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ABSTRACT
Introduction Perinatal complications, such as perinatal 
depression and preterm birth, are major causes of 
morbidity and mortality for the mother and the child. 
Prediction of high risk can allow for early delivery of 
existing interventions for prevention. This ongoing 
study aims to use digital phenotyping data from the 
Mom2B smartphone application to develop models 
to predict women at high risk for mental and somatic 
complications.
Methods and analysis All Swedish- speaking women 
over 18 years, who are either pregnant or within 3 months 
postpartum are eligible to participate by downloading 
the Mom2B smartphone app. We aim to recruit at least 
5000 participants with completed outcome measures. 
Throughout the pregnancy and within the first year 
postpartum, both active and passive data are collected 
via the app in an effort to establish a participant’s digital 
phenotype. Active data collection consists of surveys 
related to participant background information, mental and 
physical health, lifestyle, and social circumstances, as 
well as voice recordings. Participants’ general smartphone 
activity, geographical movement patterns, social media 
activity and cognitive patterns can be estimated through 
passive data collection from smartphone sensors and 
activity logs. The outcomes will be measured using 
surveys, such as the Edinburgh Postnatal Depression 
Scale, and through linkage to national registers, from 
where information on registered clinical diagnoses and 
received care, including prescribed medication, can be 
obtained. Advanced machine learning and deep learning 
techniques will be applied to these multimodal data in 
order to develop accurate algorithms for the prediction of 
perinatal depression and preterm birth. In this way, earlier 
intervention may be possible.
Ethics and dissemination Ethical approval has been 
obtained from the Swedish Ethical Review Authority 
(dnr: 2019/01170, with amendments), and the project 
fully fulfils the General Data Protection Regulation 
(GDPR) requirements. All participants provide consent to 
participate and can withdraw their participation at any 
time. Results from this project will be disseminated in 

international peer- reviewed journals and presented in 
relevant conferences.

INTRODUCTION
Optimal maternal health is important 
throughout pregnancy, childbirth and the 
postpartum period to ensure the full poten-
tial for the mother, infant and family to get a 
good start.1 Two health conditions that are 
important to address in order to reach a goal of 
good maternal health are perinatal depression 
(PND) and preterm birth (PTB), both affecting 
about every 10th pregnancy worldwide.2 3

Perinatal depression
PND is an episode of major depression with 
onset anytime during pregnancy and up to 
4 weeks postpartum,4 although in research 
settings, a period of up to 1 year postpartum 
is often considered.5 Antenatal depres-
sion affects between 7% and 13% of preg-
nant women,6 and postpartum depression 
(PPD) is estimated to affect between 10% 
and 20% of all newly delivered mothers,2 

Strengths and limitations of this study

 ► The study collects large- scale, temporally sensitive 
data regarding the user’s behaviours in the real 
world.

 ► End users’ feedback collected allows for app up-
dates and improvements.

 ► The passive data collection is expected to have low-
er attrition rate.

 ► The active data collection is prone to suffer from a 
higher attrition rate.

 ► There are high costs associated with recruiting par-
ticipants and maintaining frontend and backend for 
the smartphone app.
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while many women experience persistent depression 
throughout the perinatal period.7 PND is distinct from 
‘baby blues’, which are commonly experienced symp-
toms of low mood and anxiety that subside within 2 
weeks postpartum. PND is both emotionally and physi-
cally debilitating like major depression, with additional 
risks related to the pregnancy and birth, such as PTB, 
low birth weight, pre- eclampsia and placental abnormal-
ities.8–10 Moreover, it is associated with retained maternal 
weight postpartum,11 decreased breast feeding,12–14 poor 
maternal sleep15 and poor perinatal quality of life.16 PND 
can also compromise the critical mother–infant bond, as 
it affects the mother’s caregiving abilities and adaptation 
to the maternal role,16 17 and has a long- term impact on 
the child’s cognitive, emotional and behavioural devel-
opment.18 19 Furthermore, PND can be characterised by 
the occurrence of self- harm thoughts, which are linked 
to long- term somatic and psychiatric morbidity,20 and 
increased maternal mortality from suicide in the first 
year postpartum.21

