Table	S1. Evolving definitions of Type 2 Myocardial Infarction.
Year	Universal Definition of Type 2 Myocardial Infarction
2007	Myocardial infarction secondary to ischaemia due to either increased oxygen demand or decreased supply, e.g. coronary artery spasm, coronary embolism, anaemia, arrythmias, hypotension or hypertension
2012	Instances of myocardial injury with necrosis where a condition other than coronary artery disease contributes to an imbalance between myocardial oxygen supply and/or demand e.g. coronary artery spasm, coronary embolism, anaemia, arrythmias, hypotension or hypertension
2018	Detection of a rise and/or fall of cTn values with at least one value above the 99th percentile URL, and evidence of an imbalance between myocardial oxygen supply and demand unrelated to coronary thrombosis, requiring at least one of the following: - Symptoms of acute myocardial ischaemia - New ischaemic ECG changes - Development of pathological Q waves - Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality in a pattern consistent with an ischaemic aetiology

Table S2. Search strategy.

MEDLINE: (type 2 adj3 myocard*) OR (type-2 adj3 myocard*) OR (type II adj3 myocard*) OR (type-II adj3 myocard*) OR (type 2 adj3 MI) OR (type-2 adj3 MI) OR T2MI OR (supply demand adj3 myocard*)

EMBASE: ('type 2' NEXT/3 myocard*) OR ('type-2' NEXT/3 myocard*) OR ('type ii' NEXT/3 myocard*) OR ('type-ii' NEXT/3 myocard*) OR ('type-2' NEXT/3 mi) OR ('type-2' NEXT/3 mi) OR ('t2mi') OR ('supply demand' NEXT/3 myocard*)

Author, Year	Pati	ents	Design	Definition	Geographic	Screening	Troponin
Addition, Tear	T1MI	T2MI	Design	of MI	location	Sercering	Assay
Arora, 2018 (1)	775	264	Retrospective	2012	USA	NSTEMI patients	cTnl
Balanescu, 2020 (2)	152	49	Retrospective	2018	USA	AMI patients	N/A
Baron, 2016 (3)	40501	1313	Prospective	2007	Sweden	AMI patients	hs-cTnT
Bonaca, 2012 (4)	359	42	Prospective	2007	Multinational	TRITON TIMI 38 trial	N/A
Cediel, 2017 (5)	376	194	Retrospective	2012	Spain	ED patients with at least 1 troponin	cTnl
Chapman, 2018 (6)	1171	429	Prospective	2012	UK	ED with elevated troponin	cTnl
Chapman, 2020 (7)	4981	1121	Prospective	2018	UK	Suspected ACS	cTnl
Consuegra-Sanchaz, 2018 (8)	125	75	Retrospective	2012	Spain	ED patients with at least 1 troponin	cTnl hs-cTnT
El-Haddad, 2012 (9)	512	295	Retrospective	2012	USA	Patients with elevated troponin	N/A
Etaher, 2020 (10)	97	121	Prospective	2018	Australia	Patients with elevated troponin	N/A
Furie, 2019 (11)	349	206	Retrospective	2012	Israel	NSTEMI on general ward	Unknown
Guimaraes, 2018 (12)	847	76	Retrospective	2012	Multinational	ACS during TRACER trial	N/A
Hawatmeh, 2020 (13)	664	281	Retrospective	2012	USA	NSTEMI patients	cTnl
Higuchi, 2019 (14)	12023	491	Retrospective	2012	Tokyo	Admitted to CCU	N/A
laved, 2009 (15)	143	64	Retrospective	2007	USA	Patients with elevated troponin	cTnI
Kadesjo, 2019 (16)	1111	251	Retrospective	2018	Sweden	MI, Registry	N/A
Lambrecht, 2018 (17)	360	119	Prospective	2007	Denmark	Hospitalised patients with troponin measured	cTnl
Landes, 2016 (18)	107	107	Retrospective	2012	Israel	Diagnosed with T2MI and T1MI	cTnT
Lopez-Cuenca, 2016 (19)	707	117	Retrospective	2012	Spain	Diagnosed with T2MI and T1MI	hs-cTnT
Meigher, 2016 (20)	340	452	Retrospective	2012	Germany	ED patients with elevated troponin	cTnl
Nestelberger, 2017 (21)	684	128	Prospective	2012	Multinational	ED patients with MI	N/A
Neumann, 2017 (22)	188	99	Prospective	2012	Germany	ED patients with suspected MI	hs-cTnI

Paiva, 2015 (23)	764	236	Retrospective	2012	Portugal	Admitted to CCU with MI	cTnl
Pandey, 2020 (24)	97	103	Prospective	2018	USA	MI	N/A
Putot, 2018 (25)	2036	847	Prospective	2012	France	ED or cardiology ward with elevated troponin	cTnl
Putot, 2019 (26)	365	254	Retrospective	2018	France	Hospitalised patients with CAD	cTnl
Putot, 2020 (27)	3710	862	Retrospective	2012	France	Hospitalised patients with MI	cTnl
Radovanovic, 2017 (28)	13828	1091	Retrospective	2012	Switzerland	Diagnosed AMI	N/A
Raphael, 2020 (29)	1365	1054	Retrospective	2018	USA	Raised troponin	cTnT
Reed, 2017 (30)	88	162	Retrospective	2012	USA	Underwent vascular surgery procedure	cTnT
Saaby 2013 (31)	397	144	Prospective	2007	Denmark	Troponin measured	cTnl
Saaby, 2014 (32)	360	119	Prospective	2007	Denmark	Elevated troponin	cTnl
Sandoval, 2014 (33)	66	190	Retrospective	2012	USA	ED patients with troponin measured	cTnl
Sandoval, 2017 (34)	77	140	Prospective	2012	USA	ED patients with troponin measured	cTnl
Sato, 2020 (35)	2834	155	Prospective	2012	Japan	Hospitalised patient with MI	N/A
Shah, 2015 (36)	1171	429	Prospective	2012	UK	Admitted with elevated troponin	cTnl
Singh, 2020 (37)	2097	1225	Retrospective	2018	USA	Age <50, MI or raised troponin	N/A
Smilowitz, 2018 (38)	137	146	Prospective	2012	USA	Admitted with raised troponin	cTnl
Stein, 2014 (39)	2691	127	Prospective	2007	Israel	Admitted to cardiology	N/A
Truong, 2020 (40)	275	175	Retrospective	2012	Russia	MI, undergoing angiogram	N/A

cTnI = cardiac troponin I; cTnT = cardiac troponin T; hs- = high sensitivity; AMI = acute myocardial infarction; MI = myocardial infarction; ACS = acute coronary syndrome; NSTEMI = non-ST elevation myocardial infarction; CCU = coronary care unit; CAD = coronary artery disease

Table S3b. Study character	ristics							
Author, Year	Pati	ents			Vai	riables		
	T1MI	T2MI	Pre-existing conditions	Symptoms	Investigation s	Troponin Values	Management	Prognosis
Arora, 2018 (1)	775	264	Х		Х	Х	X	Х
Balanescu, 2020 (2)	152	49		Х	Х		Х	
Baron, 2016 (3)	40501	1313	X	Х	X	Χ	X	
Bonaca, 2012 (4)	359	42						
Cediel, 2017 (5)	376	194	Х	Х	Х	Χ		Х
Chapman, 2018 (6)	1171	429	X		X	Χ	X	X
Chapman, 2020 (7)	4981	1121	Х	Х	X	Χ		Χ
Consuegra-Sanchaz, 2018 (8)	125	75	Х	Х	Х	Х		
El-Haddad, 2012 (9)	512	295						Х
Etaher, 2020 (10)	97	121	Х		Х		Х	
Furie, 2019 (11)	349	206	Х	Х	Х	Х	Х	Х
Guimaraes, 2018 (12)	847	76	Х		Х		Х	Х
Hawatmeh, 2020 (13)	664	281	Х		Х	Х	Х	
Higuchi, 2019 (14)	12023	491	Х		Х		Х	Х
Javed, 2009 (15)	143	64	Х		X	Χ		Χ
Kadesjo, 2019 (16)	1111	251	Х				X	Х
Lambrecht, 2018 (17)	360	119	Х		Х	Χ		Х
Landes, 2016 (18)	107	107	Х	Х	X	Χ		
Lopez-Cuenca, 2016 (19)	707	117	Х	Χ	X	Χ	X	X
Meigher, 2016 (20)	340	452	X	X	X	Χ		X
Nestelberger, 2017 (21)	684	128	Х		Х		X	Х
Neumann, 2017 (22)	188	99	X		X	Χ		X
Paiva, 2015 (23)	764	236	Х		Х	Х		Х
Pandey, 2020 (24)	97	103	Х					
Putot, 2018 (25)	2036	847	Х		Х	Х		Х
Putot, 2019 (26)	365	254	Х		Х	Х		Х
Putot, 2020 (27)	3710	862	Х		Х	Х		Х
Radovanovic, 2017 (28)	13828	1091	Х		Х		Х	Х
Raphael, 2020 (29)	1365	1054	Х		Х	Х	Х	Х

