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Strengths and limitations of this study

►► The use of climatic factors has proven to be effec-
tive predictors for malaria incidence and signifi-
cantly affect the proposed long short-term memory 
sequence-to-sequence (LSTMSeq2Seq) model in 
capturing seasonal patterns and trends and predict-
ing malaria incidence.

►► It is hard for a typical machine learning model to 
predict long-term dependencies, and it is even dif-
ficult for a single LSTM to capture key past events 
and use them to predict future values. By combining 
specialised LSTM cells that can forecast multiple 
time steps rather than having one multitasking cell, 
LSTMSeq2Seq solved this problem.

►► The LSTMSeq2Seq takes more time for training than 
other employed deep learning models. To train the 
LSTMSeq2Seq from scratch for all 31 provinces 
takes 2 weeks for four types of Plasmodium used in 
our study. Whereas other models take a few hours to 
days to train them using malaria cases and data of 
meteorological variables. In many provinces, LSTM 
was seven times faster than the LSTMSeq2Seq 
model. However, the impact is not significant in 
provinces with fewer malaria cases.

►► We could not obtain accurate predictions in some 
provinces by using any model in this study, due to 
the lack of other relevant potential non-climatic 
factors.

Abstract
Objectives  Malaria is a vector-borne disease that 
remains a serious public health problem due to its 
climatic sensitivity. Accurate prediction of malaria re-
emergence is very important in taking corresponding 
effective measures. This study aims to investigate the 
impact of climatic factors on the re-emergence of malaria 
in mainland China.
Design  A modelling study.
Setting and participants  Monthly malaria cases for four 
Plasmodium species (P. falciparum, P. malariae, P. vivax 
and other Plasmodium) and monthly climate data were 
collected for 31 provinces; malaria cases from 2004 to 
2016 were obtained from the Chinese centre for disease 
control and prevention and climate parameters from China 
meteorological data service centre. We conducted analyses 
at the aggregate level, and there was no involvement of 
confidential information.
Primary and secondary outcome measures  The 
long short-term memory sequence-to-sequence 
(LSTMSeq2Seq) deep neural network model was used 
to predict the re-emergence of malaria cases from 2004 
to 2016, based on the influence of climatic factors. 
We trained and tested the extreme gradient boosting 
(XGBoost), gated recurrent unit, LSTM, LSTMSeq2Seq 
models using monthly malaria cases and corresponding 
meteorological data in 31 provinces of China. Then we 
compared the predictive performance of models using 
root mean squared error (RMSE) and mean absolute error 
evaluation measures.
Results  The proposed LSTMSeq2Seq model reduced 
the mean RMSE of the predictions by 19.05% to 33.93%, 
18.4% to 33.59%, 17.6% to 26.67% and 13.28% to 
21.34%, for P. falciparum, P. vivax, P. malariae, and other 
plasmodia, respectively, as compared with other candidate 
models. The LSTMSeq2Seq model achieved an average 
prediction accuracy of 87.3%.
Conclusions  The LSTMSeq2Seq model significantly 
improved the prediction of malaria re-emergence based 
on the influence of climatic factors. Therefore, the 
LSTMSeq2Seq model can be effectively applied in the 
malaria re-emergence prediction.

Introduction
Malaria is a vector-borne infectious disease 
caused by the parasitic protozoans of the 
genus Plasmodium such as Plasmodium falci-
parum (P. falciparum), Plasmodium ovale (P. 
ovale), Plasmodium vivax (P. vivax), Plasmo-
dium simium (P. simium), Plasmodium knowlesi 
(P. knowlesi), and Plasmodium cynomolgi (P. 
cynomolgi). Governments, health organisa-
tions and scientific research institutions all 
over the world have made significant efforts 
on malaria control measures and elimination 
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programmes. Despite the huge progress in reducing 
malaria cases and deaths, malaria remains life-threatening 
to global health mainly in Africa, Asia and America conti-
nents due to its sensitivity to environmental and climatic 
changes.

According to the World Malaria Report 2020 published 
by WHO, a total of 229 million malaria cases and 409 000 
deaths were reported worldwide in 2019.1 Most of the 
malaria cases (93%) and malaria deaths (94%) occurred 
in the WHO African region, while the other WHO 
regions shared the remaining percentages.1 Despite 
remarkable progress, the global gains in fighting malaria 
disease have levelled off in recent years, and many high 
burdens have been losing ground. The combat against 
malaria had reached a crossroad.1 The world did not 
meet the milestones that could lower malaria cases and 
mortality by 90% by 2030. Without a massive coordinated 
action, the world is unlikely to meet the WHO’s Global 
Technical Strategy for malaria 2016–2030 targets.2 The 
COVID-19 pandemic has complicated the malaria picture 
even further, according to the WHO modelling analysis. 
The recent WHO report features a particular section on 
the COVID-19 pandemic and malaria, which could poten-
tially double the number of malaria deaths in the WHO 
African region due to the disruptions to insecticide-
treated net campaigns and the interruptions to access to 
antimalarial medicines.

Historically, malaria was one of the most prevalent para-
sitic diseases in the People’s Republic of China. However, 
through many years of combatting malaria, the Chinese 
government achieved remarkable progress in reducing 
malaria incidences through effective treatment and 
vector control measures. Vector control measures include 
reducing mosquito breeding grounds, implementing 
antimalaria grassroots campaigns.3 In 2010, the Chinese 
government launched the National Malaria Elimina-
tion Program.4–6 Indigenous malaria cases dramatically 
decreased to zero in 2017, which marked China among 
21 countries with the potential of achieving a malaria 
eradication plan certified by WHO.7 However, imported 
P. falciparum malaria cases increased in many provinces, 
which poses a challenge to achieve malaria-free status and 
might cause another situation of malaria re-emergence 
that has been identified in some countries.8 9 A surveil-
lance system in China is used to detect imported malaria 
cases but may miss some. Mosquitos are still out there with 
the ability to transmit the undetected imported malaria 
cases.