The aetiology of PND is multifactorial, including 
biological, genetic, psychological and social factors, 
such as stressful life events, social support, domestic 
violence, childhood adversity, history of depression and 
anxiety, low self- esteem and even personality traits like 
resilience.15 22–24 Despite this knowledge, detecting PND 
remains a challenge for the healthcare system, with one 
review finding that around 30%–70% of cases go unde-
tected and only 15% receive adequate treatment.25 26

Current screening protocols include the Edinburgh Post-
natal Depression Scale (EPDS)27 during postpartum visits to 
assess risk of PND.28 However, early detection of PND has 
remained challenging for many reasons, including incon-
sistencies in screening practices,29 and failure to distinguish 
depressive symptoms due to their overlap with typical somatic 
experiences in the early postpartum period.30 Further-
more, women may hesitate to seek care possibly because 
of the depression itself, but also stigma and fear of being 
judged as an imperfect mother, as well as concerns about 
antidepressant use during pregnancy and breast feeding.31 
Besides, in- clinic screening frequently relies on retrospective 
self- reports of diagnostically relevant information, making 
it susceptible to errors and biases associated with autobi-
ographical recollection.32

Unquestionably, more efficient and effective methods 
for predicting PND in mothers are needed to enable 
early identification and intervention, thus improving 
prognosis, and reducing the burden of disease.33 Previous 
studies that have attempted to develop predictive models 
of maternal depression primarily focus on the postpartum 
period only.34–39 Few have used social media finger-
prints40–42 or biomarkers36 43 in their models, and these 
studies largely depended on psychometric self- reports 
and limited modalities. These drawbacks compromise the 
predictive power of the models and illustrate why multi-
variate, real- time and unobtrusive approaches to data 
collection and symptom monitoring must be encouraged 
to develop better predictive models.

Preterm birth
Among somatic pregnancy complications, PTB is a major 
cause of neonatal death, as well as of poor long- term 
health in children, affecting approximately 15 million 
babies worldwide each year.44 45 In Sweden, the PTB rate 
is about 6%,46 which is a relatively low number compared 
with the international average of over 10%.44 Like 
PND, the aetiology of PTB is multifactorial, including 
previous PTB, multifetal pregnancy, cervical insuffi-
ciency, intrauterine infections, vaginal bleeding in the 
second trimester, in- vitro fertilisation, primiparity, as well 
as maternal antenatal stress and depression.47–50 In fact, 
many risk factors overlap between PND and PTB, such 
as childhood traumatic events or maltreatment, stressful 
life events, being single or lacking social support, being 
overweight, smoking and low socioeconomic status.51 52 
Inflammation has been suggested as a possible under-
lying pathway for both depression and preterm delivery.53

There are evidence- based interventions for preventing 
or delaying PTB to optimise birth outcomes, such as 
smoking cessation, progesterone therapy, cerclage in 
women with cervical insufficiency or antibiotics.51 54 
However, a major obstacle for the success of these inter-
ventions is the aetiological heterogeneity of PTB, which 
makes it extremely challenging to identify women at high 
risk. In fact, two- thirds of women who experience PTB do 
not present with any risk factors at all.55 Available biolog-
ical diagnostic tests for PTB (such as fetal fibronectin) 
lack sufficient positive prediction values.56 Screening for 
cervical length is performed in Sweden for women with a 
history of PTB; however, this is not helpful in primiparous 
women.57

It can be concluded that no single biomarker is suffi-
cient for prediction; multimodal data, including psycho-
social and behavioural factors, should, therefore, be the 
focus of prediction efforts.

Digital phenotyping and big data
Digital devices like smartphones allow us to capture 
moment- by- moment, objective data regarding the 
patient’s experiences and functions in non- clinical 
settings. This process, known as digital phenotyping,58 allows 
us to collect two kinds of data: active data and passive data. 
Active data refer to data that require user input, such as 
surveys and voice recordings. Passive data refer to auto-
matically collected data from smartphone sensors and 
activity logs, which can be used to infer the user’s mobility 
and sleep patterns, digital social activity, smartphone 
usage patterns, and even affective and cognitive changes.