Reed, 2017 (30)	88	162			Х	Х	Х	
Saaby 2013 (31)	397	144	Х		Х	Х		
Saaby, 2014 (32)	360	119	Х		Х	X	Х	X
Sandoval, 2014 (33)	66	190	X	X	X	X		X
Sandoval, 2017 (34)	77	140	Х	Х	Х	Х	Х	X
Sato, 2020 (35)	2834	155	X		X		Χ	X
Shah, 2015 (36)	1171	429	Х	Х	X	X	Х	X
Singh, 2020 (37)	2097	1225	X		X		Χ	X
Smilowitz, 2018 (38)	137	146	X	X	X	X	Χ	X
Stein, 2014 (39)	2691	127	X	X	X		Х	X
Truong, 2020 (40)	275	175	X	X	X		Χ	X

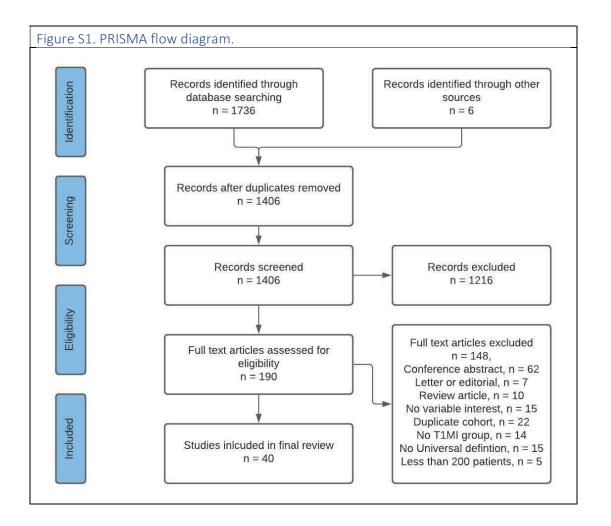
			Outcome			
Author, Year	Representative of Exposed Cohort	Selection of Non-exposed	Assessment	Follow-up Length	Adequacy of Follow- Up	Summary
Arora, 2018 (1)	х	х	х	х	Х	8 (good quality)
Balanescu, 2020 (2)	0	х	Х	0	Х	6 (fair quality)
Baron, 2016 (3)	х	х	Х	Х	Х	8 (good quality)
Bonaca, 2012 (4)	х	х	х	х	X	8 (good quality)
Cediel, 2017 (5)	x	х	х	х	X	8 (good quality)
Chapman, 2018 (6)	х	х	х	Х	Х	8 (good quality)
Chapman, 2020 (7)	х	х	Х	х	Х	8 (good quality)
Consuegra-Sanchaz, 2018 (8)	0	0	х	0	0	3 (poor quality)
El-Haddad, 2012 (9)	х	х	0	0	0	5 (fair quality)
Etaher, 2020 (10)	х	х	Х	х	Х	8 (good quality)
urie, 2019 (11)	х	х	х	х	Х	8 (good quality)
Guimaraes, 2018 (12)	0	0	х	0	x	4 (fair quality)
Hawatmeh, 2020 (13)	0	0	х	х	0	4 (fair quality)
Higuchi, 2019 (14)	0	0	х	х	Х	5 (fair quality)
aved, 2009 (15)	х	х	Х	х	Х	8 (good quality)
Kadesjo, 2019 (16)	х	х	Х	Х	Х	8 (good quality)
Lambrecht, 2018 (17)	х	х	x	х	x	8 (good quality)
andes, 2016 (18)	х	х	Х	Х	Х	8 (good quality)
opez-Cuenca, 2016 19)	х	х	х	х	х	8 (good quality)
Meigher, 2016 (20)	х	х	Х	х	Х	8 (good quality)
Nestelberger, 2017 21)	х	х	х	х	x	8 (good quality)
Neumann, 2017 (22)	х	х	Х	Х	Х	8 (good quality)

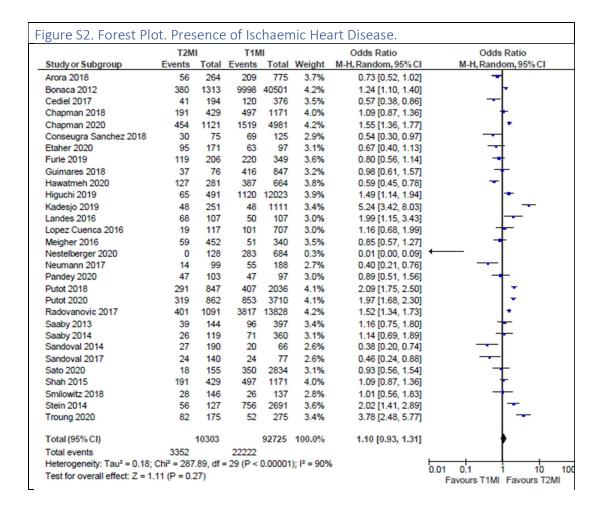
Paiva, 2015 (23)	х	х	х	х	х	8 (good quality)
Pandey, 2020 (24)	0	0	0	0	0	2 (poor quality)
Putot, 2018 (25)	х	х	х	х	х	8 (good quality)
Putot, 2019 (26)	х	х	0	х	х	7 (good quality)
Putot, 2020 (27)	х	х	х	х	х	8 (good quality)
Radovanovic, 2017 (28)	х	х	х	х	х	8 (good quality)
Raphael, 2020 (29)	х	х	х	х	х	8 (good quality)
Reed, 2017 (30)	х	х	х	х	х	8 (good quality)
Saaby 2013 (31)	х	х	х	х	х	8 (good quality)
Saaby, 2014 (32)	х	х	Х	х	х	8 (good quality)
Sandoval, 2014 (33)	x	x	Х	X	х	8 (good quality)
Sandoval, 2017 (34)	х	х	х	х	х	8 (good quality)
Sato, 2020 (35)	0	0	0	х	х	2 (poor quality)
Shah, 2015 (36)	х	х	х	х	х	8 (good quality)
Singh, 2020 (37)	0	0	х	х	х	6 (fair quality)
Smilowitz, 2018 (38)	х	х	х	х	х	7 (good quality)
Stein, 2014 (39)	x	х	х	х	х	7 (good quality)
Truong, 2020 (40)	X	X	X	X	х	8 (good quality)

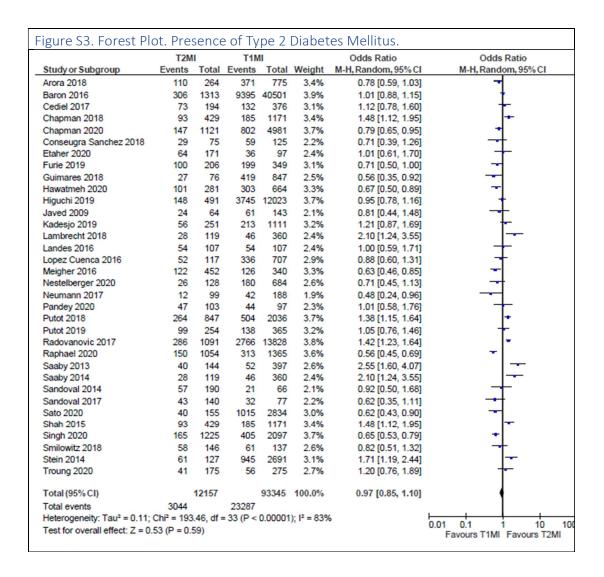
Table S5. Precipitating conditions for 3	Г2МІ.		
Precipitating Factor	Events	Patients	%
Sepsis	1116	3110	35.9%
Heart failure	698	1943	35.9%
Arrhythmia	1716	5465	31.4%
Anaemia	1506	4878	30.9%
Valvular abnormality	351	1301	27.0%
Respiratory failure	743	3021	24.6%
Chronic obstructive pulmonary disease	59	258	22.9%
Stroke	44	328	13.4%
Hypertension	291	2217	13.1%
Non-cardiac surgery	103	841	12.2%
Shock/hypotension	291	3006	9.7%
Renal failure	51	553	9.2%
Pulmonary oedema	33	380	8.7%
Bradycardia	35	484	7.2%
Infection	115	2009	5.7%
Coronary spasm	36	1048	3.4%
Bleeding	53	1834	2.9%
Coronary endothelial dysfunction	1	592	0.2%

