To cite: Xun L. Zhai L. Xu H.

Comparison of conventional,

doppler and contrast-enhanced

ultrasonography in differential

diagnosis of ovarian masses:

2021;11:e052830. doi:10.1136/

Prepublication history and

for this paper are available

online. To view these files,

(http://dx.doi.org/10.1136/

bmjopen-2021-052830).

Received 06 May 2021

please visit the journal online

LX and LZ contributed equally.

Accepted 18 November 2021

additional supplemental material

a systematic review and

bmjopen-2021-052830

meta-analysis. BMJ Open

BMJ Open Comparison of conventional, doppler and contrast-enhanced ultrasonography in differential diagnosis of ovarian masses: a systematic review and metaanalysis

Lizhang Xun (1),¹ Lamei Zhai,² Hui Xu¹

ABSTRACT

Objectives To assess the value of conventional, Doppler and contrast-enhanced ultrasonography (CEUS) (conventional ultrasonography (US), Doppler US and CEUS) for diagnosing ovarian cancer.

Design Systematic review and meta-analysis.

Data sources PubMed. Embase and the Cochrane Library were conducted for studies published until October 2021.

Eligibility criteria Studies assessed the diagnostic value of conventional US, Doppler US or CEUS for detecting ovarian cancer, with no restrictions placed on published language and status.

Data extraction and synthesis The study selection and data extraction were performed by two independent authors. The sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR), diagnostic OR (DOR) and area under the receiver operating characteristic curve (AUC) were pooled using the bivariate generalised linear mixed model and random effects model.

Results The meta-analysis included 72 studies and involved 9296 women who presented with ovarian masses. The pooled sensitivity, specificity, PLR, NLR, DOR and AUC for conventional US were 0.91 (95% CI: 0.87 to 0.94) and 0.87 (95% CI: 0.82 to 0.91), 6.87 (95% CI: 4.98 to 9.49) and 0.10 (95% CI: 0.07 to 0.15), 57.52 (95% CI: 36.64 to 90.28) and 0.95 (95% CI: 0.93 to 0.97), respectively. The sensitivity, specificity, PLR, NLR, DOR and AUC for Doppler US were 0.93 (95% CI: 0.91 to 0.95) and 0.85 (95% CI: 0.80 to 0.89), 6.10 (95% CI: 4.59 to 8.11) and 0.08 (95% CI: 0.06 to 0.11), 61.76 (95% CI: 39.99 to 95.37) and 0.96 (95% CI: 0.94 to 0.97), respectively. The pooled sensitivity, specificity, PLR, NLR, DOR and AUC for CEUS were 0.97 (95% CI: 0.92 to 0.99) and 0.92 (95% CI: 0.85 to 0.95), 11.47 (95% CI: 6.52 to 20.17) and 0.03 (95% CI: 0.01 to 0.09), 152.11 (95% CI: 77.77 to 297.51) and 0.99 (95% CI: 0.97 to 0.99), respectively. Moreover, the AUC values for conventional US (p=0.002) and Doppler US (p=0.005) were inferior to those of CEUS.

Conclusions Conventional US, Doppler US and CEUS have a relatively high differential diagnostic value for differentiating between benign and malignant ovarian masses. The diagnostic performance of CEUS was superior to that of conventional US and Doppler US.

Strengths and limitations of this study

- This study provides indirect comparison analyses among conventional ultrasonography, Doppler ultrasonography and contrast-enhanced ultrasonography for detecting ovarian cancer.
- This study included prospective, retrospective and cross-sectional studies; moreover, the results could be affected by uncontrolled selective and recall hiases
- Subgroup analyses according to country and route were performed.
- Inevitable publication bias and restricted detailed analyses are limitations.

INTRODUCTION

Annually, an estimated 60000women in the USA undergo surgical excisions for adnexal masses or suspected ovarian neoplasm; moreover, approximately 313959 ovarian cancer cases were diagnosed in 2020 worldwide.^{1 2} Adnexal masses are often incidentally observed given widespread diagnostic imaging use; further, most cases are diagnosed with benign masses.^{3 4} Currently, most newly diagnosed ovarian cancer (OC) cases are at stages III and IV, with the survival rate ranging from 25% to 30%.⁵ However, the survival rate for OC at stage I could be as high as 90%.⁶ Therefore, early OC detection and accurate tumour property assessment remain important issues in clinical practice.⁷

Currently, there are no reliable approaches for early OC detection; however, early-stage differential diagnosis of benign and malignant ovarian masses is important. The use of ultrasonography (US) for determining benign or malignant ovarian masses is mainly based on subjective and qualitative diagnosis. The current overall diagnostic accuracy of US for OC could reach 80%.⁸ Conventional

C Author(s) (or their

employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BM.J.

Check for updates

¹Medical Examination Center, Huaian City Second People's Hospital, Huaian, Jiangsu, China ²Department of Radiology, Huaian City Second People's Hospital, Huaian, Jiangsu, China

Correspondence to Dr Lizhang Xun; 7223198@qq.com

US can visualise the capsule and tumour shapes, which could allow differential diagnosis of benign or malignant tumours.⁹ Angiogenesis could be involved in tumour growth and metastasis; additionally, it is significantly correlated with malignant tumours.¹⁰ Moreover, spectral analysis of Doppler US could detect the blood flow status in tumours through the Doppler waveform.¹¹ Furthermore, contrast-enhanced US (CEUS) could improve imaging quality.¹² However, the diagnostic values of conventional US, Doppler US and CEUS for differentiating between benign and malignant ovarian masses have not been compared. Therefore, we aimed to perform a systematic review and meta-analysis to assess the value of conventional US, Doppler US and CEUS for differential diagnosis of benign and malignant ovarian masses. Moreover, we aimed to perform indirect comparison analysis to compare the diagnostic value among conventional US, Doppler US and CEUS.

METHODS

Data sources, search strategy and selection criteria

This systematic review and meta-analysis was performed and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement.¹³ There were no restrictions regarding publication language and status. Studies assessing the diagnostic value of conventional US, Doppler US or CEUS differentiating between benign and malignant ovarian masses were considered eligible for our analysis. We systematically searched PubMed, Embase and the Cochrane Library for eligible studies published until October 2021. The following search terms were used as text words or Medical Subject Heading terms: "ovarian neoplasms" AND ("ultrasonography" OR "Doppler ultrasonography" OR "contrastenhanced ultrasonography") AND "diagnosis." In addition, we manually reviewed the reference lists of the retrieved studies to identify new eligible studies.

Two authors (LX and LZ) independently performed the literature search and study selection, with disagreements being resolved by group discussion after reading the full-text of available articles. The inclusion criteria were as follows: (1) Study design: no restrictions were placed on study design, including cross-sectional, retrospective and prospective design; (2) Participants: adult women experience ovarian masses; (3) Diagnostic tool: conventional US, Doppler US or CEUS; (4) Gold standard: pathological; and (5) Analysis data: true and false positive, as well as true and false negative for differentiating between benign and malignant ovarian masses.

Data collection and quality assessment

Two authors (LX and LZ) independently performed data collection and quality assessment. The following data were collected: first author's name, publication year, country, sample size (malignant/benign), age, type of OC, modality, route, agent, US machine, true and false positive and true and false negative. The Quality Assessment of Diagnostic Accuracy Studies was applied to assess the methodological bias for individual study based on patient selection, index test, reference standard, risk of bias and concerns regarding applicability.¹⁴ Betweenauthor inconsistencies concerning data collection and quality assessment were settled by an additional author (HX) who reviewed the full-text of the original article.

Statistical analysis

We applied true and false positive and negative in each study to calculate the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic OR (DOR) and area under the receiver operating characteristic curve (AUC). Subsequently, the pooled diagnostic effect estimates for conventional US, Doppler US and CEUS were calculated using the bivariate generalised linear mixed model and random effects model.¹⁵⁻¹⁷ Heterogeneity across the included studies was assessed using I^2 and Q statistic, with $I^2 > 50.0\%$ or p<0.10 indicating significant heterogeneity.^{18 19} Next, the diagnostic value for conventional US, Doppler US and CEUS was calculated using an indirect comparison approach.²⁰ We performed subgroup analysis for the diagnostic performance of conventional US, Doppler US and CEUS according to country and route; subsequently, betweensubgroup differences were assessed using the interaction P test.²¹ Moreover, publication biases for the diagnostic value of conventional US, Doppler US and CEUS were assessed using the funnel plot and Deeks' asymmetry test.²² The inspection level for pooled results was twosided, with p<0.05 being considered statistically significant. All statistical analyses were performed using the software Stata (V.10.0; Stata Corporation).

Patient and public involvement

No patient involved.

RESULTS

Literature search

The initial electronic searches identified 4028 articles; among them, 3192 were retained after removing duplicate articles. Subsequently, 3038 studies were excluded for reporting irrelevant topics. The remaining 154 studies were retrieved for further full-text evaluations, with 82 studies being excluded for the following reasons: other diagnostic tools (n=45), combined diagnostic strategies (n=31) and insufficient data (n=6). The remaining 72 studies were included in the final meta-analysis. No eligible study was identified from reviewing the reference lists of the included studies. Figure 1 presents the detailed results regarding the study selection.

Study characteristics

The characteristics of the identified studies and recruited patients are shown in online supplemental 1. The included studies involved 9296 women presenting ovarian masses, with the sample size ranging from 19 to 826.

).435).002).005

Figure 1 The Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart for the study selection process.

Among the included studies, 24 were conducted in Asia with the remaining 48 studies being conducted in Europe or America. Further, 36, 51 and 29 cohorts assessed the diagnostic performance of conventional US, Doppler US and CEUS, respectively. Online supplemental 2 presents the details regarding the quality of each study with most of them having moderate-to-high quality.

Sensitivity and specificity

The pooled sensitivity and specificity for conventional US in the differential diagnosis of benign and malignant ovarian masses were 0.91 (95% CI: 0.87 to 0.94) and 0.87 (95% CI: 0.82 to 0.91), respectively. The values for pooled sensitivity and specificity in Doppler US were 0.93 (95% CI: 0.91 to 0.95) and 0.85 (95% CI: 0.80 to 0.89), respectively. Furthermore, the summary sensitivity and specificity for CEUS were 0.97 (95% CI: 0.92 to 0.99) and 0.92 (95% CI: 0.85 to 0.95), respectively (online supplemental 3). Conventional US had a lower sensitivity than CEUS for differentiating between benign and malignant ovarian masses (ratio: 0.94; 95% CI: 0.89 to 0.99; p=0.019). Doppler US had a lower specificity than CEUS for differentiating between benign and malignant ovarian masses (ratio: 0.92; 95% CI: 0.86 to 1.00; p=0.044) (table 1). Subgroup analysis revealed high sensitivity of conventional US and Doppler US in the transvaginal group (table 2).