The Mom2B smartphone app is developed using the 
Beiwe research platform (www.beiwe.org) from the 
Harvard School of Public Health. It can allow us to 
capture digital phenotyping data during the perinatal 
period with greater efficiency and temporal sensitivity 
as data collection occurs continuously and in real- world 
contexts, which minimises the risk of recall biases. Such 
apps could also be integrated into the mother’s peri-
natal care plan. One drawback of smartphone- based data 
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collection, in general, is that attrition rate increases with 
longer follow- up times59; however, this can at least in 
part be compensated for by the continuous collection of 
passive data.

In fact, one of the biggest advantages of smartphone- 
based digital phenotyping is the ability to collect multi-
variate, high- volume data, known commonly as big data.60 
Big data are excellent for healthcare research since it can 
facilitate a unique insight into risk factors and the devel-
opment of better diagnostic frameworks61; however, the 
literature on big data approaches for psychiatric condi-
tions, particularly perinatal mental health, is limited.62 
Nordic countries are in the forefront in this respect—
with the Danish National Birth Cohort,63 the Norwegian 
Mother, Father and Child Cohort (MoBa)64 and Autism 
Birth Cohort (ABC)65 studies, and the Swedish Biology, 
Affect, Stress, Imaging and Cognition (BASIC) cohort 
study66—due to the availability of nationwide registers 
with comprehensive personal and medical information 
for all pregnant women in these countries. Nonetheless, 
register data, while valuable, lack the multeity, continuity 
and veracity offered by digital phenotyping.67 Further-
more, studies derived from these cohorts have largely 
relied on traditional statistical methods, which are limited 
in their ability to scale to large data sets and identify more 
subtle patterns in data.68

To date, few studies have applied digital phenotyping 
for prediction of psychiatric conditions, such as relapse in 
schizophrenia69 and severity of mood episodes in bipolar 
disorder.70 In the context of PND, while smartphone apps 
are widely used, their application has been largely focused 
on screening and intervention.71 Only two studies have 
applied digital phenotyping for predicting PPD.34 72 While 
these studies have reported encouraging results, their 
predictive ability is compromised due to limited modali-
ties (using only active data in the form of questionnaires), 
infrequent measurement points and usage of more tradi-
tional statistical methods. The Mom2B study combines 
nationwide health and pregnancy register data with active 
and passive data collected through smartphone- based 
digital phenotyping to objectively monitor indicators of 
PND in non- clinical contexts.

In order to harness the full potential of big data, more 
advanced analytical methods, such as machine learning 
(ML) and deep learning (DL), are ideal. ML is an artifi-
cial intelligence approach that refers to various methods 
of enabling an algorithm to identify and learn intricate 
patterns in data to predict outcomes.73 Modern ML 
methods, such as deep neural networks (DNNs), are 
uniquely suited to analysing big data sets as they can detect 
complex, high- dimensional interactions and structured 
information, without guidance, that can then be used to 
train predictive algorithms. DNN models are comprised 
of multiple ‘hidden’ processing layers, inspired by biolog-
ical neural networks, consisting of a series of intercon-
nected nodes that resemble neurons.74 75

Over the last decade, there has been a steady increase 
in the use of DL methods in medicine.76 However, few 

studies have used ML for diagnosis or risk assessment in 
psychiatry, and those that do are often limited by modest 
sample sizes and modalities, or from using only tradi-
tional ML techniques.73 77 To our knowledge, Mom2B is 
the first study to adopt a big data approach and use multi-
modal digital phenotyping with advanced ML techniques 
to develop predictive algorithms for PND and PTB.

Objectives
Using large- scale, multimodal data collected through the 
Mom2B smartphone app, together with health and preg-
nancy information from national registers, the primary 
aim of this study is to assess the accuracy of advanced ML 
and DL methods in predicting development of PND (1) 
in the third pregnancy trimester, using data from the first 
trimester, and (2) during the early and late postpartum 
period, using data collected throughout pregnancy and 
childbirth.

A secondary aim of this study is to apply advanced ML 
and DL techniques using the multimodal data set to 
predict the risk of PTB.

