

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The Paradox of Decreasing Rates of Cost-Related Medication Non-Adherence Among Old and Older-Old Americans: A Longitudinal Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051480
Article Type:	Original research
Date Submitted by the Author:	20-Mar-2021
Complete List of Authors:	Zhang, James; The University of Chicago, Medicine; 5841 S Maryland Ave. Bhaumik, Deepon Meltzer, David; The University of Chicago
Keywords:	Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PUBLIC HEALTH
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright.

	Older-Old Americans: A Longitudinal Study
	James X. Zhang [±] , PhD, MS; Deepon Bhaumik [#] , BA; David O. Meltzer ^{±,≠, #} , MD, PhD
±	Department of Medicine, the University of Chicago; #Department of Health Policy and Management
	Yale School of Public Health, Yale University; [#] Harris School of Public Policy, #Department of
	Economics, The University of Chicago.
	Corresponding author: James X. Zhang, PhD, MS, Department of Medicine, Section of Hospital
	Medicine
	The University of Chicago, 5841 S Maryland Ave., MC 5000, Chicago, IL 60637
	Email: xzhang1@medicine.bsd.uchicago.edu
	Total number of words: 3,115
	Running title: Aging and cost-related medication non-adherence
	Key words: cost-related medication non-adherence, aging, paradox
	Total number of tables: 3
	Total number of Figures: 3
	ACKNOWLEDGEMENT
	The study was presented in part at the International Health Economics World Congress, Basel,
	Switzerland, July 16, 2019. This study is supported in part by Chicago Center for Diabetes
,	Translation Research (CCDTR) Pilot and Feasibility Grant (Zhang & Meltzer) (P30 DK092949), and
	NIH 5R21AG053749 (Meltzer & Zhang).

	ω
	ŝ
	2
	ğ
	en:
	≣:
	ŝţ
	nd
	bli
	<u>IS</u>
	θQ
	à
	رد د
	0
	1
	36
	ď
	лi
	ğ
	ř
	20
	Ň
	6
	<u>5</u>
	48
	õ
	g
	ົດ
	≤
	Š
	20
	22
	2
	8
	Ś
	ы
	á
	ĕ
	± fr
	Ŋ.
	L L
	ŧ
	ŝ
	br
	j;
	pe
	Ď.
	bm
	<u>,</u>
	ğ
	Ľ
	9
	ý
	ep
	đ
	dr
	ĕ
	Ń
	10
	3
	ç
,	ģ
	ue
	st.
	P
	Ğ.
	00
	ie C
	σ
	<
	ğ
	Ň
,	ğ
	≍

Abstract

(280 words)

Objectives: The access barrier to medication has been a persistent and elusive challenge in the US health care system and around the globe. Cost-related medication non-adherence (CRN) is an important measure of medication non-adherence behaviors that aim to avoid costs. While there is an emerging body of literature on the cross-sectional analysis of CRN internationally, longitudinal study of CRN behaviors for the aging population is rare.

Design: Longitudinal study using the Health and Retirement Study to evaluate self-reported CRN biennially.

Setting: General population of older Americans.

Participants: Two cohorts of Americans aged between 50 and 79 (old) and 80 or above (olderold) followed from 2004 to 2014.

Intervention: Observational with no intervention.

Primary and secondary outcome measures: Using multivariable regression analyses controlling for a broad set of variables including socio-demographics, Social Security (SS) income to total income ratio, functional status, and comorbid conditions, we evaluated population-adjusted CRN over time, including comparison of CRN rates between those who were alive and those who were deceased during the follow-up.

Results: The two old and older-old cohorts with 13,254 and 9,856 respondents represented 57.5 million and 7.7 million people in 2004, respectively. Decreasing CRN was observed in both old and older-old cohorts despite their decreasing income, increasing SS income to total income ratio, and increasing limitations in the functional status and disease burden measured by comorbidities. Those who were deceased had reported lower prevalence rates but higher intensity of CRN.

Conclusion: The paradox of lower CRN with less economic resources and higher disease burden suggests patient's CRN behaviors change as they age. Further research in social policy is greatly need to address the basic needs of the elderly and improve their overall well-being.

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

Summary

Strength of the study:

- Nationally representative study sample
- Longitudinal follow-up of CRN which is rare in the literature
- Population-adjusted CRN rates for direct comparison
- Further comparison of CRN rates between those who were alive and who were deceased during the follow-up

Weakness of the study

Does not have information in change in the consumption bundle such as the other discretionary spending over time.

Introduction

The access barrier to medication has been a persistent and elusive challenge in the US health care system and around the globe. A recent national poll indicated that among those currently taking prescription drugs, one-fourth of adults (24 percent) and seniors (23 percent) have difficulty in affording their prescription drugs including about one in ten (overall and among seniors) saying it is "very difficult." Cost-related medication non-adherence (CRN) is a metric measuring such cost-avoiding behaviors and has seen an emerging body of literature on its prevalence internationally. For example, in a study of adults aged 55 and older and living in the community in 11 developed countries, the authors found that following the lead of the U.S. with 16.8% in CRN to medication, Canada had the second highest national prevalence of CRN (8.3%), followed by Australia (6.8%).² Many patients engage in strategies to avoid such costs when facing difficult choices between their medication needs and other basic needs, including delaying filling prescription, not filling prescriptions, skipping doses and splitting doses. Many behavioral, social, economic, medical, and policy-related factors have been identified as contributing factors for medication non-adherence.³⁻⁵ Medication non-adherence is associated with increased hospitalization rates and emergency department visits, higher mortality rates, worse patient outcomes, and increased downstream costs that impose heavy, avoidable healthcare costs on society.⁶⁻¹¹ Hence it is pressing for researchers, practitioners, and policy makers to gain insight into the key factors that drive the difference in CRN across population strata.

Among the many risk factors for CRN, age receives little attention even though younger disabled patients have been found to have higher CRN rates among the Medicare population. ¹² In essence, age is a complex variable reflecting multiple dimensions of biological and social factors that can potentially drive-up CRN. For example, since older people may have protection

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

from the Medicare insurance coverage including Part D outpatient prescription drug program, and at the same time, older people also have lower income and may suffer from multiple chronic conditions which require greater out-of-pocket spending on medications, and thus the tension between their resources and medication needs is relatively higher. The literature on the effect of aging process on CRN is scant, and most reported differences in CRN due to age is examined in the context of cross-sectional studies, which makes it unclear if the age difference in CRN is due to generational difference (i.e., cohort effect) or the aging process itself and also lacks of adequate control for the confounding factors. It is important to study the effects of the aging process on CRN because if the older people with less economic resource and higher disease burden reported lower CRN rates, *ceteris paribus*, it may mean they are actually cutting down spending on other basic needs and that therefore social policy may need to be revamped to address this hidden crisis. On the other hand, this is an interesting question about the behavioral change in the aging process, as it may reflect the change in the assessment of the value of medication (and life) as people progress to more advanced age.

We hence propose to study the CRN behaviors among the older population in the US longitudinally with a broad set of variables to control for potential confounders. The longitudinal analysis isolates the cohort effect from its tempering of the age effect, and the broad set of controlling variables (particularly income) further isolate the potential confounding. We used the Health and Retirement Study (HRS), a nationally representative sample of older people (50 years or older) to generate population-adjusted estimates for the whole nation.

Methods

Data from HRS from 2004 to 2014 were used for this study. The HRS is a longitudinal panel study that surveys a representative sample of Americans over the age of 50 about their

BMJ Open

income, employment, health insurance, physical health, functional status, and medical conditions.¹³ Data for the survey is collected primarily by telephone interview every 2 years. Mortality was recorded if the respondent was deceased during the follow-up.

CRN was measured by asking participants, "Sometimes people delay taking medication or filling prescriptions because of the cost. At any time since the last interview or in the last two years have you ended up taking less medication than was prescribed for you because of the cost?" Participants answered either yes or no, although they had the option to refuse to answer or say that they did not know. For those who refused to answer or say that they did not know, the answer is treated as no CRN was reported.

We created two cohorts with age between 50 and 79 (old) and 80 or above (older-old) in 2004 and followed them to 2014 and evaluated population-adjusted CRN over time. The reason for creating two cohorts is to isolate the generational difference in CRN behaviors at baseline, and to compare the trajectory of CRN behaviors in these two cohorts by controlling other confounding factors. Such a grouping is also consistent with the older population defined by the US Census.¹⁴ The reason for the follow-up between 2004 and 2014 is that although the two cohorts experienced the Great Recession starting in 2008, the economy had largely recovered in steady growth by 2014 and hence this period of 10 years provides a clear picture of the trajectory of CRN pre-, during, and post-economic recession with up to six observations for each correspondent. To generate population-adjusted CRN rates at each of six survey rounds between 2004 and 2014, we performed the analysis as follows:

We developed multiple logistic regression models to obtain the population-adjusted CRN rates for each of the survey rounds between 2004 and 2014 by controlling a wide range of covariates. These covariates included socio-demographics including age, gender, race, and

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

ethnicity. Since insurance status has been found an important predictor for CRN and the overwhelming majority of the elderly (65 years of old) have Medicare as their primary insurer,¹⁵ we included an indicator variable for those who were enrolled in Medicaid. An enrollment in Medicaid would indicate that they were at the lowest economic ladder since Medicaid is a means-tested state-sponsored public insurance program for those who meet the poverty level defined by each state. Research has also shown those with Medicare-Medicaid dual eligibility (dual eligible) can have high CRN rates despite the additional insurance coverage, likely due to the fact that those at the bottom of economic ladder are highly sensitive to the out-of-pocket payment.¹⁶ Hence we think the inclusion of both income variable and Medicaid coverage will tease out two different confounding; one on the resource availability, the other on the enabling effect of health insurance to overcome such resource limitation but with certain behaviors traits such as price sensitivity. We also included two variables on functional status: limitations in Activities of Daily Living (ADLs), and Instrumental Activities of Daily Living (IADLs).^{17,18} These two variables measure the number of limitations in performing tasks such as dressing, bathing, eating, toileting, getting out of bed, and walking (ADLs), and preparing meals, shopping, managing money, and taking phone calls (IADLs). Research has also that functional status is an important factor reflecting the out-of-pockets for medical care as they reflect the heightened frailty and increased costs to visit physicians and obtaining medications.¹⁹ We also included a set of comorbid conditions including diabetes, heart disease, stroke, and cancer. These conditions are known to have high disease burden for patients in terms of both the need for continuous medical care and high costs of medication treatments.¹⁵

In addition, we created a new variable for the ratio of social security (SS) to total income in order to further isolate the effect of income on CRN from potential confounding. HRS has a rich

Page 9 of 30

BMJ Open

set of questionnaires on sources of income and given that many of the elderly are already in retirement and wage income would have been a poor proxy, we first created one variable for total income, including wages, pensions, unemployment benefits, SS income, and income from investments and financial assets for each patient. (See Appendix I for a list of sources of income). Because not every income-related variable is measured on a monthly basis, we extrapolated these variables to its annual amount. We then created a variable indicating the ratio of SS income to total income. We think while the total income reflects the total resources available to the patients in absolute term, it's highly skewed and does not necessarily reflect the resource constraints which are more pertinent to the old people who are living on fixed income such as Social Security, the SS-income ratio better reflects the degree to which the respondent relies on SS income for their daily lives in a relative term. Research showed that in 2013, Medicare beneficiaries' average out-of-pocket health care spending was 41 percent of average per capita SS income,²⁰ suggesting the importance to use SS income as a benchmark for the resource availability for the elderly on the population level. We think that the higher SS-income ratio would indicate smaller room for trade-off between the medication needs and other daily needs as the respondents have no other economic resources to turn to once they use up the SS income, which is often too low to sustain a life given all of their disease burdens.

To further ascertain the difference between those who were deceased and alive during the follow-up periods, we conducted the multiple regression analyses by examining two composite CRN variables: one for "any" CRN during the follow-up period; the other for average times the respondent reported CRN given the follow-up span when the respondent was alive, where the numerator was the sum of the number of times a respondent reported "Yes" to CRN, and the denominator was equal to a count of the number of years the respondent was alive/participated in

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

the study. For example, if a respondent indicated "YES" only for 2004 and 2010 and was alive for every survey for a total of 6 surveys between 2004 and 2014, the average CRN is 2/6, which is 0.33 (or 33% of time). If the respondent were deceased before 2012, for the same two "YES" for 2004 and 2010, the average CRN would be 2/4, which is 0.5 (or 50% of time). We think the measure of "any" shows the prevalence of CRN during the follow-up period for the ceiling of the such behavior, and the measure of "average CRN" shows the intensity of such behaviors during the same time period.

We compared the demographic variables, Medicaid enrollment, and comorbid conditions for each cohort at 2004 and 2014 respectively, using Chi-squared tests. We compared the number of functional status between 2004 and 2014 for the two cohorts using t-tests. All analyses were weighted to reflect the population average. Finally, to compare the change in the average effect size for each of the aforementioned variables in influencing CRN, we conducted multiple logistic regression analyses by pooling the respondents in two cohorts and estimating their adjusted odds ratio for 2004 and 2014, respectively.

Patient and Public Involvement

No patient involved.

Results

Table 1 shows the demographics, income, Medicaid enrollment status, functional status, and comorbid conditions at the baseline of 2004 and at the end of follow-up of 2014, for the two old and older-old cohorts, with 13,254 and 9,856 respondents representing 57.5 million and 7.7 million people at the baseline, respectively. All respondents 50 years or old in the HRS were included. After 10 years, 9,856 and 529 patients remained alive in the two cohorts representing 45.2 and 1.82 people at 2014 after ascertaining death recorded in the HRS. The unadjusted CRN

prevalence rates were 10.4% and 4.6% at 2004, and decreased to 7.31% and 2.6% in 2014, for the old and older-old cohorts, respectively. The adjusted CRN prevalence rates were 8.5% and 5.9% at 2004, and decreased to 4.5% and 1.3%, for the old and older-old cohorts, respectively. There were significant changes in patient mix in both cohorts over time. The survivors appeared to be more likely to have high education degree, and Medicaid coverage. Overall, the functional limitations in both ADLs and IADLs, and the prevalence of comorbid conditions by four conditions increased in both cohorts.

Table 2 shows the population-average adjusted odds ratio (AOR) of variables in affecting CRN by pooling the two cohorts for the year of 2004 and 2014. The AOR of female sex decreased from 2.18 to 1.65 from 2004 to 2014; and during this time period, the AOR of high school degree increased from 0.90 to 1.26, the AOR of diabetes increased from 1.14 to 1.54, among other changes.

Table 3 shows the CRN prevalence rate by "any" CRN and percentage of time of CRN was reported during the follow-up when the respondent was alive. For the old cohort, 27.2% of those who survived had at least reported CRN at least once, and 21.2% of those who were deceased had reported CRN at least once. In contrast, the average percentage of time when a CRN was reported across 6 surveys between 2004 and 2014 was 9.2 for those who survived, and 10.8 for those who were deceased. A similar pattern was observed for the older-old cohort.

Figure 1 shows the population-adjusted CRN rates by age cohort from 2004 to 2014. There was a general downward trend in both age cohort, despite a small bump between 2008 and 2012 when the economy was in turmoil due to the Great Recession.

Figure 2 shows the trend of ratio of SS income to total income by age cohort from 2004 to 2014. While the older-old cohort has a steady ratio over time, there was a clear upward trend among BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

the old cohort, with the slope becoming steeper during 2010-2012 period, and then flattening out during 2012-2014.

Figure 3 shows the trend of total income by age cohort from 2004 to 2014. While the older-old cohort remained largely stable over this period, there was a significant drop of income in the old cohort between 2006 and 2012 which flattened out in 2014.

Discussion and Conclusions

There was a clear downward trend in the CRN prevalence rates in both old and older-old cohorts between 2004 and 2014, despite economic downturn after 2008 due to the Great Recession. The younger cohort of those 50-79 suffered significantly in terms of loss of income during this time period, and their SS income to total income ratio increased, reflecting their increasing dependence on the SS income and decreasing economic resources available to them over time. Despite such decreasing economic resources for this group and high dependence on SS income for both cohorts, the population-adjusted CRN rates steadily decreased.