PLR and NLR

The pooled PLR and NLR for conventional US differentiating between benign and malignant ovarian masses were 6.87 (95% CI: 4.98 to 9.49), and 0.10 (95% CI: 0.07 to 0.15), respectively. The corresponding values for Doppler

Table 1 Comparisc	on the diagnostic value arr	iong conventional, Dopple	r and contrast-enhanced	US		
Diagnostic tool	Sensitivity	Specificity	PLR	NLR	DOR	AUC
NS	0.91 (0.87 to 0.94)	0.87 (0.82 to 0.91)	6.87 (4.98 to 9.49)	0.10 (0.07 to 0.15)	57.52 (36.64 to 90.28)	0.95 (0.93 to 0.97)
Doppler US	0.93 (0.91 to 0.95)	0.85 (0.80 to 0.89)	6.10 (4.59 to 8.11)	0.08 (0.06 to 0.11)	61.76 (39.99 to 95.37)	0.96 (0.94 to 0.97)
CEUS	0.97 (0.92 to 0.99)	0.92 (0.85 to 0.95)	11.47 (6.52 to 20.17)	0.03 (0.01 to 0.09)	152.11 (77.77 to 297.51)	0.99 (0.97 to 0.99)
US vs Doppler US	0.98 (0.94 to 1.02)/0.336	1.02 (0.95 to 1.10)/0.541	1.13 (0.73 to 1.73)/0.588	1.25 (0.77 to 2.03)/0.369	0.93 (0.50 to 1.74)/0.824	0.99 (0.96 to 1.02)/
US vs CEUS	0.94 (0.89 to 0.99)/0.019	0.95 (0.88 to 1.02)/0.151	0.60 (0.31 to 1.15)/0.122	3.33 (1.04 to 10.66)/0.042	0.38 (0.17 to 0.85)/0.018	0.96 (0.94 to 0.98)/
Doppler US vs CEUS	0.96 (0.92 to 1.00)/0.052	0.92 (0.86 to 1.00)/0.044	0.53 (0.28 to 1.00)/0.050	2.67 (0.85 to 8.34)/0.092	0.41 (0.18 to 0.90)/0.027	0.97 (0.95 to 0.99)/
AUC, area under the cur	ve ; CEUS, contrast-enhancec	I US ; DOR, diganostic OR; NL	3, negative likelihood ratio; PL	.R, positive likelihood ratio; US	, ultrasonography.	

Open a	ccess
--------	-------

Table 2 Subgr	oup analyse	s according to count	try and route					
Diagnostic tool	Variables	Subgroup	Sensitivity	Specificity	PLR	NLR	DOR	AUC
NS	Country	Asia	0.89 (0.85 to 0.93)	0.84 (0.71 to 0.92)	5.76 (3.00 to 11.07)	0.12 (0.09 to 0.18)	46.71 (20.69 to 105.41)	0.92 (0.89 to 0.94)
		Europe or America	0.92 (0.86 to 0.95)	0.88 (0.82 to 0.92)	7.37 (5.16 to 10.53)	0.09 (0.06 to 0.16)	63.54 (36.63 to 110.23)	0.95 (0.93 to 0.97)
		Difference between subgroups	0.333	0.520	0.516	0.348	0.540	0.068
	Route	Transvaginal	0.94 (0.88 to 0.97)	0.89 (0.83 to 0.93)	8.40 (5.52 to 12.77)	0.07 (0.04 to 0.13)	86.75 (56.93 to 132.20)	0.97 (0.95 to 0.98)
		Transabdominal	0.91 (0.86 to 0.94)	0.80 (0.60 to 0.91)	4.46 (2.03 to 9.78)	0.12 (0.07 to 0.20)	34.48 (11.10 to 107.05)	0.93 (0.90 to 0.95)
		Both	0.82 (0.74 to 0.88)	0.84 (0.74 to 0.91)	5.10 (2.90 to 8.99)	0.22 (0.14 to 0.34)	22.55 (7.70 to 66.05)	0.88 (0.85 to 0.90)
		Difference between subgroups	0.027	0.438	0.221	0.008	0.035	<0.001
Doppler US	Country	Asia	0.89 (0.82 to 0.93)	0.82 (0.74 to 0.89)	5.06 (3.37 to 7.59)	0.13 (0.08 to 0.22)	33.72 (17.44 to 65.22)	0.93 (0.90 to 0.95)
		Europe or America	0.94 (0.92 to 0.96)	0.85 (0.79 to 0.90)	6.41 (4.50 to 9.13)	0.07 (0.04 to 0.10)	76.07 (44.70 to 129.46)	0.97 (0.95 to 0.98)
		Difference between subgroups	0.107	0.533	0.389	0.075	0.060	0.008
	Route	Transvaginal	0.94 (0.91 to 0.95)	0.87 (0.82 to 0.90)	6.98 (5.02 to 9.70)	0.07 (0.05 to 0.10)	74.55 (45.34 to 122.60)	0.96 (0.94 to 0.98)
		Transabdominal	0.94 (0.77 to 0.99)	0.86 (0.72 to 0.94)	6.87 (3.19 to 14.82)	0.07 (0.02 to 0.31)	66.82 (15.41 to 289.83)	0.95 (0.93 to 0.97)
		Both	0.92 (0.80 to 0.97)	0.65 (0.54 to 0.75)	2.66 (2.02 to 3.51)	0.12 (0.05 to 0.30)	15.56 (8.20 to 29.52)	0.85 (0.82 to 0.88)
		Difference between subgroups	0.913	0.004	<0.001	0.544	0.001	<0.001
CEUS	Country	Asia	0.97 (0.90 to 0.99)	0.91 (0.83 to 0.96)	11.15 (5.76 to 21.61)	0.03 (0.01 to 0.12)	201.55 (90.19 to 450.41)	0.99 (0.97 to 0.99)
		Europe or America	0.97 (0.90 to 0.99)	0.91 (0.81 to 0.96)	11.32 (4.77 to 26.87)	0.03 (0.01 to 0.12)	133.64 (41.55 to 429.78)	0.99 (0.97 to 0.99)
		Difference between subgroups	1.000	1.000	0.978	1.000	0.570	1.000
	Route	Transvaginal	0.98 (0.92 to 1.00)	0.90 (0.81 to 0.95)	9.74 (4.93 to 19.24)	0.02 (0.00 to 0.10)	123.98 (50.61 to 303.71)	0.99 (0.98 to 1.00)
		Transabdominal	0.94 (0.89 to 0.97)	0.95 (0.91 to 0.97)	18.69 (9.88 to 35.36)	0.06 (0.04 to 0.11)	245.86 (95.66 to 631.92)	0.98 (0.97 to 0.99)
		Difference between subgroups	0.173	0.217	0.171	0.361	0.303	0.166
AUC, area under th	e curve; CEU(S, contrast-enhanced US	S; DOR, diagnostic OF	3; NLR, negative likeliho	od ratio; PLR, positive lik	elihood ratio; US, ultra	sonography.	

6

Figure 2 The area under the curve of conventional US, Doppler US and CEUS for differentiating between malignant and benign ovarian masses. CEUS, contrast-enhanced US; US, ultrasonography.

US were 6.10 (95% CI: 4.59 to 8.11) and 0.08 (95% CI: 0.06 to 0.11) for pooled PLR and NLR, respectively. Furthermore, the summary PLR and NLR for CEUS were 11.47 (95% CI: 6.52 to 20.17) and 0.03 (95% CI: 0.01 to 0.09), respectively (online supplemental 4). Conventional US versus CEUS showed higher NLR (ratio: 3.33; 95% CI: 1.04 to 10.66; p=0.042), while Doppler US versus CEUS showed lower PLR (ratio: 0.53; 95% CI: 0.28 to 1.00; p=0.050) (table 1). Subgroup analyses suggested that the NLR for conventional US and PLR for Doppler US were lower and higher in the transvaginal group, respectively (table 2).

DOR

The pooled DOR of conventional US, Doppler US and CEUS for differentiating between benign and malignant ovarian masses were 57.52 (95% CI: 36.64 to 90.28), 61.76 (95% CI: 39.99 to 95.37) and 152.11 (95% CI: 77.77 to 297.51), respectively (online supplemental 5). There was significant heterogeneity across the included studies

for conventional US (I^2 =66.5%; p<0.001) and Doppler US (I^2 =73.9%; p<0.001) but not for CEUS (I^2 =25.7%; p=0.147). The DOR of conventional US (ratio: 0.38; 95% CI: 0.17 to 0.85; p=0.018) and Doppler US (ratio: 0.41; 95% CI: 0.18 to 0.90; p=0.027) were significantly lower than that of CEUS for differentiating between benign and malignant ovarian masses (table 1). Subgroup analysis revealed that the DOR was high for conventional US and Doppler US in the transvaginal group (table 2).

AUC

The AUC of conventional US, Doppler US and CEUS for differentiating between benign and malignant ovarian masses were 0.95 (95% CI: 0.93 to 0.97), 0.96 (95% CI: 0.94 to 0.97) and 0.99 (95% CI: 0.97 to 0.99), respectively (figure 2). Compared with CEUS, conventional US (ratio: 0.96; 95% CI: 0.94 to 0.98; p=0.002) and Doppler US (ratio: 0.97; 95% CI: 0.95 to 0.99; p=0.005) had significantly lower AUC values for detecting OC (table 1). Subgroup analysis suggested that the AUC of conventional US was affected by route and that the diagnostic value was high in the transvaginal group. Moreover, the AUC of Doppler US could be affected by country and route; further, the diagnostic value was high in the study groups from Europe or America, as well as in the transvaginal group (table 2).

Publication bias

Publication bias was also tested for in the diagnostic performance of conventional US, Doppler US and CEUS (figure 3). There were potentially significant publication biases for conventional US (p=0.02), Doppler US (p=0.04) and CEUS (p=0.02). However, after adjusting for potential publication bias, the diagnostic performance remained stable.²³

DISCUSSION

The current systematic review and meta-analysis assessed the diagnostic performance of conventional US, Doppler

Figure 3 Publication biases for conventional US, Doppler US and CEUS. CEUS, contrast-enhanced US; US, ultrasonography.

US and CEUS for differentiating between benign and malignant ovarian masses. This comprehensive, largescale quantitative analysis included 9296women with diverse individual characteristics assessed in 72 studies. There was a relatively high diagnostic value of conventional US, Doppler US and CEUS for differentiating between benign and malignant ovarian masses. Moreover, indirect comparison analysis revealed that the diagnostic value of CEUS was superior to that of conventional US and Doppler US. Moreover, there was a significant difference in the diagnostic performance between conventional US and Doppler US. Subgroup analysis suggested that the diagnostic value of conventional US could be affected by route, while country and route could affect the diagnostic performance of Doppler US.

There have been several systematic reviews and metaanalyses on the diagnostic performance of conventional US, Doppler US and CEUS for detecting OC. Medeiros et al found that the colour Doppler US could be a useful preoperative tool for diagnosing OC from pelvic masses.²⁴ Several studies also found CEUS had a high diagnostic value for differentiating between malignant and benign ovarian masses.²⁵⁻²⁷ A meta-analysis conducted by Liu et al on 67 high-quality studies suggested that conventional US, Doppler US and CEUS had a relatively high diagnostic value for OC.²⁸ However, the aforementioned studies only reported the pooled diagnostic performance of conventional US, Doppler US and CEUS for differentiating between benign and malignant ovarian masses. Specifically, they did not compare among conventional US, Doppler US and CEUS; further, they did not illustrate the diagnostic performance of conventional US, Doppler US and CEUS based on country and route. Therefore, the current systematic review and meta-analysis assessed the diagnostic performance of conventional US, Doppler US and CEUS in differentiating between malignant and benign ovarian masses.