METHODS AND ANALYSIS
Cohort description
Mom2B (www.mom2b.se) is a national ongoing smart-
phone app- based study; the app was launched at the end 
of November 2019 to App Store and Google Play. All 
Swedish- speaking women above the age of 18 owning 
a smartphone, who are either pregnant or within 3 
months postpartum, are eligible to participate by regis-
tering and providing consent in the Mom2B app. Partic-
ipating women are also asked for optional consent to 
be contacted for additional research studies within and 
from outside the Mom2B project (see online supple-
mental appendix A). Participant data are then linked to 
psychiatric and somatic health- related and pregnancy- 
related information available from Swedish national 
registers.

We aim to recruit at least 5000 participants with 
completed outcome measures. Due to the complexity 
of ML methods, it is not possible to perform any tradi-
tional test of statistical power. However, based on previous 
studies59 78 79, and conferring with experts in artificial 
intelligence, we estimated that this approximate number 
would give us enough material to build robust prediction 
models while accounting for attrition and the prevalence 
rates of the outcomes.

Information about the study is being disseminated on 
social media, and through posters and brochures sent to 
primary and maternal care centres across the country. 
Figure 1 illustrates Mom2B recruitment, data collection 
and opt- outs. Table 1 outlines participant characteristics 
of the existing Mom2B cohort based on users who have 
contributed relevant data, along with similar characteris-
tics in the general Swedish population.
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Data collection
The Mom2B app collects three types of data: survey 
data, audio recordings, as well as passive data. Data can 
be collected from the first week of pregnancy, and up 
until week 52 after birth. Only data that participants have 
consented for are collected from the time they register to 
the study, and they can change their consent preferences 
anytime in the app if they wish to stop.

Surveys and questionnaires
The Mom2B app delivers a range of both validated and 
self- developed questionnaires two to three times per week 
on average, with a mean of five questions per survey. These 

questionnaires are used to collect information regarding 
the participant’s mental and physical well- being, and 
history, personality, relationships, as well as perinatal 
and parenthood experiences. They include the EPDS, a 
10- item self- report screening tool with good psychometric 
properties,80 81 used as the primary outcome measure in 
this study to assess depressive symptoms throughout the 
study period. A summary of the timeline of validated and 
self- developed instruments, along with the number of 
occurrences of the survey throughout the study period, 
can be found in figures 2 and 3, respectively.

Voice recordings
Voice acoustic qualities, such as pitch, speed, timing and 
timbre, have been used in previous research to success-
fully distinguish depressed from non- depressed individ-
uals.82–85 To collect voice data, the Mom2B app sends out 
a voice recording task asking the participant to record 
reading simple texts, numerical sequences or vocalisa-
tions every 2–4 weeks.

Passive data collection
Passive data that the user has provided consent for are 
continuously collected via the Mom2B app throughout the 
study period, and are used to infer the user’s behavioural 
patterns. Some of these features are collected differently 
for iOS and Android users. The feature modalities are 
briefly explained below.

Mobility
Correlations have been demonstrated between a patient’s 
geographical movement patterns and changes in depres-
sive symptoms.86 87 Sixty seconds of Global Positioning 
System (GPS) data are continuously collected every 10 
min. Accelerator data are collected when the motion 
exceeds a certain threshold; motion activities, including 
being stationary, walking, running, cycling and movement 
in a vehicle, are recorded when the state changes. For 
iOS, we collect device motion to provide more detailed 
motion sensor data.

Data usage
Internet usage is the main feature of data usage. Various 
patterns of internet usage have been identified in rela-
tion to depression in different populations,88 89 but not 
among women with PND. The Mom2B app records the 
accumulated upload and download rates together with 
timestamps. Another feature, reachability, records time-
stamped smartphone connectivity—whether the phone 
is connected to cellular network, Wi- Fi or neither. It also 
records a Wi- Fi log for Android phone, which includes 
anonymised Media Access Control (MAC) addresses’ 
frequencies and Received Signal Strength Indicator 
(RSSI) of available wireless networks in the area.