Such a steady decrease in CRN rates was accompanied by increasing limitations in functional status in both ADLs and IADLs and increasing prevalence of comorbid conditions, reflecting heightened frailty and disease burden in both cohorts as they aged. There was an increase in the Medicaid enrollment in both cohorts in both cohorts, which likely provides protection from CRN. However, even after adjusting for Medicaid enrollment, the clear pattern of decreasing CRN is still seen as the population ages.

Such a pattern of decreasing CRN as the population ages could not explained away by the fact of that a significant fraction of the elderly were deceased during the follow-up. As we have shown, the CRN prevalence rates among the survivors were actually higher than those who were

BMJ Open

decreased, even though the intensity of CRN was higher among those who were deceased, likely reflecting the struggle during the last few years of life.

Hence such a "paradox" of lower CRN rates among the old Americans with decreasing economic resources but higher disease burden which require higher consumption of medications seems to be robust, persisting through a series of controls for confounding factors. One possible explanation is that as the population ages and faces a shorter remaining life-span, the valuation of the worthiness of medication may change, rendering the population to change their consumption bundle with more resources devoted to the medication use. Because the elderly population is increasingly dependent on their fixed SS income, such a change in their consumption bundle will inevitably decrease their ability to afford other daily needs, such as housing, food, and transportation. There is little literature in this aspect of the loss of welfare due to the pressure to pay for the medications. More research is greatly needed to evaluate the adequacy of social policy to help the elderly cope with increasing demand for medications as they age. When CRN was examined longitudinally, one recent study suggested that younger age is a risk factor for persistent CRN.²¹ The evidence from this study corroborates that patient's behavior may evolve when they age.

It is also noteworthy that those who were deceased had lower CRN prevalence overall but higher intensity of CRN compared to those who survived the 10 years of follow-up through the economic downturn. The lower CRN prevalence may suggest that it may not be that CRN caused higher mortality overall, and the heightened intensity of CRN may reflect increased financial struggle due to the increasing disease burden as individuals approach the end of their life. In other words, this additional evidence is in line with the thought that those who approach end-of-

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

BMJ Open

life have higher resource utilization, but this does not affect the general trend that aging process render the elderly less likely to report CRN.

This study is limited by the fact that the HRS does not have data to examine the subjective evaluation of consumption bundles in order to derive the exact cause of decreasing CRN despite increasing disease burden and decreasing economic resources. Nor does the HRS allows an exhaustive examination of consumption by goods and services. Future research should be directed to examine these issues and to further illuminate the changing consumption preferences of the elderly. Needless to say, such a change is forced upon them when the elderly are faced with decreasing economic resources at the same time as higher disease burdens. Further understanding of the coping mechanisms and trade-offs faced by the elderly may have profound implications for social policy that aims to protect the elderly.

In summary, we presented a clear case of decreasing CRN rates among the old and older-old cohorts despite decreasing economic resources, increasing disease burden, and increasing Medicaid coverage. Such a paradox is possibly driven by the change in preferences for medication or the perceived value of medications as the population ages. This may suggest a hidden gap in social policy as the elderly cope with increased burdens by reducing consumption of other goods and services which may reduce their overall well-being. More research is greatly needed to understand this phenomenon and improve social policy for our aging population.

1	
2 3 4	ACKNOWLEDGEMENT
5	The study was presented in part at the International Health Economics World Congress, Basel,
7 8	Switzerland, July 16, 2019. This study is supported in part by Chicago Center for Diabetes
9 10	Translation Research (CCDTR) Pilot and Feasibility Grant (Zhang & Meltzer) (P30 DK092949), and
11 12	NIH 5R21AG053749 (Meltzer & Zhang).
13 14	
15 16	AUTHOR CONTRIBUTIONS
17	Dr Zhang had full access to all of the data in the study and takes responsibility for the
18 19	integrity of the data and the accuracy of the data analysis
20 21	integrity of the data and the accuracy of the data analysis.
22	Concept and design: Zhang.
23 24	Acquisition, analysis, or interpretation of data: All authors.
25 26	Drafting of the manuscript: Zhang.
20	<i>Critical revision of the manuscript for important intellectual content:</i> All authors.
28 29	Statistical analysis: Bhaumik Zhang
30	
31 32	Obtained funding: Meltzer, Zhang.
33 34	Administrative, technical, or material support: Meltzer, Zhang.
35	Supervision: Zhang.
36 37	Conflict of Interest Disclosures: Dr Meltzer reported receiving compensation from CVS
38	Consultant outside the submitted work. No other disclosures were reported.
39 40	
41 42	ETHICAL APPROVAL / PATIENT CONSENT
42 43	
44 45	The public use file of the Health and Retirement Study does not have human subjects, hence national consent or the approval by the Institutional Review Board is not required
46	putent consent of the upproval by the institutional review Board is not required.
47 48	
49	DATA SHARING STATEMENT
50 51	The public use file of the Health and Retirement Study can be downloaded directly from its
52	webpage accessible at <u>https://hrs.isr.umich.edu/about</u> .
55 54	
55 56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

REFERENCES

- 1. Kaiser Family Foundation. KFF Health Tracking Poll February 2019: Prescription Drugs. 2019. Available <u>https://www.kff.org/health-costs/poll-finding/kff-health-tracking-poll-february-2019-prescription-drugs/</u>. Accessed August 14, 2020.
- Morgan SG, Lee A. Cost-related non-adherence to prescribed medicines among older adults: a crosssectional analysis of a survey in 11 developed countries. BMJ Open 2017;7:e014287.
- 3. Gellad WF, Grenard J, McGlynn EA. A review of barriers to medication adherence: a framework for driving policy options. RAND Corporation, 2009. Available at: http://www.rand.org/pubs/technical_reports/TR765.html. Accessed March 1, 2019.
- 4. DiMatteo MR. Variations in patients' adherence to medical recommendations: a quantitative review of 50 years of research. Med Care. 2004; 42:200-9.
- 5. National Council on Patient Information and Education. Enhancing Prescription Medicine Adherence: A National Action Plan. 2007. Available at http://www.talkaboutrx.org/documents/enhancing_prescription_medicine_adherence.pdf. Accessed February 4, 2017.
- Tamblyn R, Laprise R, Hanley JA, Abrahamowicz M, Scott S, Mayo N, Hurley J, Grad R, Latimer E, Perreault R, McLeod P, Huang A, Larochelle P, Mallet L Adverse events associated with prescription drug cost-sharing among poor and elderly persons. JAMA. 2001; 285:421–429.
- 7. Mojtabai R, Olfson M. Medication costs, adherence, and health outcomes among Medicare beneficiaries. Health Aff. 2003; 22(4):220–229.
- 8. Heisler M, Langa KM, Eby EL, Fendrick AM, Kabeto MU, Piette JD. The health effects of restricting prescription medication use because of cost. Med Care. 2004; 42:626–634.
- 9. Ho PM, Rumsfeld JS, Masoudi FA, McClure DL, Plomondon ME, Steiner JF, Magid DJ. Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. Arch Intern Med. 2006; 166:1836–1841.
- Ho PM, Spertus JA, Masoudi FA, Reid KJ, Peterson ED, Magid DJ, Krumholz HM, Rumsfeld JS. Impact of medication therapy discontinuation on mortality after myocardial infarction. Arch Intern Med. 2006; 166:1842–1847.
- Iuga AO, McGuire MJ. Adherence and health care costs. Risk Manag Healthc Policy. 2014 Feb 20; 7:35-44.
- 12. Soumerai SB, Pierre-Jacques M, Zhang F, et al. Cost-related medication nonadherence among elderly and disabled Medicare beneficiaries: a national survey 1 year before the medicare drug benefit. Arch Intern Med. 2006;166(17):1829-1835.
- 13. The Health and Retirement Study. Available <u>https://hrs.isr.umich.edu/about</u>. Accessed August 20, 2020.
- 14. The US Census. The Older Population in the United States: 2004. Available <u>https://www.census.gov/data/tables/2004/demo/age-and-sex/2004-older-population.html</u>. Accessed August 24, 2020.
- 15. Briesacher BA, Gurwitz JH, Soumerai SB. Patients at-risk for cost-related medication nonadherence: a review of the literature. J Gen Intern Med. 2007;22(6):864-71.

16. Zhang JX, Meltzer DO. The High Cost-related Medication Non-adherence Rate
Among Medicare-Medicaid Dual-Eligible Diabetes Patients. J Health Med Econ.
2016;2(2).

- Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. the index of adl: a standardized measure of biological and psychosocial function. Journal of American Medical Association. 1963; 185:914-919.
- 18. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179-186.
- 19. Zhang JX, Lee JU, Meltzer DO (2015) The Effect of Functional Limitations and Hospitalization on Out-of-Pocket Medical Payments in older Adults. Ann Community Med Pract 1(1): 1004.
- 20. Kaiser Family Foundation. Medicare Beneficiaries' Out-of-Pocket Health Care Spending as a Share of Income Now and Projections for the Future. 2018. Available <u>https://www.kff.org/medicare/report/medicare-beneficiaries-out-of-pocket-healthcare-spending-as-a-share-of-income-now-and-projections-for-the-future/</u>. Accessed August 24, 2020.
- 21. De Avila JL, Meltzer DO, Zhang JX. Prevalence and Persistence of Cost-Related Medication Nonadherence Among Medicare Beneficiaries at High Risk of Hospitalization. *JAMA Netw Open*. 2021;4(3):e210498. doi:10.1001/jamanetworkopen.2021.0498

2
3
4
5
5
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
21
24
25
26
27
28
29
30
20
31
32
33
34
35
36
27
27
38
39
40
41
42
<u>4</u> 2
ر ہـ ۸۸
44
45
46
47
48
49
50
50
51
52
53
54
55
55
50
5/
58
59
60

Table 1. So	cio-economic	and health	characteristics	of the study	sample.
-------------	--------------	------------	-----------------	--------------	---------

	Age 50-7	9 in 2004	P-value	Age ≥ 80	0 in 2004	P-value
	2004	2014		2004	2014	
Total N: sample (weighted)	13,254 (57,522,395)	9,856 (45,250,407)		2,666 (7,709,927)	529 (1,856,348)	
CRN (% of total)	10.42	7.31	<0.001	4.64	2.6	< 0.001
Population-adjusted CRN (% of total)	8.5	4.5		5.9	1.3	
Demographics			0.001			0.001
Mean Age (SD)	62.3 (8.2)	70.9 (7.7)	<0.001	84.6 (3.9)	92.8 (2.6)	< 0.001
Male N (%)	26,537,035 (46.13)	19,959,531 (44.11)	<0.001	2,865,953 (37.17)	549,748 (29.61)	<0.001
Race						
White N (%)	46,566,916 (81.0)	36,778,482 (81.3)	< 0.001	6,722,307 (87.2)	1,648,583 (88.8)	< 0.001
Black N (%)	5,422,810 (9.4)	3,946,334 (8.7)	< 0.001	563,630 (7.3)	123,727 (6.7)	< 0.001
Other N (%)	1,533,962 (2.7)	1,299,172 (2.9)	< 0.001	82,439 (1.1)	13,734 (0.7)	< 0.001
Hispanic N (%)	1,498,296	3,218,998	< 0.001	341,551 (4.4)	70,304 (3.79)	< 0.001
High School Degree N	44,792,359	36,771,098	<0.001	5,104,259	1,382,472	< 0.001
Mean Social Security to Income Ratio (SD)	0.61 (0.34)	0.70 (0.34)	<0.001	0.72 (0.32)	0.72 (0.33)	<0.10
Medicaid Only N (%)	4,347,512 (7.57)	4,195,261 (9.34)	< 0.001	741,106 (9.68)	376,197 (20.77)	< 0.001
Functional status						
Activities of Daily Life N (SD) (dress, bath, walk, eat, bed. toilet)	1.11 (1.93)	1.20 (1.97)	<0.001	1.36 (1.94)	2.19 (2.27)	<0.001
Instrumental Activities of Daily Life N (SD) (meal, shop, phone, money)	0.24 (0.65)	0.35 (0.86)	<0.001	0.85 (1.24)	1.82 (1.65)	<0.001
Comorbid condition						
Cancer N (%)	6,729,897 (11.8)	8,279,802 (18.5)	< 0.001	1,601,000 (21.1)	463,700 (25.4)	< 0.001
Diabetes N (%)	9,870,732 (17.3)	11,607,147 (25.9)	<0.001	1,268,614 (16.8)	387,277 (21.2)	< 0.001
Heart Condition N (%)	11,463,265 (20.07)	12,694,226 (28.3)	< 0.001	3,141,721 (41.5)	897,113 (49.21)	< 0.001
Stroke N (%)	2,981,224 (5.2)	3,558,686 (7.94)	< 0.001	972.042 (12.8)	392,876 (21.6)	< 0.001

Legend: the numbers were weighted using 2004 HRS sample weight except the first row representing the sample.

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 ⊃1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
27	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
۰.0 47	
-1/ /Q	
40 70	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

	2004	4			2	014	
Odds	Standard	P-	95% CI	Odds	Standard	P-	95% CI
Ratio	Error	Value		Ratio	Error	Value	
0.51	0.09	0.00	0.35, 0.73	0.27	0.07	0.00	0.16, 0.46
2.18	0.31	0.00	1.61, 2.95	1.65	0.19	0.00	1.28, 2.11
Referent	-	-	-	-	-	-	-
2.00	0.22	0.00	1.59, 2.52	2.09	0.22	0.00	1.67, 2.61
0.61	0.21	0.16	0.3, 1.25	0.68	0.23	0.27	0.34, 1.38
1.37	0.12	0.00	1.14, 1.66	2.55	0.33	0.00	1.94, 3.35
0.90	0.10	0.33	0.71, 1.13	1.26	0.19	0.15	0.91, 1.75
1.99	0.19	0.00	1.63, 2.43	3.18	0.63	0.00	2.09, 4.83
0.95	0.19	0.81	0.62, 1.45	0.87	0.22	0.60	0.51, 1.5
0.99	0.02	0.70	0.96, 1.03	0.98	0.05	0.61	0.88, 1.08
1.12	0.04	0.00	1.05, 1.2	0.99	0.06	0.93	0.87, 1.14
1.13	0.11	0.22	0.92, 1.39	1.54	0.13	0.00	1.28, 1.84
1.44	0.11	0.00	1.24, 1.68	0.95	0.40	0.91	0.39, 2.34
1.42	0.06	0.00	1.3, 1.56	1.65	0.21	0.00	1.27, 2.15
0.87	0.07	0.12	0.73, 1.04	0.74	0.19	0.27	0.43, 1.29
0.03	0.01	0.00	0.02, 0.04	0.01	0.00	0.00	0.01, 0.01
0.68	-	-	-	0.71	-	-	-
	Odds Ratio 0.51 2.18 Referent 2.00 0.61 1.37 0.90 1.99 0.95 0.99 1.12 1.13 1.44 1.42 0.87 0.03 0.68	200 Odds Ratio Standard Error 0.51 0.09 2.18 0.31 Referent - 2.00 0.22 0.61 0.21 1.37 0.12 0.90 0.10 1.99 0.19 0.95 0.19 0.99 0.02 1.12 0.04 1.13 0.11 1.44 0.11 1.42 0.06 0.87 0.07 0.03 0.01	2004 Odds Ratio Standard Error P- Value 0.51 0.09 0.00 2.18 0.31 0.00 Referent - - 2.00 0.22 0.00 0.61 0.21 0.16 1.37 0.12 0.00 0.90 0.10 0.33 1.99 0.19 0.31 0.95 0.19 0.81 0.99 0.02 0.70 1.12 0.04 0.00 1.13 0.11 0.22 1.44 0.11 0.00 1.42 0.06 0.00 0.87 0.07 0.12	2004 Odds Ratio Standard Error P- Value 95% Cl 0.51 0.09 0.00 0.35, 0.73 2.18 0.31 0.00 1.61, 2.95 Referent - - - 2.00 0.22 0.00 1.59, 2.52 0.61 0.21 0.16 0.3, 1.25 1.37 0.12 0.00 1.14, 1.66 0.90 0.10 0.33 0.71, 1.13 1.99 0.19 0.00 1.63, 2.43 0.95 0.19 0.81 0.62, 1.45 0.99 0.02 0.70 0.96, 1.03 1.12 0.04 0.00 1.05, 1.2 1.13 0.11 0.22 0.92, 1.39 1.44 0.11 0.00 1.24, 1.68 1.42 0.06 0.00 1.3, 1.56 0.87 0.07 0.12 0.73, 1.04 0.03 0.01 0.00 0.02, 0.04	2004 P- 95% CI Odds Ratio Ratio Error Value 0.00 0.35, 0.73 0.27 2.18 0.31 0.00 1.61, 2.95 1.65 Referent - - - - 2.00 0.22 0.00 1.59, 2.52 2.09 0.61 0.21 0.16 0.3, 1.25 0.68 1.37 0.12 0.00 1.14, 1.66 2.55 0.90 0.10 0.33 0.71, 1.13 1.26 1.99 0.19 0.00 1.63, 2.43 3.18 0.95 0.19 0.81 0.62, 1.45 0.87 0.99 0.02 0.70 0.96, 1.03 0.98 1.12 0.04 0.00 1.05, 1.2 0.99 1.13 0.11 0.22 0.92, 1.39 1.54 1.44 0.11 0.00 1.24, 1.68 0.95 1.42 0.06 0.00 1.3, 1.56 1.65 0.87	2004 2004 Standard Error P- Value 95% Cl Natio Odds Ratio Standard Error P- Value 95% Cl Natio Odds Ratio Standard Error Standard Error 0.51 0.09 0.00 0.35, 0.73 0.27 0.07 2.18 0.31 0.00 1.61, 2.95 1.65 0.19 Referent - - - - - 2.00 0.22 0.00 1.59, 2.52 2.09 0.22 0.61 0.21 0.16 0.3, 1.25 0.68 0.23 1.37 0.12 0.00 1.14, 1.66 2.55 0.33 0.90 0.10 0.33 0.71, 1.13 1.26 0.19 1.99 0.19 0.00 1.63, 2.43 3.18 0.63 0.95 0.19 0.81 0.62, 1.45 0.87 0.22 0.99 0.02 0.70 0.96, 1.03 0.98 0.05 1.12 0.04 0.00 1.05, 1.2 0.99	2004 2014 Odds Ratio Standard Error P- Value 95% CI Natio Odds Ratio Standard Error P- Value 0.51 0.09 0.00 0.35, 0.73 0.27 0.07 0.00 2.18 0.31 0.00 1.61, 2.95 1.65 0.19 0.00 Referent - - - - - - - 2.00 0.22 0.00 1.59, 2.52 2.09 0.22 0.00 0.61 0.21 0.16 0.3, 1.25 0.68 0.23 0.27 1.37 0.12 0.00 1.14, 1.66 2.55 0.33 0.00 0.90 0.10 0.33 0.71, 1.13 1.26 0.19 0.15 1.99 0.19 0.81 0.62, 1.45 0.87 0.22 0.60 0.95 0.19 0.81 0.62, 1.45 0.87 0.22 0.60 0.99 0.02 0.70 0.96, 1.03 0.98 0.05