Table S6. Clini	ical features	on preser	ntation ir	n patients wi	th T2MI ve	ersus T1	MI patients.
		T2MI			T1MI		
Presenting Symptom	No. patients with presenting symptom	Total number of patients	%	No. patients with presenting symptom	Total number of patients	%	Odds ratio * [95% CI]
Chest pain	3474	5932	58.6%	58273	65883	88.4%	0.19 [0.13, 0.26]
Dyspnoea	1412	5210	27.1%	6930	65129	10.6%	2.64 [1.86, 3.74]
Arm or shoulder discomfort	28	330	8.5%	50	143	35.0%	0.18 [0.11, 0.30]
Jaw or neck discomfort	6	140	4.3%	12	77	15.6%	0.24 [0.09, 0.68]
Epigastric discomfort	8	140	5.7%	8	77	10.4%	0.52 [0.19, 1.45]
Nausea or vomiting	46	330	13.9%	39	143	27.3%	0.46 [0.28, 0.74]
Fatigue	5	140	3.6%	5	77	6.5%	0.53 [0.15, 1.90]
Diaphoresis	16	140	11.4%	16	77	20.8%	0.49 [0.23, 1.05]
Other nonspecific symptoms	988	1529	64.6%	2662	41396	6.4%	4.9 [0.48, 50.33]
Collapse / syncope	99	2125	4.7%	157	7152	2.2%	2.10 [1.05, 4.18]

^{*}Comparing T2MI with T1MI patients, with odds ratio adjusted according to study weighting using random effects meta-analysis

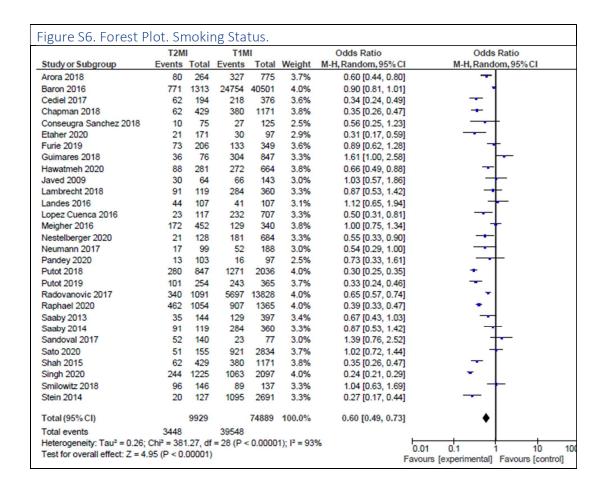

Abbreviations: URL- upper reference limit; STEMI- ST elevation myocardial infarction; NSTEMI- Non- ST elevation myocardial infarction; MI- Myocardial infarction; cTn- cardiac troponin; T1MI- Type 1 myocardial infarction; T2MI- Type 2 myocardial infarction; ECG- electrocardiogram; CAD- coronary artery disease; PCI-percutaneous coronary intervention; CABG- coronary artery bypass graft; IHD- ischaemic heart disease; MACE- Major adverse cardiovascular events; CI-confidence interval

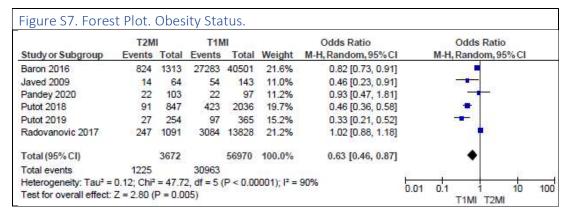

		T2MI			T1MI			
Variable	No. patients with nominated diagnostic findings	Total no. patients	%	No. patients with nominated diagnostic findings	Total no of patients	%		
ECG								
ST elevation	1129	8014	14.1%	37182	84096	44.2%	0.22 [0.17, 0.28]	
ST depression or T wave Inversion	1728	4911	35.2%	10968	51042	21.5%	1.36 [0.85, 2.17]	
Pathological Q Waves	30	447	6.7%	177	850	20.8%	0.38 [0.20, 0.71]	
Non-specific ST-T wave changes	146	592	24.7%	45	417	10.8%	2.62 [1.81, 3.79]	
Left bundle branch block	175	1927	9.1%	1943	42543	4.6%	1.62 [1.21, 2.17]	
Atrial fibrillation/flutter	54	257	21%	52	784	6.6%	4.99 [3.14, 7.93]	
Echocardiograph								
Echocardiogram performed	648	1353	47.9%	1571	2830	55.5%	0.44 [0.20, 0.96]	
Presence of RWMA	97	286	33.9%	101	214	47.2%	0.48 [0.06, 3.78]	
Angiogram								
Angiogram performed	3182	9318	34.1%	42724	49944	85.5%	0.09 [0.06, 0.12]	
Obstructive coronary artery disease present	1246	3663	34.0%	19923	44404	44.9%	0.16 [0.05, 0.54]	
Multivessel disease present	593	2147	27.6%	11839	41715	28.4%	0.40 [0.19, 0.82]	

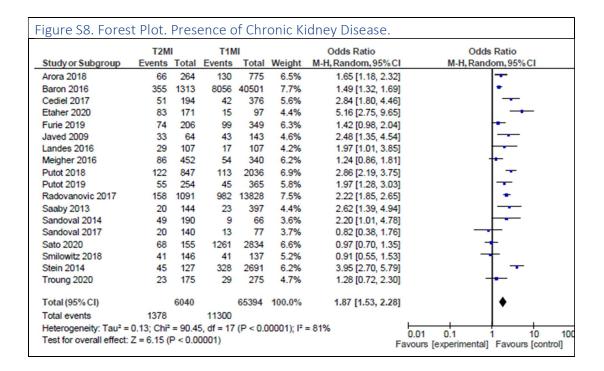

^{*}Comparing T2MI with T1MI patients, with odds ratio adjusted according to study weighting using random effects meta-analysis

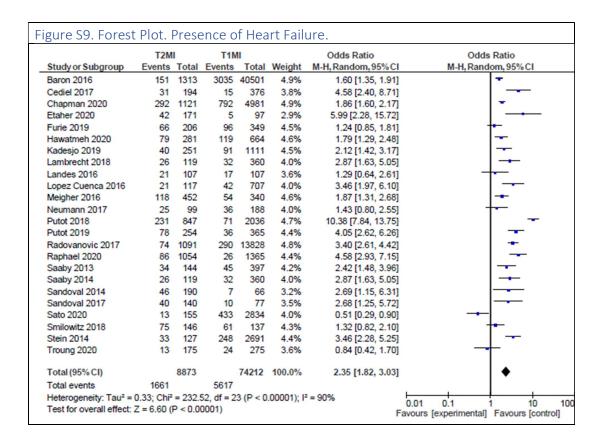
ECG=electrocardiograph; RWMA=regional wall motion abnormalities; Cl=confidence interval; T2Ml=type 2 myocardial infarction; T1Ml=type 1 myocardial infarction