Smartphone usage
General smartphone use has been found to correlate 
with sleep quality and depression.90 91 Phone power state, 
combined with mobility parameters, can reflect individual 

Figure 1 From top to bottom, the grey content blocks 
in the main column represent installed apps (downloads 
of the Mom2B app by unique users from either App Store 
(iOS) or Google Play (Android)), registered users (individuals 
who have submitted registration information in the app), 
signed consents (registered users who have consented to 
contributing data, and signed these consents electronically) 
and, finally, data (participants with signed consents who, 
at minimum, have completed the Edinburgh Postnatal 
Depression Scale (EPDS27) at least once). The latter two 
blocks also illustrate the signed consents and available data, 
respectively, by type of data (survey, voice and passive data). 
The intersections of the Venn diagrams are non- exclusive, 
meaning that the number count in the intersection of surveys 
and passive data, for example, can include individuals who 
have also contributed to voice recordings. This flow chart 
reflects data last downloaded on 6 September 2021.
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behaviour like sleep patterns.92 93 To keep track of the use 
of the smartphone device, data are collected on screen 
activity, charging status and device reboot.

Social media activity
Social media behaviour has also been proven useful in 
detecting mental states. It has also been shown that 
reduced social activity on Facebook predicted symptoms 
of PPD.41 Collected data consist of simple behavioural 
measures, such as posting, commenting or liking, 
together with their timestamps. Notably, we only measure 
activity levels, not information related to the text or image 

content of that activity, and participants are made aware 
of this when providing consent.

Survey metadata
App- based surveys make it possible to also collect meta-
data. This kind of behavioural metadata may contain clini-
cally relevant information related to attention, processing 
speed and working memory capacity, and even any dete-
rioration of psychiatric symptoms.58 94 We collect data 
on the time a survey was opened, time taken to answer 
each question and fully complete a survey, as well as any 
changes made in survey responses.

Table 1 Sociodemographic characteristics, pregnancy history and birth outcomes on participants in the Mom2B study and 
the general population of pregnant women in Sweden

Characteristics

Mom2B (2020–2022)
(n=3909)* Sweden (2019)†

Available data (n) Missing data (n) n (%) or mean±SD Available data (n) n (%) or mean

Maternal age (years) 3430 479 31.2±4.4 113 816 30.7

Country of origin 3441 468 112 530

  Sweden 3177 (92.3) 78 033 (69.3)

  Nordic countries except 
Sweden

40 (1.2) 1280 (1.1)

  Europe except Nordic 
countries

116 (3.4) 9172 (8.2)

  Outside Europe 108 (3.1) 24 045 (21.4)

Education 3444 465 107 711

  ≤12 years 744 (21.6) 48 793 (45.3)

  Post- secondary 
education

2700 (78.4) 58 918 (54.7)

Employment before 
pregnancy

1677 2232 113 147

  Working/student/
parental leave

1626 (97) 103 967 (91.9)

  Unemployed/sick leave 51 (3) 9180 (8.1)

Smoking 3 months before 
pregnancy

3041 868 441 (14.5) 110 991 11 765 (10.6)

BMI before pregnancy 
(kg/m2)

3353 556 25.5±5.3 108 929

  <18.5 70 (2.1) 2783 (2.5)

  18.5–25 1815 (54.1) 59 384 (54.6)

  25–<30 923 (27.5) 29 636 (27.2)

  ≥30 545 (16.3) 17 126 (15.7)

Primiparous 3268 641 1188 (36.4) 113 816 48 473 (42.5)

Caesarean section 1356 639‡ 238 (17.5) 114 757 20 312 (17.7)

Preterm delivery (<week 
37)

3311 598 190 (5.7) 116 071 6502 (5.6)

