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ABSTRACT
Introduction Coronary artery disease (CAD) is the 
leading cause of death worldwide. More than a quarter 
of cardiovascular events are unexplained by current 
absolute cardiovascular disease risk calculators, and 
individuals without clinical risk factors have been 
shown to have worse outcomes. The ‘anatomy of 
risk’ hypothesis recognises that adverse anatomical 
features of coronary arteries enhance atherogenic 
haemodynamics, which in turn mediate the localisation 
and progression of plaques. We propose a new 
risk prediction method predicated on CT coronary 
angiography (CTCA) data and state- of- the- art machine 
learning methods based on a better understanding of 
anatomical risk for CAD. This may open new pathways 
in the early implementation of personalised preventive 
therapies in susceptible individuals as a potential key in 
addressing the growing burden of CAD.
Methods and analysis GeoCAD is a retrospective cohort 
study in 1000 adult patients who have undergone CTCA 
for investigation of suspected CAD. It is a proof- of- concept 
study to test the hypothesis that advanced image- derived 
patient- specific data can accurately predict long- term 
cardiovascular events. The objectives are to (1) profile 
CTCA images with respect to variations in anatomical 
shape and associated haemodynamic risk expressing, 
at least in part, an individual’s CAD risk, (2) develop a 
machine- learning algorithm for the rapid assessment of 
anatomical risk directly from unprocessed CTCA images 
and (3) to build a novel CAD risk model combining 
traditional risk factors with these novel anatomical 
biomarkers to provide a higher accuracy CAD risk 
prediction tool.
Ethics and dissemination The study protocol has been 
approved by the St Vincent’s Hospital Human Research 
Ethics Committee, Sydney—2020/ETH02127 and the 
NSW Population and Health Service Research Ethics 
Committee—2021/ETH00990. The project outcomes will 
be published in peer- reviewed and biomedical journals, 
scientific conferences and as a higher degree research 
thesis.

INTRODUCTION
The landmark Framingham Heart Study, 
which was commenced in 1948, established 
the principle of coronary risk profiling using 
a simple equation with clinical risk factors 
independently predictive of coronary artery 
disease (CAD) and remains commonly used 
today.1 However, CAD is still the leading 
cause of death worldwide despite the imple-
mentation of statin therapy and a movement 
towards aggressive low- density lipoprotein 
(LDL) cholesterol lowering.2–4 In fact, more 
than a quarter of cardiovascular events 
are unexplained by clinical risk equations, 
surmising that there are other risk factors 
for atherosclerosis that have not been iden-
tified.5 6 Even more concerning, ST- segment 
elevation myocardial infarction (STEMI) 
patients without standard modifiable risk 

Strengths and limitations of this study

 ⇒ GeoCAD is a retrospective cohort study to assess 
anatomical risk in 1000 adult patients who have 
undergone CT coronary angiography for suspected 
coronary artery disease (CAD).

 ⇒ We propose a novel approach predicated on our cur-
rent understanding of clinical and additional demo-
graphic risk factors, coronary artery calcium scoring 
and machine learning methods to non- invasively 
determine the relationship between shape features, 
wall shear stress and the risk of clinical endpoints in 
a large population.

 ⇒ This provides an unprecedented opportunity to 
translate advanced imaging analyses to clinical 
practice, using novel anatomical biomarkers to de-
velop improved risk models for CAD.

 ⇒ This is a single- centre study which potentially limits 
the patient cohort considered and the findings may 
thus be limited to such cohort.
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factors (SMuRFs) have significantly worse in- hospital 
outcomes compared with those with one or more risk 
factors.7 Contemporary scoring algorithm studies such 
as PREDICT in New Zealand and QRISK3 in the United 
Kingdom showed promising improvements in the accu-
racy of cardiovascular risk estimation in vulnerable 
high- risk subpopulations by incorporating additional 
demographic predictors such as socioeconomic indica-
tors and ethnicity.8 9 Inevitably, there is a tremendous 
opportunity for improved CAD risk prediction by iden-
tifying the remaining risk indicators which may yield a 
paradigm shift from intervention to a greater focus on 
primary prevention.