The re-emergence of malaria happened in Anhui and 
Henan provinces at the beginning of the 21st century. 
The re-emergence was due to climatic change, popula-
tion movement, Anopheles abundance increase as well as 
mosquito’s drug resistance.10 11 Malaria outbreaks and 
re-emergence in the Huang-Huai River region happened 
due to the increase of Anopheles sinensis (An. sinensis). 
There was a high relationship between the re-emergence 
of P. vivax and an increase in the vectorial capacity of 
An. sinensis.12 13 Climatic conditions as the concerning 

factors in this study have contributed to the re-emergence 
of malaria by providing favourable conditions for the 
breeding and survival of mosquitoes.14 Numerous studies 
attempted to identify and assess the impact of climatic 
factors on malaria incidence in China.15–17 Some studies 
reported that the intra-annual variation in malaria cases 
might associate with changes in ambient temperature, 
precipitation, relative humidity, wind direction, sunshine 
duration and wind speed. Nevertheless, the findings 
were inconsistent in key factors observed and the corre-
sponding effects estimated. Zinszer et al18 reviewed previ-
ously published studies related to the different approaches 
and factors used to predict malaria incidence. Most 
of the predictors were related to climate factors. Statis-
tical, mathematical, machine learning and deep learning 
models have been applied to these climate predictors to 
improve the forecast accuracy of malaria incidence. Wang 
et al19 proposed an ensemble approach of traditional time 
series and deep learning models to improve the predic-
tion performance of malaria incidence using malaria 
and climate data in Yunnan province. The study applied 
time series and deep learning models such as autoregres-
sive integrated moving average (ARIMA), seasonal and 
trend decomposition using loess—integrated moving 
average (STL+ARIMA), backpropagation artificial neural 
network and long short-term memory (LSTM) network 
separately on the prepared data. Different evaluation 
methods were used to compare the prediction accuracy 
of methods. Gradient-boosting regression trees combine 
different models and are trained using climate data and 
malaria incidence. The model outperforms traditional 
time series and deep learning methods. Nkiruka et al20 
proposed a machine learning system to assess the associ-
ation between climatic factors and malaria incidence and 
found that rainfall, surface radiation and temperature 
affect the outbreak of malaria disease.

The relationship between malaria incidence and climatic 
factors is complex and cannot easily fit the classical fore-
casting approaches and machine learning algorithms. To 
reduce the complexity of this relationship by predicting 
malaria incidence with remarkable performance, deep 
learning models offer more advantages in the healthcare 
field by interacting with training data. Deep learning 
models give more accurate predictions compared with 
the statistical and mathematical approaches. Through 
deeper hidden layers, deep learning methods help us to 
gain unprecedented insights into care processes, diagnos-
tics and forecasting and can make meaning from medical 
data. Deep learning models were applied to the predic-
tion of directly transmitted infectious diseases.21 Some 
of the advanced deep learning models like LSTM and 
gated recurrent unit (GRU) recurrent neural networks 
with a large number of discrete time steps have been 
used in predicting infectious diseases like influenza, 
dengue incidence and hand, foot and mouth disease. 
LSTM model outperformed other machine learning 
models by achieving accuracy prediction and lower root 
mean squared error (RMSE).22–26 In this research, we 
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Figure 1  Guangdong climatic variables and P. falciparum 
used to train models. ARH, Average Relative Humidity; Avt, 
Average Temperature; MaxT, Maximum Temperature; MinT, 
Minimum Temperature; MRH, Minimum Relative Humidity; P. 
falciparum, Plasmodium falciparum.

identified and assessed climatic factors as predictors that 
may contribute to the re-emergence of malaria disease 
in China. We used climate factors with malaria incidence 
to train our constructed deep learning sequence-to-
sequence model (LSTMSeq2Seq) and then evaluated its 
performance by predicting the re-emergence of malaria 
disease in China.

Methodology
Patient and public involvement
No patient involved.

Data collection and data preprocessing
We collected monthly malaria cases in all 31 provinces in 
China from January 2004 to December 2016. The data 
set contains four classes of Plasmodium species that is 
P. falciparum, P. vivax, P. malariae and other Plasmodium 
species. The plasmodium species category named other 
could be P.ovale, P. knowlesi or unidentified species type. 
Malaria cases for all 31 provinces of mainland China were 
obtained from the Chinese Center for Disease Control 
and Prevention (www.phsciencedata.cn)27 which provides 
the database for infectious diseases. The meteorological 
data of these 31 provinces were obtained from the China 
Meteorological data service centre (http://data.cma.cn/​
en).28 A total of 10 meteorological variables (ie, pressure, 
average temperature, maximum temperature, wind speed, 
minimum temperature, wind direction, precipitation, 
average relative humidity, sunshine duration, minimum 
relative humidity) were retained with no missing values in 
all features of meteorological data. To prevent overfitting 
while training the deep learning models, we used feature 
selection to remove redundant attributes. We reduced 
some of the meteorological variables using high correla-
tion filtering and low variance filtering. Four variables (ie, 
pressure, wind speed, wind direction, sunshine duration) 
were discarded as they had the smallest variance in all the 
study areas. In total, 10 valid features (ie, six meteoro-
logical features and four types of malaria parasites) were 
considered in our study as shown in figure 1.