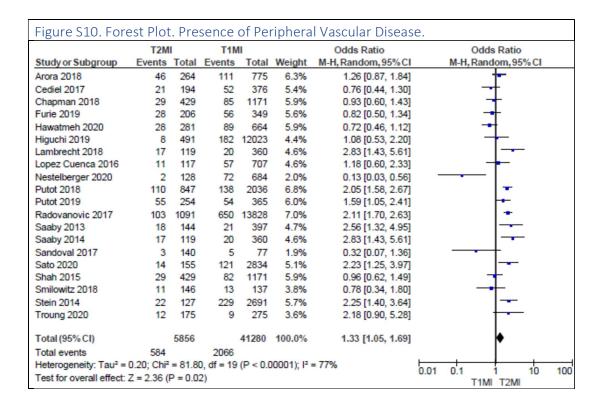
Table S8. Troponin measurements.							
Troponin Measurement	Number of Studies	T1MI (min-max)	T2MI (min-max)				
Baseline cTn (xULN)	12	0.14-190	0.1-8.2				
6h cTn (xULN)	4	13.2-142	4.25-11				
Peak cTn (xULN) 20 5.1-1703 2.8-447							
Abbreviations: xULN= times	s upper limit normal						

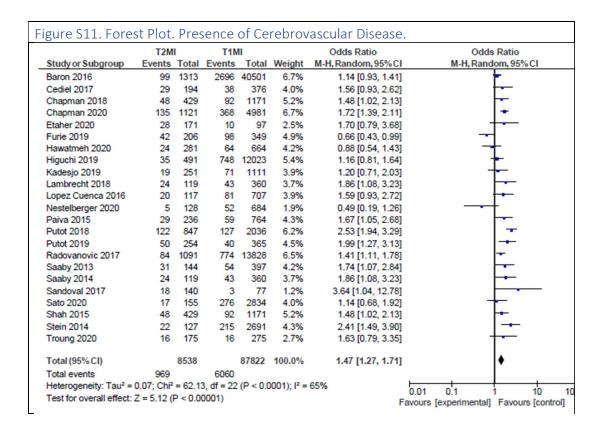


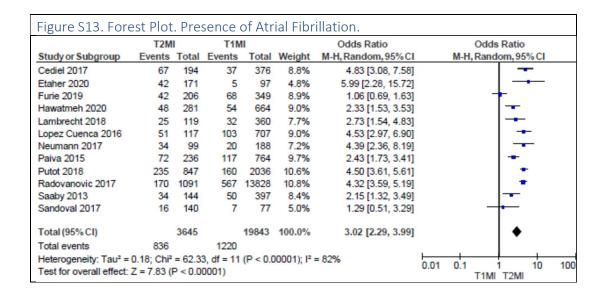


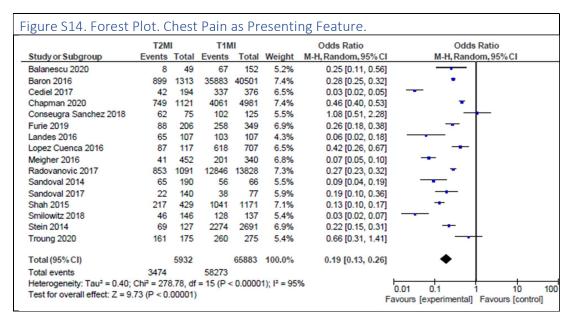


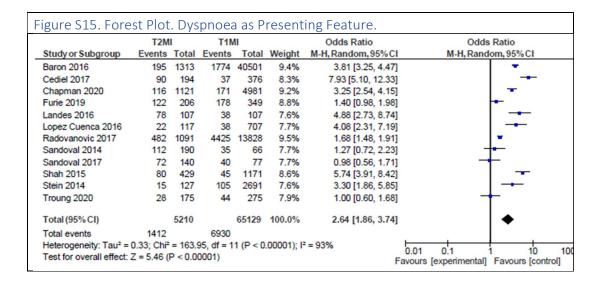

	T2M	II	T1N	11		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Arora 2018	225	264	642	775	3.2%	1.20 [0.81, 1.76]	+
Baron 2016	962	1313	26334	40501	3.7%	1.47 [1.30, 1.67]	-
Cediel 2017	153	194	270	376	3.1%	1.47 [0.97, 2.21]	 -
Chapman 2018	254	429	533	1171	3.6%	1.74 [1.39, 2.17]	+
Conseugra Sanchez 2018	54	75	91	125	2.5%	0.96 [0.51, 1.82]	+
Etaher 2020	128	171	56	97	2.8%	2.18 [1.28, 3.71]	
Furie 2019	159	206	265	349	3.1%	1.07 [0.71, 1.61]	+
Guimares 2018	60	76	688	847	2.6%	0.87 [0.49, 1.54]	+
Hawatmeh 2020	242	281	583	664	3.1%	0.86 [0.57, 1.30]	+
Higuchi 2019	311	491	7064	12023	3.6%	1.21 [1.01, 1.46]	-
Javed 2009	53	64	126	143	2.0%	0.65 [0.29, 1.48]	+
Lambrecht 2018	66	119	193	360	3.1%	1.08 [0.71, 1.63]	+
Landes 2016	87	107	82	107	2.4%	1.33 [0.68, 2.57]	+-
Lopez Cuenca 2016	103	117	522	707	2.6%	2.61 [1.46, 4.67]	
Meigher 2016	289	452	224	340	3.4%	0.92 [0.68, 1.23]	+
Nestelberger 2020	92	128	521	684	3.1%	0.80 [0.52, 1.22]	-+
Neumann 2017	77	99	154	188	2.6%	0.77 [0.42, 1.41]	
Paiva 2015	192	236	580	764	3.2%	1.38 [0.96, 2.00]	 -
Pandey 2020	68	103	68	97	2.6%	0.83 [0.46, 1.50]	
Putot 2018	683	847	1140	2036	3.6%	3.27 [2.70, 3.96]	+
Putot 2019	211	254	279	365	3.1%	1.51 [1.01, 2.27]	├
Radovanovic 2017	802	1091	8504	13828	3.7%	1.74 [1.51, 2.00]	
Raphael 2020	716	1054	966	1365	3.7%	0.87 [0.74, 1.04]	+
Saaby 2013	81	144	215	397	3.2%	1.09 [0.74, 1.60]	+
Saaby 2014	66	119	193	360	3.1%	1.08 [0.71, 1.63]	+
Sandoval 2014	125	190	49	66	2.5%	0.67 [0.36, 1.25]	
Sandoval 2017	104	140	62	77	2.4%	0.70 [0.35, 1.38]	
Sato 2020	103	155	1885	2834	3.3%	1.00 [0.71, 1.40]	+
Shah 2015	254	429	533	1171	3.6%	1.74 [1.39, 2.17]	-
Singh 2020	419	1225	970	2097	3.7%	0.60 [0.52, 0.70]	*
Smilowitz 2018	128	146	118	137	2.3%	1.15 [0.57, 2.29]	+
Stein 2014	108	127	1631	2691	2.9%	3.69 [2.25, 6.05]	
Troung 2020	161	175	241	275	2.4%	1.62 [0.84, 3.12]	 -
Total (95% CI)		11021		88017	100.0%	1.22 [1.03, 1.45]	*
Total events	7536		55782				
Heterogeneity: Tau2 = 0.20;	Chi ² = 315	.20, df =	32 (P <	0.00001); $I^2 = 90\%$	6	0.01 0.1 1 10