In the present study, there was a relatively high diagnostic performance of conventional US, Doppler US and CEUS for differentiating between benign and malignant ovarian masses, which is consistent with previous studies.²⁴⁻²⁸ A meta-analysis performed by Liu et al found similar diagnostic value among US, CT and MRI.⁸ Medeiros et al found the are under curve of MRI for detecting malignant OC was 0.9526,²⁹ which was similar compared with conventional US and Doppler US, but lower than CEUS from our study. Conventional US by placing a high frequency probe to scan the area adjacent to the sonic speed near field does not require a full bladder and is not affected by intestinal gas; moreover, it yields high-quality images.³⁰ Subjective evaluation of the colour content of ovarian tumours through Doppler US is simple with low colour content indicating benignity.³¹ Moreover, the blood flow velocity in Doppler US could differentiate between benign and malignant pelvic masses.²⁸ We observed similar diagnostic performance between conventional US and Doppler US for differentiating between benign and malignant ovarian masses;

furthermore, the role of Doppler US could be affected by the resistance index; the use of Doppler US to assess the grey-scale ultrasound morphology in an adnexal mass with high accurate for predicting its nature.³² Moreover, CEUS had a higher diagnostic value than conventional US and Doppler US for differentiating between benign and malignant ovarian masses. This could be attributed to contrast agent injection improving the map of vascular anatomy, as well as the detection of signals from blood vessels with a diameter of <40 µm. Therefore, CEUS could effectively visualise a greater vessel number in malignant than in benign tumours.^{33 34} Finally, the time-intensity curve parameters applied quantitatively assessed the kinetics of contrast agents in tumours, which was objective and reproducible and could be used for inexperienced examiners.35

In the present study, subgroup analyses revealed that route could affect the diagnostic performance of conventional US while country and route could affect the diagnostic performance of Doppler US for differentiating between benign and malignant ovarian masses. The aforementioned findings could be attributed to several reasons: (1) the number of studies in each subgroup was imbalanced and there were variable diagnostic performances of conventional US, Doppler US and CEUS; (2) there was between-study inconsistency in the prestudy US training, which could affect the diagnostic performance of conventional US, Doppler US and CEUS for differentiating between benign and malignant ovarian masses; and (3) most of the included studies performed transvaginal US with power stability, with fewer studies applying transabdominal US or both transvaginal and transabdominal US. Future large-scale prospective studies should verify these results.

This study has the following strengths: (1) the analysis was based on a large number of published studies and a large sample size, and therefore our findings are more robust than those of any individual study; (2) indirect comparison analyses were conducted to compare the diagnostic performance among conventional US, Doppler US and CEUS for differentiating between benign and malignant ovarian masses; and (3) stratified analyses for the diagnostic performance of conventional US, Doppler US and CEUS were conducted according to country and route, which allowed assessment of the diagnostic value in specific subpopulations.

Nonetheless, this study has several limitations. First, this study included prospective, retrospective and cross-sectional studies; moreover, the results could be affected by uncontrolled selective and recall biases. Second, the experience levels of clinicians in US could have differed, which could affect the diagnostic performance of conventional US, Doppler US and CEUS. Third, the agents used for CEUS differed across the included studies, which could induce heterogeneity in the diagnostic value of CEUS. Fourth, the type of ovarian mass could affect the diagnostic performance of conventional US, Doppler US and CEUS. Fourth, the type of ovarian mass could affect the diagnostic performance of conventional US, Doppler US and CEUS, while the stratified data according to ovarian

mass type were not available. Fifth, we performed an indirect comparison of diagnostic performance among conventional US, Doppler US and CEUS. Finally, there are inherent limitations of meta-analysis based on published articles, including the use of pooled data for analysis and the inevitable publication bias.

CONCLUSION

We observed a relatively high diagnostic performance of conventional US, Doppler US and CEUS for differentiating between malignant and benign ovarian masses. Moreover, the diagnostic value of CEUS was higher than that of conventional US and Doppler US. Furthermore, the diagnostic performance of conventional US could be affected by route, while country and route could affect the diagnostic value of Doppler US. Further large-scale prospective studies should directly compare the diagnostic performance of conventional US, Doppler US and CEUS for diagnosing OC.

Contributors LZ came up with the research idea and completed the study design. HX contributed to paper inclusion and data analysis. LX wrote the first draft of manuscript and finalised it with LZ. LX approved the submission of the final version of this paper. LX acts as a gaurantor for this study.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval This study does not involve human participants.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. The data sets generated and analysed during the current study are all presented in the manuscript, and additional materials are available from the corresponding author on reasonable request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Lizhang Xun http://orcid.org/0000-0001-9032-3898

REFERENCES

- 1 Liu JH, Zanotti KM. Management of the adnexal mass. *Obstet Gynecol* 2011;117:1413–28.
- 2 Sung H, Ferlay J, Siegel RL, *et al.* Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2021;71:209–49.
- 3 Menon U, Gentry-Maharaj A, Hallett R, *et al*. Sensitivity and specificity of multimodal and ultrasound screening for ovarian

Xun L, et al. BMJ Open 2021;11:e052830. doi:10.1136/bmjopen-2021-052830

cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative trial of ovarian cancer screening (UKCTOCS). *Lancet Oncol* 2009;10:327–40.

- 4 Buys SS, Partridge E, Black A, *et al.* Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. *JAMA* 2011;305:2295.
- 5 Clarke-Pearson DL. Clinical practice. Screening for ovarian cancer. N Engl J Med 2009;361:170–7.
- 6 Myers ER, Bastian LA, Havrilesky LJ. Management of adnexial mass. *Evid Rep Technol Assess* 2006:1–145.
- 7 Lutz AM, Willmann JK, Drescher CW, et al. Early diagnosis of ovarian carcinoma: is a solution in sight? *Radiology* 2011;259:329–45.
- 8 Liu J, Xu Y, Wang J. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis of ovarian carcinoma. *Eur J Radiol* 2007;62:328–34.
- 9 Sinnett V, Chavaria J, Downey K. Well-documented benign sonographic characteristics are rarely seen in malignant masses: is now the time to biopsy less? *Clin Radiol* 2021;76:787.e9–787.e13.
- 10 Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. *J Clin Oncol* 2005;23:1011–27.
- 11 Delorme S, Knopp MV. Non-invasive vascular imaging: assessing tumour vascularity. *Eur Radiol* 1998;8:517–27.
- 12 Sidhu PS, Cantisani V, Dietrich CF, et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (long version). Ultraschall Med 2018;39:e2–44.
- 13 Page NJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71.
- 14 Whiting PF, Rutjes AWS, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529–36.
- 15 DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.
- 16 Ades AE, Lu G, Higgins JPT. The interpretation of randomeffects meta-analysis in decision models. *Med Decis Making* 2005;25:646–54.
- 17 Walter SD. Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. *Stat Med* 2002;21:1237–56.
- 18 Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-analyses. In: Higgins J, Green S, eds. Cochrane Handbook for systematic reviews of interventions 5.0.1. Oxford, UK: The Cochrane Collaboration, 2008: chap 9.
- 19 Higgins JPT, Thompson SG, Deeks JJ, *et al.* Measuring inconsistency in meta-analyses. *BMJ* 2003;327:557–60.
- 20 Woodward M. *Epidemiology: study design and data analysis*. Chapman & Hall/CRC, 2000: 252–73.
- 21 Altman DG, Bland JM. Interaction revisited: the difference between two estimates. *BMJ* 2003;326:219.
- 22 Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. *J Clin Epidemiol* 2005;58:882–93.
- 23 Duvall S. Tweedie R. A nonparametric "trim and fill" method for assessing publication bias in meta-analysis. J Am Stat Assoc 2000;95:89–98.
- 24 Medeiros LR, Rosa DD, da Rosa MI, *et al.* Accuracy of ultrasonography with color Doppler in ovarian tumor: a systematic quantitative review. *Int J Gynecol Cancer* 2009;19:1214–20.
- 25 Wu Y, Peng H, Zhao X. Diagnostic performance of contrastenhanced ultrasound for ovarian cancer: a meta-analysis. *Ultrasound Med Biol* 2015;41:967–74.
- 26 Qiao J-J, Yu J, Yu Z, *et al.* Contrast-enhanced ultrasonography in differential diagnosis of benign and malignant ovarian tumors. *PLoS One* 2015;10:e0118872.
- 27 Ma X, Zhao Y, Zhang B, et al. Contrast-enhanced ultrasound for differential diagnosis of malignant and benign ovarian tumors: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2015;46:277–83.
- 28 Liu Z, Yang F, Zhang Y, et al. Conventional, Doppler and contrastenhanced ultrasonography in differential diagnosis of ovarian masses. Cell Physiol Biochem 2016;39:2398–408.
- 29 Medeiros LR, Freitas LB, Rosa DD, *et al*. Accuracy of magnetic resonance imaging in ovarian tumor: a systematic quantitative review. *Am J Obstet Gynecol* 2011;204:67.e1–67.e10.
- 30 Byun JM, Kim YN, Jeong DH, *et al*. Three-dimensional transvaginal ultrasonography for locally advanced cervical cancer. *Int J Gynecol Cancer* 2013;23:1459–64.

Open access

- 31 Valentin L. Gray scale sonography, subjective evaluation of the color Doppler image and measurement of blood flow velocity for distinguishing benign and malignant tumors of suspected adnexal origin. *Eur J Obstet Gynecol Reprod Biol* 1997;72:63–72.
- 32 Van Calster B, Timmerman D, Bourne T, et al. Discrimination between benign and malignant adnexal masses by specialist ultrasound examination versus serum CA-125. J Natl Cancer Inst 2007;99:1706–14.
- 33 Testa AC, Timmerman D, Van Belle V, et al. Intravenous contrast ultrasound examination using contrast-tuned imaging (CnTI) and the

contrast medium SonoVue for discrimination between benign and malignant adnexal masses with solid components. *Ultrasound Obstet Gynecol* 2009;34:699–710.

- 34 Huchon C, Metzger U, Bats A-S, et al. Value of three-dimensional contrast-enhanced power Doppler ultrasound for characterizing adnexal masses. J Obstet Gynaecol Res 2012;38:832–40.
- 35 Veyer L, Marret H, Bleuzen A, et al. Preoperative diagnosis of ovarian tumors using pelvic contrast-enhanced sonography. J Ultrasound Med 2010;29:1041–9.