Train-validation-test split
To train and evaluate the machine learning and neural 
network frameworks proposed in this paper, we divided 
the data set into the train, validation and test sets. In 
our experiment, 70% of the whole data set was used to 
train the model. We have allocated 15% of the data set 
for validation. The validation set was used to evaluate 
the model after each training epoch and ensure that the 
model is not overfitting the training data set. After the 
model has finished training, the remaining 15% of the 
data set was used to evaluate the model as the test set. 
The data was not shuffled before splitting to ensure that 
the validation set and test set results are more realistic. 
We allocated the period 1 January 2004 to 31 December 
2012 to the training set and the period 1 January 2013 to 
31 December 2014 is allocated to the validation set. The 
remaining period is allocated for the testing set.

Prediction models
This study proposes a sequence-to-sequence (Seq2Seq) 
prediction model based on the LSTM neural networks. 
The model will be used to forecast the re-emergence of 
malaria cases by considering the influence of meteorolog-
ical factors on malaria cases in all 31 provinces of China. 
We compared the performance of our constructed 
LSTMSeq2Seq recurrent neural networks with other 
machine learning and deep neural networks prediction 
models, including XGBoost (extreme gradient boosting), 
GRU network and LSTM network models. Here is a brief 
description of our proposed Seq2Seq model as well as 
other employed models. These models achieved the best 
performance for predicting, diagnosing and controlling 
infectious diseases.

XGBoost model
The XGBoost is an ensemble machine learning algo-
rithm that is flexible and easy to interpret. It provides an 
efficient implementation of gradient boosting machine 
learning model thought to be competent in the health-
care industry. A significant number of studies in public 
health have applied the XGBoost based framework to 
exploit data sources and predict infectious diseases such 
as dengue fever. The XGBoost model can achieve incred-
ible performance in predicting vector-borne infectious 
diseases such as dengue or those caused by the West 
Nile virus.29 It has been used for forecasting, prevention 
and early diagnosis of infectious diseases30 31 and non-
communicable diseases.32 The hyperparameters in this 
gradient boosting model were tuned to optimise the 
XGBoost model and achieve the best performance in our 
study. After testing several XGBoost parameters and the 
number of time steps as inputs, we chose 100 trees as the 
number of estimators to avoid overfitting. We used the 
GridSearchCV method in scikit-learn to tuning the hyper-
parameter and a learning rate of 0.8 and a maximum 
depth of 8. This method greatly reduces the predic-
tion error of our XGBoost model. We used the defined 
types of monthly observation plasmodium incidence (P. 
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Figure 2  Long short-term memory (LSTM) sequence-to-
sequence architecture.

falciparum, P. vivax, P. malariae and another class named 
other in our experiments) and climatic variables such as 
maximum temperature, average temperature, minimum 
temperature, average relative humidity, minimum rela-
tive humidity and rainfall to train the XGBoost approach 
and evaluate its performance on the test data set.

LSTM model
An LSTM describes a long short-term memory neural 
network and belongs to a class of recurrent neural 
networks (RNNs). RNN can process current data by 
using the previous data. It has effectively been used to 
solve problems of sequential time series such as climate 
modelling, web traffic prediction, financial prediction, 
neuroscience, intrusion detection, anomaly detection, 
air quality forecasting, medical monitoring. Meanwhile, 
RNN suffers from gradient vanishing and exploding 
problems when processing long-term dependencies 
sequences. The LSTM was developed as an intelligent 
recurrent neural network to specifically address the 
gradient vanishing problem by relying on memory cells, 
which have self-connections that store network temporal 
state, and are controlled by a set of three gates: input, 
output and forget. These gates and the memory cell can 
record information for a long time, thereby solving the 
problem of long-term dependencies and can predict the 
next time feature, which implies that it can forecast the 
next time step conditional on the previous values of the 
times series. LSTM’s ability to successfully learn from 
data with long-range temporal dependencies makes it 
a natural choice for time-series predictions. This model 
has achieved superior performance in predicting vector-
borne infectious diseases like dengue fever33 and is one of 
the potential deep learning predictive models for child-
hood infectious diseases. It recently has been applied as 
one of the state-of-the-art deep neural networks in fore-
casting COVID-19.34–36 We developed a two-layer LSTM 
model that includes 128 and 32 memory cells and uses 
a batch size of 32 and a diagnostic of 1000 epochs. It 
consists of seven input parameters for each of the four 
classes of Plasmodium species, that is, P. falciparum. We 
have the monthly observation of P. falciparum incidences, 
maximum temperature, average temperature, minimum 
temperature, average relative humidity, minimum rela-
tive humidity and rainfall as the input vector sequence of 
the same month.

GRU model
GRU is an improved recurrent neural network as a simple 
variant of LSTM by combining the input gate and forget-
ting gate into a single gate called update gate. GRU 
comprises of update gate and resets gate, and it can only 
control information inside the unit because it has no 
additional memory cell to keep information. Researchers 
have applied this framework to forecast infectious 
diseases such as influenza.37 For the GRU model, we used 
the same hyperparameters as for LSTM models. The 
training data set was created using 12 months as input 

to our GRU model and the next month as output. The 
same input vector sequence as shown in figure 1 consists 
of seven input parameters for each of the four classes 
of Plasmodium species and six climatic variables. The 
six climatic variables, maximum temperature, average 
temperature, minimum temperature, average relative 
humidity, minimum relative humidity and rainfall, have 
been trained on the GRU model and used to test its 
performance.