Table 2. Adjusted Odd Ratio from Multivariate Logit Models of CRN, 2004 and 2014

Legend: Results from multivariable logit model with CRN as binary outcome and the numbers were weighted using 2004 HRS sample weight.

Table 3. Characteristics by age groups and deceased.

	Alive through the follow-up	Deceased during follow-up	
	(N=9,896 for 50-79; 529 for	(N=3,358 for 50-79, 2,137 for	
	80+). representing 45.250.287:	80+), representing 12,271,988;	
	1.856.348 after 2004 Weights	5.853.579 after 2004 Weights	P-value
Age group 50-79 in 2004			
Any CRN during the follow-up: %	27.15	21.20	<0.001
Average CRN during the follow- up: %/Year (s.d.)	9.20 (0.19)	10.8 (0.25)	<0.001
Age group 80+ in 2004			
	6		
Any CRN during the follow-up: %	12.39	8.63	<0.001
Average CRN during the follow-			
up: %/Year (s.d.)	3.1 (1.0)	4.6 (1.7)	<0.001

Figure 1. Population-adjusted CRN Rates by Age Cohort 20004-2014

Legend: the numbers were weighted using 2004 HRS sample weight.

Figure 2. Trend in Ratio of Social Security Income to Total Income by Age Cohort 2004-2014.

Legend: the numbers were weighted using 2004 HRS sample weight.

Figure 3. Trend in Total Income Adjusted for Inflation by Age Cohort

Legend: the numbers ... rates from the U.S. Department of Len. Legend: the numbers were weighted using 2004 HRS sample weight. The total income is adjusted using inflation

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

Legend: the numbers were weighted using 2004 HRS sample weight.

Legend: the numbers were weighted using 2004 HRS sample weight.

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

Legend: the numbers were weighted using 2004 HRS sample weight. The total income is adjusted using inflation rates from the U.S. Department of Labor's Bureau Labor Statistics' Inflation Calculator.

Economic Variables	
SOCIAL SECURITY INCOME	
SUPPLEMENTAL SECURITY INCOME	
AMOUNT FROM WORK SELF EMPL LCY	,
AMOUNT FROM WAGES AND SALARY I	LCY
AMOUNT FROM PROF PRAC OR TRADE	E LCY
AMOUNT FROM TIP BONUS COMMISSI	ION LCY
AMOUNT FROM WORK 2ND JOB LCY	
AMOUNT FROM UNEMPLOYMENT - LC	Υ
AMOUNT FROM WORKERS COMP LCY	
AMOUNT FROM WELFARE LCY	
NC FROM OTHER IRA ANNUITY AMT	
OTHER PENSIONS	
OTHER ANNUITIES	
STOCK INCOME AMOUNT - LCY	$\overline{\mathbf{A}}$
BOND INCOME AMOUNT - LCY	
CDS INCOME AMOUNT - LCY	
OTHER ASSET INCOME AMOUNT	
OTHER SOURCES OF INCOME AMOUNT	F - LCY
VETERAN BENEFITS	
AMOUNT RECEIVED FROM PENSION	
AMOUNT FROM ANNUITY	
AMOUNT FROM FOOD STAMPS	

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.
Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.
Upload your completed checklist as an extra file when you submit to a journal.
In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them

as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for

reporting observational studies.

Reporting Item

Title and abstract

Title

<u>#1a</u> Indicate the study's design with a commonly used term in the 1
 title or the abstract

Number

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

1 2	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2
3 4 5			of what was done and what was found	
6 7 8	Introduction			
9 10 11	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
12 13 14	rationale		investigation being reported	
15 16	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
17 18 19			hypotheses	
20 21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
26 27 28	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	6
20 29 30			periods of recruitment, exposure, follow-up, and data	
31 32 33			collection	
34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	6
36 37 38			selection of participants. Describe methods of follow-up.	
39 40	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of	6
41 42 43			exposed and unexposed	
44 45 46	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	7
47 48			confounders, and effect modifiers. Give diagnostic criteria, if	
49 50 51			applicable	
52 53 54	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	6
55 56	measurement		of methods of assessment (measurement). Describe	
57 58			comparability of assessment methods if there is more than	
59 60		For peer	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ	Open

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright.

1			one group. Give information separately for for exposed and	
2 3 4			unexposed groups if applicable.	
5 6 7	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	7
8 9 10 11	Study size	<u>#10</u>	Explain how the study size was arrived at	9
12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	7
14 15 16	variables		analyses. If applicable, describe which groupings were	
17 18			chosen, and why	
19 20 21	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	
22 23	methods		control for confounding	
24 25 26			6	
27 28				
29 30				
31 32	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	
33 34 35	methods		interactions	
36 37 38			8	
39 40	Statistical	<u>#12c</u>	Explain how missing data were addressed	
42 43	methods		8	
44 45				
46 47	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	
48 49 50	methods		8	
52 53	Statistical	<u>#12e</u>	Describe any sensitivity analyses N/A	
54 55 56 57 58	methods			
59 60		For peer	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3	Results				
4 5 6 7	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg		
			numbers potentially eligible, examined for eligibility,		
8 9 10			confirmed eligible, included in the study, completing follow-		
11 12			up, and analysed. Give information separately for for		
13 14 15 16 17 18			exposed and unexposed groups if applicable. 9		
	Participants	<u>#13b</u>	Give reasons for non-participation at each stage N/A		
19 20	Participants	<u>#13c</u>	Consider use of a flow diagram N/A		
21 22 23 24					
25 26 27	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,		
27 28 29			clinical, social) and information on exposures and potential		
30 31			confounders. Give information separately for exposed and		
32 33			unexposed groups if applicable. 9		
34 35 36 37	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each		
38 39			variable of interest 6		
40 41 42 43					
43 44 45 46 47 48 49 50 51	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount) 9		
	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures		
52 53			over time. Give information separately for exposed and		
54 55 56 57			unexposed groups if applicable. 9		
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

1 2	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-
3 4			adjusted estimates and their precision (eg, 95% confidence
5 6 7			interval). Make clear which confounders were adjusted for
8 9			and why they were included 9
10 11 12	Main results	<u>#16b</u>	Report category boundaries when continuous variables were
13 14 15			categorized N/A
16 17	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into
18 19 20			absolute risk for a meaningful time period N/A
21 22 23 24			
24 25 26	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and
27 28			interactions, and sensitivity analyses 10
29 30 31 32	Discussion		
33 34 35	Key results	<u>#18</u>	Summarise key results with reference to study objectives 11
36 37	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources
38 39			of potential bias or imprecision. Discuss both direction and
40 41 42			magnitude of any potential bias. 13
43 44 45	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,
46 47			limitations, multiplicity of analyses, results from similar
48 49 50			studies, and other relevant evidence. 12
51 52 53	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study
54 55			results 11
50 57 58	Other Information		
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the
3 4			present study and, if applicable, for the original study on
5 6 7			which the present article is based 14
, 8 9	None The STR	OBE checkl	list is distributed under the terms of the Creative Commons Attribution
10 11 12	License CC-BY	7. This check	klist can be completed online using <u>https://www.goodreports.org/</u> , a tool
13 14	made by the E		etwork in collaboration with Penelope.ai
15 16			
17 18			
19 20			
21 22			
23 24			
25 26			
27 28			
29 30			
31 32			
33 34			
35 36			
37 38			
39 40			
41 42			
43 44			
45 46 47			
47 48 40			
49 50 51			
52 53			
55 55			
56 57			
58 50			
60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Decreasing Rates of Cost-Related Medication Non-Adherence by Age Advancement Among Old and Older-Old Americans: A Longitudinal Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051480.R1
Article Type:	Original research
Date Submitted by the Author:	23-Sep-2021
Complete List of Authors:	Zhang, James; The University of Chicago, Medicine; 5841 S Maryland Ave. Bhaumik, Deepon Meltzer, David; The University of Chicago
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Health economics, Health policy, Health services research
Keywords:	Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PUBLIC HEALTH, EPIDEMIOLOGY, HEALTH ECONOMICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Decreasing Rates of Cost-Related Medication Non-Adherence by Age Advancement Among Old and Older-Old Americans: A Longitudinal Study James X. Zhang[±], PhD, MS; Deepon Bhaumik[#], BA; David O. Meltzer^{±,±},[#], MD, PhD [±]Department of Medicine, the University of Chicago; [#]Department of Health Policy and Management, Yale School of Public Health, Yale University; #Harris School of Public Policy, #Department of Economics, The University of Chicago. Corresponding author: James X. Zhang, PhD, MS, Department of Medicine, Section of Hospital Medicine The University of Chicago, 5841 S Maryland Ave., MC 5000, Chicago, IL 60637 Email: xzhang1@medicine.bsd.uchicago.edu Total number of words: 2,716 Running title: Aging and cost-related medication non-adherence Key words: cost-related medication non-adherence, aging, paradox Total number of tables: 2 Total number of Figures: 2 ACKNOWLEDGEMENT The study was presented in part at the International Health Economics World Congress, Basel, Switzerland, July 16, 2019. This study is supported in part by Chicago Center for Diabetes Translation Research (CCDTR) Pilot and Feasibility Grant (Zhang & Meltzer) (P30DK092949), NIH 5R21AG053749 (Meltzer & Zhang), and NIH P30AG066619 (Meltzer & Zhang).
Abstract

(300 words)

Objectives: The access barrier to medication has been a persistent and elusive challenge in the US health care system and around the globe. Cost-related medication non-adherence (CRN) is an important measure of medication non-adherence behaviors that aim to avoid costs. While there is a body of literature on the cross-sectional analysis of CRN internationally, longitudinal study of CRN behaviors for the aging population is rare.

Design: Longitudinal study using the Health and Retirement Study to evaluate self-reported CRN biennially.

Setting: General population of older Americans.

Participants: Two cohorts of Americans aged between 50 and 79 (old) and 80 or above (olderold) followed from 2004 to 2014.

Intervention: Observational with no intervention.

Primary and secondary outcome measures: Longitudinal CRN rates for two cohorts of Americans aged between 50 and 79 (old) and 80 or above (older-old) followed from 2004 to 2014. Population-averaged effects of a broad set of variables including socio-demographics, Social Security (SS) income to total income ratio, insurance status, functional status, and comorbid conditions on CRN were derived using Generalized Estimating Equation (GEE) by taking into account repeated measurements of CRN over time for the two cohorts, respectively.

Results: The two old and older-old cohorts with 13,254 and 9,856 respondents represented 57.5 million and 7.7 million people in 2004, respectively. Decreasing CRN was observed in both old and older-old cohorts despite their increasing limitations in functional status and disease burden as measured by comorbidities and their increasing or steady reliance on social security income as the primary source of income. Aging is associated with lower rates of CRN among both cohorts (p<0.01, respectively), controlling for all other risk factors.

Conclusion: The paradox of lower CRN with higher disease burden and increasing reliance on social security income suggests populations' CRN behaviors change as Americans age, bearing implications to social policy.

Summary

Strength of the study:

- Nationally representative study sample
- Longitudinal follow-up of CRN which is rare in the literature
- Population-averaged effects of a broad set of variables on CRN using the Generalized Estimating Equation (GEE)
- Social Security Income/total income variable in addition to a rich set of insurance variables for risk adjustment

Weakness of the study

Does not have information in change in the consumption bundle such as the other discretionary spending over time.

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

Introduction

The access barrier to medication has been a persistent and elusive challenge in the US health care system and around the globe. A recent national poll indicated that among those currently taking prescription drugs, one-fourth of adults (24 percent) and seniors (23 percent) have difficulty in affording their prescription drugs including about one in ten (overall and among seniors) saying it is "very difficult." Cost-related medication non-adherence (CRN) is a metric measuring such cost-avoiding behaviors and has seen an emerging body of literature on its prevalence internationally. For example, in a study of adults aged 55 and older and living in the community in 11 developed countries, the authors found that following the lead of the U.S. with 16.8% in CRN to medication, Canada had the second highest national prevalence of CRN (8.3%), followed by Australia (6.8%).² Many patients engage in strategies to avoid such costs when facing difficult choices between their medication needs and other basic needs, including delaying filling prescription, not filling prescriptions, skipping doses and splitting doses. Many behavioral, social, economic, medical, and policy-related factors have been identified as contributing factors for medication non-adherence.³⁻⁵ Medication non-adherence is associated with increased hospitalization rates and emergency department visits, higher mortality rates, worse patient outcomes, and increased downstream costs that impose heavy, avoidable healthcare costs on society.⁶⁻¹¹ Hence it is pressing for researchers, practitioners, and policy makers to gain insight into the key factors that drive the difference in CRN across population strata.

