data collection 
frequencies of the EMG and the motion sensors are 2000 
Hz and 150 Hz, respectively. The Trigno Avanti sensors 
measure muscle activity, 3D accelerometry, 3D gyroscope 
and 3D magnetometry in each single wireless device. Ten 
Trigno Avanti sensors will be placed bilaterally on the 
participant’s arms and neck, aiming for the musculus 
(m.) biceps, m. triceps, m. extensor carpi radialis, m. 
flexor carpi ulnaris and on both index fingers for accel-
erometry purposes only. Additionally, the Trigno Mini 
sensors measure muscle activity, using the sensor head 
and 3D accelerometry, using the sensor base, in each 
single wireless device. The six Trigno Mini sensor heads, 
registering EMG data, will be placed bilaterally aiming 
for the m. abductor pollicis, m. abductor digiti quinti and 
m. sternocleidomastoideus. The six Trigno Mini sensor 
bases, registering accelerometry, will be placed bilaterally 
at the inside of the forearm near the wrist, the back of the 
hand and the jaw. Figure 1 illustrates the placement of 
the EMG and motion sensors.

3D video data will be recorded using two types of 3D 
video cameras. A Realsense D435 camera (frame rate 30 
fps; Intel, California, USA) will be used for whole body 
tracking; two Leap Motion cameras (frame rate 120 fps; 
Leap Motion, California, USA) will be employed to track 
the hands specifically. For the Realsense D435 camera, 
the Nuitrack API (3DiVi, California, USA) is used to 
extract joints from the depth frames. Aside from the 
depth frames, the Realsense D435 camera also collects 
two- dimensional (2D) colour frames at 30 fps. The Leap 
Motion camera uses an internal algorithm to extract 
joints from the depth frames. Figure 2 depicts which body 
parts are tracked by the cameras.

The EMG, motion sensors and 3D video data all have 
different sampling frequencies or frame rates. To enable 
synchronisation of modalities, a time stamp of each data 
sample point is saved during data acquisition.
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Sample size
For the current study, artificial intelligence experts 
expect that 20 subjects per patient group will be sufficient 
to develop proof- of- principle for a computer- aided diag-
nosis tool, because of the extensive amount of data that 
is collected per participant. Calculation of the needed 
sample size is hampered by the absence of previous 
studies in this exact field. While machine learning with, 
for example, MRI20 and EEG21 data has previously been 
used to classify other diseases, both these data and disor-
ders differ from the proposed study and are therefore not 
suitable to perform power analyses.

Data management
Study data will be handled confidentially and in accor-
dance with the European personal data protection regu-
lation (General Data Protection Regulation). A unique 
identification code will be assigned to each participant. 
All raw de- identified EMG, motion sensor and 3D video 

Table 2 Included tasks

Type of task Task description Duration/repetitions

Rest Arms at rest, in a relaxed position on the participant’s lap and supinated hands 20–30 s

Postural tasks Supinated outstretched arms and hands 20–30 s

Pronated outstretched arms and relaxed wrists 20–30 s

Pronated outstretched arms and hands 20–30 s

Pronated outstretched arms and extended wrists 20–30 s

Hands in front of chest: shoulders abducted at 90 degrees, fingers pointing 
towards each other

20–30 s

Index finger in front of nose* 20–30 s

Dexterity Spiral drawing* 1 Archimedes spiral

Writing* 1 sentence

Nine- hole pegboard test* 1 test

Diadochokinesis 20–30 s

Finger tapping Finger tapping task: metronome cue* (3 and 5 Hz) 20 s

Finger tapping task: self- paced* 20–30 s

Four- finger tapping task* 20–30 s

Pointing tasks Simple finger- to- nose manoeuvre* 5 repetitions

Point- to- nose test* 12 repetitions

Point- to- point test* 12 repetitions

Mental distraction Pronated outstretched arms and hands+‘serial sevens’ (100–7–7 etc) 20–30 s

Suppression Pronated outstretched arms and hands+request to suppress all other 
movements

20–30 s

Speech Repetition, spontaneous sentences, sustained vowel phonation Not applicable

Drinking Drinking from a cup* 5 repetitions

Gait Standing 20–30 s

Walking 20–30 s

Tandem gait 20–30 s

*All unilateral tasks are subsequently performed with the right and left hand.