LSTMSeq2Seq model
There are intuitively two different tasks to predict time 
series: understanding what has happened by looking 
at the known values of the past and predicting what 
will happen in the future. These two tasks require two 
different skill sets. The first is the ability to look at the 
past values and create an idea of the state of the system in 
the present. The second is the ability to use that under-
standing of the current state in the system to predict how 
the system will evolve in the future. As we mentioned 
earlier, LSTM predicts the next time feature, which 
implies that it can forecast the attribute of the next time 
step of input only. When we used a single LSTM cell in 
our model, we asked it to be capable of remembering 
both main events of the past and using those events to 
predict future values. Unlike single LSTM, we can use a 
Seq2Seq model with two specialised LSTM cells capable 
of predicting multiple time steps rather than having a 
single multitasking cell. Seq2Seq refers to the sequence-
to-sequence architecture of the neural network fit. This 
architecture enables mapping between sequences of arbi-
trary length. As a result, Seq2Seq can perform many tasks, 
including language translation, image captioning and 
time series prediction. The Seq2Seq architecture is made 
up of an encoder and a decoder, as illustrated in figure 2.

LSTMSeq2Seq model consists of two major blocks: 
encoder LSTM cell and decoder LSTM cell. The encoder 
outputs the encoder vector as input to the decoder block. 
The decoder encodes the input vector and predicts the 
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next time step output. Subsequently, if Xt is the input 
of the next feature sequence, then the LSTM sequence 
model outputs Xtt+1 as the next time step feature.

The following are the formula for the encoder and 
decoder networks.

	﻿‍
HE

t = f
(

WHE HE
t−1 + Wx Xt

)
‍� (1)

where HE
t represents the current hidden state at time 

step t, WHE is the appropriate weight of the old hidden 
state at time step t-1 and Wx represents the appropriate 
weight to the input vector Xt .

Equation (1) shows the result of a general sequence of 
the ordinary recurrent neural networks with the formula 
for the encoder. It is only necessary to apply an appro-
priate weight to the previous hidden state HE

t−1 and the 
input vector Xt.

	﻿‍
HD

t = f
(

WHE HD
t−1

)
‍� (2)

where HD
t is the current decoder hidden state, we are 

just using the old hidden state of the input vector at some 
time step t-1 to compute the next one and f is some func-
tion of the parameter.

Equation (2) is a stack of numerous recurrences that 
forecast each output yt at time t as a formula for the 
decoder. Each reiteration unit accepts a hidden state 
from the old unit and generates its hidden state.

The output yt at time step t is computed using the 
formula (3).

	﻿‍ yt = softmax
(
Ws HD

t
)
‍� (3)

yt is the final output state at time step t computed using 
softmax (is used to create a probability vector which will 
help us determine the final output) function and its 
respective weight Ws.

Equation (3) calculates the output using the state 
hidden at the current time step with each weight WS.

We designed an encoder that looks back into 12 months 
of historical data and a decoder that slide 6 months to 
predict, we have used t+12 months as input to the decoder 
as illustrated in figure 2 of our designed LSTMSeq2Seq 
model, the t+12 time step which is the encoder vector 
was used as input to the decoder and LSTM decoder cell 
predicts the next six steps ahead from t+1 to t+6 of malaria 
incidence. Apart from dropout, L1 regularisation and 
L2 regularisation were employed to avoid overfitting by 
preventing the weights of each network from being too 
high in the GRU, LSTM and LSTMSeq2Seq models. Each 
layer’s high parameter values can cause the network to 
concentrate severely on a few features, which can lead to 
overfitting. Weight regularisation added a cost to the loss 
function of the network for large weights. As a result, the 
models were forced to learn only the relevant patterns in 
the training data.

Model validation
Using two metrics loss function scores, we evaluated 
the performances of our methods for predicting the 

re-emergence of malaria incidence based on meteoro-
logical factors. First, we used RMSE as the basis for eval-
uating continuous variables by measuring the average 
differences between predicted and observed error values.

	﻿‍
RMSE =

√
1
N

N∑
t−0

(
yt − ŷt

)2

‍�
(4)

where yt is the Plasmodium cases of observation for 
time t, and ŷt is the number of cases predicted by the 
model. A lower RMSE value indicates that there is a slight 
difference between the predicted Plasmodium cases and 
observed ones and implicates a high prediction accu-
racy of the model. Second, we used mean absolute error 
(MAE) to assess numerically the prediction error of the 
sequence and calculate the average value of the errors 
between Plasmodium cases of observation for the current 
time step and the predicted cases.

	﻿‍
MAE = 1

N

N∑
t=0

��yt − ŷt
��
‍�

(5)

Results
Comparison of LSTMSeq2Seq and candidate models
We performed all the experiments in Python (V.3.7.1) 
and modelled GRU, LSTM and LSTMSeq2Seq models 
through Tensor Flow (V.2.0.0), which is Google’s appli-
cation programming interface for deep learning. We 
also used Keras (V.2.3.1), a deep learning library used in 
LSTM model development (Chollet, 2015).

The main goal of this study is to develop an accurate 
prediction model on the re-emergence of malaria cases 
based on the LSTMSeq2Seq neural networks using 
climatic factors and malaria incidence in 31 provinces of 
mainland China. We applied several machine learning 
and deep learning predictive models to achieve our goal. 
We evaluated the performance of four trained models: 
XGBoost, GRU, LSTM and LSTMSeq2Seq methods using 
the above evaluation metrics (RMSE and MAE). From 
tables 1–4, we show the RMSE/MAE of each model, with 
the LSTMSeq2Seq approach showing significantly lower 
errors than other approaches in almost all provinces and 
for all four species of Plasmodium malaria. The prediction 
errors have dropped significantly in many provinces as the 
LSTMSeq2Seq can improve the accuracy by learning the 
features and fluctuations of climatic variables on malaria 
incidence and predicting future cases. The following 
figure 3 illustrates the examples of the results predicted 
cases for P. falciparum, P. vivax, P. malariae and other 
based on the LSTMSeq2Seq prediction model. The Y-axis 
represents monthly number of malaria cases for each type 
of Plasmodium. The curves show that the peak value shifts 
downward for P. vivax as the time step predicted with 
accurate seasonal fluctuation compared with the P. falci-
parum. We selected the provinces presented in figure  3 
based on two malaria high-risk zones according to the 
previous studies38 39: the central part of China along the 
Huai River that consists of Henan, Hubei, Anhui and 
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Table 1  Comparison of model performances using the RMSE and MAE on the prediction of Plasmodium falciparum using 
climatic variables