Anatomical biomarkers encompass haemodynamic risk 
which explain, at least in part, some of the variance in 
susceptibility to cardiovascular disease among individuals 
and thus can help to improve cardiovascular risk identifi-
cation and stratification.6 10 11 Specifically, atherosclerosis 
is the manifestation of the complex interplay between the 
triad of systemic risk factors, haemodynamic factors and the 
physiological response of the arterial wall.10 Systemic risk 
factors have been compounded to create current probabi-
listic risk scores,1 yet the latter two, haemodynamic factors 
and the physiological response, remain ignored in clin-
ical risk assessments. However, it has been observed that 
atherosclerotic plaques form and progress preferentially at 
geometrically predisposed locations such as arterial bifurca-
tions, despite the fact that the entire arterial tree is exposed 
to systemic risk factors.10 These distinct regions are char-
acterised by low wall shear stress (WSS), which is known 
to enhance atherogenic molecular, cellular, and vascular 
responses.12 A low shear- dependent mass transfer mecha-
nism for atherogenesis was first proposed by Caro et al,13 14 
and it was later demonstrated that cholesterol accumulates 
in low WSS arterial regions because of the inhabitation of 
diffusional efflux from the arterial wall to the intraluminal 
blood due to the reduced concentration gradient.13 This 
formed the understanding that WSS directly modulates 
the haemodynamic environment of the arterial wall and 
can enhance the predilection for atherosclerosis in local-
ised regions.15 Subsequent studies validated this hypoth-
esis, whereby low WSS (<0.5 Pa) was found to stimulate 
an atherogenic endothelial phenotype, characterised by 
greater endothelial proliferation under the influence of 
vasoconstrictors and mitogenic substances such as endo-
thelin I, angiotensin II and platelet- derived growth factor 
B, apoptogenic stimuli such as oxidised LDL and tumour 
necrosis factor α, inflammatory mediators such as mono-
cyte chemotactic peptide 1 and adhesion molecules such 
as vascular cell adhesion molecule 1.16 17 Later, in addition 
to instantaneous low WSS, cardiac cycle time- averaged low 
WSS was also identified as a key regulator in the vascular 
pathophysiology of atherosclerosis.18 As such, it is increas-
ingly recognised that haemodynamic factors can form a 
valuable indicator for higher accuracy cardiovascular risk 
prediction beyond commonly used clinical risk scores.

It is important to notice that coronary anatomy governs 
the localised development of WSS within the arterial tree 

and thus mediates the endothelial response,15 formu-
lating the ‘Anatomy of Risk’ hypothesis.10 12 While 
haemodynamic factors are difficult to assess in vivo, coro-
nary anatomical characteristics are apparent in standard 
medical images and may offer a pathway into future inte-
gration into standard clinical CAD risk assessments.

The concept of arterial geometric risk was first proposed 
by Friedman et al in a study of pulsatile flow through casts 
of human aortic bifurcations in 1983,6 which identified 
geometric bifurcations features causing significant vari-
ability in WSS distribution. Recent computational studies 
have built on Friedman’s early work, leading to the 
discovery of several anatomical features which can signifi-
cantly influence WSS (Box 1).19–26 Despite the progress 
in recent years, investigating the link between coronary 
haemodynamics and clinical outcomes remains critical to 
our understanding of anatomical risk and is likely directly 
relevant to identifying individuals without SMuRFs at risk 
of developing CAD.

Meaningful progress towards such understanding has 
been hindered by the lack of advanced imaging tech-
nology and computational resources, prohibiting large- 
scale population studies until recently. The evolution of 
computed tomography coronary angiography (CTCA) 
technology with improved spatial and temporal resolution 
has enabled a wide range of new applications in the field of 
preventive cardiology, such as the integration of coronary 
artery calcium scoring with clinical risk equations, with 
incremental predictive value for CAD risk.27 28 Combined 
with the increase in processing power and storage facil-
itating high- fidelity (mainly medical images- based) big 
data efforts coupled with the rise of machine learning 
approaches, fast and practical automated systems for 
better CAD risk assessment are now not a distant vision 
but a near future opportunity.29 Traditional machine 
learning methods (logistic regression, k- nearest neigh-
bours, support vector machines, tree- based algorithms) 
have previously been used for risk stratification.30–32 
More recent methods, including deep neural networks, 
now outperform these earlier attempts.33–36 These latest 

Box 1 Candidate anatomical biomarkers and 
haemodynamic variables for coronary artery disease

Geometric biomarkers
 ⇒ Flow divider which is offset from the aortic axis.
 ⇒ Inward curvature.
 ⇒ Marked angulating daughter branches.
 ⇒ Asymmetrical T- shaped bifurcation.
 ⇒ Bifurcation angle.
 ⇒ Cardiac curvature.
 ⇒ Vessel diameter.
 ⇒ Inflow angle.
 ⇒ Tortuosity.