				F							
Study Co	ountry	Sample size	Age	Type of ovarian cancer	Modality	Route/agent	US machine	ТР	FP	FN	TN
		(Malignant/Benign)	(years)								
Weiner 1992 [S1] I	Israel	53 (17/36)	NA	NA	Doppler US	Transvaginal/none	SSD 680	16	1	1	35
Kurjak 1992 [S2] C	Croatia	83 (29/54)	NA	NA	US	Transvaginal/none	SSD 680	14	1	15	53
					Doppler US	Transvaginal/none	SSD 680	28	3	1	51
Kurjak 1992 [S3] C	Croatia	174 (38/136)	48.0	Pa (18), A (10), E (3), GrC (2), Me (5)	US	Transvaginal/none	SSD 680	35	7	3	129
					Doppler US	Transvaginal/none	SSD 680	37	0	1	136
Schneider 1993	USA	55 (16/39)	67.0	NA	US	Both/none	Acuson 128	14	6	2	33
[S4]					Doppler US	Both/none	Acuson 128	15	16	1	23
Brown 1994 [S5]	USA	44 (8/36)	42.3	C (4), B (2), SCL (1), MMT (1)	Doppler US	Both/none	Acuson 128	8	19	0	17
Zanetta 1994 [S6]	Italy	80 (33/47)	NA	NA	US	Transvaginal/none	ATL Ultramark	25	0	8	47
					Doppler US	Transvaginal/none	ATL Ultramark	29	1	4	46
Levine 1994 [S7]	USA	35 (7/28)	42.0	NA	US	Transvaginal/none	Acuson 128	7	3	0	25
Jain 1994 [S8]	USA	50 (10/40)	43.0	NA	US	Transvaginal/none	Acuson 128	10	2	0	38
					Doppler US	Transvaginal/none	Acuson 128	8	6	2	34
Bromley 1994 [S9]	USA	33 (12/21)	NA	NA	US	Both/none	Acuson 128	8	4	4	17
					Doppler US	Both/none	Acuson 128	7	10	1	11
Salem 1994 [S10] C	Canada	102 (13/89)	NA	P (10), Me (3)	Doppler US	Transvaginal/none	Acuson 128	10	17	3	65
Wu 1994 [S11] O	China	228 (76/152)	41.3	Ep (34), GC (6), Me (18), B (6), others (4)	Doppler US	Transvaginal/none	SSD680	72	29	4	123
Chou 1994 [S12]	China	108 (25/83)	38.0	S (10), M (3), E (2), CC (1), ES (3), IT (1), Me (5)	Doppler US	Transvaginal/none	SSD680	22	7	3	76
Franchi 1995 [S13]	Italy	129 (37/92)	44.0	B (7), S (19), M (2), other (9)	US	Both/none	Au450	31	15	6	77
					Doppler US	Both/none	Au450	28	26	9	66
Stein 1995 [S14]	USA	169 (46/123)	39.4	NA	US	Both/none	NA	35	38	11	85
					Doppler US	Both/none	NA	45	47	1	76

Tepper 1995 [S15]	Israel	203 (38/165)	44.3	S (19), M (6), E (2), GrC (3), MT (2), SCS (1), U (3), stromal (1), GC (1)	Doppler US	Transvaginal/none	SSD680	38	43	0	122
Tailor 1996 [S16]	UK	51 (9/42)	44.5	M (1), S (2), E (1), CC (3), Pa (1), GrC (1)	Doppler US	Transvaginal/none	Acuson 128	9	9	0	33
Prompeler 1996	Germany	212 (68/144)	60.5	P (50), T (2), Me (5), GrC (1), ES (1), LMP (9)	Doppler US	Transvaginal/none	ATL Ultramark	67	19	1	125
[S17]											
Rehn 1996 [S18]	Germany	310 (51/259)	43.5	P (45), Me (6)	US	Transvaginal/none	Acuson 128	46	91	5	168
					Doppler US	Transvaginal/none	Acuson 128	43	70	8	189
Caruso 1996 [S19]	Italy	122 (21/101)	38.4	A (13), S (4), M (1), Pa (3)	US	Transvaginal/none	Au570	21	25	0	76
					Doppler US	Transvaginal/none	Au570	21	4	0	97
Anandakumar 1996	Singapore	156 (34/122)	36.7	NA	Doppler US	Transvaginal/none	Acuson 128	26	39	8	83
[S20]											
Matthes 1996 [S21]	Brazil	43 (10/33)	45.7	NA	US	NA	NA	8	7	2	26
Komatsu 1996	Japan	82 (34/48)	45.9	NA	US	Transvaginal/none	Acuson 128	33	26	1	22
[\$22]											
Buy 1996 [S23]	France	132 (34/98)	43.5	NA	US	Transvaginal/none	ATL Ultramark	30	3	4	95
					Doppler US	Transvaginal/none	ATL Ultramark	27	18	7	80
Strigini 1996 [S24]	Italy	128 (19/109)	43.0	NA	US	Transvaginal/none	Au590	16	6	3	103
					Doppler US	Transvaginal/none	Au590	16	28	3	81
Tailor 1997 [S25]	UK	64 (12/52)	45.3	NA	Doppler US	Transvaginal/none	Acuson 128	12	10	0	42
Valentin 1997	Sweden	151 (24/127)	NA	NA	US	Transvaginal/none	Acuson 128	24	77	0	50
[S26]											
Reles 1997 [S27]	Germany	98 (29/69)	NA	B (4), P (18), other (7)	US	Transvaginal/none	Acuson 128	26	11	3	58
					Doppler US	Transvaginal/none	Acuson 128	26	18	1	51
Yang 1998 [S28]	China	69 (7/62)	39.0	B (6), E (1)	US	Transvaginal/none	HDI 3000	6	3	1	59
Buckshee 1998	India	36 (9/27)	NA	Ep (8), IT (1)	US	Transvaginal/none	Sonoline Versa	9	4	0	23
[\$29]					Doppler US	Transvaginal/none	Sonoline Versa	6	1	3	26

Emoto 1998 [S30]	Japan	143 (43/100)	44.4	B (12), P (31)	Doppler US	Transvaginal/none	SSD 680	39	53	4	47
Alcazar 1999 [S31]	Spain	167 (42/125)	45.7	P (30), LMP (6), Me (6)	Doppler US	Transvaginal/none	Philips P-700 SE	40	72	2	53
Schelling 2000	Germany	257 (39/218)	NA	LMP (4), S (23), M (5), E (2), GrC (2), other (3)	US	Transvaginal/none	Sonoline Elegra	38	41	1	177
[S32]		63 (22/41)	NA	LMP (4), S (11), M (1), U (2), CC (1), E (1), other (2)	US	Transvaginal/none	Sonoline Elegra	21	13	1	28
					Doppler US	Transvaginal/none	Sonoline Elegra	21	4	1	37
Kupesic 2000 [S33]	Croatia	45 (12/33)	49.7	NA	CEUS	Transvaginal/Levovist	Voluson 530	12	2	0	31
Wanapirak 2001	Thailand	185 (65/120)	44.8	NA	US	Transabdominal/none	Aloka 5000	55	36	10	84
[S34]											
Guerriero 2001	Italy	328 (71/257)	42.0	S (37), M (9), E (8), CC (2), U (4)	US	Transvaginal/none	Acuson 128	71	47	0	211
[S35]					Doppler US	Transvaginal/none	Acuson 128	71	18	0	239
-	Spain	328 (70/258)	44.0	S (39), M (11), E (5), CC (1), U (6)	US	Transvaginal/none	SSA 370	66	44	4	214
					Doppler US	Transvaginal/none	SSA 370	61	13	9	245
Kurjak 2001 [S36]	Croatia	251 (30/221)	54.0	S (17), M (9), YS (1), GrC (1), FT (2)	CEUS	Transvaginal/Levovist	Voluson 530	30	2	0	219
					Doppler US	Transvaginal/none	Voluson 530/SSD 2000	56	8	4	434
					US	Transvaginal/none	SSD 2000	50	20	10	422
Marret 2002 [S37]	France	124 (12/112)	42.1	NA	Doppler US	Transvaginal/none	Catana 5	11	34	1	78
Guerriero 2002	Italy	826 (147/679)	40.0	NA	US	Transvaginal/none	SSA 370	146	109	1	570
[S38]					Doppler US	Transvaginal/none	SSA 370	140	41	7	638
Alcazar 2003 [S39]	Spain	44 (21/23)	49.3	NA	Doppler US	Transvaginal/none	SSA 370	40	14	2	32
Ueland 2003 [S40]	USA	442 (53/389)	50.0	NA	US	Transvaginal/none	GE Logiq	52	75	1	314
Itakura 2003 [S41]	Japan	95 (31/64)	49.2	S (10), M (3), CC (4), E (2), U (2), Un (1), Me (1), GrC (2), S-B (3), tubal (3)	Doppler US	Transvaginal/none	Logiq 500	28	17	3	47
Gu 2003 [S42]	China	19 (12/7)	42.2	NA	CEUS	Transvaginal/Levovist	ATL Ultramark	12	2	0	5
Orden 2003 [S43]	Finland	66 (14/52)	49.4	U-solid (1), M-solid (7), solid (6)	CEUS	Transvaginal/Levovist	Sequoia 512	13	4	1	48
D'Arcy 2004 [S44]	UK	20 (4/16)	49.0	NA	CEUS	Transvaginal/Levovist	Sequoia 512	4	1	0	15
Marret 2004 [S45]	France	101 (23/78)	46.2	NA	CEUS	Transvaginal/Levovist	MPX	22	2	1	76

2 40 0 76 0 40 0 10 0 16 0 39 2 23 0 25
$\begin{array}{c cccc} 0 & 76 \\ \hline 0 & 40 \\ \hline 0 & 10 \\ \hline 0 & 16 \\ \hline 0 & 39 \\ \hline 2 & 23 \\ \hline 0 & 25 \\ \end{array}$
0 40 0 10 0 16 0 39 2 23 0 25
0 10 0 16 0 39 2 23 0 25
0 16 0 39 2 23 0 25
0 39 2 23 0 25
2 23 0 25
0 25
1 34
8 30
2 22
0 25
0 22
5 83
2 79
0 28
4 34
6 209
6 25
5 20
1 30

Zhang 2013 [S63]	China	48 (25/23)	48.3	NA	CEUS	Transabdominal/SonoVue	GE Logiq	24	1	1	22
					Doppler US	Transvaginal/none	GE Logiq	22	3	3	20
Yang 2013 [S64]	China	106 (75/31)	44.4	NA	US	Transabdominal/none	Philips iU22	69	10	6	21
					CEUS	Transabdominal/SonoVue	Philips iU22	70	3	5	28
Abbas 2014 [S65]	Egypt	161 (46/115)	35.2	NA	Doppler US	Both/none	SonoAce X8	37	18	9	97
Zhang 2014 [S66]	China	120 (48/72)	39.6	C (27), Me (4), IT (4), CC (2), E (2), SC (1), ES (1), B (7)	CEUS	Transabdominal/SonoVue	Sequoia 512	43	2	5	70
Hu 2014 [S67]	China	57 (10/47)	NA	GrC (2), A (1), B-S (1), Re (2), SLC (1), tubal S (3)	CEUS	Transvaginal/SonoVue	MyLab90	10	15	0	32
Utrilla-Layna 2015	Spain	367 (86/281)	45.8	B (4), P-Ep (61), P non-Ep (4), Me (16), R (1)	Doppler US	Transvaginal/none	Voluson 730	84	60	2	221
[S68]											
Zhang 2015 [S69]	China	102 (37/65)	37.2	NA	US	Transvaginal/none	Acuson 512	29	3	8	62
					Doppler US	Transvaginal/none	Acuson 512	23	9	11	59
Tongsong 2016	Thailand	150 (45/105)	43.0	B (9), CC (8), M (6), E (7), S (5), Me (3), SCS (2), other (5)	US	Both	NA	39	6	6	99
[S70]											
Paul 2017 [S71]	Bangladesh	43 (24/19)	37.7	NA	Doppler US	NA	NA	22	2	2	17
Al-Asadi 2018	Iraq	101 (21/80)	41.4	M (6), S (5), K (3), L (2), CC (2), GC (2), E (1)	US	Transabdominal/none	NA	20	20	1	60
[\$72]											

*A: adenocarcinoma; B: borderline; P: primary; GC: Germ cell; GrC: Granular cell; E: endometrial; CC: clear cell; M: mucinous; Me: metastatic; S: serous; K: Krukenberg; L: Leiomyosarcoma; SCS: sex cord stromal; R: retroperitoneal; SLC: Sertoli-Leydig cell; Re: recurrence; C: Cystadenocarcinoma; IT: immature teratoma; SC: squamous cell; ES: endodermal sinus; U: Unilocular; M: multilocular; Ep: epithelial; LMP: low malignant potential; U: undifferentiated; Un: unclassified; YS: Yolk sac; FT: fallopian tube; Pa: papillary; MT: malignant teratoma; MMT: mullerian mixed tumor; TP: true positive; FP:false positive; FN: false negative; TN: true negative

Reference

S1. Weiner Z, Thaler I, Beck D, et al. Differentiating malignant from benign ovarian tumors with transvaginal color flow imaging. Obstet Gynecol 1992;79:159-62.