Province

XGBoost GRU LSTM LSTMSeq2Seq

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Anhui 0.5379 0.3102 0.3963 0.2098 0.3564 0.1873 0.1456 0.0923

Beijing 0.9426 0.7383 0.7947 0.0775 0.1705 0.0342 0.0252 0.0073

Chongqing 0.8607 0.7021 0.3854 0.1912 0.3939 0.1881 0.0553 0.0171

Fujian 0.9992 0.6264 0.7635 0.4647 0.7635 0.2016 0.6322 0.1258

Gansu 0.9761 0.8816 0.7450 0.3609 0.7464 0.2712 0.6561 0.2007

Guangdong 0.7905 0.7096 0.5614 0.4152 0.6247 0.3091 0.5284 0.2957

Guangxi 0.9842 0.6844 0.6428 0.456487 0.5329 0.3249 0.4698 0.2432

Guizhou 0.7114 0.6494 0.7059 0.5320 0.7133 0.6098 0.5603 0.3948

Hainan 0.8367 0.6704 0.6111 0.4383 0.5438 0.3222 0.4207 0.2065

Hebei 0.8229 0.6822 0.7438 0.5361 0.6683 0.3117 0.5803 0.2264

Heilongjiang 0.6183 0.5554 0.6839 0.5825 0.6242 0.5628 0.5633 0.4070

Henan 0.8239 0.6814 0.7046 0.5720 0.6533 0.5573 0.5239 0.3370

Hubei 0.8693 0.7415 0.6933 0.4469 0.5277 0.3252 0.4562 0.2156

Hunan 0.6156 0.4588 0.4025 0.2786 0.37669 0.1827 0.1787 0.0598

Inner Mongolia 0.2227 0.1507 0.1040 0.0844 0.0596 0.0361 0.0261 0.0194

Jiangsu 1.9567 1.8256 1.8880 0.9470 1.9506 1.2374 0.5005 0.3104

Jiangxi 0.7740 0.6524 0.6883 0.5059 0.6352 0.4357 0.4073 0.3237

Jilin 0.6215 0.4686 0.6204 0.4434 0.6185 0.4558 0.6095 0.4228

Liaoning 0.3949 0.2949 0.3289 0.2251 0.1213 0.0224 0.0703 0.0143

Ningxia 0.1798 0.0974 0.1609 0.0506 0.1579 0.1530 0.1500 0.0890

Qinghai 0.1870 0.0918 0.1843 0.0752 0.1829 0.0554 0.1823 0.0514

Shaanxi 0.966 0.7857 0.8323 0.6804 0.8312 0.6778 0.6731 0.4936

Shandong 0.9537 0.7626 0.7305 0.6079 0.6412 0.4879 0.4679 0.3660

Shanghai 0.6511 0.4639 0.6395 0.4242 0.5056 0.2166 0.3331 0.1080

Shanxi 0.3683 0.1744 0.1555 0.0748 0.1539 0.0626 0.1566 0.0591

Sichuan 0.7072 0.6210 0.5700 0.3088 0.5023 0.3693 0.3906 0.1235

Tianjin 0.3474 0.2332 0.3160 0.1487 0.3087 0.1504 0.2040 0.0554

Tibet 0.1494 0.0353 0.1016 0.0181 0.1017 0.0177 0.1183 0.0233

Xinjiang 0.3643 0.2157 0.2868 0.1115 0.2872 0.1367 0.2275 0.0614

Yunnan 0.9243 0.7511 0.5736 0.3699 0.6099 0.3743 0.6060 0.3783

Zhejiang 0.5508 0.2933 0.4985 0.2780 0.4404 0.1768 0.2723 0.0259

GRU, gated recurrent unit; LSTM, long short-term memory; LSTMSeq2Seq, LSTM sequence-to-sequence; MAE, mean absolute error; RMSE, 
root mean squared error; XGBoost, extreme gradient boosting.

Jiangsu provinces and the southwestern, southern regions 
which mainly comprising Guangdong, Guangxi, Hainan 
and Yunnan provinces. P. vivax was the dominant species 
in the first region as its climate is subtropical humid to 
subhumid monsoon. The LSTMSeq2Seq model achieved 
superior performance compared with other candidate 
models in most provinces with an average prediction 
accuracy of 87.3%. Models ranking from high perfor-
mance to the lowest in the entire study are LSTMSeq2Seq, 
LSTM, GRU and XGBoost. LSTMSeq2Seq generates the 
lowest RMSE values of 0.0252, 0.0107, 0.0586 and 0.0077 
for P. falciparum, P. vivax, P. malariae and other plasmodia, 

respectively. The LSTMSeq2Seq model reduced the mean 
RMSE of the predictions by 19.05% to 33.93%, 18.4% to 
33.59%, 17.6% to 26.67% and by 13.28% to 21.34%, for 
P. falciparum, P. vivax, P. malariae and other plasmodia, 
respectively, as compared with other candidate models.