Figure 1 Depiction of sensor placement.
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data will be stored at the research drive hosted and 
provided by the UMCG. Preprocessed data will be stored 
and analysed in the virtual research workspace, a secure 
virtualised desktop environment provided and hosted by 
the University of Groningen. De- identified clinical data 
are collected and managed using REDCap electronic data 
capture tools hosted at the UMCG.22 23

Data analysis
Gold standard
The ‘gold standard’ for phenotype classification is defined 
as interobserver agreement among three experienced 
(inter)national clinical experts who will each assess the 
phenotype of a patient independently. Their evaluation 
will be based on the video recordings (RGB, 2D) of the 
participants performing all the different tasks described 
in table 2 during the experiment. Moreover, a sound frag-
ment is recorded of the patient’s speech for the experts’ 
assessment. They will also be presented with information 
from the history and ancillary tests, to mimic the typical 
outpatient clinical situation as best as we can. The experts 
will be blind to the phenotype classification made by 
the investigators. All video data for the experts can be 
reviewed using the virtual research workspace and the 

relevant clinical information can be assessed in REDCap. 
Interobserver agreement among the clinical experts will 
be calculated using Fleiss’ kappa (K).24 We consider a 
Fleiss’ K value above 0.80 (interpreted as excellent agree-
ment) across all groups as sufficient. Moreover, for each 
individual participant, a minimum of two out of three 
experts should be in agreement. If a participant does not 
meet this requirement, their data will be excluded from 
further analysis.

Machine learning analyses
To develop the computer- aided classification tool, several 
machine learning techniques will be used. The clinical 
parameters, EMG, motion sensors and 3D video data will 
serve as input for the machine learning algorithm. The 
expert- based phenotype classification will serve as patient 
labels for supervised learning. In supervised machine 
learning, an algorithm is trained with multiple examples 
with a known output label (the expert- based phenotype 
classification), learning how to process the input data 
(clinical, EMG, motion sensor and video data) to repro-
duce the output label. The fully trained algorithm can 
then be given new input data, and is able to predict 
what the output label should be, making these types of 
algorithms well suited for classification.25 Examples of 
machine learning techniques that will be investigated 
include deep learning methods such as long short- term 
memory networks26 and methods based on manually engi-
neered features such as random forest classifiers27 28 and 
learning vector quantisation29 30 using features from clin-
ical neurophysiology research and practice (eg, frequency 
analysis or intermuscular coherence). From the above 
classes, deep learning methods have the advantage of 
computational scalability and the ability to automatically 
extract the relevant features for classification. In contrast, 
methods using manually engineered features allow one to 
control which aspects of the data are used by the classifier 
to reach its decisions and thus can be trained with fewer 
data to arrive at high accuracies. The information about 
how machine learning algorithms arrive at their output 
labels is often limited, which can mask confounding 
factors or simply diminish trust in the produced outputs. 
To address this problem, we will employ visual analytics 
to visualise how the classification algorithm arrives at its 
decision, and in particular which data aspects it uses to 
reach that decision.

ETHICS AND DISSEMINATION
The NEMO study protocol has been approved by the 
Medical Ethical Committee (METc 2018–444) of the 
UMCG and will be conducted according to the ethical 
standards of the Helsinki Declaration.

This study is designed to pioneer the application of 
machine learning in the classification of movement disor-
ders, and allows for comprehensive data collection of clin-
ical information, EMG and motion sensor data and 3D 
video. Because of its scope, we expect to publish multiple 

Figure 2 Depiction of the study set- up and data collection. 
EMG, electromyography.

 on January 15, 2024 by guest. P
rotected by copyright.

http://bm
jopen.bm

j.com
/

B
M

J O
pen: first published as 10.1136/bm

jopen-2021-055068 on 11 O
ctober 2021. D

ow
nloaded from

 

http://bmjopen.bmj.com/


6 van der Stouwe AMM, et al. BMJ Open 2021;11:e055068. doi:10.1136/bmjopen-2021-055068

Open access 

articles in the fields of clinical neurology, particularly 
movement disorders, clinical neurophysiology, artificial 
intelligence and visual analytics. Moreover, patients will 
be informed of important study results via the different 
patient associations, press releases, the website www. move 
ment diso rder sgro ningen. com and at the Movement 
Disorders Groningen biannual Patient Day.