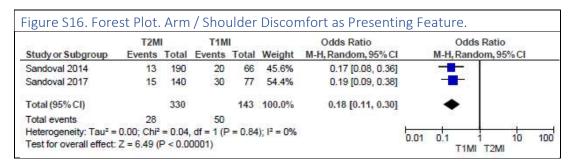

	T2M	I	T1MI			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95%
Arora 2018	131	264	441	775	3.4%	0.75 [0.56, 0.99]		-
Baron 2016	548	1313	14893	40501	3.5%	1.23 [1.10, 1.38]		-
Chapman 2018	177	429	539	1171	3.4%	0.82 [0.66, 1.03]		4
Conseugra Sanchez 2018	38	75	66	125	2.9%	0.92 [0.52, 1.63]		+
Etaher 2020	89	171	48	97	3.1%	1.11 [0.67, 1.82]		+
Furie 2019	121	206	218	349	3.3%	0.86 [0.60, 1.22]		+
Guimares 2018	58	76	625	847	3.0%	1.14 [0.66, 1.98]		+
Hawatmeh 2020	205	281	505	664	3.3%	0.85 [0.62, 1.17]		+
Higuchi 2019	174	491	5044	12023	3.5%	0.76 [0.63, 0.92]		+
Javed 2009	34	64	113	143	2.8%	0.30 [0.16, 0.57]		
Lambrecht 2018	48	119	137	360	3.2%	1.10 [0.72, 1.68]		+
Landes 2016	82	107	69	107	2.9%	1.81 [0.99, 3.28]		<u> </u>
Lopez Cuenca 2016	89	117	530	707	3.1%	1.06 [0.67, 1.68]		+
Meigher 2016	194	452	180	340	3.4%	0.67 [0.50, 0.89]		
Nestelberger 2020	46	128	440	684	3.2%	0.31 [0.21, 0.46]		
Neumann 2017	40	99	108	188	3.1%	0.50 [0.31, 0.82]		
Paiva 2015	125	236	442	764	3.4%	0.82 [0.61, 1.10]		→
Pandey 2020	38	103	51	97	3.0%	0.53 [0.30, 0.93]		→
Putot 2018	419	847	919	2036	3.5%	1.19 [1.01, 1.40]		-
Putot 2019	169	254	259	365	3.3%	0.81 [0.58, 1.15]		-\
Radovanovic 2017	631	1091	8076	13828	3.5%	0.98 [0.86, 1.11]		+
Raphael 2020	359	1054	790	1365	3.5%	0.38 [0.32, 0.44]		-
Saaby 2013	60	144	158	397	3.2%	1.08 [0.73, 1.59]		+
Saaby 2014	48	119	137	360	3.2%	1.10 [0.72, 1.68]		+
Sandoval 2014	63	190	36	66	2.9%	0.41 [0.23, 0.73]		
Sandoval 2017	61	140	50	77	2.9%	0.42 [0.23, 0.74]		
Sato 2020	95	155	1435	2834	3.3%	1.54 [1.11, 2.15]		-
Shah 2015	117	429	539	1171	3.4%	0.44 [0.35, 0.56]		+
Singh 2020	172	1225	1229	2097	3.5%	0.12 [0.10, 0.14]		-
Smilowitz 2018	102	146	98	137	3.0%	0.92 [0.55, 1.54]		+
Stein 2014	93	127	1924	2691	3.2%	1.09 [0.73, 1.63]		+
Total (95% CI)		10652		87366	100.0%	0.74 [0.58, 0.94]		•
Total events	4626		40099			•		
Heterogeneity: Tau ² = 0.42;	$Chi^2 = 703$	94 df :	30 (P <	0.00001)· I² = 96%		0.01	0.1 1 1

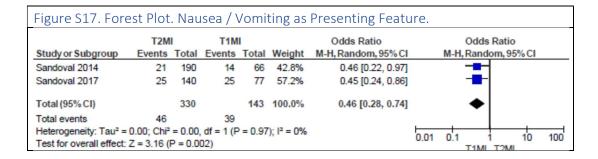


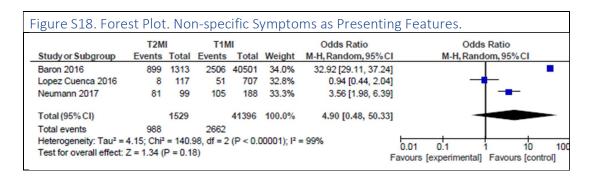


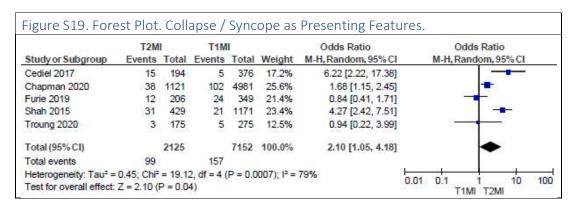


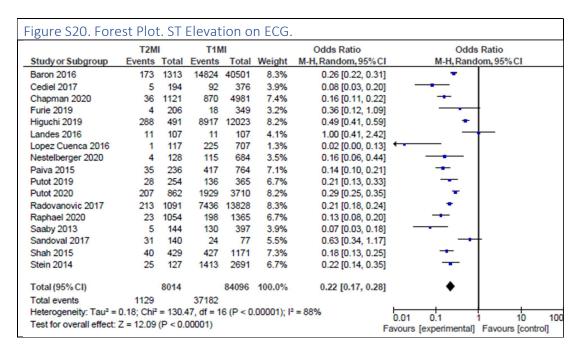


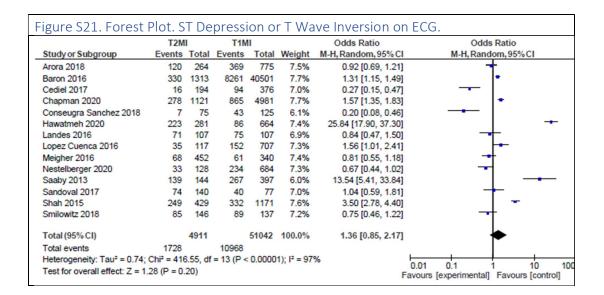


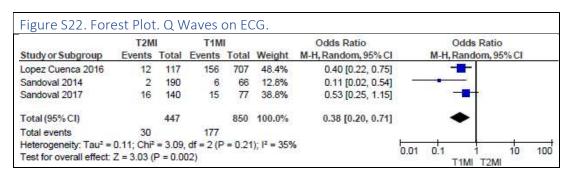

	T2M	1	T1M	l .		Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H	I, Random, 95% CI	
Javed 2009	17	64	2	143	46.0%	25.50 [5.68, 114.50]		-	
Sandoval 2017	29	140	6	77	54.0%	3.09 [1.22, 7.82]		-	
Total (95% CI)		204		220	100.0%	8.15 [1.03, 64.46]		-	
Total events	46		8						