Since 2008 the peak value shifted downward for P.vivax 
in different regions with a significant reduction but for 
the P. falciparum, there was an increase of trends which 
may be due to other factors apart from climate predictors 
like in Guangxi province in 2013 experienced the highest 
incidence because of the return of Chinese labours from 
gold mining in Ghana. However, the increasing trends of 
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Table 2  Comparison of model performances using the RMSE and MAE on the prediction of Plasmodium vivax using climatic 
variables

Province

XGBoost GRU LSTM LSTMSeq2Seq

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Anhui 0.5379 0.3102 0.3963 0.2098 0.3564 0.1873 0.1456 0.0923

Beijing 0.9426 0.7383 0.7947 0.0775 0.1705 0.0342 0.0252 0.0073

Chongqing 0.8607 0.7021 0.3854 0.1912 0.3939 0.1881 0.0553 0.0171

Fujian 0.9992 0.6264 0.7635 0.4647 0.7635 0.2016 0.6322 0.1258

Gansu 0.9761 0.8816 0.7450 0.3609 0.7464 0.2712 0.6561 0.2007

Guangdong 0.7905 0.7096 0.5614 0.4152 0.6247 0.3091 0.5284 0.2957

Guangxi 0.9842 0.6844 0.6428 0.456487 0.5329 0.3249 0.4698 0.2432

Guizhou 0.7114 0.6494 0.7059 0.5320 0.7133 0.6098 0.5603 0.3948

Hainan 0.8367 0.6704 0.6111 0.4383 0.5438 0.3222 0.4207 0.2065

Hebei 0.8229 0.6822 0.7438 0.5361 0.6683 0.3117 0.5803 0.2264

Heilongjiang 0.6183 0.5554 0.6839 0.5825 0.6242 0.5628 0.5633 0.4070

Henan 0.8239 0.6814 0.7046 0.5720 0.6533 0.5573 0.5239 0.3370

Hubei 0.8693 0.7415 0.6933 0.4469 0.5277 0.3252 0.4562 0.2156

Hunan 0.6156 0.4588 0.4025 0.2786 0.37669 0.1827 0.1787 0.0598

Inner Mongolia 0.2227 0.1507 0.1040 0.0844 0.0596 0.0361 0.0261 0.0194

Jiangsu 1.9567 1.8256 1.8880 0.9470 1.9506 1.2374 0.5005 0.3104

Jiangxi 0.7740 0.6524 0.6883 0.5059 0.6352 0.4357 0.4073 0.3237

Jilin 0.6215 0.4686 0.6204 0.4434 0.6185 0.4558 0.6095 0.4228

Liaoning 0.3949 0.2949 0.3289 0.2251 0.1213 0.0224 0.0703 0.0143

Ningxia 0.1798 0.0974 0.1609 0.0506 0.1579 0.1530 0.1500 0.0890

Qinghai 0.1870 0.0918 0.1843 0.0752 0.1829 0.0554 0.1823 0.0514

Shaanxi 0.966 0.7857 0.8323 0.6804 0.8312 0.6778 0.6731 0.4936

Shandong 0.9537 0.7626 0.7305 0.6079 0.6412 0.4879 0.4679 0.3660

Shanghai 0.6511 0.4639 0.6395 0.4242 0.5056 0.2166 0.3331 0.1080

Shanxi 0.3683 0.1744 0.1555 0.0748 0.1539 0.0626 0.1566 0.0591

Sichuan 0.7072 0.6210 0.5700 0.3088 0.5023 0.3693 0.3906 0.1235

Tianjin 0.3474 0.2332 0.3160 0.1487 0.3087 0.1504 0.2040 0.0554

Tibet 0.1494 0.0353 0.1016 0.0181 0.1017 0.0177 0.1183 0.0233

Xinjiang 0.3643 0.2157 0.2868 0.1115 0.2872 0.1367 0.2275 0.0614

Yunnan 0.2243 0.1511 0.1016 0.0699 0.1099 0.0243 0.0107 0.0083

Zhejiang 0.5508 0.2933 0.4985 0.2780 0.4404 0.1768 0.2723 0.0259

GRU, gated recurrent unit; LSTM, long short-term memory; LSTMSeq2Seq, LSTM sequence-to-sequence; MAE, mean absolute error; RMSE, 
root mean squared error; XGBoost, extreme gradient boosting.

P. falciparum cases in Guangdong, Hainan and Jiangsu can 
be predicted well by LSTMSeq2Seq with superior accu-
racy to traditional machine learning model and better 
than deep learning state-of-the-art-models employed in 
this study. Thus LSTMSeq2Seq can be effectively applied 
to the prediction of malaria re-emergence in provinces 
with malaria incidence.

Discussion
In this study, we assessed the climatic factors that can 
affect the re-emergence of malaria incidence and built 

an advanced LSTMSeq2Seq deep neural networks model 
to predict the re-emergence of malaria in 31 provinces 
of China. We drew a comparison between the perfor-
mance of the LSTMSeq2Seq model with other machine 
learning models applied in the study. The 2014 interna-
tional panel report on climate change exposed an associ-
ation between climate change and a significant increase 
in malaria burden.40 41 Previous studies suggested that 
climatic factors are not the only cause of malaria re-emer-
gence since other non-climatic factors are also respon-
sible.41 Besides climate change, malaria re-emergence is 
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Table 3  Comparison of model performances using the RMSE and MAE on the prediction of Plasmodium malariae using 
climatic variables

Province

XGBoost GRU LSTM LSTMSeq2Seq

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Anhui 0.5911 0.3394 0.3767 0.1446 0.1321 0.0017 0.0586 0.0112