Among the many risk factors for CRN, age receives little attention even though younger disabled patients have been found to have higher CRN rates among the Medicare population.¹² In essence, age is a complex variable reflecting multiple dimensions of biological and social factors that can potentially drive-up CRN. For example, since older people may have protection from the

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

Medicare insurance coverage including Part D outpatient prescription drug program, and at the same time, older people also have lower income and may suffer from multiple chronic conditions which require greater out-of-pocket spending on medications, and thus the tension between their resources and medication needs is relatively higher. The literature on the effect of aging process on CRN is scant, and most reported differences in CRN due to age is examined in the context of cross-sectional studies, which makes it unclear if the age difference in CRN is due to generational difference (i.e., cohort effect) or the aging process itself and also lacks of adequate control for the confounding factors. It is important to study the effects of the aging process on CRN because if the older people with less economic resource and higher disease burden reported lower CRN rates, *ceteris paribus*, it may mean they are actually cutting down spending on other basic needs and that therefore social policy may need to be revamped to address this hidden crisis. On the other hand, this is an interesting question about the behavioral change in the aging process, as it may reflect the change in the assessment of the value of medication (and life) as people progress to more advanced age.

We hence propose to study the CRN behaviors among the older population in the US longitudinally. The longitudinal analysis isolates the cohort effect from its tempering of the age effect, and the broad set of controlling variables (particularly income and insurance variables) further isolate the potential confounding. We used the Health and Retirement Study (HRS), a nationally representative sample of older people (50 years or older), to generate population-averaged effects of age on CRN, controlling for a broad set of socio-demographic, insurance, and health variables.

Methods

Data

Data from HRS from 2004 to 2014 were used for this study. The HRS is a longitudinal panel study that surveys a representative sample of Americans over the age of 50 about their income, employment, health insurance, physical health, functional status, and medical conditions.¹³ Data for the survey is collected primarily by telephone interview every 2 years. Mortality was recorded if the respondent was deceased during the follow-up.

CRN was measured by asking participants, "Sometimes people delay taking medication or filling prescriptions because of the cost. At any time since the last interview or in the last two years have you ended up taking less medication than was prescribed for you because of the cost?" Participants answered either yes or no, although they had the option to refuse to answer or say that they did not know. For those who refused to answer or say that they did not know, the answer is treated as no CRN was reported.

Cohort creation

We created two cohorts with age between 50 and 79 (old) and 80 or above (older-old) in 2004 and followed them to 2014 and evaluated CRN over time. The reason for creating two cohorts is to isolate the generational difference in CRN behaviors at baseline, and to compare the trajectory of CRN behaviors in these two cohorts by controlling other confounding factors. Such a grouping is also consistent with the older population defined by the US Census.¹⁴ The reason for the follow-up between 2004 and 2014 is that although the two cohorts experienced the Great Recession starting in 2008, the economy had largely recovered in steady growth by 2014 and hence this period of 10 years provides a clear picture of the trajectory of CRN pre-, during, and post-economic recession with up to six observations for each correspondent. The CRN rates were weighted to reflect the national estimates using 2004 survey weights.

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

Statistical analysis

Since our data included repeated measurement of CRN on a biannual basis for up to 6 measures, we developed a generalized estimating equation (GEE) to assess the populationaveraged effect of a broad set of risk factors, including advancing age, on CRN, taking into account correlations among repeated observations of the patients, which are quite often unknown.¹⁵ One strength of such an approach is lower variability and thus more efficient comparison, allowing us to detect a difference within socio-economic strata in a sample with modest size within socio-economic strata. The GEE model uses a binomial family function, a probit link function, and an exchangeable correlation structure to address the binary outcome variable and correlation among the longitudinal follow-ups of the respondents. There is no particular order effect in the repeated measures in this analysis, as patients can report CRN intermittently, and the research has shown patients are not always persistent in CRN.¹⁶ In this analysis, the value of age variable increases by two years for each respondent for each round of surveys from 2004 to 2014. Our examination of the population-averaged effect of each risk factor on CRN gives us further evidence about the relationship between age and CRN while holding other variables constant, and the offsetting effects among those variables.

Covariates

These covariates included socio-demographics including gender, race, and ethnicity. Since insurance status has been found an important predictor for CRN,¹⁷ we included a set of indicator variables for those who were enrolled in Medicare, Medicaid, other types of public insurance, private insurance, and no insurance in each round of survey, which changed over time. Enrollment in Medicaid would indicate that they were at the lowest rung of the economic ladder, since Medicaid is a means-tested, state-sponsored public insurance program for those who meet

BMJ Open

the poverty level defined by each state. Research has also shown those with Medicare-Medicaid dual eligibility (dual eligible) can have high CRN rates despite the additional insurance coverage, likely due to the fact that those at the bottom of the economic ladder are highly sensitive to the out-of-pocket payment or non-monetary reasons.¹⁸ Hence we included an indicator variable of Medicare-Medicaid dual eligibility in each round. The inclusion of Medicare, Medicaid coverage, Medicare-Medicaid dual eligibility and other insurance status variables will tease out the enabling effect of health insurance on overcoming resource limitation for the poor. Although not all respondents were eligible for Medicare, and a significant fraction of Medicare beneficiaries had creditable drug coverage and did not enroll in Medicare Part D outpatient prescription drug program,¹⁹ we included one additional indicator variable for Part D enrollment at each round between 2006 and 2014 to further control potential confounding.

We also included two variables on functional status: limitations in Activities of Daily Living (ADLs), and Instrumental Activities of Daily Living (IADLs) in each round of surveys.^{20,21} These two variables measure the number of limitations in performing tasks such as dressing, bathing, eating, toileting, getting out of bed, and walking (ADLs), and preparing meals, shopping, managing money, and taking phone calls (IADLs). Research has also that functional status is an important factor influencing CRN.²² We also included a set of comorbid conditions including diabetes, heart disease, stroke, and cancer in each round of surveys. These conditions are known to have high disease burden for patients in terms of both the need for continuous medical care and high costs of medication treatments.¹⁷

In addition, we created a variable for the ratio of social security (SS) to total income in each round of surveys in order to further isolate the effect of income on CRN from potential confounding. HRS has a rich set of questionnaires on sources of income and given that many of BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

the elderly are already in retirement and wage income would have been a poor proxy, we first created one variable for total income, including wages, pensions, unemployment benefits, SS income, and income from investments and financial assets for each patient. (See Appendix I for a list of sources of income). Because not every income-related variable is measured on a monthly basis, we extrapolated these variables to its annual amount. We then created a variable indicating the ratio of SS income to total income. Because not all respondents reported income, we created one dummy variable indicating those who did not report income. We set the SSI/Income variable to zero if income information is missing in its entirety or zero income was reported in the regression as SSI were unknown or zero. We think that SS-income ratio reflects the degree to which the respondent relies on SS income for their daily lives in relative terms. Research showed that in 2013, Medicare beneficiaries' average out-of-pocket health care spending was 41 percent of average per capita SS income,²³ suggesting the importance of using SS income as a benchmark for resource availability for the elderly at the population level. The higher SS-income ratio would indicate smaller room for trade-off between the medication needs and other daily needs as the respondents have no other economic resources to turn to once they use up the SS income, which is often too low to sustain a life given all of their disease burdens.

We compared the demographic variables, insurance status, and comorbid conditions for each cohort at 2004 and 2014 respectively, using Chi-squared tests. We compared the number of functional status between 2004 and 2014 for the two cohorts using t-tests. All analyses were weighted to reflect the population average. The analyses were conducted using Stata Version 14 (StataCorp, College Station, Texas 77845, USA).

Patient and Public Involvement

No patient involved.

BMJ Open

Results

Table 1 shows the demographics, SSI/total income ratio, insurance status, functional status, and comorbid conditions at the baseline of 2004 and at the end of follow-up of 2014, for the two old and older-old cohorts, with 13,254 and 9,856 respondents representing 57.5 million and 7.7 million people at the baseline, respectively. All respondents 50 years or old in the HRS were included. After 10 years, 9,856 and 529 patients remained alive in the two cohorts representing 45.2 million and 1.82 million people at 2014 after ascertaining death recorded in the HRS. The observed CRN prevalence rates were 10.4% and 4.6% at 2004, and decreased to 7.31% and 2.06% in 2014, for the old and older-old cohorts, (p<0.01, respectively). There were significant changes in patient mix in both cohorts over time. Overall, the functional limitations in both ADLs and IADLs, and the prevalence of comorbid conditions by four conditions increased in both cohorts (P<0.01, respectively).

Table 2 shows the population-averaged estimates of age effect along with other risk factors for the old and older-old cohorts, respectively. Aging is associated with lower rates of CRN among both cohorts (p<0.01, respectively), controlling for all other risk factors. In both cohorts, females were more likely to report CRN than males (p<0.01, p=0.04, respectively). While insurance status, comorbid conditions, and functional status had significant impact on CRN in the old cohort, such impact became statistically insignificant in the older-old cohort.

Figure 1 shows the observed CRN rates by age cohort from 2004 to 2014. There was a general downward trend in both age cohort, despite a small bump between 2008 and 2012 when the economy was in turmoil due to the Great Recession. Figure 2 shows the observed SSI/Income ratio by age cohort from 2002 to 2014. There was a general upward trend in the old age cohort, while the ratio held largely steady among the older-old cohort.

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

Discussion and Conclusions

There was a clear downward trend in the CRN prevalence rates in both old and older-old cohorts between 2004 and 2014, despite economic downturn after 2008 due to the Great Recession. After controlling for other risk factors including gender, race, ethnicity, various insurance status, comorbid conditions, and functional status, aging was significantly negatively associated with CRN as people age.

Such a steady decrease in CRN rates was accompanied by increasing limitations in functional status in both ADLs and IADLs and increasing prevalence of comorbid conditions, reflecting heightened frailty and disease burden in both cohorts as they aged. There was an increase in the Medicaid enrollment in both cohorts, which likely provides protection from CRN. However, even after adjusting for Medicaid and all other insurance variables, the clear pattern of decreasing CRN is still seen as the population ages.

This "paradox" of decreasing CRN rates among old Americans as they age, who rely increasingly on social security income and bear a higher disease burden, which requires a higher consumption of medications, seems to be robust, persisting through a series of controls for confounding factors. One possible explanation is that as the population ages and faces a shorter remaining life-span, the value of medication may change, resulting in the population changing their consumption bundle and devoting more resources to medication use. Because the elderly population is increasingly dependent on their fixed SS income, such a change in their consumption bundle will inevitably decrease their ability to afford other daily needs, such as housing, food, and transportation. There is little literature in this aspect of the loss of welfare due to the pressure to pay for the medications. More research is greatly needed to evaluate the adequacy of social policy to help the elderly cope with increasing demand for medications as

BMJ Open

they age. When CRN was examined longitudinally, one recent study suggested that younger age is a risk factor for persistent CRN.¹⁶ The evidence from this study corroborates that patient's behavior may evolve when they age.

This study is limited by the fact that the HRS does not have data to examine the subjective evaluation of consumption bundles in order to derive the exact cause of decreasing CRN despite increasing disease burden and decreasing economic resources. Nor does the HRS allows an exhaustive examination of consumption by goods and services. Future research should be directed to examine these issues and to further illuminate the changing consumption preferences of the elderly. Needless to say, such a change is forced upon them when the elderly is faced with decreasing economic resources at the same time as higher disease burdens. Further understanding of the coping mechanisms and trade-offs faced by the elderly may have profound implications for social policy that aims to protect the elderly.

Conclusion

In summary, we presented a clear case of decreasing CRN rates among the old and older-old cohorts despite decreasing economic resources, increasing disease burden, and increasing Medicaid coverage. Such a paradox is possibly driven by the change in preferences for medication or the perceived value of medications as the population ages. This may suggest a hidden gap in social policy as the elderly cope with increased burdens by reducing consumption of other goods and services which may reduce their overall well-being. More research is greatly needed to understand this phenomenon and improve social policy for our aging population.

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
-10 17
4/
48
49
50
51
52
53
54
55
55
50
5/
58
59
60

1 2

ACKNOWLEDGEMENT

The study was presented in part at the International Health Economics World Congress, Basel,

Switzerland, July 16, 2019. We are indebted to the constructive comments by the reviewer.

FUNDING STATEMENT

This study is supported in part by Chicago Center for Diabetes

Translation Research (CCDTR) Pilot and Feasibility Grant (Zhang & Meltzer) (P30 DK092949), NIH

5R21AG053749 (Meltzer & Zhang), and NIH P30AG066619 (Meltzer & Zhang). The funders have no

role in design and conduct of the study; collection, management, analysis, and interpretation of the data;

preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

AUTHOR CONTRIBUTIONS

Dr Zhang had full access to all of the data in the study and takes responsibility for the

integrity of the data and the accuracy of the data analysis.

Concept and design: Zhang.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Zhang.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Bhaumik, Zhang.

Obtained funding: Meltzer, Zhang.

Administrative, technical, or material support: Meltzer, Zhang.

Supervision: Zhang.

COMPETING INTEREST STATEMENT

Dr. Meltzer reported receiving compensation from CVS Consultant outside the submitted work. No other disclosures were reported.

ETHICAL APPROVAL

The public use file of the Health and Retirement Study does not have human subjects, hence patient consent or the approval by the Institutional Review Board is not required.

1 2		
3 4	DATA SHARING STATEMENT	
5 6	The public use file of the Health and Retirement Study can be downloaded directly from its webpage accessible at https://hrs.isr.umich.edu/about.	
/ 8		
9 10		
11		
12 13		
14 15		
16 17		
18		
19 20		
21 22		
23 24		
25		
20		
28 29		
30 31		
32 33		
34		
36		
37 38		
39 40		
41 42		
43		
45		
46 47		
48 49		
50 51		
52		
53 54		
55 56		
57 58		1/
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	14

REFERENCES

- 1. Kaiser Family Foundation. KFF Health Tracking Poll February 2019: Prescription Drugs. 2019. Available <u>https://www.kff.org/health-costs/poll-finding/kff-health-tracking-poll-february-2019-prescription-drugs/</u>. Accessed August 14, 2020.
- 2. Morgan SG, Lee A. Cost-related non-adherence to prescribed medicines among older adults: a crosssectional analysis of a survey in 11 developed countries. BMJ Open 2017;7:e014287.
- 3. Gellad WF, Grenard J, McGlynn EA. A review of barriers to medication adherence: a framework for driving policy options. RAND Corporation, 2009. Available at: http://www.rand.org/pubs/technical reports/TR765.html. Accessed March 1, 2019.
- 4. DiMatteo MR. Variations in patients' adherence to medical recommendations: a quantitative review of 50 years of research. Med Care. 2004; 42:200-9.
- National Council on Patient Information and Education. Enhancing Prescription Medicine Adherence: A National Action Plan. 2007. Available at <u>http://www.talkaboutrx.org/documents/enhancing_prescription_medicine_adherence.pdf</u>. Accessed February 4, 2017.
- Tamblyn R, Laprise R, Hanley JA, Abrahamowicz M, Scott S, Mayo N, Hurley J, Grad R, Latimer E, Perreault R, McLeod P, Huang A, Larochelle P, Mallet L Adverse events associated with prescription drug cost-sharing among poor and elderly persons. JAMA. 2001; 285:421–429.
- 7. Mojtabai R, Olfson M. Medication costs, adherence, and health outcomes among Medicare beneficiaries. Health Aff. 2003; 22(4):220–229.
- 8. Heisler M, Langa KM, Eby EL, Fendrick AM, Kabeto MU, Piette JD. The health effects of restricting prescription medication use because of cost. Med Care. 2004; 42:626–634.
- 9. Ho PM, Rumsfeld JS, Masoudi FA, McClure DL, Plomondon ME, Steiner JF, Magid DJ. Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. Arch Intern Med. 2006; 166:1836–1841.
- Ho PM, Spertus JA, Masoudi FA, Reid KJ, Peterson ED, Magid DJ, Krumholz HM, Rumsfeld JS. Impact of medication therapy discontinuation on mortality after myocardial infarction. Arch Intern Med. 2006; 166:1842–1847.
- Iuga AO, McGuire MJ. Adherence and health care costs. Risk Manag Healthc Policy. 2014 Feb 20; 7:35-44.
- 12. Soumerai SB, Pierre-Jacques M, Zhang F, et al. Cost-related medication nonadherence among elderly and disabled Medicare beneficiaries: a national survey 1 year before the medicare drug benefit. Arch Intern Med. 2006;166(17):1829-1835.
- 13. The Health and Retirement Study. Available <u>https://hrs.isr.umich.edu/about</u>. Accessed August 20, 2020.
- 14. The US Census. The Older Population in the United States: 2004. Available <u>https://www.census.gov/data/tables/2004/demo/age-and-sex/2004-older-population.html</u>. Accessed August 24, 2020.
- 15. Liang KY and Zeger S. Longitudinal data analysis using generalized linear models. *Biometrika.* 1986; 73 (1): 13–22.