S2. Kurjak A, Schulman H, Sosic A, et al. Transvaginal ultrasound, color flow, and Doppler waveform of the postmenopausal adnexal mass. Obstet Gynecol 1992;80:917-21.

S3. Kurjak A, Predanić M. New scoring system for prediction of ovarian malignancy based on transvaginal color Doppler sonography. J Ultrasound Med. 1992;11:631-8.

S4. Schneider VL, Schneider A, Reed KL. Comparison of Doppler with two-dimensional sonography and CA 125 for preduction of malignancy of pelvic masses. Obstet Gynecol Clin North Am 1993;81:983-988

S5. Brown DL, Frates MC, Laing FC, et al. Ovarian masses: can benign and malignant lesions be differentiated with color and pulsed Doppler US? Radiology 1994;190:333-6.

S6. Zanetta G, Vergani P, Lissoni A. Color Doppler ultrasound in the preoperative assessment of adnexal masses. Acta Obstet Gynecol Scand. 1994;73:637-41.

S7. Levine D, Feldstein VA, Babcook CJ, et al. Sonography of ovarian masses: poor sensitivity of resistive index for identifying malignant lesions. AJR Am J Roentgenol 1994;162:1355-9.

S8. Jain KA. Prospective evaluation of adnexal masses with endovaginal gray-scale and duplex and color Doppler US: correlation with pathologic findings. Radiology 1994;191:63-7.

S9. Bromley B, Goodman H, Benacerraf BR. Comparison between sonographic morphology and Doppler waveform for the diagnosis of ovarian malignancy. Obstet Gynecol 1994;83:434-7.

S10. Salem S, White LM, Lai J. Doppler sonography of adnexal masses: the predictive value of the pulsatility index in benign and malignant disease. AJR Am J Roentgenol 1994;163:1147-50.

S11. Wu CC, Lee CN, Chen TM, et al. Incremental angiogenesis assessed by color Doppler ultrasound in the tumorigenesis of ovarian neoplasms. Cancer 1994;73:1251-6.

S12. Chou CY, Chang CH, Yao BL, et al. Color Doppler ultrasonography and serum CA 125 in the differentiation of benign and malignant ovarian tumors. J Clin Ultrasound 1994;22:491-6.

S13. Franchi M, Beretta P, Ghezzi F, et al. Diagnosis of pelvic masses with transabdominal color Doppler, CA 125 and ultrasonography. Acta Obstet Gynecol Scand. 1995;74:734-9.

S14. Stein SM, Laifer-Narin S, Johnson MB, et al. Differentiation of benign and malignant adnexal masses: relative value of gray-scale, color Doppler, and spectral

Doppler sonography. AJR Am J Roentgenol 1995;164:381-6.

S15. Tepper R, Lerner-Geva L, Altaras MM, et al. Transvaginal color flow imaging in the diagnosis of ovarian tumors. J Ultrasound Med 1995;14:731-4.

S16. Tailor A, Jurkovic D, Bourne TH, et al. A comparison of intratumoural indices of blood flow velocity and impedance for the diagnosis of ovarian cancer. Ultrasound Med Biol 1996;22:837-43.

S17. Prömpeler HJ, Madjar H, Sauerbrei W. Classification of adnexal tumors by transvaginal color Doppler. Gynecol Oncol 1996;61:354-63.

S18. Rehn M, Lohmann K, Rempen A. Transvaginal ultrasonography of pelvic masses: evaluation of B-mode technique and Doppler ultrasonography. Am J Obstet Gynecol 1996;175:97-104.

S19. Caruso A, Caforio L, Testa AC, et al. Transvaginal color Doppler ultrasonography in the presurgical characterization of adnexal masses. Gynecol Oncol 1996;63:184-91.

S20. Anandakumar C, Chew S, Wong YC, et al. Role of transvaginal ultrasound color flow imaging and Doppler waveform analysis in differentiating between benign

and malignant ovarian tumors. Ultrasound Obstet Gynecol. 1996;7:280-4.

S21. Matthes AC, Moreira de Andrade JM, Bighetti S. Selection of criteria for the treatment of ovarian cysts on the bases of ultrasound and cytology. Gynecol Obstet Invest 1996;42:244-8.

S22. Komatsu T, Konishi I, Mandai M, et al. Adnexal masses: transvaginal US and gadolinium- enhanced MR imaging assessment of intratumoral structure. Radiology 1996;198:109-15.

S23. Buy JN, Ghossain MA, Hugol D, et al. Characterization of adnexal masses: combination of color Doppler and conventional sonography compared with spectral Doppler analysis alone and conventional sonography alone. AJR Am J Roentgenol. 1996;166:385-93.

S24. Strigini FA, Gadducci A, Del Bravo B, et al. Differential diagnosis of adnexal masses with transvaginal sonography, color flow imaging, and serum CA 125 assay in pre- and postmenopausal women. Gynecol Oncol 1996;61:68-72.

S25. Tailor A, Jurkovic D, Bourne TH, et al. Sonographic prediction of malignancy in adnexal masses using multivariate logistic regression analysis. Ultrasound Obstet Gynecol 1997; 10:41-47.

S26. Valentin L. Gray scale sonography, subjective evaluation of the color Doppler image and measurement of blood flow velocity for distinguishing benign and malignant tumors of suspected adnexal origin. Eur J Obstet Gynecol Reprod Biol. 1997;72:63-72.

S27. Reles A, Wein U, Lichtenegger W. Transvaginal color Doppler sonography and conventional sonography in the preoperative assessment of adnexal masses. J Clin Ultrasound 1997;25:217-25.

S28. Yang WT, Yuen PM, Ho SS, et al. Intraoperative laparoscopic sonography for improved preoperative sonographic pathologic characterization of adnexal masses.

J Ultrasound Med 1998; 17:53-61.

S29. Buckshee K, Temsu I, Bhatla N, et al. Pelvic examination, transvaginal ultrasound and transvaginal color Doppler sonography as predictors of ovarian cancer. Int J Gynaecol Obstet 1998; 61:51-7.

S30. Emoto M, Udo T, Obama H, et al. The blood flow characteristics in borderline ovarian tumors based on both color Doppler ultrasound and histopathological analyses. Gynecol Oncol 1998;70: 351-7.

S31. Alcázar JL, Jurado M. Prospective evaluation of a logistic model based on sonographic morphologic and color Doppler findings developed to predict adnexal malignancy. J Ultrasound Med 1999;18:837-42.

S32. Schelling M, Braun M, Kuhn W, et al. Combined transvaginal B-mode and color Doppler sonography for differential diagnosis of ovarian tumors: results of a multivariate logistic regression analysis. Gynecol Oncol 2000;77:78-86.

S33. Kupesic S, Kurjak A. Contrast-enhanced, three-dimensional power Doppler sonography for differentiation of adnexal masses. Obstet Gynecol. 2000;96:452-8.
S34. Wanapirak C, Nimitwongsakul S, Tongsong T. Sonographic morphology scores (SMS) for differentiation between benign and malignant ovarian tumor. J Med Assoc Thai 2001;84:30-5

S35. Guerriero S, Alcazar JL, Ajossa S, et al. Comparison of conventional color Doppler imaging and power doppler imaging for the diagnosis of ovarian cancer: results of a European study. Gynecol Oncol 2001;83:299-304.

S36. Kurjak A, Kupesic S, Sparac V, et al. Preoperative evaluation of pelvic tumors by Doppler and three-dimensional sonography. J Ultrasound Med 2001;20:829-40.

S37. Marret H, Ecochard R, Giraudeau B, et al. Color Doppler energy prediction of malignancy in adnexal masses using logistic regression models. Ultrasound Obstet Gynecol 2002;20:597-604.

S38. Guerriero S, Alcazar JL, Coccia ME, et al. Complex pelvic mass as a target of evaluation of vessel distribution by color Doppler sonography for the diagnosis of adnexal malignancies: results of a multicenter European study. J Ultrasound Med 2002;21:1105-11.

S39. Alcózar JL, Galón MJ, García-Manero M, et al. Three-dimensional sonographic morphologic assessment in complex adnexal masses: preliminary experience. J Ultrasound Med 2003;22: 249-54.

S40. Ueland FR, DePriest PD, Pavlik EJ, et al. Preoperative differentiation of malignant from benign ovarian tumors: the efficacy of morphology indexing and Doppler flow sonography. Gynecol Oncol 2003;91:46-50.

S41. Itakura T, Kikkawa F, Kajiyama H, et al. Doppler flow and arterial location in ovarian tumors. Int J Gynaecol Obstet 2003;83:277-83.

S42. Gu WR, Feng YJ, Zhang JH. Efficacy of Levovist in color Doppler ultrasonography of benign and malignant ovarian tumors. Chin J Ultrasonography 2013;12:21-24

S43. Ordén MR, Jurvelin JS, Kirkinen PP. Kinetics of a US contrast agent in benign and malignant adnexal tumors. Radiology. 2003;226:405-10.

S44. D'Arcy TJ, Jayaram V, Lynch M, et al. Ovarian cancer detected non-invasively by contrast-enhanced power Doppler ultrasound. BJOG 2004;111:619-22.

S45. Marret H, Sauget S, Giraudeau B, et al. Contrast-enhanced sonography helps in discrimination of benign from malignant adnexal masses. J Ultrasound Med 2004;23:1629-39.

S46. Alcázar JL, Castillo G. Comparison of 2-dimensional and 3-dimensional power-Doppler imaging in complex adnexal masses for the prediction of ovarian cancer. Am J Obstet Gynecol 2005; 192:807-12.

S47. Marret H, Sauget S, Giraudeau B, et al. Power Doppler vascularity index for predicting malignancy of adnexal masses. Ultrasound Obstet Gynecol 2005;25:508-13.

S48. Erdoğan N, Ozçelik B, Serin IS, et al. Doppler ultrasound assessment and serum cancer antigen 125 in the diagnosis of ovarian tumors. Int J Gynaecol Obstet 2005;91:146-50.

S49. Testa AC, Timmerman D, Exacoustos C, et al. The role of CnTI-SonoVue in the diagnosis of ovarian masses with papillary projections: a preliminary study. Ultrasound Obstet Gynecol 2007; 29:512-6.

S50. Testa AC, Timmerman D, Van Belle V, et al. Intravenous contrast ultrasound examination using contrast-tuned imaging (CnTI) and the contrast medium SonoVue for discrimination between benign and malignant adnexal masses with solid components. Ultrasound Obstet Gynecol 2009;34:699-710.

S51. Fleischer AC, Lyshchik A, Jones HW 3rd, et al. Diagnostic parameters to differentiate benign from malignant ovarian masses with contrast-enhanced transvaginal sonography. J Ultrasound Med 2009;28:1273-80.