Beijing 0.7606 0.5225 0.5883 0.4078 0.5235 0.3623 0.1979 0.0887

Chongqing 0.5489 0.4064 0.5150 0.3611 0.39927 0.2816 0.2426 0.1707

Fujian 0.6714 0.5007 0.3003 0.2787 0.2818 0.1841 0.1551 0.0863

Gansu 0.5918 0.4138 0.4271 0.3180 0.3467 0.2137 0.2904 0.1686

Guangdong 0.6809 0.5636 0.3250 0.2898 0.3243 0.2686 0.1343 0.0856

Guangxi 0.4845 0.3817 0.3862 0.2586 0.1269 0.1059 0.1130 0.0744

Guizhou 0.4410 0.2612 0.2039 0.1495 0.1802 0.0998 0.1005 0.0694

Hainan 0.6615 0.5604 0.4981 0.3997 0.2523 0.1157 0.1791 0.1381

Hebei 0.4041 0.3601 0.3944 0.2556 0.3047 0.2418 0.2009 0.1677

Heilongjiang 0.6601 0.4212 0.4784 0.2795 0.5459 0.3318 0.5633 0.3011

Henan 0.5595 0.4855 0.1507 0.1141 0.1239 0.0846 0.0903 0.6799

Hubei 0.3672 0.3079 0.1353 0.0639 0.1869 0.0818 0.0732 0.0345

Hunan 0.4597 0.3687 0.2891 0.1960 0.2157 0.1691 0.1734 0.1159

Inner Mongolia 0.4945 0.4058 0.4142 0.3459 0.4942 0.3571 0.4672 0.3040

Jiangsu 0.5721 0.5309 0.4816 0.3630 0.4521 0.3157 0.2110 0.1850

Jiangxi 0.4434 0.3235 0.3841 0.2957 0.3329 0.2584 0.2157 0.1608

Jilin 0.4820 0.2595 0.4804 0.2540 0.4146 0.2193 0.3549 0.1024

Liaoning 0.5104 0.4233 0.4466 0.3153 0.3809 0.1781 0.2053 0.1498

Ningxia 0.4507 0.3375 0.4812 0.3101 0.4485 0.3011 0.4127 0.2923

Qinghai 0.4485 0.3041 0.3724 0.2583 0.3516 0.2433 0.2088 0.1751

Shaanxi 0.5382 0.4932 0.5257 0.4586 0.53162 0.4812 0.5158 0.4474

Shandong 0.4269 0.3949 0.4158 0.3926 0.3574 0.2148 0.2721 0.1915

Shanghai 0.5082 0.4763 0.4651 0.3680 0.3611 0.3362 0.33974 0.2777

Shanxi 0.7831 0.6217 0.6569 0.5564 0.6307 0.5466 0.6217 0.5386

Sichuan 0.4214 0.3695 0.3586 0.3238 0.3297 0.2296 0.2756 0.1269

Tianjin 0.5931 0.4835 0.5733 0.4306 0.5403 0.4294 0.4177 0.3475

Tibet 0.5952 0.3649 0.5712 0.3770 0.5891 0.3850 0.5657 0.3438

Xinjiang 0.6445 0.4381 0.4561 0.3257 0.411409 0.3052 0.3235 0.2982

Yunnan 0.5689 0.4386 0.5068 0.4156 0.4283 0.3925 0.3798 0.3452

Zhejiang 0.3723 0.2114 0.3293 0.1642 0.2832 0.1306 0.1121 0.0854

GRU, gated recurrent unit; LSTM, long short-term memory; LSTMSeq2Seq, LSTM sequence-to-sequence; MAE, mean absolute error; RMSE, 
root mean squared error; XGBoost, extreme gradient boosting.

affected by other global changes such as demographic 
shifts, increased travel and trade. Although these non-
climatic factors affect malaria transmission spatiotem-
porally, the climatic factors facilitate the transmission by 
providing a suitable environment for mosquito vector 
activities and Plasmodium incubation that cause an 
increase in the susceptible population. Based on these 
findings from the previous studies, we exploit the 
advantages of deep learning models in handling large 
data sets and use them to investigate the influence of 
climatic factors on malaria re-emergence. Researchers 
have developed malaria prediction models using climate 

determinants and malaria incidence data in different 
regions. However, to the best of our knowledge, this is 
the first time an LSTMSeq2Seq model was employed to 
construct a malaria re-emergence prediction model using 
climate determinants and malaria incidence data in all 
31 provinces of China. By comparing the performance of 
the proposed model with that of other candidate models, 
LSTMSeq2Seq has proved to have a lower prediction 
error value in most of the provinces for different Plasmo-
dium species. LSTMSeq2Seq has shown excellent ability 
to capture trends and seasonal patterns, especially for P. 
vivax and P. malariae, as most of the P. vivax cases were 
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Table 4  Comparison of model performances using the root RMSE and MAE on the prediction of other Plasmodium species 
using climatic variables

Province

XGBoost GRU LSTM LSTMSeq2Seq

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Anhui 0.4874 0.3889 0.3295 0.2963 0.3012 0.2342 0.2181 0.1605