16.	De Avila JL, Meltzer DO, Zhang JX. Prevalence and Persistence of Cost-Related
	Medication Nonadherence Among Medicare Beneficiaries at High Risk of
	Hospitalization. JAMA Netw Open. 2021;4(3):e210498.
	doi:10.1001/jamanetworkopen.2021.0498
17.	Briesacher BA, Gurwitz JH, Soumerai SB. Patients at-risk for cost-related medication nonadherence: a review of the literature. J Gen Intern Med. 2007;22(6):864-71.
18.	Zhang JX, Meltzer DO. The High Cost-related Medication Non-adherence Rate
	Among Medicare-Medicaid Dual-Eligible Diabetes Patients. J Health Med Econ.
	2016;2(2).
19.	Kaiser Family Foundation. An Overview of the Medicare Part D Prescription Drug
	Benefit. Available at https://www.kff.org/medicare/fact-sheet/an-overview-of-the-
	medicare-part-d-prescription-drug-benefit/. Accessed September 22, 2021.
20.	Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the
	aged, the index of adl: a standardized measure of biological and psychosocial

function. Journal of American Medical Association. 1963; 185:914-919.

instrumental activities of daily living. Gerontologist. 1969;9(3):179-186.

22. Zhang JX, Meltzer DO. Risk factors for cost-related medication non-adherence

23. Kaiser Family Foundation. Medicare Beneficiaries' Out-of-Pocket Health Care

August 24, 2020.

among older patients with cancer. Integr Cancer Sci Ther. 2015;2(6):300-304.

Spending as a Share of Income Now and Projections for the Future. 2018. Available

https://www.kff.org/medicare/report/medicare-beneficiaries-out-of-pocket-health-

care-spending-as-a-share-of-income-now-and-projections-for-the-future/. Accessed

21. Lawton MP, Brody EM. Assessment of older people: self-maintaining and

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright.

1
2
3
4
5
6
/
8
9 10
10
17
12
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 25
35
20 27
22
20
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Table 1. Socio-econor	mic and health	characteristics	of the	study	sample.
-----------------------	----------------	-----------------	--------	-------	---------

	Age 50-79 in 2004		P-value	Age ≥ 80 in 2004		P-value
	2004	2014		2004	2014	
Total N: sample	13,254	9,856		2,666	529	
(weighted)	(57,522,395)	(45,250,407)		(7,709,927)	(1,856,348)	
	10.42	7.31	< 0.01	4.64	2.06	< 0.01
CRN (% of total)						
Demographics						
Mean Age (SD)	62.3 (8.2)	70.9 (7.7)	< 0.01	84.6 (3.9)	92.8 (2.6)	< 0.01
Male N (%)	26,537,035	19,959,531	< 0.01	2,865,953	549,748	< 0.01
	(46.13)	(44.11)		(37.17)	(29.61)	
Race						
	46,566,916	36,778,482	< 0.01	6,722,307	1,648,583	< 0.01
White N (%)	(81.0)	(81.3)	-0.01	(87.2)	(88.8)	<0.01
Plack N (%)	5,422,810	3,946,334	<0.01	563,630	123, 121	<0.01
DIACK IN (70)	(9.4)	(8.7)	<0.01	(7.5)	(0.7)	<0.01
Other N (%)	(27)	(2.9)	<0.01	(1.1)	(0,7)	<0.01
	1 498 296	3 218 998	<0.01	341 551	70 304	<0.01
Hispanic N (%)	(7.0)	(7.1)	0.01	(4.4)	(3.79)	0.01
High School Degree N	44,792,359	36,771,098	< 0.01	5,104,259	1,382,472	< 0.01
(%)	(78.1)	(81.6)		(66.2)	(74.5)	
Income						
Did not report income	23,628,988	29,017,063	< 0.01	1,700,631	6,366,197	< 0.01
N(%)	(41.08)	(50.44)		(22.06)	(82.57)	
Mean Social Security	0.34 (0.40)	0.56 (0.40)	< 0.01	0.72 (0.32)	0.72 (0.33)	< 0.10
to Income Ratio (SD)						
Health Insurance						
status						
	23,977,429	33,886,106	< 0.01	7,551,255	1,783,088	< 0.01
Medicare N (%)	(41.73)	(75.22)		(98.27)	(96.82)	
	4,347,512	4,195,261	< 0.01	741,106	376,197	< 0.01
Medicaid Only N (%)	(7.57)	(9.34)	<0.01	(9.68)	(20.77)	<0.01
Dual Eligible N (%)	2,782,874	3,546,866	<0.01	697,373	345,825	<0.01
Dual Lligible N (70) Drivate Insurance N	(4.03)	24 488 100	<0.01	5 025 727	707.828	<0.01
(%)	(72.28)	(54 58)	<0.01	(65 64)	(44 76)	<0.01
(70) Other Dublie	2 972 999	3 075 241	<0.01	387 785	118 750	<0.01
	(5.17)	(6.82)	-0.01	(5.05)	(6.44)	-0.01
	3 861 461	1 106 071	<0.01	14.157	17 155	<0.01
No Insurance N (%)	(6 71)	(2.08)	<0.01	(0.18)	(0.22)	<0.01
	0(0)	11 189 901	_	0 (0)	661 142	-
Medicare Part D		(24.73)			(35.62)	
Functional status						
Activities of Daily Life	1.11 (1.93)	1.20 (1.97)	< 0.01	1.36 (1.94)	2.19 (2.27)	< 0.01
N (SD)						
(dress, bath, walk, eat,						
bed, toilet)						
Instrumental Activities	0.24 (0.65)	0.35 (0.86)	< 0.01	0.85 (1.24)	1.82 (1.65)	< 0.01
of Daily Life N (SD)						

1
r
Z
3
4
÷
5
6
7
,
8
9
10
10
11
12
12
15
14
15
16
10
17
18
10
19
20
21
21
22
23
24
24
25
26
27
27
28
29
20
50
31
32
22
55
34
35
20
30
37
38
20
39
40
41
40
42
43
44
45
45
46

(meal, shop, phone,						
money)						
Comorbid condition						
	6,729,897	8,279,802	< 0.01	1,601,000	463,700	< 0.01
Cancer N (%)	(11.8)	(18.5)		(21.1)	(25.4)	
	9,870,732	11,607,147	< 0.01	1,268,614	387,277	< 0.01
Diabetes N (%)	(17.3)	(25.9)		(16.8)	(21.2)	
Heart Condition N	11,463,265	12,694,226	< 0.01	3,141,721	897,113	< 0.01
(%)	(20.07)	(28.3)		(41.5)	(49.21)	
	2,981,224	3,558,686	< 0.01	972.042	392,876	< 0.01
Stroke N (%)	(5.2)	(7.94)		(12.8)	(21.6)	
Legend: the numbers were	e weighted using	g 2004 HRS sam	ple weight ex	cept the first rov	w representing	the sample.

	Old cohort	(aged 50-79	in 2004)		Old cohor	t (aged 80+	- in 2004)	
	Coef.	P>z	95% CI Lower bound	95% CI Upper bound	Coef.	P>z	95% CI Lower bound	95% CI Upper bound
Age	-0.03	< 0.01	-0.03	-0.03	-0.03	< 0.01	-0.05	-0.01
Female	0.31	< 0.01	0.26	0.36	0.15	0.04	0.01	0.30
White	Referent	Referent	Referent	Referent	Referent	Referent	Referent	Referent
Black	0.21	< 0.01	0.14	0.27	0.41	< 0.01	0.20	0.62
Other Race	0.08	0.33	-0.08	0.23	-0.51	0.21	-1.31	0.29
Hispanic	0.02	0.60	-0.06	0.10	0.18	0.16	-0.07	0.44
SSI/income Ratio	0.10	< 0.01	0.04	0.16	0.14	0.12	-0.03	0.31
Not reporting income	-0.09	<0.01	-0.14	-0.03	-0.08	0.34	-0.26	0.09
High School	-0.23	< 0.01	-0.29	-0.17	-0.05	0.54	-0.20	0.11
Medicare	Referent	Referent	Referent	Referent	Referent	Referent	Referent	Referent
Medicaid	-0.10	0.13	-0.22	0.03	0.35	0.12	-0.10	0.80
Dual eligibility	-0.06	0.41	-0.19	0.08	-0.41	0.09	-0.88	0.06
Uninsured	0.30	< 0.01	0.21	0.38	0.12	0.76	-0.65	0.89
Private Insurance	-0.20	< 0.01	-0.25	-0.15	-0.11	0.12	-0.24	0.03
Other Public Insurance	-0.29	< 0.01	-0.40	-0.19	-0.30	0.11	-0.66	0.07
Part D	0.13	< 0.01	0.08	0.18	< 0.01	0.97	-0.13	0.13
Diabetes	0.27	< 0.01	0.22	0.32	0.01	0.92	-0.20	0.22
Cancer	0.01	0.72	-0.05	0.07	-0.04	0.60	-0.21	0.12
Heart	0.22	< 0.01	0.17	0.27	0.11	0.12	-0.03	0.24
Stroke	0.06	0.15	-0.02	0.15	0.13	0.15	-0.05	0.32
ADL Deficiency	0.01	0.03	< 0.01	0.02	0.01	0.45	-0.02	0.04
IADL Deficiency	0.07	< 0.01	0.05	0.10	0.02	0.60	-0.04	0.07

Table 2. Association between Age, Other Risk Factors and CRN from Generalized Estimating Equation for Old, and Older-old cohorts from 2004 to 2014.

Legend: Results from Generalized Estimating Equation with CRN as binary outcome and weighted using 2004 HRS sample weight ADL: Activities of Daily Living; IADL: Instrumental Activities of Daily Living.

Legend: the numbers were weighted using 2004 HRS sample weight.

Figure 2. Trend in Ratio of Social Security Income to Total Income by Age Cohort 2004-2014.

Legend: the numbers were weighted using 2004 HRS sample weight. Data included those who reported non-zero total income only.

Appendix I. Source of Income

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright.

BMJ Open

Legend: the numbers were weighted using 2004 HRS sample weight.

139x101mm (96 x 96 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright.

Legend: the numbers were weighted using 2004 HRS sample weight. Data included those who reported nonzero total income only

139x101mm (96 x 96 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

Appendix I. Source of Income

	_
SOCIAL SECURITY INCOME	
SUPPLEMENTAL SECURITY INCOME	_
AMOUNT FROM WORK SELF EMPL LCY	
AMOUNT FROM WAGES AND SALARY LCY	
AMOUNT FROM PROF PRAC OR TRADE LCY	
AMOUNT FROM TIP BONUS COMMISSION LCY	
AMOUNT FROM WORK 2ND JOB LCY	
AMOUNT FROM UNEMPLOYMENT - LCY	
AMOUNT FROM WORKERS COMP LCY	
AMOUNT FROM WELFARE LCY	-
INC FROM OTHER IRA ANNUITY AMT	
OTHER PENSIONS	1
OTHER ANNUITIES	1
STOCK INCOME AMOUNT - LCY	1
BOND INCOME AMOUNT - LCY	1
CDS INCOME AMOUNT - LCY	-
OTHER ASSET INCOME AMOUNT	
OTHER SOURCES OF INCOME AMOUNT - LCY	-
VETERAN BENEFITS	
AMOUNT RECEIVED FROM PENSION	
AMOUNT FROM ANNUITY	
AMOUNT FROM FOOD STAMPS	

Renor	tina che	ecklist for cohort study								
Кероп		connorror confort study.								
Based on the	e STROBE co	hort guidelines.								
Instruction	ns to autho	Drs								
Complete this	Complete this checklist by entering the page numbers from your manuscript where readers will find									
each of the it	ems listed be	low.								
Your article n	nay not currer	ntly address all the items on the checklist. Please mo	odify your text to							
include the m	nissing informa	ation. If you are certain that an item does not apply,	please write "n/a" and							
provide a sho	ort explanatior	ı.								
Upload your	completed ch	ecklist as an extra file when you submit to a journal.								
In your metho	ods section, s	ay that you used the STROBE cohortreporting guide	elines, and cite them							
as:										
von Elm E, A	ltman DG, Eg	ger M, Pocock SJ, Gotzsche PC, Vandenbroucke Jl	P. The Strengthening							
the Reporting	g of Observati	onal Studies in Epidemiology (STROBE) Statement	: guidelines for							
reporting obs	servational stu	dies.								
			Page							
		Reporting Item	Number							
Title and ab	stract									
Title	<u>#1a</u>	Indicate the study's design with a commonly used	term in the 1							
		title or the abstract								
	For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xh	tml							

1 2	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2
3 4 5			of what was done and what was found	
6 7 8	Introduction			
9 10 11	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
12 13	rationale		investigation being reported	
14 15 16	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
17 18 19			hypotheses	
20 21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
26 27 28	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	6
29 30			periods of recruitment, exposure, follow-up, and data	
31 32 33			collection	
34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	6
36 37 38			selection of participants. Describe methods of follow-up.	
39 40	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of	6
41 42 43			exposed and unexposed	
44 45 46	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	7
47 48			confounders, and effect modifiers. Give diagnostic criteria, if	
49 50 51			applicable	
52 53	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	7,8,9
54 55 56	measurement		of methods of assessment (measurement). Describe	
57 58			comparability of assessment methods if there is more than	
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 27 of 29			BMJ Open	
1			one group. Give information separately for for exposed and	
2 3 4			unexposed groups if applicable.	
5 6 7	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	7
8 9 10	Study size	<u>#10</u>	Explain how the study size was arrived at	10
11 12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	7,8,9
14 15	variables		analyses. If applicable, describe which groupings were	
16 17 18			chosen, and why	
19 20 21	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	
22 23 24	methods		control for confounding	
25 26 27 28 29 30			7	
31 32	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	
33 34 35	methods		interactions	
36 37 38			6	
39 40 41	Statistical	<u>#12c</u>	Explain how missing data were addressed	
42 43 44 45	methods		9	
45 46 47	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	
48 49 50 51	methods		8	
52 53	Statistical	<u>#12e</u>	Describe any sensitivity analyses N/A	
54 55 56 57 58	methods			
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 2	Results		
5 4 5	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg
6 7			numbers potentially eligible, examined for eligibility,
8 9 10			confirmed eligible, included in the study, completing follow-
10 11 12			up, and analysed. Give information separately for for
13 14 15			exposed and unexposed groups if applicable. 9
16 17 18	Participants	<u>#13b</u>	Give reasons for non-participation at each stage N/A
19 20 21 22 23 24	Participants	<u>#13c</u>	Consider use of a flow diagram N/A
25 26 27	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,
27 28 29			clinical, social) and information on exposures and potential
30 31			confounders. Give information separately for exposed and
32 33 34			unexposed groups if applicable. 9
35 36 37	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each
38 39			variable of interest 9, 16
40 41 42			
44 45 46 47 48	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount) 7
49 50 51	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures
52 53			over time. Give information separately for exposed and
54 55 56 57			unexposed groups if applicable. 10, 16
58 59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-
3 4			adjusted estimates and their precision (eg, 95% confidence
5 6 7			interval). Make clear which confounders were adjusted for
8 9			and why they were included 10, 16, 17, 18
10 11 12	Main results	<u>#16b</u>	Report category boundaries when continuous variables were
13 14 15			categorized N/A
16 17 18	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into
19 20			absolute risk for a meaningful time period N/A
21 22 23 24			
25 26	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and
27 28			interactions, and sensitivity analyses 10
29 30 31 32	Discussion		
33 34 35	Key results	<u>#18</u>	Summarise key results with reference to study objectives 11
36 37	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources
38 39 40			of potential bias or imprecision. Discuss both direction and
41 42 43			magnitude of any potential bias. 12
44 45	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,
46 47			limitations, multiplicity of analyses, results from similar
48 49 50			studies, and other relevant evidence. 11
51 52 53	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study
54 55			results 12
56 57 58	Other Information		
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the
5 4			present study and, if applicable, for the original study on
5 6			which the present article is based 13
7 8			
9 10 11 12	None The STROBE checklist is distributed under the terms of the Creative Commons Attribution		
	License CC-BY. This checklist can be completed online using https://www.goodreports.org/, a tool		
13 14	made by the EQUATOR Network in collaboration with Penelope.ai		
15 16			
17 18			
19 20			
21			
22 23			
24 25			
26			
27 28			
29 30			
31			
32 33			
34 35			
36			
37 38			
39 40			
41 42			
43			
44 45			
46 47			
48			
49 50			
51 52			
53			
54 55			
56 57			
58			
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Decreasing Rates of Cost-Related Medication Non-Adherence by Age Advancement among American Generational Cohorts 2004-2014: A Longitudinal Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051480.R2
Article Type:	Original research
Date Submitted by the Author:	28-Feb-2022
Complete List of Authors:	Zhang, James; The University of Chicago, Medicine; 5841 S Maryland Ave. Bhaumik, Deepon; Yale University Meltzer, David; The University of Chicago
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Health economics, Health policy, Health services research
Keywords:	Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PUBLIC HEALTH, EPIDEMIOLOGY, HEALTH ECONOMICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Decreasing Rates of Cost-Related Medication Non-Adherence by Age Advancement among American Generational Cohorts 2004-2014: A Longitudinal Study James X. Zhang[±], PhD, MS; Deepon Bhaumik[#], BA; David O. Meltzer^{±,±},[#], MD, PhD [±]Department of Medicine, the University of Chicago; [#]Department of Health Policy and Management, Yale School of Public Health, Yale University; #Harris School of Public Policy, #Department of Economics, The University of Chicago. Corresponding author: James X. Zhang, PhD, MS, Department of Medicine, The University of Chicago, 5841 S Maryland Ave., MC 5000, Chicago, IL 60637 Email: xzhang1@medicine.bsd.uchicago.edu Total number of words: 2,923 Running title: Aging and cost-related medication non-adherence Key words: cost-related medication non-adherence, aging, paradox Total number of tables: 2 Total number of Figures: 2 ACKNOWLEDGEMENT The study was presented in part at the International Health Economics World Congress, Basel, Switzerland, July 16, 2019. This study is supported in part by Chicago Center for Diabetes Translation Research (CCDTR) Pilot and Feasibility Grant (Zhang & Meltzer) (P30DK092949), NIH 5R21AG053749 (Meltzer & Zhang), and NIH P30AG066619 (Meltzer & Zhang).