S52. Zhou Q, Liu BL, Jiang J, et al. Value of color Doppler ultrasonography, contrast-enhanced ultrasound and serum CA-125 detection in differential diagnosis of ovarian masses. J South Med Univ 2009;29:2007-2009.

S53. Veyer L, Marret H, Bleuzen A, et al. Preoperative diagnosis of ovarian tumors using pelvic contrast-enhanced sonography. J Ultrasound Med 2010;29:1041-9
S54. Hassan MRT. Applications of contrast-enhanced ultrasonography in diagnosis and differential of ovarian cancer. Med J Chin People's Health 2011;23:2089-2040.

S55. Zheng QC, Li P, Wang YH, et al. Value of contrast-enhanced ultrasound in differential diagnosis of benign and malignant ovarian lesions. J Clin Ultrasound in Med 2011;13: 301-303.

S56. Huchon C, Metzger U, Bats AS, et al. Value of three-dimensional contrast-enhanced power Doppler ultrasound for characterizing adnexal masses. J Obstet Gynaecol Res 2012;38:832-40.

S57. Wang XT, Wang R, Cui JH, et al. Applications of contrast-enhanced ultrasonography in diagnosis and differential of ovarian masses. Jiangsu Med J 2012;38: 88-90.

S58. Hafeez S, Sufian S, Beg M, et al. Role of ultrasound in characterization of ovarian masses. Asian Pac J Cancer Prev 2013;14:603-6.

S59. Kalmantis K, Rodolakis A, Daskalakis G, et al. Characterization of ovarian tumors and staging ovarian cancer with 3-dimensional power Doppler angiography: correlation with pathologic findings. Int J Gynecol Cancer 2013;23:469-74.

S60. Perez-Medina T, Orensanz I, Pereira A, et al. Three-dimensional angioultrasonography for the prediction of malignancy in ovarian masses. Gynecol Obstet Invest 2013;75:120-5.

S61. Shah D, Shah S, Parikh J, et al. Doppler ultrasound: a good and reliable predictor of ovarian malignancy. J Obstet Gynaecol India 201;63:186-9.

S62. Xiang H, Huang R, Cheng J, et al. Value of three-dimensional contrast-enhanced ultrasound in the diagnosis of small adnexal masses. Ultrasound Med Biol 2013;39:761-8

S63. Zhang Y, Zhou J, Li MX, et al. Clinical value of contrast-enhanced ultrasonography in the qualitative diagnosis of ovarian cancer. J Clin Ultrasound in Med 2013;15: 403-405.

S64. Yang F, Yang TZ, Luo H, et al. Diagnostic value of contrast-enhanced ultrasonography in ovarian tumors. J Sichuan Univ (Med Sci Edi) 2013; 44: 424-428. S65. Abbas AM, Zahran KM, Nasr A, et al. A new scoring model for characterization of adnexal masses based on two-dimensional gray-scale and colour Doppler sonographic features. Facts Views Vis Obgyn 2014;6:68-74.

S66. Zhang X, Mao Y, Zheng R, et al. The contribution of qualitative CEUS to the determination of malignancy in adnexal masses, indeterminate on conventional US

- a multicenter study. PLoS One 2014;9:e93843.

S67. Hu R, Xiang H, Mu Y, et al. Combination of 2- and 3-dimensional contrast-enhanced transvaginal sonography for diagnosis of small adnexal masses. J Ultrasound Med 2014;33: 1889-99.

S68. Utrilla-Layna J, Alcózar JL, Aubó M, et al. Usefulness of 3D power Doppler angiography technique to the third step in the differential diagnosis of adnexal masses. A prospective study[J]. Ultrasound in Obstet Gynecol 2014; 45: 613-617

S69. Zhang F, Zhang ZL. The Diagnostic Value of Transvaginal Sonograph (TVS), Color Doppler, and Serum Tumor Marker CA125, CEA, and AFP in Ovarian Cancer. Cell Biochem Biophys. 2015;72:353-7.

S70. Tongsong T, Tinnangwattana D, Vichak-Ururote L, ET AL. Comparison of Effectiveness in Differentiating Benign from Malignant Ovarian Masses between IOTA Simple Rules and Subjective Sonographic Assessment. Asian Pac J Cancer Prev 2016;17:4377-4380.

S71. Paul P, Talukder S, Sangma MA, et al. Detection of Ovarian Tumor by Color Doppler Ultrasonography and CA-125. Mymensingh Med J 2017;26:705-709.
S72. Al-Asadi JN, Al-Maliki SK, Al-Dahhhan F, et al. The accuracy of risk malignancy index in prediction of malignancy in women with adnexal mass in Basrah, Iraq. Niger J Clin Pract 2018;21: 1254-1259.

Table S1. QUADAS-2 Scoring of Included Studies

	PATIENT S	ELECTION	INDE	X TEST	REFERENCE		RISK OF B	IAS	APPLICABILI
					STANDARD				TY
	Consecutive	Appropriate	Inter- or	US training	Always same	Selection	Bias from	Bias from	Risk of
AUTHORS	patient	exclusion	intra-rater	prior to study?	reference	bias?	index test?	reference test?	inappropriate
	enrollment?	criteria?	reliability?		standard?				reference test?
Weiner 1992 [S1]	Yes	Yes	No	Unclear	Yes	Inter	Low	Low	Low
Kurjak 1992 [S2]	Yes	Yes	No	Unclear	Yes	Low	Low	Low	Low
Kurjak 1992 [S3]	Yes	Yes	No	Unclear	Yes	Low	Low	Low	Low
Schneider 1993 [S4]	Yes	Yes	No	Unclear	Yes	Inter	Low	Low	Low
Brown 1994 [S5]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Zanetta 1994 [S6]	Yes	Yes	No	Yes	Yes	Low	Low	Low	Low
Levine 1994 [S7]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Jain 1994 [S8]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Bromley 1994 [S9]	Yes	Yes	No	Unclear	Yes	High	Low	Low	Low
Salem 1994 [S10]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Wu 1994 [S11]	Yes	Yes	No	Unclear	Yes	Low	Low	Low	Low
Chou 1994 [S12]	Yes	Yes	No	Unclear	Yes	Inter	Low	Low	Low
Franchi 1995 [S13]	Yes	Yes	No	Yes	Yes	Inter	Low	Low	Low
Stein 1995 [S14]	Yes	Yes	No	No	Yes	Low	Low	Low	Low
Tepper 1995 [S15]	Yes	Yes	No	No	Yes	Low	Low	Low	Low
Tailor 1996 [S16]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Prompeler 1996 [S17]	Yes	Yes	No	Yes	Yes	Low	Low	Low	Low
Rehn 1996 [S18]	Yes	Yes	No	No	Yes	Low	Low	Low	Low
Caruso 1996 [S19]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low

BMJ	Oven
DIVIO	open

			-		-				-
Anandakumar 1996 [S20]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Matthes 1996 [S21]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Komatsu 1996 [S22]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Buy 1996 [S23]	Yes	Yes	No	Yes	Yes	Inter	Low	Low	Low
Strigini 1996 [S24]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Tailor 1997 [S25]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Valentin 1997 [S26]	Yes	Yes	No	No	Yes	Low	Low	Low	Low
Reles 1997 [S27]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Yang 1998 [S28]	Yes	Yes	No	Unclear	Yes	Inter	Low	Low	Low
Buckshee 1998 [S29]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Emoto 1998 [S30]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Alcazar 1999 [S31]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Schelling 2000 [S32]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Kupesic 2000 [S33]	Yes	Yes	No	Yes	Yes	High	Low	Low	Low
Wanapirak 2001 [S34]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Guerriero 2001 [S35]	Yes	Yes	No	No	Yes	Low	Low	Low	Low
Kurjak 2001 [S36]	Yes	Yes	No	No	Yes	Low	Low	Low	Low
Marret 2002 [S37]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Guerriero 2002 [S38]	Yes	Yes	No	Unclear	Yes	Low	Low	Low	Low
Alcazar 2003 [S39]	Yes	Yes	No	Unclear	Yes	Inter	Low	Low	Low
Ueland 2003 [S40]	Yes	Yes	No	No	Yes	Low	Low	Low	Low
Itakura 2003 [S41]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Gu 2003 [S42]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Orden 2003 [S43]	Yes	Yes	No	No	Yes	Low	Low	Low	Low
D'Arcy 2004 [S44]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low

BMJ Ope	en

Marret 2004 [S45]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Alcazar 2005 [S46]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Marret 2005 [S47]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Erdogan 2005 [S48]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Testa 2007 [S49]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Testa 2009 [S50]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Fleischer 2009 [S51]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Zhou 2009 [\$52]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Veyer 2010 [S53]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Hassan 2011 [S54]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Zheng 2011 [S55]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Huchon 2012 [S56]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Wang 2012 [S57]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Hafeez 2013 [S58]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Kalmantis 2013 [S59]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Perez-Medina 2013 [S60]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Shah 2013 [S61]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Xiang 2013 [S62]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Zhang 2013 [S63]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Yang 2013 [S64]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Abbas 2014 [S65]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Zhang 2014 [S66]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Hu 2014 [S67]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Utrilla-Layna 2015 [S68]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Zhang 2015 [S69]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low

Tongsong 2016 [S70]	Yes	Yes	No	No	Yes	Inter	Low	Low	Low
Paul 2017 [S71]	Yes	Yes	No	No	Yes	High	Low	Low	Low
Al-Asadi 2018 [S72]	Yes	Yes	No	No	Yes	High	Low	Low	Low

Reference

S1. Weiner Z, Thaler I, Beck D, et al. Differentiating malignant from benign ovarian tumors with transvaginal color flow imaging. Obstet Gynecol 1992;79:159-62.

S2. Kurjak A, Schulman H, Sosic A, et al. Transvaginal ultrasound, color flow, and Doppler waveform of the postmenopausal adnexal mass. Obstet Gynecol

1992;80:917-21.

S3. Kurjak A, Predanić M. New scoring system for prediction of ovarian malignancy based on transvaginal color Doppler sonography. J Ultrasound Med. 1992;11:631-8.

S4. Schneider VL, Schneider A, Reed KL. Comparison of Doppler with two-dimensional sonography and CA 125 for preduction of malignancy of pelvic masses. Obstet Gynecol Clin North Am 1993;81:983-988

S5. Brown DL, Frates MC, Laing FC, et al. Ovarian masses: can benign and malignant lesions be differentiated with color and pulsed Doppler US? Radiology 1994;190:333-6.

S6. Zanetta G, Vergani P, Lissoni A. Color Doppler ultrasound in the preoperative assessment of adnexal masses. Acta Obstet Gynecol Scand. 1994;73:637-41.

S7. Levine D, Feldstein VA, Babcook CJ, et al. Sonography of ovarian masses: poor sensitivity of resistive index for identifying malignant lesions. AJR Am J Roentgenol 1994;162:1355-9.

S8. Jain KA. Prospective evaluation of adnexal masses with endovaginal gray-scale and duplex and color Doppler US: correlation with pathologic findings. Radiology 1994;191:63-7.

S9. Bromley B, Goodman H, Benacerraf BR. Comparison between sonographic morphology and Doppler waveform for the diagnosis of ovarian malignancy. Obstet Gynecol 1994;83:434-7.