Percentages are given in relation to available data from women.
*Data downloaded on 1 February 2022.
†Data retrieved from the Swedish Medical Birth Register and Swedish National Board of Health and Welfare from 2019.
‡Calculated using the confirmed number of women in the postpartum period only.
BMI, body mass index.
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Figure 2 Timeline of validated instruments administered in the Mom2B study during pregnancy and postpartum periods, 
and the number of occurrences for each instrument throughout the study period. Surveys become available to users for 
varying periods of time and will disappear once completed or when their period of availability is over. EPDS, Edinburgh 
Postnatal Depression Scale27; WHO- 5, WHO- 5 Well- Being Index106; DSM- screening, Diagnostic and Statistical Manual of 
Mental Disorders, 5th Edition, criterion for depression; DSM- screening short is a shortened version of the DSM- screening with 
selected questions chosen by the research team; HADS, Hospital Anxiety and Depression Scale107; PSS, Perceived Stress 
Scale108; SLE, Stressful Life Events109; LITE, Lifetime Influence of Traumatic Experiences110; FOBS, Fear of Birth Scale111; IPAQ, 
International Physical Activity Questionnaire112; FSFI, Female Sexual Function Index113; ISI, Insomnia Severity Index114; RS- 14, 
Resilience Scale115; SOC, Sense of Coherence116; VPSQ, Vulnerability Personality Style Questionnaire117; ECRS, Experience 
in Close Relationships Scale118; Valentine Scale (relationship with your partner)119; S- MIBS, Swedish Mother to Infant Bonding 
Scale120; PBQ, Postpartum Bonding Questionnaire121; IBQ, Infant Behavior Questionnaire122; SPSQ, Swedish Parenthood Stress 
Questionnaire123; LMUP, London Measure of Unplanned Pregnancy124; ICQ, Infant Characteristics Questionnaire.125

Figure 3 Timeline of self- developed surveys administered in the Mom2B study during pregnancy and postpartum periods, 
and the number of occurrences for each instrument throughout the study period. Surveys become available to users for varying 
periods of time and will disappear once completed or when their period of availability is over.
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National register data
Supplementary information will be accessed via the 
following Swedish national health and quality registers: 
the Medical Birth Register, the Pregnancy Register, the 
National Patient Register, the Prescribed Drug Register 
and population censuses from Statistics Sweden. The 
accessed information includes records of perinatal 
complications such as PND, PTB or any other compli-
cations considered important risk factors for the study 
outcomes, such as gestational diabetes, gestational hyper-
tension, pre- eclampsia, prolonged delivery, severe lacer-
ations, postpartum haemorrhage, induction of delivery, 
instrumental vaginal delivery, caesarean section and small 
for gestational age.

Further, the mother’s weight at enrolment in maternity 
care and at aftercare visits; calculated date of birth from 
last menstrual period and from ultrasound; and informa-
tion on previous miscarriages, previous abortions, chronic 
diseases, fear of childbirth, involuntary infertility, gesta-
tional age at enrolment in maternity care and fetal diag-
nostics will be obtained from the Medical Birth Register. 
Retrieved information also includes variables regarding 
the background, health and lifestyle of the participant 
for validation purposes of our self- report questionnaires, 
as well as psychiatric and somatic morbidity for up to 15 
years after childbirth.

Data flow and storage
Figure 4 illustrates the data flow and storage process as 
follows:

 ► Participants register to the study via the Mom2B app 
using their Swedish Social Security number, which is 
encrypted in the device using a private key provided by 
the Beiwe backend server, and replaced by a random, 
pseudoanonymised code number.

 ► The decryption key, together with the participant 
consent information and electronic signatures, 
is stored in a private, write- only server at Uppsala 
University.

 ► The app fetches surveys and voice recording tasks, 
and uploads data from participants to the backend 
server, where it is encrypted and sent to MinIO, a 

secure, cloud- based storage, where another layer of 
encryption is added. Passive data collected from the 
phone follow the same path.

 ► From MinIO, all data are sent to Bianca, a private 
offline server, in both encrypted and decrypted forms 
for storage and analysis, respectively.

 ► The app provides weekly reports based on partici-
pant activity and fetches health- related information 
relating to the perinatal period the user is in, as well as 
frequently asked questions about the study and peri-
natal health.

Preliminary data analysis strategy
The Mom2B data set contains different modalities, 
including audio data, sensor data and survey data, which 
will be analysed separately and then combined. We plan 
to use both traditional ML and DL techniques in order 
to determine reliable predictors of PND and develop 
accurate predictive algorithms, and will report our find-
ings following the best fit current guidelines, such as 
the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) 
statement.95

Feature engineering
To handle these multimodal data, we will extract features 
for these modalities separately using traditional feature 
engineering as well as DL techniques.96 97 An example of 
traditional feature engineering uses trajectories,87 which 
use mobility features, such as number of significant places 
visited, maximum distance and SD. However, DL can be 
used for extracting features in many other modalities, 
such as social media and audio data, which are not inves-
tigated widely in the area.