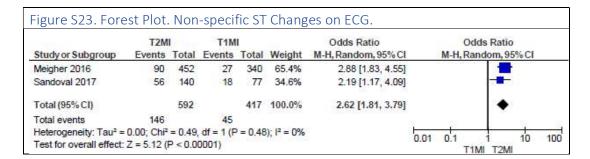


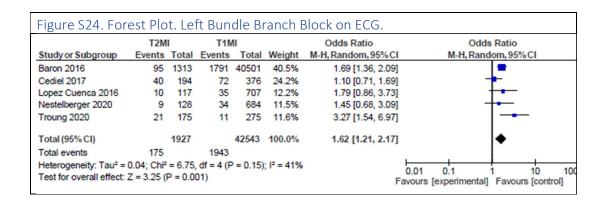


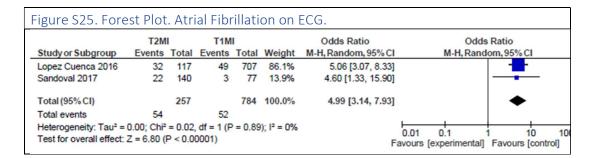




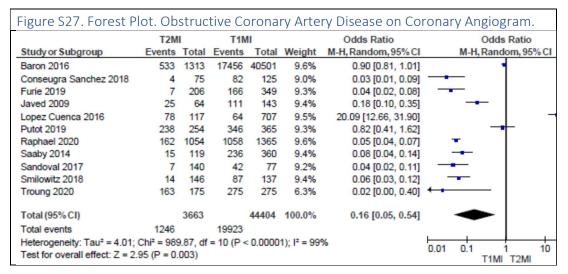


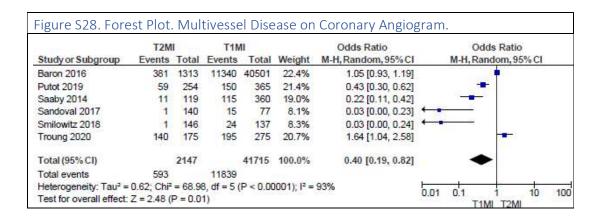


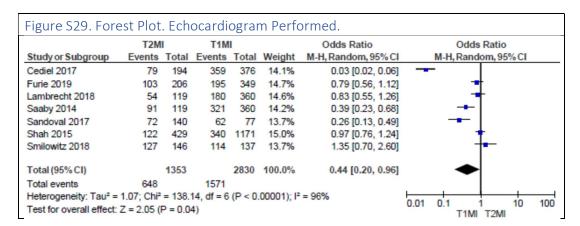


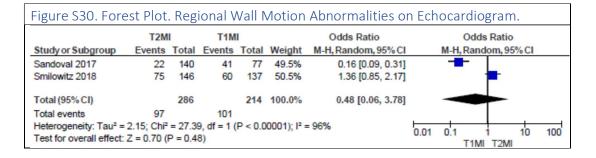


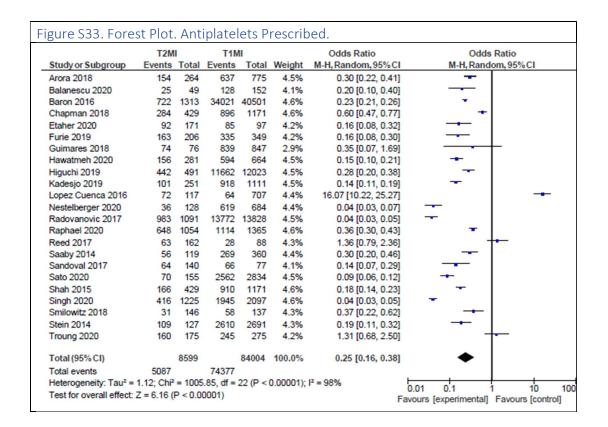


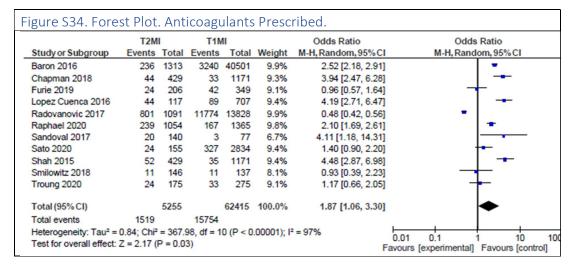


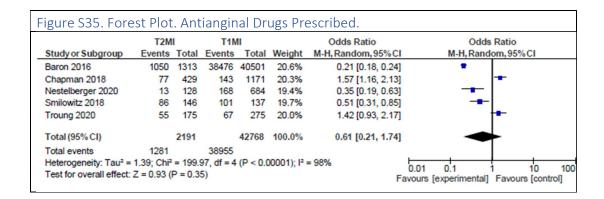


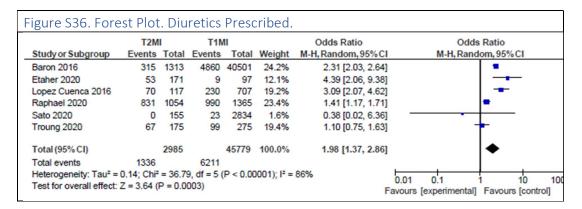


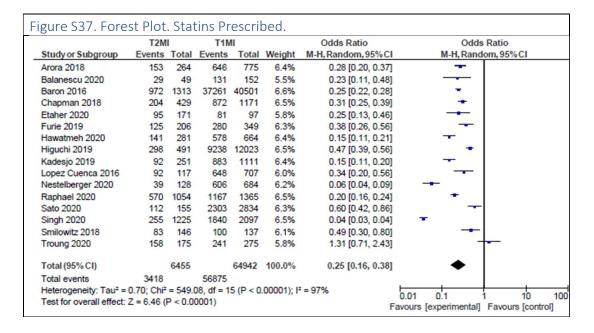


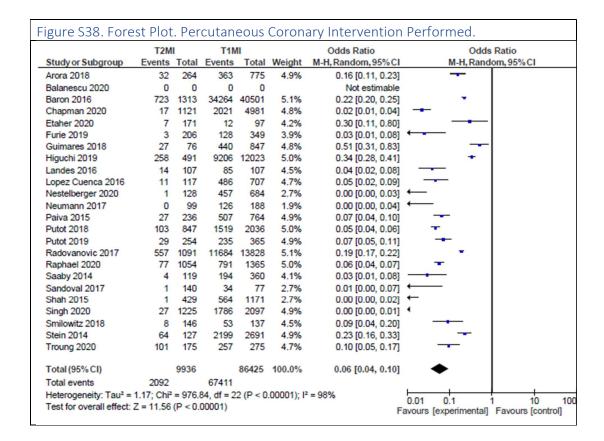


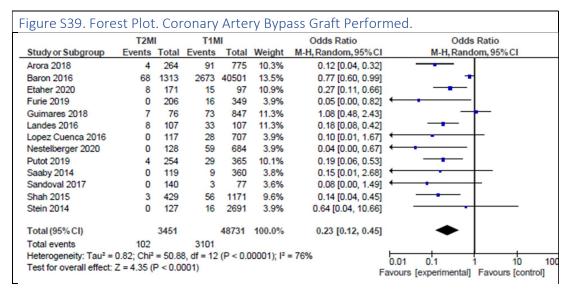


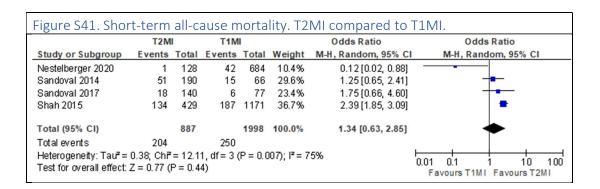


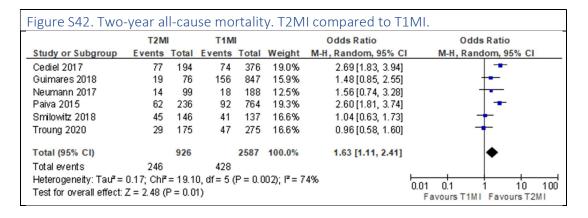

	T2M	1	T1N	11		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Arora 2018	165	264	645	775	4.7%	0.34 [0.25, 0.46]	-
Balanescu 2020	30	49	127	152	3.9%	0.31 [0.15, 0.64]	
Baron 2016	1123	1313	36410	40501	4.8%	0.66 [0.57, 0.78]	-
Chapman 2018	126	429	651	1171	4.7%	0.33 [0.26, 0.42]	-
Etaher 2020	83	171	68	97	4.3%	0.40 [0.24, 0.68]	
Furie 2019	141	206	247	349	4.6%	0.90 [0.62, 1.30]	+
Hawatmeh 2020	165	281	551	664	4.7%	0.29 [0.21, 0.40]	-
Higuchi 2019	236	491	6786	12023	4.8%	0.71 [0.60, 0.86]	*
Kadesjo 2019	169	251	946	1111	4.7%	0.36 [0.26, 0.49]	-
Lopez Cuenca 2016	86	117	614	707	4.4%	0.42 [0.26, 0.67]	
Nestelberger 2020	72	128	548	684	4.5%	0.32 [0.21, 0.47]	-
Radovanovic 2017	595	1091	7396	13828	4.8%	1.04 [0.92, 1.18]	t
Raphael 2020	766	1054	1215	1365	4.8%	0.33 [0.26, 0.41]	*
Reed 2017	75	162	41	88	4.3%	0.99 [0.59, 1.66]	+
Saaby 2014	44	119	208	360	4.5%	0.43 [0.28, 0.66]	
Sandoval 2017	81	140	53	77	4.2%	0.62 [0.35, 1.12]	
Sato 2020	53	155	1838	2834	4.6%	0.28 [0.20, 0.40]	-
Shah 2015	124	429	660	1171	4.7%	0.31 [0.25, 0.40]	+
Singh 2020	513	1225	1878	2097	4.8%	0.08 [0.07, 0.10]	+
Smilowitz 2018	70	146	78	137	4.4%	0.70 [0.44, 1.11]	-1
Stein 2014	91	127	2234	2691	4.5%	0.52 [0.35, 0.77]	
Troung 2020	159	175	237	275	4.1%	1.59 [0.86, 2.96]	
Total (95% CI)		8523		83157	100.0%	0.45 [0.33, 0.63]	◆
Total events	4967		63431				~