1	
2 3	Abstract
4 5	(298 words)
6 7 8 9 10 11 12	Objectives: The access barrier to medication has been a persistent and elusive challenge in the US health care system and around the globe. Cost-related medication non-adherence (CRN) is an important measure of medication non-adherence behaviors that aim to avoid costs. Longitudinal study of CRN behaviors for the aging population is rare.
13 14 15 16	Design: Longitudinal study using the Health and Retirement Study to evaluate self-reported CRN biennially.
17 18	Setting: General population of older Americans.
19 20 21	Participants: Three cohorts of Americans aged between 50 and 54 (baby boomers), 65-69 (the silent generation), and 80 or above (the greatest generation) in 2004 who were followed to 2014.
22 23	Intervention: Observational with no intervention.
24 25 26 27 28 29 30 31 32	Primary and secondary outcome measures: Longitudinal CRN rates for three generational cohorts from 2004 to 2014. Population-averaged effects of a broad set of variables including socio-demographics, income, insurance status, limitations in activities of daily living (ADLs) and instrumental activities of daily living (IADLs), and comorbid conditions on CRN were derived using Generalized Estimating Equation (GEE) by taking into account repeated measurements of CRN over time for the three cohorts, respectively.
 33 34 35 36 37 38 39 40 41 42 43 44 	Results: The three cohorts of baby boomer, the silent generation, and the greatest generation with 1,925, 2,839 and 2,666 respondents represented 12.3 million, 8.2 million and 7.7 million people in 2004, respectively. Increasing age was associated with decreasing likelihood of reporting CRN in all three generational cohorts (p <0.05), controlling for demographics, income, insurance status, functional status, and comorbid conditions. All three generational cohorts had a higher prevalence of diabetes, cancer, heart conditions, stroke, a higher percentage of respondents with Medicare-Medicaid dual eligibility and lower percentage with private insurance in 2014 compared to 2004 (p <0.05).
44 45 46 47 48 49	Conclusion: The paradox of decreasing CRN rates, independent of disease burden, income, and insurance status, suggests populations' CRN behaviors change as Americans age, bearing implications to social policy.
50 51 52 53 54 55 56 57	
58 59 60	2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Summary

Strengths of the study:

- Nationally representative study sample
- Longitudinal follow-up of CRN (rare in the literature)
- Population-averaged effects of a broad set of variables on CRN using the Generalized Estimating Equation (GEE)
- A rich set of income, insurance status, and disease and functional status variables for risk adjustment

Weakness of the study

Does not have information on change in consumption bundle, such as other discretionary spending over time.

BMJ Open

Introduction

The access barrier to medication has been a persistent and elusive challenge in the US health care system and around the globe. A recent national poll indicated that among those currently taking prescription drugs, one-fourth of adults (24 percent) and seniors (23 percent) have difficulty in affording their prescription drugs including about one in ten (overall and among seniors) saying it is "very difficult." Cost-related medication non-adherence (CRN) measures cost-avoiding behaviors and has seen an emerging body of literature on its prevalence internationally. For example, in a study of adults aged 55 and older living in the community in 11 developed countries, the authors found that the U.S. had a CRN rate of 16.8%, Canada had the second highest national prevalence of CRN at 8.3%, and Australia followed at 6.8%.² Many patients engage in strategies to avoid such costs when facing difficult choices between their medication needs and other basic needs, including delaying filling prescriptions, not filling prescriptions, skipping doses, and splitting doses. Many behavioral, social, economic, medical, and policy-related factors have been identified as contributing to medication non-adherence.³⁻⁵ Medication non-adherence is associated with increased hospitalization rates and emergency department visits, higher mortality rates, worse patient outcomes, and increased downstream costs that impose heavy, avoidable healthcare costs on society.⁶⁻¹¹ Hence it is pressing for researchers, practitioners, and policy makers to gain insight into the key factors that drive the difference in CRN across population strata.

Among the many risk factors for CRN, age receives little attention even though younger disabled patients have been found to have higher CRN rates among the Medicare population.¹² Age is a complex variable, reflecting multiple dimensions of biological and social factors that can potentially drive up CRN. For example, while older people may have protection from Medicare insurance coverage, including the Part D outpatient prescription drug program, at the

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

same time they also have lower income and may suffer from multiple chronic conditions that require greater out-of-pocket spending on medications. Thus the tension between their resources and medication needs is comparatively higher. The literature on the effect of the aging process on CRN is scant, and most reported differences in CRN due to age are examined in the context of cross-sectional studies. These studies make it unclear if the age difference in CRN is due to generational difference (i.e., cohort effect) or the aging process itself and also lack adequate control for the confounding factors. It is important to study the effects of the aging process on CRN because if older people with fewer economic resources and higher disease burdens report lower CRN rates, *ceteris paribus*, it may mean they are actually cutting down spending on other basic needs and that therefore social policy may need to be revamped to address this hidden crisis. On the other hand, this is an interesting question about the behavioral change in the aging process, as it may reflect the change in the assessment of the value of medication (and life) as people progress to more advanced age.

We therefore propose to test the hypothesis of changing CRN rates among the older population in the US longitudinally. The longitudinal analysis isolates the cohort effect from its tempering of the age effect, and the broad set of controlling variables (particularly income and insurance variables) further isolate the potential confounding. We used the Health and Retirement Study (HRS),¹³ a nationally representative sample of older people (50 years or older), to generate population-averaged effects of age on CRN, controlling for a broad set of sociodemographic, insurance, and health variables.

Methods

Data

BMJ Open

Data from HRS from 2004 to 2014 were used for this study. The HRS is a longitudinal panel study that surveys a representative sample of Americans over the age of 50 about their income, employment, health insurance, physical health, functional status, and medical conditions.¹³ Data for the survey is collected primarily by telephone interview every 2 years. Mortality was recorded if the respondent was deceased during the follow-up.

CRN was measured by asking participants, "Sometimes people delay taking medication or filling prescriptions because of the cost. At any time since the last interview or in the last two years have you ended up taking less medication than was prescribed for you because of the cost?" Participants answered either yes or no, although they had the option to refuse to answer or say that they did not know. For those who refused to answer or say that they did not know, the answer is treated as no CRN was reported.

Cohort creation

We created three generational cohorts of Americans aged between 50 and 54 (baby boomer), 65-69 (the silent generation), and 80 or above (the greatest generation) in 2004, followed them to 2014, and evaluated CRN over time. The reason for creating these three cohorts is to isolate the generational difference in CRN behaviors at baseline, and to compare the trajectory of CRN behaviors in these three cohorts by controlling for other confounding factors. Such a grouping is also consistent with the older population defined by the US Census and policy analysis.^{14,15} The narrower band for cohort age further reduces boundary errors among the generations. The reason for the follow-up between 2004 and 2014 is that although the three cohorts experienced the Great Recession starting in 2008, the economy had largely recovered in steady growth by 2014 and hence this period of 10 years provides a clear picture of the trajectory of CRN pre-, during, and
BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

post-economic recession with up to six observations for each correspondent. CRN rates were weighted to reflect the national estimates using 2004 survey weights.

Statistical analysis

Since our data included repeated measurement of CRN on a biannual basis for up to 6 measures, we developed a generalized estimating equation (GEE) to assess the populationaveraged effect of a broad set of risk factors, including advancing age, on CRN, taking into account correlations among repeated observations of the patients, which are quite often unknown.¹⁶ One strength of such an approach is lower variability and thus more efficient comparison, allowing us to detect a difference within socio-economic strata in a sample with modest size. The GEE model uses a binomial family function, a probit link function, and an exchangeable correlation structure to address the binary outcome variable and correlation among the longitudinal follow-ups of the respondents. There is no particular order effect in the repeated measures in this analysis, as patients can report CRN intermittently, and the research has shown patients are not always persistent in CRN.¹⁷ In this analysis, the value of the age variable increases by two years for each respondent for each round of surveys from 2004 to 2014. Our examination of the population-averaged effect of each risk factor on CRN gives us further evidence about the relationship between age and CRN and about the offsetting effects among other variables held constant.

Covariates

These covariates included the socio-demographics gender, race, and ethnicity. Since insurance status has been found an important predictor for CRN,¹⁸ we included a set of indicator variables for those who were enrolled in Medicare, Medicaid, other types of public insurance, private insurance, and no insurance in each round of the survey, which changed over time.

Page 9 of 32

BMJ Open

Enrollment in Medicaid would indicate that they were at the lowest rung of the economic ladder, since Medicaid is a means-tested, state-sponsored public insurance program for those who meet the poverty level defined by each state. Research has also shown those with Medicare-Medicaid dual eligibility (dual eligible) can have high CRN rates despite the additional insurance coverage, likely due to the fact that those at the bottom of the economic ladder are highly sensitive to the out-of-pocket payment or to non-monetary factors.¹⁹ Hence we included an indicator variable of Medicare-Medicaid dual eligibility in each round. The inclusion of Medicare, Medicaid, Medicare-Medicaid dual eligibility, and other insurance status variables will tease out the enabling effect of health insurance on overcoming resource limitations for the poor. Although not all respondents were eligible for Medicare, and a significant fraction of Medicare beneficiaries had creditable drug coverage and did not enroll in the Medicare Part D outpatient prescription drug program,²⁰ we included one additional indicator variable for Part D enrollment at each round between 2006 and 2014 to further control potential confounding. We further created an indicator variable for the year of 2004 prior to the institution of Part D.

We also included two variables on functional status: limitations in Activities of Daily Living (ADLs), and Instrumental Activities of Daily Living (IADLs) in each round of surveys.^{21,22} These two variables measure the number of limitations in performing tasks such as dressing, bathing, eating, toileting, getting out of bed, and walking (ADLs), and preparing meals, shopping, managing money, and taking phone calls (IADLs). Research has also that functional status is an important factor influencing CRN.²³ We also included a set of comorbid conditions including diabetes, heart disease, stroke, and cancer in each round of surveys. These conditions are known to have high disease burden for patients in terms of both the need for continuous medical care and the high costs of medication treatments.¹⁸

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

HRS has a rich set of questionnaires on sources of income and given that many of the elderly are already in retirement and wage income would have been a poor proxy, we first created one variable for total income, including wages, pensions, unemployment benefits, SS income, and income from investments and financial assets for each patient. (See Appendix I for a list of sources of income). Because not every income-related variable is measured on a monthly basis, we extrapolated these variables to its annual amount. Because not all respondents reported income (which is common in social science research,²⁴) we created one dummy variable indicating those who did not report income.

We compared the demographic variables, insurance status, and comorbid conditions for each cohort in 2004 and 2014 respectively, using regression analyses. Specifically, the p-values were for the parameter estimates of the year of 2014 compared to the year of 2004, with general linear regressions for continuous variables including age and functional status, and logistic regressions for binary variables including disease conditions and insurance status for time-varying variables. For non-time-variant variables including gender, race, and education, Chi-squared tests were performed.

Finally, to adjust for Great Recession 2007-2009 which may have had a transient effect on CRN, we created an indicator variable for the years of 2008 and 2010 controlling for this secular event during and immediately after the recession. All analyses were weighted using 2004 sample weight to reflect the highly stratified sample design of HRS and draw inferences to the population. The analyses were conducted using Stata Version 14 (StataCorp, College Station, Texas 77845, USA).

Patient and Public Involvement

No patient involved.

				BMJ C	pen			36/bmjopen	
Results								-2021-051	
Table 1 shows the	ne demograph	ics, insurance	status, fur	nctional status,	and comorbi	id conditions a	t the baseline	$\frac{1}{6}$	at the end of
follow-up of 201	14, for the thre	e cohorts (ba	by boomer	rs, the silent ge	eneration, and	l the greatest g	eneration, wi	oo a∰ 1,925, 2,8	39, and 2,666
respondents repr	resenting 12.3	million, 8.2 r	nillion, and	d 7.7 million p	eople in 2004	4, respectively). All three g	Senerational c	ohorts had a
higher prevalence	e of diabetes,	cancer, heart	conditions	s, stroke, a hig	her percentag	ge of responder	nts with Med	igare-Medica	id dual
eligibility and lo	wer percentag	e with private	e insurance	e in 2014 com	pared to 2004	(p<0.05). The	ere were high	anumbers c	flimitations
in IADL among	the silent gen	eration and th	e greatest	generation (p<	(0.01) but not	in the baby bo	oomers in 20	I compared	to 2004.
There was an ind	crease in perce	entage of peop	ple who di	d not report in	come among	the silent gene	ration and th	greatest ge	neration from
2004 to 2014 (p-	<0.01), respec	tively, althou	gh the inco	ome reported v	vere not statis	stically signific	antly differe	nt in the baby	boomers
and the silent ge	neration, and	marginally sig	gnificant ir	n the greatest g	generation (p=	=0.07).		nj.com	
Table 1. Socio-	economic and he	ealth characteris	tics of the stu	udy sample.				/ on Se	
	Age 50-54 (Baby Be	4 in 2004 oomers)	P-value	Age 65-69 (The Silent C) in 2004 Generation)	P-value	Age 80+ (The G Gener	- §n 2004 Ageatest ration)	P-value
	2004	2014		2004	2014		2004	<u>→</u> 2014	
Total N: sample (weighted)	1,925 (12,312,762)	1,750 (11,243,602)		2,839 (8,189,832)	2,113 (6,228,691)		2,666 (7,709,927)	õn 529 Li,865,348)	

						1			
CRN (% of total)	14.38	10.66	<0.01	8.05	5.31	<0.01	4.64	y gue 1.93	< 0.01
Demographics								st. F	
	52.29 (1.29)	62.29 (1.29)	< 0.01	66.93 (1.42)	76.90	< 0.01	84.56	<u>8</u> 2.80 (2.61)	< 0.01
Mean Age (SD)					(1.40)		(3.93)	tec	
Male N (%)	5,711,903	5,071,821	< 0.01	3,750,730	2,708,071	< 0.01	2,865,953	8 549,748	< 0.01
	(46.39)	(45.11)		(45.80)	(43.48)		(37.17)	হু (29.61)	
								copyright.	