Feature selection and model selection
To analyse the multimodal Mom2B data set, we will start 
with each modality separately. To reduce the possibility 
of potential overfitting, given the numerous features in 
our data set, we will use recursive feature elimination 
to obtain the optimal set of variables for further model 
development.

Previously, logistic regression, support vector machine, 
random forests, XGBoost and neural networks have been 
the most commonly used and efficient ML algorithms for 
prediction of PND.98 An advantage of using such tradi-
tional ML methods is to give us a feature importance 
ranking, allowing us to identify stronger predictors. 
Using DL to analyse digital phenotyping data for eval-
uating risk of depression is a relatively novel approach 
compared with traditional ML models.73 DL models have 
been shown to outperform traditional ML in various tasks 
involving complex data sets,99 100 and can be combined 
with traditional ML in multimodal data mining tasks to 
further improve performance.97 We will test and select 
the best performing ML models for each modality and 
determine strong predictors of PND.

Figure 4 Flow of data from user to servers for storage and 
analysis. Data pass through secure servers accessible only 
by authorised members of the Mom2B team, and can be 
decrypted for analysis in Bianca when needed.
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Multimodal computational model
The multimodal data we collect are in different scales, 
dimensions and formats, which need to be harmon-
ised before prediction.101 Different models are better 
suited to perform on different modalities. To handle 
this complexity in multiple data modalities, we consider 
modality fusion during the development phase.

One example of a multimodal ML model is shown 
in figure 5. The model is designed to detect potential 
depressive episodes based on multimodal data collected 
in the Mom2B app. Preprocessed data in three modalities 
are fed into models and intermediate representations are 
then fused together and fed in as input features of a clas-
sification model.

Evaluation metrics
Our data will be split into a training data set, for anal-
ysis, and a test data set, to assess model performance. 
We consider using multiple evaluation metrics including 
area under the receiver operating characteristic curve, 
specificity, sensitivity, positive predictive value, nega-
tive predictive value, balanced accuracy and F1 score, 
as these measurements vary in importance according to 
the setting and goal of the final algorithm. Thereby, we 
can compare the performance of traditional ML with DL, 
and the different assemblies of models, from different 
perspectives in the context of prediction of PND.

Patient and public involvement
A qualitative study is planned for exploring the atti-
tudes and concerns of participating women towards the 
Mom2B app. Furthermore, an online survey will be sent 
to women who have had no recent activity on the app 
or withdrawn participation from the study. Direct contact 
with end users and the ability to make changes to the app 
based on their feedback can enhance user experience 
and increase engagement. A representative from Mamma 
till Mamma, a non- profit organisation in Sweden focused 
on perinatal mental well- being, serves on our advisory 
board. The organisation has been involved in the piloting 
of our study and design of questionnaires, and currently 
supports us with recruitment. We plan to involve them in 
the dissemination of study results as well.

Substudies
In addition to predicting PND and PTB, the rich data 
collected from the Mom2B cohort will also be used to 
investigate further questions, mainly regarding the health 
of pregnant and postpartum women. Other planned areas 
of research are regarding the impact of early mother–
infant separation and neonatal intensive care of the baby 
on the well- being of the mother; and sexual function and 
its potential correlates to depression and anxiety in the 
perinatal period.

Maternal depression and well-being during the COVID-19 
pandemic
In the beginning of 2021, data collected from 1577 
participants were used to assess depressive and anxiety 
symptoms, as well as well- being and life changes in preg-
nant women in Sweden during the COVID- 19 pandemic 
(from February 2020 to March 2021).102 The Mom2B app 
enabled gathering psychiatric information at a national 
level during the pandemic, as well as passive data on 
mobility. Levels of perinatal affective symptoms and low 
well- being were elevated compared with previous years 
and to months with fewer cases. Similar apps can help 
healthcare providers and governmental bodies to monitor 
high- risk groups during crises in real time, as well as to 
adjust measures and the support offered.