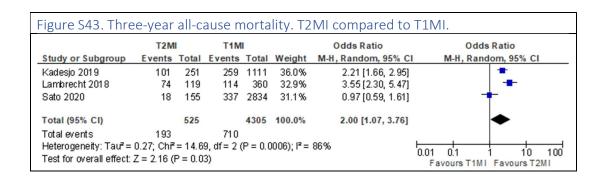

	T2M	I	T1N	11		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Baron 2016	945	1313	30781	40501	6.0%	0.81 [0.72, 0.92]	-
Chapman 2018	156	429	724	1171	5.9%	0.35 [0.28, 0.44]	+
Etaher 2020	57	171	49	97	5.0%	0.49 [0.29, 0.82]	
Hawatmeh 2020	99	281	325	664	5.7%	0.57 [0.43, 0.76]	-
Higuchi 2019	254	491	7531	12023	6.0%	0.64 [0.53, 0.77]	-
Kadesjo 2019	118	251	725	1111	5.7%	0.47 [0.36, 0.62]	-
Lopez Cuenca 2016	53	117	438	707	5.4%	0.51 [0.34, 0.75]	-
Nestelberger 2020	70	128	546	684	5.4%	0.31 [0.21, 0.45]	
Radovanovic 2017	566	1091	7448	13828	6.0%	0.92 [0.82, 1.04]	4
Raphael 2020	571	1054	976	1365	6.0%	0.47 [0.40, 0.56]	•
Saaby 2014	38	119	154	360	5.2%	0.63 [0.40, 0.97]	
Sandoval 2017	43	140	39	77	4.7%	0.43 [0.24, 0.77]	
Sato 2020	93	155	2103	2834	5.6%	0.52 [0.37, 0.73]	-
Shah 2015	135	429	735	1171	5.8%	0.27 [0.22, 0.34]	÷
Singh 2020	271	1225	1269	2097	6.0%	0.19 [0.16, 0.22]	•
Smilowitz 2018	62	146	63	137	5.1%	0.87 [0.54, 1.39]	+
Stein 2014	88	127	2126	2691	5.4%	0.60 [0.41, 0.88]	-
Troung 2020	147	175	221	275	5.0%	1.28 [0.78, 2.12]	+
Total (95% CI)		7842		81793	100.0%	0.52 [0.40, 0.67]	•
Total events	3766		56253				
Heterogeneity: Tau ² =	0.29; Chi ²	= 362.4	12, df = 1	7 (P < 0.	.00001); [= 95%	0.01 0.1 1 10

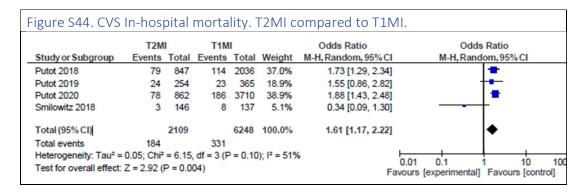


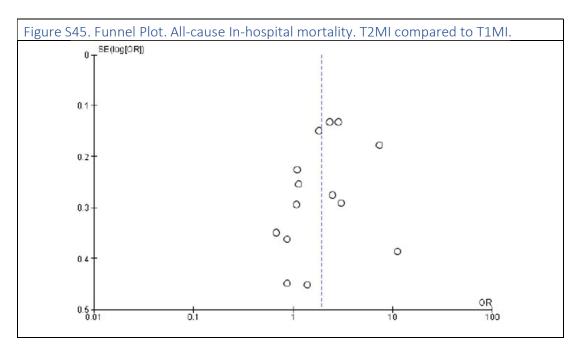


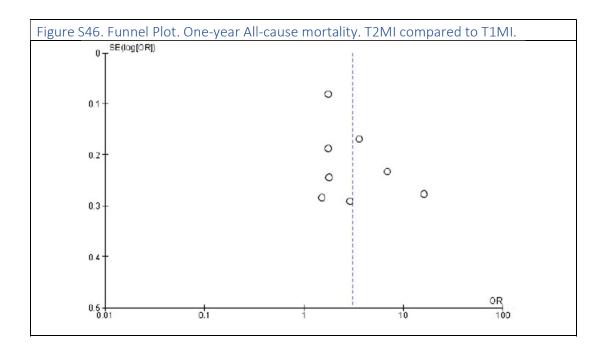









	T2M	I	T1N	11		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Furie 2019	21	206	33	349	7.1%	1.09 [0.61, 1.93]	+
Higuchi 2019	54	491	769	12023	8.2%	1.81 [1.35, 2.42]	-
Javed 2009	9	64	15	143	5.7%	1.40 [0.58, 3.38]	
Lopez Cuenca 2016	6	117	41	707	5.7%	0.88 [0.36, 2.12]	
Meigher 2016	54	452	37	340	7.6%	1.11 [0.71, 1.73]	+
Paiva 2015	23	236	66	764	7.4%	1.14 [0.69, 1.88]	+
Putot 2018	133	847	125	2036	8.3%	2.85 [2.20, 3.69]	+
Putot 2019	38	254	24	365	7.2%	2.50 [1.46, 4.28]	
Putot 2020	95	862	186	3710	8.3%	2.35 [1.81, 3.04]	-
Saaby 2014	29	119	10	360	6.3%	11.28 [5.30, 24.00]	-
Singh 2020	160	1225	42	2097	8.0%	7.35 [5.19, 10.41]	_
Smilowitz 2018	17	146	18	137	6.5%	0.87 [0.43, 1.77]	+
Stein 2014	15	127	113	2691	7.1%	3.06 [1.73, 5.41]	
Troung 2020	13	175	29	275	6.6%	0.68 [0.34, 1.35]	+
Total (95% CI)		5321		25997	100.0%	1.94 [1.35, 2.79]	•
Total events	667		1508				



References

- 1. Arora S, Strassle PD, Qamar A, Wheeler EN, Levine AL, Misenheimer JA, et al. Impact of Type 2 Myocardial Infarction (MI) on Hospital-Level MI Outcomes: Implications for Quality and Public Reporting. Journal of the American Heart Association. 2018;7(7).
- 2. Balanescu DV, Donisan T, Deswal A, Palaskas N, Song J, Lopez-Mattei J, et al. Acute myocardial infarction in a high-risk cancer population: Outcomes following conservative versus invasive management. International journal of cardiology. 2020;313:1-8.
- 3. Baron T, Hambraeus K, Sundström J, Erlinge D, Jernberg T, Lindahl B. Impact on Long-Term Mortality of Presence of Obstructive Coronary Artery Disease and Classification of Myocardial Infarction. Am J Med. 2016;129(4):398-406.
- 4. Bonaca MP, Wiviott SD, Braunwald E, Murphy SA, Ruff CT, Antman EM, et al. American College of Cardiology/American Heart Association/European Society of Cardiology/World Heart Federation universal definition of myocardial infarction classification system and the risk of cardiovascular death: observations from the TRITON-TIMI 38 trial (Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel-Thrombolysis in Myocardial Infarction 38). Circulation. 2012;125(4):577-83.
- 5. Cediel G, Gonzalez-Del-Hoyo M, Carrasquer A, Sanchez R, Boqué C, Bardají A. Outcomes with type 2 myocardial infarction compared with non-ischaemic myocardial injury. Heart (British Cardiac Society). 2017;103(8):616-22.
- 6. Chapman AR, Shah ASV, Lee KK, Anand A, Francis O, Adamson P, et al. Long-Term Outcomes in Patients With Type 2 Myocardial Infarction and Myocardial Injury. Circulation. 2018;137(12):1236-45.
- 7. Chapman AR, Adamson PD, Shah ASV, Anand A, Strachan FE, Ferry AV, et al. High-Sensitivity Cardiac Troponin and the Universal Definition of Myocardial Infarction. Circulation. 2020;141(3):161-71.
- 8. Consuegra-Sánchez L, Martínez-Díaz JJ, de Guadiana-Romualdo LG, Wasniewski S, Esteban-Torrella P, Clavel-Ruipérez FG, et al. No additional value of conventional and high-sensitivity cardiac

troponin over clinical scoring systems in the differential diagnosis of type 1 vs. type 2 myocardial infarction. Clinical chemistry and laboratory medicine. 2018;56(5):857-64.