Patient and public involvement
Members of the Movement Disorders Groningen Patient 
Council are updated regularly about the progress of the 
NEMO study and advise on online patient information. 
The help of several patient associations is enlisted for the 
recruitment of participants. Dissemination to patients 
and the general public is described above.

DISCUSSION
The NEMO study seeks to develop a computer- aided 
classification tool for hyperkinetic movement disorders. 
Such a tool would aid doctors in establishing the move-
ment disorders phenotype. As adequate phenotype clas-
sification is the foundation of clinical decision- making 
and treatment of hyperkinetic movement disorders, 
improving this process would ultimately result in swifter 
and more accurate diagnoses and treatment for patients. 
To this end, we will investigate patients with myoclonus, 
dystonia, tremor, chorea, tics and functional jerky/tremu-
lous movement disorders, as well as the related disorders 
ataxia and spasticity.

Our study has several strengths and some possible 
limitations. A major strength of this study is that it is 
conducted at a leading centre of expertise for movement 
disorders, Movement Disorders Groningen at the UMCG, 
The Netherlands. Experts in the field of all hyperkinetic 
movement disorders are present for collaboration and 
patient recruitment. For example, several experts assisted 
in selection of the appropriate tasks that patients will 
perform during the experiment, ensuring proper investi-
gation of all relevant movement disorders. Also, the centre 
has a large patient database, which is a substantial advan-
tage as some movement disorders are rare. Moreover, we 
have good rapport with our centre’s patient council, who 
can advise on recruitment and dissemination of results. 
Disease rarity might still limit our speed of inclusion, a 
potential limitation, but given the advantages linked to 
our centre of expertise as well as the collaborations that 
exist with other centres, we are confident we will include 
enough patients in each group.

A second significant strength is the collection and anal-
ysis of extensive data: both clinical information and data 
from EMG, motion sensors and 3D video. In the analysis 
of these data, we can make use of the expertise of several 
members in our team. For instance, we have ample expe-
rience with the analysis of EMG and motion sensor data in 
movement disorders patients at the department of clinical 
neurophysiology.31–34 Similarly, ZiuZ Visual Intelligence 
BV, a major collaborator in this project, has a proven track 

record of developing and deploying systems that collect 
and analyse visual data in different sectors and thus the 
required expertise for designing and implementing the 
computer- aided diagnosis tool as well as the data acquisi-
tion software for NEMO. In addition, academic input on 
the topic of machine learning and visual analytics is avail-
able from the University of Utrecht35–38 and the Univer-
sity of Groningen.39–42

Significance
The aim of this study is to move the classification of 
movement disorder phenotypes forward, to improve the 
diagnostic process and optimise treatment in patients 
with hyperkinetic movement disorders. This could be 
achieved by the development of an all- encompassing 
computer- aided diagnostic tool for all hyperkinetic move-
ment disorder phenotypes, which is the ultimate goal. 
Such a tool would be a game changer, helping neurol-
ogists to establish the phenotype in their patients with 
more certainty, so they can swiftly move on to other inves-
tigations into aetiology and to start the correct treatment.

In the process, it is likely that several new diagnostic 
biomarkers for hyperkinetic movement disorders will be 
discovered. These biomarkers can have their bearing on 
the current clinical practice quite quickly, particularly if 
they are in the fields of ECG or accelerometry because 
these techniques are already widely applied in movement 
disorders diagnostics.

Additionally, the tool that is being developed in the 
current study could be used to monitor disease severity 
and progression. This is of relevance for the monitoring 
of patients during treatment, for instance before and 
after deep brain stimulation. Another application could 
be patient assessment in clinical trials.

Study status
Data collection is in progress.
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