ETHICS AND DISSEMINATION
Participants are informed about the aims of the study, and 
that the confidentiality and security of their data will be 
assured. All participants provide their consent to partici-
pate while registering to the study, and are informed that 
they can withdraw their participation at any time without 
giving a reason. Ethical approval has been obtained from 
the Swedish Ethical Review Authority (dnr: 2019/01170, 
with amendments) and the project fulfils General Data 
Protection Regulation (GDPR) requirements, including 
the processing, storage and protection of all data. Results 
will be continuously disseminated through interna-
tional peer- reviewed journals, the project’s website and 
social media channels, and presented in national and 

Figure 5 A multimodal machine learning model for 
peripartum depression (PPD) diagnosis. The extracted 
features can be classified into three categories: acoustic 
signals, time series features and categorical features. 
We can then determine the most suitable model for each 
category. For example, for acoustic signals, we would apply 
convolutional neural network (CNN); for time series data, we 
would apply recurrent neural network (RNN) such as long 
short- term memory (LSTM); and for numerical variables, 
we would apply deep neural networks (DNNs) such as 
transformers, or traditional models like extremely randomised 
trees (XRT), gradient boosted trees, etc. These models can 
yield high- dimension representations of multimodal features. 
After feature fusion, the integrated features will be fed into 
another neural network for prediction.
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international conferences. All publications will be open 
access.

DISCUSSION
Strengths and limitations
Besides the utility of digital phenotyping in combination 
with the advanced analytical methods planned to be used, 
other strengths of the Mom2B study include the involve-
ment of participants. Statistics based on the WHO- 5 Well- 
Being Index and behavioural data (movement, internet 
usage, sleep, etc) collected from participants are sent 
to the user, allowing them to follow their well- being 
and activity as an incentive for continued participation. 
Weekly informational reports regarding common expe-
riences and concerns for both the mother and the child 
for that particular week of the perinatal period, based 
on information taken from  1177. se (Swedish health-
care service), are available to users and allow them to 
easily stay informed. As per standard guidelines,103 if 
participants receive a high score on the EPDS, they are 
prompted to contact their healthcare provider or emer-
gency support services for support, and if unsure, they 
can contact the research team, which will help them find 
appropriate support for their needs. Continuous contact 
is maintained with participants until they find support.

The involvement of user organisations and an inter-
national advisory board further strengthens the study 
by increasing the feasibility, the use of state- of- the- art 
methods and the potential for high acceptance by the 
end users, which is especially important for future inte-
gration in regular clinical practice.

However, there are some limitations to acknowledge. 
Weekly reports and statistics are important in supporting 
and incentivising users, but it is possible they may influence 
users’ responses to certain questionnaires. To account for 
this, we consider including how often they are checked 
by users as a feature within our models. Furthermore, our 
app is available only in Swedish, which excludes a number 
of otherwise eligible participants, and the high costs for 
maintaining the technical infrastructure in the frontend 
and backend of the app require considerable funding. 
Attrition is also an issue, especially with data that require 
active input from users. While we can attempt to combat 
this by improving the app based on user feedback, it is 
important to consider that attrition might also reflect 
the worsening of symptoms and be a predictor per se of 
clinical deterioration. It will be important to distinguish 
such participants and determine how to use attrition as a 
predictor variable.

Future perspectives
We are at the beginning of the smartphone- based research 
era, and future possibilities seem numerous. We intend to 
develop the Mom2B app in other languages, including 
English, to expand to a more diverse and wider popula-
tion. If the app succeeds in developing good predictive 
models for PND, the research team anticipates that the 

app could be further developed to include evidence- 
based interventions.104 Furthermore, since PND is much 
less understood in co- parents and improving the other 
parent’s mental well- being is conducive to the health of 
the mother and the children as well,105 the app could 
be further developed to study co- parental PND. The 
Mom2B research team plans to further adapt the app to 
other research topics such as teenage and student mental 
health, and prediction of new episodes or self- harm in 
major depression.
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