- 9. El-Haddad H, Robinson E, Swett K, Wells GL. Prognostic implications of type 2 myocardial infarctions. 2012.
- 10. Etaher A, Gibbs OJ, Saad YM, Frost S, Nguyen TL, Ferguson I, et al. Type-II myocardial infarction and chronic myocardial injury rates, invasive management, and 4-year mortality among consecutive patients undergoing high-sensitivity troponin T testing in the emergency department. European heart journal Quality of care & clinical outcomes. 2020;6(1):41-8.
- 11. Furie N, Israel A, Gilad L, Neuman G, Assad F, Ben-Zvi I, et al. Type 2 myocardial infarction in general medical wards: Clinical features, treatment, and prognosis in comparison with type 1 myocardial infarction. Medicine. 2019;98(41):e17404.
- 12. Guimarães PO, Leonardi S, Huang Z, Wallentin L, de Werf FV, Aylward PE, et al. Clinical features and outcomes of patients with type 2 myocardial infarction: Insights from the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER) trial. Am Heart J. 2018;196:28-35.
- 13. Hawatmeh A, Thawabi M, Aggarwal R, Abirami C, Vavilin I, Wasty N, et al. Implications of Misclassification of Type 2 Myocardial Infarction on Clinical Outcomes. Cardiovascular revascularization medicine: including molecular interventions. 2020;21(2):176-9.
- 14. Higuchi S, Suzuki M, Horiuchi Y, Tanaka H, Saji M, Yoshino H, et al. Higher non-cardiac mortality and lesser impact of early revascularization in patients with type 2 compared to type 1 acute myocardial infarction: results from the Tokyo CCU Network registry. Heart Vessels. 2019;34(7):1140-7.
- 15. Javed U, Aftab W, Ambrose JA, Wessel RJ, Mouanoutoua M, Huang G, et al. Frequency of elevated troponin I and diagnosis of acute myocardial infarction. The American journal of cardiology. 2009;104(1):9-13.
- 16. Kadesjö E, Roos A, Siddiqui A, Desta L, Lundbäck M, Holzmann MJ. Acute versus chronic myocardial injury and long-term outcomes. Heart (British Cardiac Society). 2019;105(24):1905-12.
- 17. Lambrecht S, Sarkisian L, Saaby L, Poulsen TS, Gerke O, Hosbond S, et al. Different Causes of Death in Patients with Myocardial Infarction Type 1, Type 2, and Myocardial Injury. Am J Med. 2018;131(5):548-54.
- 18. Landes U, Bental T, Orvin K, Vaknin-Assa H, Rechavia E, lakobishvili Z, et al. Type 2 myocardial infarction: A descriptive analysis and comparison with type 1 myocardial infarction. Journal of cardiology. 2016;67(1):51-6.
- 19. López-Cuenca A, Gómez-Molina M, Flores-Blanco PJ, Sánchez-Martínez M, García-Narbon A, De Las Heras-Gómez I, et al. Comparison between type-2 and type-1 myocardial infarction: clinical features, treatment strategies and outcomes. J Geriatr Cardiol. 2016;13(1):15-22.
- 20. Meigher S, Thode HC, Peacock WF, Bock JL, Gruberg L, Singer AJ. Causes of Elevated Cardiac Troponins in the Emergency Department and Their Associated Mortality. Academic emergency medicine: official journal of the Society for Academic Emergency Medicine. 2016;23(11):1267-73.
- 21. Nestelberger T, Boeddinghaus J, Badertscher P, Twerenbold R, Wildi K, Breitenbücher D, et al. Effect of Definition on Incidence and Prognosis of Type 2 Myocardial Infarction. J Am Coll Cardiol. 2017;70(13):1558-68.
- 22. Neumann JT, Sörensen NA, Rübsamen N, Ojeda F, Renné T, Qaderi V, et al. Discrimination of patients with type 2 myocardial infarction. Eur Heart J. 2017;38(47):3514-20.
- 23. Paiva L, Providência R, Barra S, Dinis P, Faustino AC, Gonçalves L. Universal definition of myocardial infarction: clinical insights. Cardiology. 2015;131(1):13-21.
- 24. Pandey AK, Duong T, Swiatkiewicz I, Daniels LB. A Comparison of Biomarker Rise in Type 1 and Type 2 Myocardial Infarction. The American journal of medicine. 2020;133(10):1203-8.

- 25. Putot A, Derrida SB, Zeller M, Avondo A, Ray P, Manckoundia P, et al. Short-Term Prognosis of Myocardial Injury, Type 1, and Type 2 Myocardial Infarction in the Emergency Unit. Am J Med. 2018;131(10):1209-19.
- 26. Putot A, Jeanmichel M, Chagué F, Avondo A, Ray P, Manckoundia P, et al. Type 1 or type 2 myocardial infarction in patients with a history of coronary artery disease: Data from the emergency department. Journal of Clinical Medicine. 2019;8(12).
- 27. Putot A, Jeanmichel M, Chague F, Manckoundia P, Cottin Y, Zeller M. Type 2 Myocardial Infarction: A Geriatric Population-based Model of Pathogenesis. Aging and disease. 2020;11(1):108-17.
- 28. Radovanovic D, Pilgrim T, Seifert B, Urban P, Pedrazzini G, Erne P. Type 2 myocardial infarction: incidence, presentation, treatment and outcome in routine clinical practice. Journal of cardiovascular medicine (Hagerstown, Md). 2017;18(5):341-7.
- 29. Raphael CE, Roger VL, Sandoval Y, Singh M, Bell M, Lerman A, et al. Incidence, Trends, and Outcomes of Type 2 Myocardial Infarction in a Community Cohort. Circulation. 2020;141(6):454-63.
- 30. Reed GW, Horr S, Young L, Clevenger J, Malik U, Ellis SG, et al. Associations Between Cardiac Troponin, Mechanism of Myocardial Injury, and Long-Term Mortality After Noncardiac Vascular Surgery. Journal of the American Heart Association. 2017;6(6).
- 31. Saaby L, Poulsen TS, Hosbond S, Larsen TB, Pyndt Diederichsen AC, Hallas J, et al. Classification of myocardial infarction: frequency and features of type 2 myocardial infarction. Am J Med. 2013;126(9):789-97.
- 32. Saaby L, Poulsen TS, Diederichsen AC, Hosbond S, Larsen TB, Schmidt H, et al. Mortality rate in type 2 myocardial infarction: observations from an unselected hospital cohort. Am J Med. 2014;127(4):295-302.
- 33. Sandoval Y, Thordsen SE, Smith SW, Schulz KM, Murakami MM, Pearce LA, et al. Cardiac troponin changes to distinguish type 1 and type 2 myocardial infarction and 180-day mortality risk. European heart journal Acute cardiovascular care. 2014;3(4):317-25.
- 34. Sandoval Y, Smith SW, Sexter A, Thordsen SE, Bruen CA, Carlson MD, et al. Type 1 and 2 Myocardial Infarction and Myocardial Injury: Clinical Transition to High-Sensitivity Cardiac Troponin I. Am J Med. 2017;130(12):1431-9.e4.
- 35. Sato R, Sakamoto K, Kaikita K, Tsujita K, Nakao K, Ozaki Y, et al. Long-Term Prognosis of Patients with Myocardial Infarction Type 1 and Type 2 with and without Involvement of Coronary Vasospasm. Journal of clinical medicine. 2020;9(6).
- 36. Shah AS, McAllister DA, Mills R, Lee KK, Churchhouse AM, Fleming KM, et al. Sensitive troponin assay and the classification of myocardial infarction. Am J Med. 2015;128(5):493-501.e3.
- 37. Singh A, Gupta A, DeFilippis EM, Qamar A, Biery DW, Almarzooq Z, et al. Cardiovascular Mortality After Type 1 and Type 2 Myocardial Infarction in Young Adults. Journal of the American College of Cardiology. 2020;75(9):1003-13.
- 38. Smilowitz NR, Subramanyam P, Gianos E, Reynolds HR, Shah B, Sedlis SP. Treatment and outcomes of type 2 myocardial infarction and myocardial injury compared with type 1 myocardial infarction. Coronary artery disease. 2018;29(1):46-52.
- 39. Stein GY, Herscovici G, Korenfeld R, Matetzky S, Gottlieb S, Alon D, et al. Type-II myocardial infarction--patient characteristics, management and outcomes. PLoS One. 2014;9(1):e84285.
- 40. Truong HH, Victor MV, Imad MA, Kobalava ZD, Parvathy UT, Al-Zakwani I. Mortality and morbidity associated with type 2 myocardial infarction: A single-center study. Annals of Clinical Cardiology. 2020;2(2):70-9.