				BMJ O	pen			/bmjc	
								open-20:	
Race								-05	
	9,546,207	8,770,743	< 0.01	6,721,672	5,145,524	< 0.01	6,722,307	¹ ,648,583	< 0.0
White N (%)	(77.53)	(78.01)		(82.07)	(82.61)		(87.2)	8 (88.8)	
	1,366,186	1,157,880		730,263	501,363	-	563,630	S 123,727	
Black N (%)	(11.10)	(10.30)		(8.92)	(8.05)		(7.3)	o (6.7)	
	457,827	431,097		176,414	143,938	-	82,439	93,734 (0.7)	
Other N (%)	(3.72)	(3.83)		(2.15)	(2.31)		(1.1)	20	
	942,542	883,882		561,483	437,866		341,551	N 70,304	
Hispanic N (%)	(7.66)	(7.86)		(6.86)	(7.03)		(4.4)	(3.79)	
High School	10,427,873	9,652,366	< 0.01	6,004,735	4,800,912	< 0.01	5,104,259	₹1,382,472	< 0.0
Degree N (%)	(85.58)	(86.74)		(73.36)	(77.13)		(66.2)	<u>n</u> (74.5)	
Income								ade	
Did not report	5,613,276	5,727,345	0.48	3,353,191	4,237,951	< 0.01	1,700,631	±6,366,197	< 0.0
income N(%)	(45.59)	(46.52)		(40.94)	(51.75)		(22.06)	g (82.57)	
Mean Total	54,945	55,134	0.51	34,756	30,597	0.49	17.825	₹ 23,192	0.07
Income (SD)	(117,001)	(134,558)		(73,000)	(50,565)		(69,859)	(22,520)	
Health Insurance	~ / /								
status								jop	
	719,451	1,873,388	< 0.01	7,725,548	6,080,594	< 0.01	7,551,255	1 ,783,088	0.02
Medicare N (%)	(5.85)	(16.72)		(94.54)	(97.94)		(98.27)	5 (96.82)	
Medicaid Only N	802,056	907,830	0.09	761,018	633,493	0.32	741,106	<u>o</u> 376,197	< 0.0
(%)	(6.53)	(8.10)		(9.32)	(10.26)		(9.68)	ž (20.77)	
Dual Eligible N	262,570	447,280	< 0.01	668,917	620,016	0.04	697,373	9 345,825	< 0.0
(%)	(2.14)	(4.0)		(8.20)	(10.04)		(9.11)	g (19.09)	
Private	9,451,878	8.065,905	< 0.01	5,136,278	2,797,509	< 0.01	5,025,727	2 797,828	< 0.0
Insurance N (%)	(76.76)	(71.92)		(62.86)	(45.24)		(65.64)	<u> 1</u> (44.76)	
Other Public	442,188	594,505	0.03	582.939	473.038	0.55	387.785	₫ 118,750	0.27
Insurance N (%)	(3.60)	(5.29)		(7.13)	(7.63)		(5.05)	<u>N</u> (6.44)	'
No Insurance N	1 562 386	1 025 268	< 0.01	58 174	18 372	0.05	14 157	8 17 155	0.03
(%)	(12 70)	(8.34)	-0.01	(0.71)	(0.22)	0.00	(0.18)	$\dot{\tilde{S}}_{(0,22)}^{(1,100)}$	0.0.
``/	0(0)	599 798	<u> </u>	0(0)	2,090,310	_	0(0)	≤ 661 142	_
Medicare Part D	0(0)	(47.22)			(52.14)			G (35.62)	-
Functional status		(1,1,22)			()			st	
Activities of Daily	1.02 (1.91)	1 10 (1 94)	0.14	1 14	1 37	<0.01	1 36 (1 94)		<0.0
Life N (SD)	1.02 (1.91)		V.1 I	(1.96)	(2.05)	0.01			-0.0
(dress hath					(=)			cte	
walk pat hod								d b	
waiti cati DCU						1		$\boldsymbol{\triangleleft}$	

Page	13	of	32
------	----	----	----

BMJ Open

36/bmjopen-2

								021	
toilet) limitations								-05	
Instrumental	0.16 (0.50)	0.20 (0.62)	0.60	0.26 (0.66)	0.41 (0.91)	< 0.01	0.85 (1.24)	म्रे.82 (1.65)	< 0.01
Activities of Daily								Ö	
Life N (SD)								on	
(meal, shop,									
phone, money)								lay	
limitations								20	
Comorbid								22.	
condition								D	
	679,167	1,224,613	< 0.01	1,250,817	1,390,602	< 0.01	1,601,000	<u>≤</u> 463,700	0.05
Cancer N (%)	(5.56)	(10.98)		(15.46)	(22.55)		(21.1)	8 (25.4)	
	1,593,935	2,510,207	< 0.01	1,706,534	1,788,997	< 0.01	1,268,614	हि 387,277	0.03
Diabetes N (%)	(13.04)	(22.50)		(21.09)	(29.01)		(16.8)	1 (21.2)	
Heart Condition	1,399,076	2,052,001	< 0.01	1,939,777	2,184,922	< 0.01	3,141,721	∃ 897,113	< 0.01
N (%)	(11.44)	(18.39)		(23.97)	(35.42)		(41.5)	(49.21)	
	310,709	542,715	< 0.01	436,577	594,572	< 0.01	972,042	392,876	< 0.01
Stroke N (%)	(2.54)	(4.86)		(5.39)	(9.64)		(12.8)	21.6)	

Legend: the numbers were weighted using 2004 HRS sample weight except the first row representing the sample. The p-values were for the parameter estimators of the year of 2014 compared to the year of 2004, with general linear regressions for continuous variables and logistic regressions for binary time-varying variables. For time-invariant variables including gender, race, and education, Chi-square tests were performed.

Figure 1 shows the observed CRN rates and their associated 95% confidence intervals by generational conforts. There is a downward sloping of trend in CRN rates in each cohort over time despite small bumps in 2010 after the Great Recession. Figure 2 shows the adjusted CRN rates and their associated 95% confidence intervals by three generational cohorts controlling for demographics, health insurance status, disease conditions, functional status, and pre-Part D and Great Recession indicators. A downward sloping trend in CRN rates prevailed in each cohort over time. Figure 1
Figure 2

BMJ Open	36/bmjopen-20
Table 2 shows the population-averaged estimates of age effect along with other risk factors for the th	ree generational cohorts.
Since the GEE analyses were based on log link function and binary outcome, the coefficients can be inter	rpreted as the percentage
change in the likelihood of CRN due to a unit of change in the independent variables when the estimates	are small. For each one-year
increase in age, the likelihood of reporting CRN decreased 2% (p=0.01), 3% (p<0.01), and 2% (p=0.02) a	among baby boomers, the
silent generation, and the greatest generation, respectively. In addition, women were more likely to repor	t CRAV (p<0.01, p<0.01, and
p=0.05), respectively; and compared to White respondents, Black respondents were more likely to report	$CR_{\underline{a}}^{\underline{a}}$ in all three generational
cohorts (p<0.01). Higher income was associated with lower likelihood of reporting CRN among the coho	orts $\frac{9}{2}$ f baby boomers and the
silent generation (p<0.01, respectively), but not in the greatest generation. There were variabilities amon	g the relationships between
CRN and the various insurance statuses by generational cohort, and in general, insurance status was less	likely to be statistically
significant in the greatest generation. Having diabetes or heart conditions was associated with a higher lil	keliligod of reporting CRN
among the baby boomers ($p<0.01$) and the silent generation ($p<0.01$), but not the greatest generation. Sin	nilar $\frac{9}{4}$, a high number of
deficiencies in IADLs was associated with a higher likelihood of reporting CRN among the baby boomer	rs ($p_{\underline{g}}^{\underline{b}}$ 0.01) and marginally
among the silent generation (p=0.09), but not in the greatest generation.	»r 21, 2

Table 2. Association between Age, Other Risk Factors and CRN from Generalized Estimating Equation for Generational Cohorts from 2004 to 2014.

						Age 65-6	9 in 2004		gue	Age 80+	in 2004	
	Age 50	0-54 in 2004	4 (Baby Boc	omers)		(The Silent (Generation)	st. (T	he Greates	t Generatio	n)
	Coef.	P>z	[95%	Conf.	Coef.	P>z	[95%	Conf.	Coef.	P>z	[95%	Conf.
									ecte			
Age	-0.02	0.01	-0.03	0	-0.03	<0.01	-0.04	-0.02	-0.62	0.02	-0.04	0
									, cob			
									oyrig		13	}
									ght.			•

Page	15	of 32	
------	----	-------	--

BMJ Open

32					BMJ Open				36/bmjopen-2021			
Female	0.32	<0.01	0.21	0.43	0.26	<0.01	0.16	0.36	0. É	0.05	0	0.32
White	Referent	Refetent	Referent	Referent	Referent							
Black	0.23	<0.01	0.10	0.36	0.24	<0.01	0.11	0.37	0.4	<0.01	0.20	0.62
Other Race	0.04	0.80	-0.25	0.33	-0.10	0.53	-0.42	0.22	-0.5	0.19	-1.32	0.25
Hispanic	-0.10	0.21	-0.26	0.06	0.12	0.17	-0.05	0.28	0.18	0.16	-0.07	0.44
Income	-0.03	<0.01	-0.06	-0.01	-0.05	<0.01	-0.07	-0.03	-0.81	0.84	-0.06	0.05
Not reporting income	-0.28	<0.01	-0.40	-0.15	-0.21	<0.01	-0.32	-0.10	-0. ≨ 6	0.08	-0.34	0.02
High School	-0.36	<0.01	-0.51	-0.21	-0.13	0.02	-0.24	-0.02	-0.85	0.53	-0.20	0.10
Medicare	Referent	Refeent	Referent	Referent	Referent							
Medicaid	-0.15	0.19	-0.38	0.07	-0.20	0.39	-0.65	0.26	0.35	0.13	-0.10	0.79
Dual eligibility	-0.25	0.07	-0.52	0.02	0.12	0.61	-0.34	0.58	-0.40	0.09	-0.87	0.06
Uninsured	0.27	<0.01	0.09	0.46	0.19	0.34	-0.20	0.57	0.13	0.74	-0.63	0.88
Private Insurance	-0.15	0.07	-0.33	0.02	-0.11	0.01	-0.19	-0.02	-0.71	0.10	-0.25	0.02
Other Public Insurance	-0.16	0.24	-0.42	0.11	-0.42	<0.01	-0.63	-0.21	-0.229	0.13	-0.66	0.08
Part D	0.22	0.04	0.01	0.43	0.10	0.02	0.01	0.19	0 .0	0.46	-0.09	0.20
Diabetes	0.35	<0.01	0.24	0.46	0.19	<0.01	0.07	0.30	0.02	0.88	-0.19	0.23
Cancer	-0.03	0.74	-0.18	0.13	0.10	0.09	-0.02	0.21	-0.04	0.63	-0.20	0.12
Heart	0.25	<0.01	0.13	0.37	0.20	<0.01	0.10	0.30	0.∰	0.10	-0.02	0.25
Stroke	-0.03	0.83	-0.30	0.24	0.07	0.41	-0.09	0.23	0. <u>ឆ</u> ្នឹ	0.14	-0.05	0.32
ADL Deficiency	0	0.93	-0.02	0.02	0.03	<0.01	0.01	0.04	0.01	0.46	-0.02	0.04
IADL Deficiency	0.16	<0.01	0.09	0.22	0.04	0.09	-0.01	0.09	0.02	0.60	-0.04	0.07
Before Part D	0.04	0.43	-0.07	0.16	0.03	0.64	-0.08	0.13	0.18	0.14	-0.04	0.27
Great Recession	0.05	0.16	-0.02	0.12	0.02	0.54	-0.05	0.09	-0.🕄	0.61	-0.15	0.09

 Great Recession
 0.05
 0.16
 -0.02
 0.12
 0.02
 0.54
 -0.05
 0.09
 -0.433
 0.61
 -0.15

 Legend: Results from Generalized Estimating Equation with CRN as binary outcome and weighted using 2004 HRS sample weight ADL: Activities of Daily Living; IADL: Instrumental Activities of Daily Living. Income was re-scaled to \$10,000s.
 9.04
 9.05
 0.09
 -0.433
 0.61
 -0.15

 For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml
 9.04
 9.04
 9.05
 9.05
 9.05

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

Discussion and Conclusions

There was a clear, persistent downward trend in CRN prevalence rates in all three generational cohorts between 2004 and 2014 (Figure 1 and 2), despite transient impact by the Great Recession after 2008. After controlling for other risk factors including gender, race, ethnicity, income, insurance status, comorbid conditions, and functional status, aging was significantly negatively associated with CRN in all three generational cohorts.

Such a steady decrease in CRN rates was accompanied by increasing limitations in functional status in the older age and an increasing prevalence of comorbid conditions, reflecting heightened frailty and disease burden in all three cohorts as they aged. There was an increase in Medicaid enrollment in the greatest generation and Medicare-Medicaid dual eligibility in all three cohorts, which likely provides protection from CRN. However, even after adjusting for Medicaid, dual eligibility and all other insurance variables, there is still a clear pattern of decreasing CRN as the population ages.

This "paradox" of decreasing CRN rates among old Americans as they age, despite bearing a higher disease burden and requiring a higher consumption of medications along with fixed or decreasing economic resources, seems to be robust, persisting through a series of controls for confounding factors. One possible explanation is that as the population ages and faces a shorter remaining life-span, the value of medication may change, resulting in the population changing their consumption bundle and devoting more resources to medication use. Such a change in their consumption bundle will inevitably constrain their ability to afford other daily needs, such as housing, food, and transportation. There is little literature on this aspect of the continued loss of welfare due to longitudinally increasing pressure to pay for medications. More research is greatly needed to evaluate the adequacy of social policy to help the elderly cope with increasing demand

BMJ Open

for medications as they age. When CRN was examined longitudinally, one recent study suggested that younger age is a risk factor for persistent CRN.¹⁷ The evidence from this study corroborates the supposition that patients' behavior may evolve as they age.

In this study, we included all observations of CRN by the respondents regardless of mortality during the follow-up. Clearly there was sample attrition due to mortality for the older generations. Preserving the observations of those CRN respondents who died during follow-up provided a richer data set, reflecting more fully the prevalence of CRN as the population ages. Nevertheless, those who were deceased might have had increased tension between medical needs and other needs for daily living, and future research should be directed at examining coping strategies by the elderly when they are faced with greater certainty of death.

This study is limited by the fact that the HRS does not have data to examine the subjective evaluation of consumption bundles in order to derive the exact cause of decreasing CRN despite increasing disease burden and increased enrollment in Medicaid and dual Medicare-Medicaid. Nor does the HRS allows an exhaustive examination of consumption by goods and services. Future research should be directed to examine these issues and to further illuminate the changing consumption patterns of the elderly. Such changes may be forced upon them when faced with exhausting their life savings while their disease burden increases. Further understanding of the coping mechanisms and trade-offs faced by the elderly may have profound implications for social policy that aims to protect them.

Conclusion

In summary, we presented a clear case of decreasing CRN rates among three American generational cohorts independent of disease burden, frailty, income, and insurance status. This may suggest a hidden gap in social policy as the elderly cope with increased burdens by reducing

BMJ Open: first published as 10.1136/bmjopen-2021-051480 on 6 May 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright

consumption of other goods and services, which may reduce their overall well-being. More research is greatly needed to understand this phenomenon and improve social policy for our aging population.