S10. Salem S, White LM, Lai J. Doppler sonography of adnexal masses: the predictive value of the pulsatility index in benign and malignant disease. AJR Am J Roentgenol 1994;163:1147-50.

S11. Wu CC, Lee CN, Chen TM, et al. Incremental angiogenesis assessed by color Doppler ultrasound in the tumorigenesis of ovarian neoplasms. Cancer 1994;73:1251-6.

S12. Chou CY, Chang CH, Yao BL, et al. Color Doppler ultrasonography and serum CA 125 in the differentiation of benign and malignant ovarian tumors. J Clin Ultrasound 1994;22:491-6.

S13. Franchi M, Beretta P, Ghezzi F, et al. Diagnosis of pelvic masses with transabdominal color Doppler, CA 125 and ultrasonography. Acta Obstet Gynecol Scand. 1995;74:734-9.

S14. Stein SM, Laifer-Narin S, Johnson MB, et al. Differentiation of benign and malignant adnexal masses: relative value of gray-scale, color Doppler, and spectral Doppler sonography. AJR Am J Roentgenol 1995;164:381-6.

S15. Tepper R, Lerner-Geva L, Altaras MM, et al. Transvaginal color flow imaging in the diagnosis of ovarian tumors. J Ultrasound Med 1995;14:731-4.

S16. Tailor A, Jurkovic D, Bourne TH, et al. A comparison of intratumoural indices of blood flow velocity and impedance for the diagnosis of ovarian cancer. Ultrasound Med Biol 1996;22:837-43.

S17. Prömpeler HJ, Madjar H, Sauerbrei W. Classification of adnexal tumors by transvaginal color Doppler. Gynecol Oncol 1996;61:354-63.

S18. Rehn M, Lohmann K, Rempen A. Transvaginal ultrasonography of pelvic masses: evaluation of B-mode technique and Doppler ultrasonography. Am J Obstet Gynecol 1996;175:97-104.

S19. Caruso A, Caforio L, Testa AC, et al. Transvaginal color Doppler ultrasonography in the presurgical characterization of adnexal masses. Gynecol Oncol 1996;63:184-91.

S20. Anandakumar C, Chew S, Wong YC, et al. Role of transvaginal ultrasound color flow imaging and Doppler waveform analysis in differentiating between benign and malignant ovarian tumors. Ultrasound Obstet Gynecol. 1996;7:280-4.

S21. Matthes AC, Moreira de Andrade JM, Bighetti S. Selection of criteria for the treatment of ovarian cysts on the bases of ultrasound and cytology. Gynecol Obstet Invest 1996;42:244-8.

S22. Komatsu T, Konishi I, Mandai M, et al. Adnexal masses: transvaginal US and gadolinium- enhanced MR imaging assessment of intratumoral structure. Radiology 1996;198:109-15.

S23. Buy JN, Ghossain MA, Hugol D, et al. Characterization of adnexal masses: combination of color Doppler and conventional sonography compared with spectral Doppler analysis alone and conventional sonography alone. AJR Am J Roentgenol. 1996;166:385-93.

S24. Strigini FA, Gadducci A, Del Bravo B, et al. Differential diagnosis of adnexal masses with transvaginal sonography, color flow imaging, and serum CA 125 assay in pre- and postmenopausal women. Gynecol Oncol 1996;61:68-72.

S25. Tailor A, Jurkovic D, Bourne TH, et al. Sonographic prediction of malignancy in adnexal masses using multivariate logistic regression analysis. Ultrasound Obstet Gynecol 1997; 10:41-47.

S26. Valentin L. Gray scale sonography, subjective evaluation of the color Doppler image and measurement of blood flow velocity for distinguishing benign and malignant tumors of suspected adnexal origin. Eur J Obstet Gynecol Reprod Biol. 1997;72:63-72.

S27. Reles A, Wein U, Lichtenegger W. Transvaginal color Doppler sonography and conventional sonography in the preoperative assessment of adnexal masses. J Clin Ultrasound 1997;25:217-25.

S28. Yang WT, Yuen PM, Ho SS, et al. Intraoperative laparoscopic sonography for improved preoperative sonographic pathologic characterization of adnexal masses. J Ultrasound Med 1998; 17:53-61.

S29. Buckshee K, Temsu I, Bhatla N, et al. Pelvic examination, transvaginal ultrasound and transvaginal color Doppler sonography as predictors of ovarian cancer. Int J Gynaecol Obstet 1998; 61:51-7.

S30. Emoto M, Udo T, Obama H, et al. The blood flow characteristics in borderline ovarian tumors based on both color Doppler ultrasound and histopathological analyses. Gynecol Oncol 1998;70: 351-7.

S31. Alcázar JL, Jurado M. Prospective evaluation of a logistic model based on sonographic morphologic and color Doppler findings developed to predict adnexal malignancy. J Ultrasound Med 1999;18:837-42.

S32. Schelling M, Braun M, Kuhn W, et al. Combined transvaginal B-mode and color Doppler sonography for differential diagnosis of ovarian tumors: results of a multivariate logistic regression analysis. Gynecol Oncol 2000;77:78-86.

S33. Kupesic S, Kurjak A. Contrast-enhanced, three-dimensional power Doppler sonography for differentiation of adnexal masses. Obstet Gynecol. 2000;96:452-8.
S34. Wanapirak C, Nimitwongsakul S, Tongsong T. Sonographic morphology scores (SMS) for differentiation between benign and malignant ovarian tumor. J Med Assoc Thai 2001;84:30-5.

S35. Guerriero S, Alcazar JL, Ajossa S, et al. Comparison of conventional color Doppler imaging and power doppler imaging for the diagnosis of ovarian cancer: results of a European study. Gynecol Oncol 2001;83:299-304.

S36. Kurjak A, Kupesic S, Sparac V, et al. Preoperative evaluation of pelvic tumors by Doppler and three-dimensional sonography. J Ultrasound Med 2001;20:829-40.

S37. Marret H, Ecochard R, Giraudeau B, et al. Color Doppler energy prediction of malignancy in adnexal masses using logistic regression models. Ultrasound Obstet Gynecol 2002;20:597-604.

S38. Guerriero S, Alcazar JL, Coccia ME, et al. Complex pelvic mass as a target of evaluation of vessel distribution by color Doppler sonography for the diagnosis of adnexal malignancies: results of a multicenter European study. J Ultrasound Med 2002;21:1105-11.

S39. Alcázar JL, Galán MJ, García-Manero M, et al. Three-dimensional sonographic morphologic assessment in complex adnexal masses: preliminary experience. J Ultrasound Med 2003;22: 249-54.

S40. Ueland FR, DePriest PD, Pavlik EJ, et al. Preoperative differentiation of malignant from benign ovarian tumors: the efficacy of morphology indexing and Doppler flow sonography. Gynecol Oncol 2003;91:46-50.

S41. Itakura T, Kikkawa F, Kajiyama H, et al. Doppler flow and arterial location in ovarian tumors. Int J Gynaecol Obstet 2003;83:277-83.

S42. Gu WR, Feng YJ, Zhang JH. Efficacy of Levovist in color Doppler ultrasonography of benign and malignant ovarian tumors. Chin J Ultrasonography 2013;12:21-24

S43. Ordén MR, Jurvelin JS, Kirkinen PP. Kinetics of a US contrast agent in benign and malignant adnexal tumors. Radiology. 2003;226:405-10.

S44. D'Arcy TJ, Jayaram V, Lynch M, et al. Ovarian cancer detected non-invasively by contrast-enhanced power Doppler ultrasound. BJOG 2004;111:619-22.

S45. Marret H, Sauget S, Giraudeau B, et al. Contrast-enhanced sonography helps in discrimination of benign from malignant adnexal masses. J Ultrasound Med 2004;23:1629-39.

S46. Alcázar JL, Castillo G. Comparison of 2-dimensional and 3-dimensional power-Doppler imaging in complex adnexal masses for the prediction of ovarian cancer. Am J Obstet Gynecol 2005; 192:807-12.

S47. Marret H, Sauget S, Giraudeau B, et al. Power Doppler vascularity index for predicting malignancy of adnexal masses. Ultrasound Obstet Gynecol 2005;25:508-13.

S48. Erdoğan N, Ozçelik B, Serin IS, et al. Doppler ultrasound assessment and serum cancer antigen 125 in the diagnosis of ovarian tumors. Int J Gynaecol Obstet 2005;91:146-50.

S49. Testa AC, Timmerman D, Exacoustos C, et al. The role of CnTI-SonoVue in the diagnosis of ovarian masses with papillary projections: a preliminary study. Ultrasound Obstet Gynecol 2007; 29:512-6.

S50. Testa AC, Timmerman D, Van Belle V, et al. Intravenous contrast ultrasound examination using contrast-tuned imaging (CnTI) and the contrast medium SonoVue for discrimination between benign and malignant adnexal masses with solid components. Ultrasound Obstet Gynecol 2009;34:699-710.

S51. Fleischer AC, Lyshchik A, Jones HW 3rd, et al. Diagnostic parameters to differentiate benign from malignant ovarian masses with contrast-enhanced transvaginal sonography. J Ultrasound Med 2009;28:1273-80.

S52. Zhou Q, Liu BL, Jiang J, et al. Value of color Doppler ultrasonography, contrast-enhanced ultrasound and serum CA-125 detection in differential diagnosis of ovarian masses. J South Med Univ 2009;29:2007-2009.

S53. Veyer L, Marret H, Bleuzen A, et al. Preoperative diagnosis of ovarian tumors using pelvic contrast-enhanced sonography. J Ultrasound Med 2010;29:1041-9.

S54. Hassan MRT. Applications of contrast-enhanced ultrasonography in diagnosis and differential of ovarian cancer. Med J Chin People's Health 2011;23:2089-2040.

S55. Zheng QC, Li P, Wang YH, et al. Value of contrast-enhanced ultrasound in differential diagnosis of benign and malignant ovarian lesions. J Clin Ultrasound in Med 2011;13: 301-303.

S56. Huchon C, Metzger U, Bats AS, et al. Value of three-dimensional contrast-enhanced power Doppler ultrasound for characterizing adnexal masses. J Obstet Gynaecol Res 2012;38:832-40.

S57. Wang XT, Wang R, Cui JH, et al. Applications of contrast-enhanced ultrasonography in diagnosis and differential of ovarian masses. Jiangsu Med J 2012;38: 88-90.

S58. Hafeez S, Sufian S, Beg M, et al. Role of ultrasound in characterization of ovarian masses. Asian Pac J Cancer Prev 2013;14:603-6.

S59. Kalmantis K, Rodolakis A, Daskalakis G, et al. Characterization of ovarian tumors and staging ovarian cancer with 3-dimensional power Doppler angiography: correlation with pathologic findings. Int J Gynecol Cancer 2013;23:469-74.

S60. Perez-Medina T, Orensanz I, Pereira A, et al. Three-dimensional angioultrasonography for the prediction of malignancy in ovarian masses. Gynecol Obstet Invest 2013;75:120-5.

S61. Shah D, Shah S, Parikh J, et al. Doppler ultrasound: a good and reliable predictor of ovarian malignancy. J Obstet Gynaecol India 201;63:186-9.

S62. Xiang H, Huang R, Cheng J, et al. Value of three-dimensional contrast-enhanced ultrasound in the diagnosis of small adnexal masses. Ultrasound Med Biol 2013;39:761-8.