Beijing 0.3272 0.2796 0.2591 0.1682 0.2475 0.1251 0.1578 0.0871

Chongqing 0.3696 0.2535 0.3049 0.2152 0.1639 0.1051 0.0971 0.0448

Fujian 0.5024 0.2882 0.5064 0.2697 0.46437 0.2297 0.3334 0.2209

Gansu 0.2582 0.1253 0.2045 0.0818 0.2108 0.0848 0.2059 0.0852

Guangdong 0.7559 0.5772 0.5154 0.4524 0.4236 0.3575 0.37998 0.2817

Guangxi 0.4600 0.3387 0.3313 0.2712 0.3334 0.2883 0.2566 0.1869

Guizhou 0.5307 0.3384 0.5223 0.3333 0.5250 0.3001 0.3101 0.2431

Hainan 0.5492 0.5223 0.4673 0.2379 0.3619 0.1003 0.2005 0.0802

Hebei 0.6787 0.4656 0.5882 0.4501 0.3910 0.2924 0.2667 0.1608

Heilongjiang 0.4588 0.3883 0.4101 0.3078 0.3954 0.2184 0.2111 0.1075

Henan 0.4141 0.3973 0.3692 0.2810 0.2512 0.0911 0.2357 0.0865

Hubei 0.3685 0.2202 0.2454 0.1864 0.2314 0.1635 0.1929 0.1283

Hunan 0.4476 0.3972 0.3273 0.3121 0.3924 0.2805 0.2867 0.1888

Inner Mongolia 0.3902 0.2806 0.3432 0.2482 0.3237 0.2616 0.3351 0.2139

Jiangsu 0.3968 0.2273 0.38090 0.2068 0.3137 0.1956 0.2559 0.1740

Jiangxi 0.3547 0.2902 0.3037 0.1289 0.2983 0.1258 0.2487 0.1238

Jilin 0.4449 0.4170 0.4542 0.4001 0.4342 0.3781 0.4082 0.3153

Liaoning 0.2722 0.1743 0.2479 0.1564 0.2165 0.1431 0.1356 0.0565

Ningxia 0.3748 0.2996 0.2965 0.1592 0.2636 0.1093 0.1282 0.0658

Qinghai 0.2827 0.1691 0.1358 0.0527 0.2318 0.1197 0.0691 0.0243

Shaanxi 0.3776 0.3369 0.3269 0.2107 0.2546 0.1866 0.2158 0.1319

Shandong 0.6710 0.5566 0.5630 0.4363 0.4605 0.3390 0.2611 0.1611

Shanghai 0.5067 0.3633 0.4926 0.3549 0.3935 0.2952 0.3409 0.2511

Shanxi 0.3936 0.2832 0.3801 0.2782 0.3055 0.2180 0.1224 0.0532

Sichuan 0.7541 0.5391 0.5796 0.4442 0.4232 0.3911 0.3368 0.2181

Tianjin 0.3161 0.1875 0.1076 0.0810 0.0971 0.0659 0.0930 0.0468

Tibet 0.6972 0.3431 0.46318 0.2752 0.4011 0.2112 0.3927 0.1920

Xinjiang 0.0702 0.0571 0.0455 0.0203 0.0111 0.0112 0.0073 0.0026

Yunnan 0.2590 0.2245 0.2369 0.1778 0.1832 0.1195 0.1288 0.0846

Zhejiang 0.4202 0.2507 0.2534 0.1305 0.1705 0.1176 0.1449 0.7882

GRU, gated recurrent unit; LSTM, long short-term memory; LSTMSeq2Seq, LSTM sequence-to-sequence; MAE, mean absolute error; RMSE, 
root mean squared error; XGBoost, extreme gradient boosting.

autochthonous and influenced by climatic factors, while 
P. falciparum cases may be imported and influenced by 
other global change factors. The climatic factors have 
proven to be effective predictors for malaria incidence 
and significantly affect the proposed LSTMSeq2Seq 
recurrent neural network models in capturing seasonal 
patterns and trends and predicting malaria incidence.

However, due to the fewer malaria cases in some prov-
inces and a relatively small data set for a Seq2Seq deep 
neural network, GRU and XGBoost achieved lower 
RMSE/MAE values than the proposed method in some 
cases. Even so, the LSTMSeq2Seq model produced 

improved predictions and was better than other candi-
date models for each of the Plasmodium species in many 
provinces of China. However, for further improvement 
of malaria re-emergence prediction in China, our future 
research will consider climatic and non-climatic factors 
such as population movements, demographic shifts, 
changes in land use and civil unrest. By considering other 
potential factors that may contribute to the re-emergence 
of malaria incidence, we will increase the size of the data 
set and provide more patterns for Plasmodium species. 
We will also consider a deep learning technique known 
as transfer learning. This technique uses the learnt 
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Figure 3  Predicted cases for four Plasmodium types using 
long short-term memory sequence-to-sequence model.

tusk related to the new tusk to accelerate its training 
and improve its predictive accuracy. It will reduce the 
prediction error value of the LSTMSeq2Seq in the prov-
inces with fewer malaria cases through transfer from the 
previously trained model in regions with high malaria 
cases. Based on the LSTMSeq2Seq model, this research 
achieved accurate prediction of malaria cases in China, 
using long-term time series malaria cases and the data 
of climatic variables. This method might be used for the 
large-scale prediction of other malaria-like diseases.

There are some limitations to this study. First, the 
LSTMSeq2Seq takes more time for training than other 
employed deep learning models. To train the LSTM-
Seq2Seq from scratch for all 31 provinces takes 2 weeks 
for four types of Plasmodium used in our study, whereas 
other models take a few hours to days to train them using 
malaria cases and data of meteorological variables. For 
most cases, LSTM was seven times faster than the LSTM-
Seq2Seq model. However, the impact model is not signif-
icant in provinces with fewer malaria cases. Second, we 
could not obtain accurate predictions in some provinces 
by using any model in this study, probably because we 
failed to get other relevant potential non-climatic factors.

Conclusion
Malaria is still a public health burden that can be widely 
transmitted through the influence of many factors. To 
reduce this burden, it is very important to predict the 
re-emergence of malaria and put in place serious control 
measures. In this study, we investigated the influence 
of climatic factors in the re-emergence of malaria in 

mainland China by proposing an LSTMSeq2Seq model 
capable of effectively predicting malaria incidence using 
climatic factors and different types of Plasmodium species 
in all 31 provinces of China. We compared typical machine 
learning and other recurrent neural networks models 
with the performance of the LSTMSeq2Seq approach. 
Remarkably, the prediction performance observed in this 
paper indicates that LSTMSeq2Seq prediction perfor-
mance outperforms the other candidate models applied 
in the study. Therefore, the LSTMSeq2Seq model can 
be effectively applied in the malaria re-emergence 
prediction.
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