<text>

	ž
	2
	õ
	ĕ
	S
	ð
	ġ.
	ŝ
	he
	0
	S
	10
	÷
	ω
	20
	Ĕ
	ğ
	ĕ
	5
	ğ
	2
	ò.
	2
	8
	0
	ĭ
	റ
	≦ ©
•	2
	80
	22
	ğ
	Š
	ō
	ğ
	e d
	Ŧ
	R
	5
	₫
	≌
	://bm
	://bmio
	://bmiope
	://bmjopen.l
	://bmiopen.bm
	://bmjopen.bmj.c
-	://bmiopen.bmi.con
	://bmjopen.bmj.com/
	://bmiopen.bmi.com/ on
	://bmjopen.bmj.com/ on St
	://bmjopen.bmj.com/ on Sep
-	://bmiopen.bmi.com/ on Septer
-	://bmjopen.bmj.com/ on Septemb
-	://bmiopen.bmi.com/ on September
	://bmjopen.bmj.com/ on September 21
-	://bmjopen.bmj.com/ on September 21, 2
-	://bmiopen.bmi.com/ on September 21, 202
-	://bmjopen.bmj.com/ on September 21, 2023
-	://bmiopen.bmi.com/ on September 21, 2023 by
	://bmiopen.bmi.com/ on September 21, 2023 by gu
	://bmiopen.bmi.com/ on September 21, 2023 by gue
	://bmiopen.bmi.com/ on September 21, 2023 by quest.
	://bmiopen.bmi.com/ on September 21, 2023 by guest. Pi
-	://bmjopen.bmj.com/ on September 21, 2023 by guest. Prot
-	://bmjopen.bmj.com/ on September 21, 2023 by quest. Protec
-	://bmiopen.bmi.com/ on September 21, 2023 by quest. Protected
-	://bmiopen.bmi.com/ on September 21, 2023 by quest. Protected b
-	://bmiopen.bmi.com/ on September 21, 2023 by guest. Protected by (
	://bmiopen.bmi.com/ on September 21, 2023 by quest. Protected by cot
	://bmiopen.bmi.com/ on September 21, 2023 by guest. Protected by copyr
-	://bmiopen.bmi.com/ on September 21, 2023 by guest. Protected by copyrig

	ACKNOWLEDGEMENT
The study	was presented in part at the International Health Economics World Congress, Basel,
Switzerl	and, July 16, 2019. We are indebted to the constructive comments by the reviewer.
	FUNDING STATEMENT
	This study is supported in part by Chicago Center for Diabetes
Translation R	esearch (CCDTR) Pilot and Feasibility Grant (Zhang & Meltzer) (P30 DK092949), NIH
5R21AG0537	49 (Meltzer & Zhang), and NIH P30AG066619 (Meltzer & Zhang). The funders have no
role in design a	and conduct of the study; collection, management, analysis, and interpretation of the data
preparation, rev	view, or approval of the manuscript; and decision to submit the manuscript for publication
	AUTHOR CONTRIBUTIONS
Dr Zhan	g had full access to all of the data in the study and takes responsibility for the
	integrity of the data and the accuracy of the data analysis.
	Concept and design: Zhang.
	Acquisition, analysis, or interpretation of data: All authors.
	Drafting of the manuscript: Zhang.
Critica	al revision of the manuscript for important intellectual content: All authors.
	Statistical analysis: Bhaumik, Zhang.
	Obtained funding: Meltzer, Zhang.
	Administrative, technical, or material support: Meltzer, Zhang.
	Supervision: Zhang.
	COMPETING INTEREST STATEMENT
Dr. Meltzer re	eported receiving compensation from CVS Consultant outside the submitted work No other disclosures were reported.
	ETHICAL APPROVAL
The public use patient consen	a file of the Health and Retirement Study does not have human subjects, hence t or approval by the Institutional Review Board is not required.

REFERENCES

- 1. Kaiser Family Foundation. KFF Health Tracking Poll February 2019: Prescription Drugs. 2019. Available <u>https://www.kff.org/health-costs/poll-finding/kff-health-tracking-poll-february-2019-prescription-drugs/</u>. Accessed August 14, 2020.
- 2. Morgan SG, Lee A. Cost-related non-adherence to prescribed medicines among older adults: a cross-sectional analysis of a survey in 11 developed countries. *BMJ Open* 2017;7:e014287.
- 3. Gellad WF, Grenard J, McGlynn EA. A review of barriers to medication adherence: a framework for driving policy options. RAND Corporation, 2009. Available at: <u>http://www.rand.org/pubs/technical_reports/TR765.html</u>. Accessed March 1, 2019.
- 4. DiMatteo MR. Variations in patients' adherence to medical recommendations: a quantitative review of 50 years of research. *Med Care*. 2004; 42:200-9.
- National Council on Patient Information and Education. Enhancing prescription medicine adherence: a national action plan. 2007. Available at <u>http://www.talkaboutrx.org/documents/enhancing_prescription_medicine_adherence.pdf</u>. Accessed February 4, 2017.
- Tamblyn R, Laprise R, Hanley JA, Abrahamowicz M, Scott S, Mayo N, Hurley J, Grad R, Latimer E, Perreault R, McLeod P, Huang A, Larochelle P, Mallet L Adverse events associated with prescription drug cost-sharing among poor and elderly persons. *JAMA*. 2001; 285:421–429.
- 7. Mojtabai R, Olfson M. Medication costs, adherence, and health outcomes among Medicare beneficiaries. *Health Aff.* 2003; 22(4):220–229.
- 8. Heisler M, Langa KM, Eby EL, Fendrick AM, Kabeto MU, Piette JD. The health effects of restricting prescription medication use because of cost. *Med Care*. 2004; 42:626–634.
- Ho PM, Rumsfeld JS, Masoudi FA, McClure DL, Plomondon ME, Steiner JF, Magid DJ. Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. *Arch Intern Med.* 2006; 166:1836–1841.
- 10. Ho PM, Spertus JA, Masoudi FA, Reid KJ, Peterson ED, Magid DJ, Krumholz HM, Rumsfeld JS. Impact of medication therapy discontinuation on mortality after myocardial infarction. *Arch Intern Med.* 2006; 166:1842–1847.
- 11. Iuga AO, McGuire MJ. Adherence and health care costs. *Risk Manag Healthc Policy*. 2014 Feb 20; 7:35-44.
- 12. Soumerai SB, Pierre-Jacques M, Zhang F, et al. Cost-related medication nonadherence among elderly and disabled Medicare beneficiaries: a national survey 1 year before the Medicare drug benefit. *Arch Intern Med.* 2006;166(17):1829-1835.
- [Dataset] 13. Health and Retirement Study. David R Weir. Sponsored by the National Institute on Aging (NIA U01AG009740) and the Social Security Administration. Data from: Public Survey Data. December 20, 2021. https://hrsdata.isr.umich.edu/data-products/public-survey-data
- 14. The US Census. The older population in the United States: 2004. Available <u>https://www.census.gov/data/tables/2004/demo/age-and-sex/2004-older-population.html</u>. Accessed August 24, 2020.

ω
Ž
2
Б
en
.
irs.
÷
ģ
Sile
he
ŏ
as
-
.9
Ξ
õ
þ
<u>,</u>
ğ
ņ
ģ
Ň
÷
ũ
14
80
0
n 6
2
à
~
ğ
22
õ
ŝ
<u>S</u>
ğ
ð
f
Ĕ
7
₫
×
Ĕ
ē
be
n.l
n
÷
ğ
Þ
9
ر م
ê,
ĭe
m
be
Ñ
Ľ,
20
ž
ő
Ň
эп
Se
:
ž
ĕ
Č.
ð
ç
õ
9
Ξ.
Q
Ъ

15. Pew Research Center. Six generations moving forward together. Available
https://www.pewtrusts.org/en/trend/archive/winter-2018/notes-from-the-president-
six-generations-moving-forward-together. Accessed on February 18, 2022.
16 Line VV and Zeres C. Lensite direct data and arise an inclusion of the dimensional data

- Liang KY and Zeger S. Longitudinal data analysis using generalized linear models. *Biometrika*. 1986; 73 (1): 13–22.
- De Avila JL, Meltzer DO, Zhang JX. Prevalence and persistence of cost-related medication nonadherence among Medicare beneficiaries at high risk of hospitalization. *JAMA Netw Open*. 2021;4(3):e210498. doi:10.1001/jamanetworkopen.2021.0498
- 18. Briesacher BA, Gurwitz JH, Soumerai SB. Patients at-risk for cost-related medication nonadherence: a review of the literature. *J Gen Intern Med*. 2007;22(6):864-71.
- 19. Zhang JX, Meltzer DO. The high cost-related medication non-adherence rate among Medicare-Medicaid dual-eligible diabetes patients. *J Health Med Econ*. 2016;2(2).
- 20. Kaiser Family Foundation. An overview of the Medicare Part D Prescription Drug Benefit. Available at <u>https://www.kff.org/medicare/fact-sheet/an-overview-of-the-medicare-part-d-prescription-drug-benefit/</u>. Accessed September 22, 2021.
- 21. Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychosocial function. *JAMA*. 1963; 185:914-919.
- 22. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. *Gerontologist*. 1969;9(3):179-186.
- 23. Zhang JX, Meltzer DO. Risk factors for cost-related medication non-adherence among older patients with cancer. *Integr Cancer Sci Ther*. 2015;2(6):300-304.
- 24. Moore JC, Stinson LL, and Welniak EJ, Jr. Income measurement error in surveys: a review. Available at https://www.census.gov/content/dam/Census/library/working-papers/1997/adrm/sm97-05.pdf. Accessed on November 5, 2021.

Figure 1. Observed CRN Rates by Generational Cohort 2004-2014

Legend: the numbers were weighted using 2004 HRS sample weight.

<text>

Figure 2. Adjusted CRN Rates by Generational Cohort 2004-2014

Legend: The numbers were weighted using 2004 HRS sample weight. The adjusted values of CRN rates were derived from the generalized estimating equations controlling for demographics, health insurance status, disease conditions, functional status, and pre-Part D and Great Recession indicators in each generational cohort.

to beet terien only

torpeer terien ont

Page **Dbserved CRN Rates bgMCoerre**rational Cohort 2004-2014 (Means and 95% CI)

Adjusted CRN Rates by Cerrerational Cohort 2004 2004 42 (Means and 95% CI)

2	
3	Appendix I. Source of Income
4	••
5	Economic Variables
6 7	SOCIAL SECURITY INCOME
, 8	SUPPLEMENTAL SECURITY INCOME
9	AMOUNT FROM WORK SELF EMPL LCY
10 11	AMOUNT FROM WAGES AND SALARY LCY
12	AMOUNT FROM PROF PRAC OR TRADE LCY
13	AMOUNT FROM TIP BONUS COMMISSION LCY
14	AMOUNT FROM WORK 2ND JOB LCY
16	AMOUNT FROM UNEMPLOYMENT - LCY
17 19	AMOUNT FROM WORKERS COMP LCY
19	AMOUNT FROM WELFARE LCY
20	INC FROM OTHER IRA ANNUITY AMT
21 22	OTHER PENSIONS
23	OTHER ANNUITIES
24	STOCK INCOME AMOUNT - LCY
25 26	BOND INCOME AMOUNT - LCY
27	CDS INCOME AMOUNT - LCY
28	OTHER ASSET INCOME AMOUNT
30	OTHER SOURCES OF INCOME AMOUNT - LCY
31	VETERAN BENEFITS
32	AMOUNT RECEIVED FROM PENSION
34	AMOUNT FROM ANNUITY
35	AMOUNT FROM FOOD STAMPS
36 27	
37 38	
30	

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for

reporting observational studies.

Reporting Item

Title and abstract

Title

#1a Indicate the study's design with a commonly used term in the 1 title or the abstract

Page

Number

1 2	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2
3 4 5			of what was done and what was found	
6 7 8	Introduction			
9 10 11	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
12 13	rationale		investigation being reported	
14 15 16	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
17 18 19			hypotheses	
20 21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
26 27 28	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	6
29 30			periods of recruitment, exposure, follow-up, and data	
31 32			collection	
34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	6
36 37 38			selection of participants. Describe methods of follow-up.	
39 40	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of	6
41 42 43			exposed and unexposed	
44 45 46	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	7
40 47 48			confounders, and effect modifiers. Give diagnostic criteria, if	
49 50 51			applicable	
52 53	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	7,8,9
54 55 56	measurement		of methods of assessment (measurement). Describe	
57 58			comparability of assessment methods if there is more than	
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1			one group. Give information separately for for exposed and	
2 3			unexposed groups if applicable.	
4 5				
6	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	7
/ 8				
9 10	Study size	<u>#10</u>	Explain how the study size was arrived at	10
11				
12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	7,8,9
14 15	variables		analyses. If applicable, describe which groupings were	
16 17			chosen and why	
18				
19 20	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	
21 22	mothodo		control for confounding	
23	methous		control comounding	
24 25			7	
26 27				
28				
29 30				
31 32	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	
33 34	methods		interactions	
35			7	
36 37			6	
38 39				
40	Statistical	<u>#12c</u>	Explain how missing data were addressed	
41 42	methods			
43 44			9	
45 46	Statiation	#124	If applicable, explain how loss to follow up was addressed	
40	Statistical	<u>#120</u>	in applicable, explain now loss to follow-up was addressed	
48 49	methods		8 12	
50 51			c, · _	
52	Statistical	<u>#12e</u>	Describe any sensitivity analyses N/A	
53 54	mathada			
55 56	memous			
57				
58 59		_		
60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 30 of 32

1 2 3	Results				
4 5 6 7	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg		
			numbers potentially eligible, examined for eligibility,		
8 9 10			confirmed eligible, included in the study, completing follow-		
11 12			up, and analysed. Give information separately for for		
13 14 15			exposed and unexposed groups if applicable. 9		
16 17 18 19	Participants	<u>#13b</u>	Give reasons for non-participation at each stage N/A		
19 20	Participants	<u>#13c</u>	Consider use of a flow diagram N/A		
21 22 23 24					
25 26	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,		
27 28 29			clinical, social) and information on exposures and potential		
30 31			confounders. Give information separately for exposed and		
32 33			unexposed groups if applicable. 9		
35 36	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each		
37 38			variable of interest 6, 9		
39 40 41 42					
43 44 45 46 47	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount) 7		
48 49 50	Outcome data	#15	Report numbers of outcome events or summary measures		
51 52		<u>#15</u>	over time. Give information separately for exposed and		
53 54 55			unovnosod groups if applicable, 10		
56 57 58					
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

1 2	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-
3 4			adjusted estimates and their precision (eg, 95% confidence
5 6 7			interval). Make clear which confounders were adjusted for
7 8 9			and why they were included 10, 16, 17, 18, 22, 23
10 11 12	Main results	<u>#16b</u>	Report category boundaries when continuous variables were
13 14 15			categorized N/A
16 17	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into
18 19 20			absolute risk for a meaningful time period N/A
20 21 22 23			
24 25 26	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and
27 28			interactions, and sensitivity analyses 10
29 30 31	Discussion		
32 33 34 35	Key results	<u>#18</u>	Summarise key results with reference to study objectives 11
36 37	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources
38 39			of potential bias or imprecision. Discuss both direction and
40 41 42 42			magnitude of any potential bias. 12
43 44 45	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,
46 47			limitations, multiplicity of analyses, results from similar
48 49 50			studies, and other relevant evidence. 11
51 52 53	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study
54 55			results 12
56 57 58	Other Information		
59		For nee	r review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

1 2	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the
3 4			present study and, if applicable, for the original study on
5 6 7			which the present article is based 13
8 9 10	None The STR	OBE checkl	ist is distributed under the terms of the Creative Commons Attribution
11 12	License CC-BY	. This checl	klist can be completed online using https://www.goodreports.org/, a tool
13 14	made by the EC		etwork in collaboration with Penelope.ai
15 16			
17 18			
19 20			
21 22			
23			
24			
26 27			
28 29			
30 31			
32			
34			
35 36			
37 38			
39 40			
41			
42			
44 45			
46 47			
48 49			
50 51			
52			
53 54			
55 56			
57 58			
59 60		For pee	er review only - http://bmionen.bmi.com/site/about/quidelines.yhtml
00		. 51 pcc	