S63. Zhang Y, Zhou J, Li MX, et al. Clinical value of contrast-enhanced ultrasonography in the qualitative diagnosis of ovarian cancer. J Clin Ultrasound in Med 2013;15: 403-405.

S64. Yang F, Yang TZ, Luo H, et al. Diagnostic value of contrast-enhanced ultrasonography in ovarian tumors. J Sichuan Univ (Med Sci Edi) 2013; 44: 424-428.

S65. Abbas AM, Zahran KM, Nasr A, et al. A new scoring model for characterization of adnexal masses based on two-dimensional gray-scale and colour Doppler sonographic features. Facts Views Vis Obgyn 2014;6:68-74.

S66. Zhang X, Mao Y, Zheng R, et al. The contribution of qualitative CEUS to the determination of malignancy in adnexal masses, indeterminate on conventional US - a multicenter study. PLoS One 2014;9:e93843.

S67. Hu R, Xiang H, Mu Y, et al. Combination of 2- and 3-dimensional contrast-enhanced transvaginal sonography for diagnosis of small adnexal masses. J Ultrasound Med 2014;33: 1889-99.

S68. Utrilla-Layna J, Alcázar JL, Aubá M, et al. Usefulness of 3D power Doppler angiography technique to the third step in the differential diagnosis of adnexal masses. A prospective study[J]. Ultrasound in Obstet Gynecol 2014; 45: 613-617

S69. Zhang F, Zhang ZL. The Diagnostic Value of Transvaginal Sonograph (TVS), Color Doppler, and Serum Tumor Marker CA125, CEA, and AFP in Ovarian Cancer. Cell Biochem Biophys. 2015;72:353-7.

S70. Tongsong T, Tinnangwattana D, Vichak-Ururote L, ET AL. Comparison of Effectiveness in Differentiating Benign from Malignant Ovarian Masses between IOTA Simple Rules and Subjective Sonographic Assessment. Asian Pac J Cancer Prev 2016;17:4377-4380.

S71. Paul P, Talukder S, Sangma MA, et al. Detection of Ovarian Tumor by Color Doppler Ultrasonography and CA-125. Mymensingh Med J 2017;26:705-709.

S72. Al-Asadi JN, Al-Maliki SK, Al-Dahhhan F, et al. The accuracy of risk malignancy index in prediction of malignancy in women with adnexal mass in Basrah,

Iraq. Niger J Clin Pract 2018;21: 1254-1259.

Figure S1. The pooled sensitivity and specificity for US differentiate the benign and malignant ovarian masses

Figure S2. The pooled sensitivity and specificity for Doppler US differentiate the benign and malignant ovarian masses

Figure S3. The pooled sensitivity and specificity for CEUS differentiate the benign and malignant ovarian masses

Figure S1. The pooled PLR and NLR for US differentiate the benign and malignant ovarian masses

Figure S2. The pooled PLR and NLR for Doppler US differentiate the benign and malignant ovarian masses

Figure S3. The pooled PLR and NLR for CEUS differentiate the benign and malignant ovarian masses

Study		%
ID	DOR (95% CI)	Weight
Kurjak 1992	49.47 (6.01, 407.27)	2.33
Kurjak 1992	215.00 (52.85, 874.61)	3.26
Schneider 1993	38.50 (6.91, 214.59)	2.81
Zanetta 1994	285.00 (15.80, 5140.77)	1.61
Levine 1994	109.29 (5.06, 2361.29)	1.48
Jain 1994	323.40 (14.39, 7266.17)	1.46
Bromley 1994	8.50 (1.68, 42.98)	2.95
Franchi 1995	÷ 26.52 (9.43, 74.62)	3.81
Stein 1995	7.12 (3.27, 15.49)	4.17
Rehn 1996	16.98 (6.52, 44.25)	3.92
Caruso 1996	129.00 (7.54, 2206.71)	1.65
Matthes 1996	14.86 (2.56, 86.35)	2.76
Komatsu 1996	27.92 (3.53, 221.04)	2.38
Buy 1996	237.50 (50.30, 1121.44)	3.04
Strigini 1996	91.56 (20.79, 403.25)	3.14
Valentin 1997	31.93 (1.90, 536.90)	1.66
Reles 1997	45.70 (11.75, 177.66)	3.33
Yang 1998	118.00 (10.56, 1319.05)	2.01
Buckshee 1998	99.22 (4.86, 2027.81)	1.52
Schelling 2000	164.05 (21.88, 1229.79)	2.44
Schelling 2000	45.23 (5.48, 373.51)	2.33
Wanapirak 2001	12.83 (5.89, 27.96)	4.17
Guerriero 2001	636.73 (38.75, 10462.66)	1.68
Guerriero 2001	80.25 (27.80, 231.66)	3.77
Kuriak 2001	153.11 (44.03, 532.39)	3.49
Kuriak 2001 -	76.36 (25.92, 225.01)	3.74
Guerriero 2002	763.49 (105.70, 5514.88)	2.49
Ueland 2003	217.71 (29.62, 1600.13)	2.46
Zhou 2009	986.00 (59.02, 16471.58)	1.67
Huchon 2012	19.92 (4.48, 88.48)	3.13
Hafeez 2013	161.50 (27.80, 938.06)	2.76
Shah 2013	5.83 (1.92, 17.69)	3.70
Yang 2013	24.15 (7.85, 74.30)	3.67
Zhang 2015	74.92 (18.51, 303.27)	3.27
Tongsong 2016	107.25 (32.60, 352.79)	3.57
Al-Asadi 2018	60.00 (7.56, 476.03)	2.37
Overall (I-squared = 66.5%, p = 0.000)	\$ 57.52 (36.64, 90.28)	100.00
NOTE: Weights are from random effects analysis		
6 1e-05 1	I 16472	

Figure S1. The pooled DOR for US differentiate the benign and malignant ovarian masses

Study			%
ID		DOR (95% CI)	Weight
Weiner 1992		560.00 (32.91, 9529.52)	1.33
Kurjak 1992		476.00 (47.27, 4793.73)	1.64
Kurjak 1992		6825.00 (272.44, 170978.02)	1.14
Schneider 1993		21.56 (2.58, 180.08)	1.77
Brown 1994	•	15.26 (0.82, 284.08)	1.28
Zanetta 1994		333.50 (35.50, 3132.81)	1.69
Jain 1994		22.67 (3.84, 133.87)	2.02
Bromley 1994		7.70 (0.80, 74.05)	1.67
Salem 1994		12.75 (3.15, 51.49)	2.32
Wu 1994		76.34 (25.79, 225.96)	2.57
Chou 1994		79.62 (18.99, 333.81)	2.29
Franchi 1995		7.90 (3.28, 18.99)	2.72
Stein 1995		72.77 (9.70, 545.65)	1.85
Tepper 1995		216.84 (13.04, 3605.70)	1.34
Tailor 1996		67.00 (3.56, 1259.34)	1.28
Prompeler 1996		440.79 (57.74, 3365.15)	1.83
Rehn 1996		14.51 (6.50, 32.39)	2.77
Caruso 1996	_ +	931.67 (48.33, 17958.17)	1.26
Anandakumar 1996		6.92 (2.87, 16.66)	2.72
Buy 1996		17.14 (6.46, 45.49)	2.65
Strigini 1996		15.43 (4.18, 56.94)	2.40
Tailor 1997		101.19 (5.53, 1850.64)	1.29
Reles 1997		73.67 (9.31, 582.81)	1.81
Buckshee 1998		52.00 (4.57, 591.27)	1.56
Emoto 1998		8.65 (2.87, 26.01)	2.56
Alcazar 1999		14.72 (3.41, 63.63)	2.27
Kupesic 2000		194.25 (20.36, 1853.69)	1.68
Guerriero 2001	1 <u> </u>	1851.27 (110.19, 31102.18)	1.34
Guerriero 2001	-	127.74 (52.19, 312.60)	2.71
Kuriak 2001		3175.50 (279.14, 36124.28)	1.56
Kuriak 2001		322.50 (76.22, 1364.61)	2.29
Marret 2002		25.24 (3.13, 203.28)	1.79
Guerriero 2002		311.22 (136.78, 708.15)	2.76
Alcazar 2003		144.64 (7.49, 2794.06)	1.26
Alcazar 2003		14.78 (2.75, 79.33)	2.10
Itakura 2003		25.80 (6.94, 95.97)	2.39
Alcazar 2005		167.20 (18.28, 1529.37)	1.71
Alcazar 2005	; •	308.00 (30.20, 3140.72)	1.63
Marret 2005	· · · · · · · · · · · · · · · · · · ·	1438.20 (66.67, 31023.38)	1.21
Erdogan 2005		696.60 (31.98, 15173.21)	1.21
Testa 2007		36.88 (1.91, 713.01)	1.26
Testa 2009		13.88 (3.02, 63.87)	2.22
Zhou 2009		16.50 (4.75, 57.33)	2.44
Kalmantis 2013		189.41 (71.73, 500.15)	2.65
Perez–Medina 2013		24.31 (7.02, 84.20)	2.45
Shah 2013		83.57 (10.40, 671.52)	1.80
Zhang 2013		48.89 (8.83, 270.59)	2.07
Abbas 2014		22.15 (9.14, 53.69)	2.71
Utrilla–Layna 2015		154.70 (36.98, 647.12)	2.30
Zhang 2015		13.71 (5.02, 37.41)	2.63
Paul 2017		93.50 (11.92, 733.32)	1.81
Overall (I-squared = 73.9%, p = 0.000)	e 💡	61.76 (39.99, 95.37)	100.00
NOTE: Weights are from random effects analysis			
I	i i		
5.8e-06	1 1.7e+0	05	

Figure S2. The pooled DOR for Doppler US differentiate the benign and malignant ovarian masses

Study		%
ID	DOR (95% CI)	Weight
Kupesic 2000	315.00 (14.10, 7036.17)	3.83
Kuriak 2001	5355.80 (251.15, 114214.03)	3.93
Gu 2003	55.00 (2.25, 1346.19)	3.65
Orden 2003	156.00 (16.03, 1518.13)	6.19
Di ⁻ Arcy 2004	93.00 (3.20, 2699.69)	3.35
Marret 2004	836.00 (72.37, 9657.92)	5.57
Testa 2007	13.76 (0.72, 263.57)	4.16
Testa 2009	2 19.44 (12.59, 3823.51)	4.39
Fleischer 2009	357.00 (13.43, 9490.43)	3.50
Veyer 2010	13.75 (2.46, 76.82)	8.91
Hassan 2011	208.64 (10.92, 3986.36)	4.17
Zheng 2011	261.00 (11.67, 5835.97)	3.83
Huchon 2012	39.50 (7.36, 211.98)	9.16
Wang 2012	779.00 (30.19, 20101.70)	3.56
Xiang 2013	481.67 (18.05, 12855.02)	3.50
Zhang 2013	5 28.00 (31.11, 8960.95)	4.45
Yang 2013	130.67 (29.24, 583.82)	10.39
Zhang 2014	• 301.00 (55.92, 1620.24)	9.14
Hu 2014	44.03 (2.42, 800.91)	4.28
Overall (I–squared = 25.7%, p = 0.147)	> 152.11 (77.77, 297.51)	100.00
NOTE: Weights are from random effects analysis		
8.8e-06 1	1.1e+05	

Figure S3. The pooled DOR for CEUS differentiate the benign and malignant ovarian masses