Haemodynamic parameters
 ⇒ Wall Shear Stress (WSS).
 ⇒ Time- averaged WSS.
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developments in the field are thus a powerful framework 
for the translation of advanced imaging analyses into clin-
ical CAD risk assessment practice.

Still, cardiac CT requires unfavourable radiation expo-
sure and some studies attempted to leverage non- cardiac 
imaging to investigate CAD risk factors.37–39 Deep learning 
models have shown promising results in using low- dose 
CT imaging for lung cancer screening,37 and risk factors 
such as blood pressure, smoking history and diabetes, 
have been successfully identified in retinal vasculature 
from retinal images only,38 showing correlation with CAD 
risk and all- cause mortality.39 This showcases the poten-
tial for general investigation of the anatomy of risk and 
patient- specific image- derived biomarkers, as these may 
not just be linked to cardiac CT but can also be deployed 
to a range of available imaging modalities.

Other noteworthy approaches in better CAD risk 
prediction includes machine learning systems including 
systemic lifestyle factors combined with data from wear-
able devices together with traditional risk factors,40 and 
a similar deep learning system, aimed at including local-
ised markers by automatically predicting coronary artery 
calcium scores.41 These works showcase the potential 
of such efforts, which may be especially relevant when 
considering better risk assessments for specific subgroups 
including more vulnerable populations.8 9

Here, we propose a novel approach to build on this 
previous knowledge and to non- invasively determine 
the relationship between shape features, WSS and the 
risk of clinical endpoints in a large population, with the 
aim to generate a superior CAD risk prediction model. 
To the best of our knowledge, vessel geometry and its 
haemodynamic impact has not been accounted for in 
CAD risk models to date, and our approach thus offers 
an unprecedented opportunity to study detailed anatom-
ical biomarkers driving haemodynamic processes linked 
to CAD in addition to calcium scoring and standard risk 
assessment. State- of- the- art machine learning methods 
will be applied to develop a practical system to generate 
new insights into previously unexplained susceptibility 
in many individuals without SMuRFs. Our expert team 
is well positioned to build such a sophisticated CAD risk 
model using machine learning algorithms. Specifically, 
SB and team previously developed the Coronary Atlas, 
the world’s first and largest three- dimensional CT compu-
tational atlas describing the detailed statistical anatomy 
of the coronary tree.11 42–44 This led to the introduction 
of a new coronary shape parameter—the inflow angle, 
defined as the angle with which the proximal vessel enters 
the bifurcation plane, as well as the first classification of 
coronary shape features.11 43 The Coronary Atlas provides 
a systematic and comprehensive framework to integrate 
large- scale datasets from multiple individuals and to 
generate new insights into the relationship between coro-
nary anatomy and WSS patterns, which we then success-
fully predict directly using machine learning.22 45 This has 
elucidated the understanding of WSS in individuals with 
direct implications for individual CAD susceptibility and 

underpins the current proposal to address the gap in our 
understanding of anatomical risk for CAD. The identifi-
cation of susceptible individuals and the early implemen-
tation of targeted therapies based on patient- specific data 
may take us one step closer to the Holy Grail of preventive 
cardiology.

METHODS AND ANALYSIS
Patient and public involvement
Patients/the public were not directly involved in the 
research. However, the concept of the study was designed 
to address the gap in our understanding of susceptibility 
to CAD in the one quarter of individuals without standard 
clinical risk factors who suffer from unexplained cardio-
vascular events. The study outcomes will be disseminated 
in peer- reviewed journals, scientific conferences and 
as a higher degree research thesis, which will provide a 
powerful framework to translate the findings into clinical 
practice to improve coronary risk profiling in the general 
population.

Objectives
The primary objective of the GeoCAD study is:

1. To identify novel anatomical biomarkers to improve 
the accuracy of CAD risk prediction.

The secondary objectives of the GeoCAD study are 
(figure 1):

Figure 1 GeoCAD study flow chart. BMI, body mass index; 
BP, blood pressure; CACS, coronary artery calcium score; 
CAD, coronary artery disease; CHeReL, Centre for health 
record linkage; CTCA, CT coronary angiography; LDL, low- 
density lipoprotein; SMI, spectrum medical imaging; SMuRF, 
standard modifiable risk factor.
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1. To profile CTCA images of a large population with re-
spect to variations in anatomical shape and associated 
haemodynamic risk, comprising an individual’s ana-
tomical risk.

2. To develop a machine- learning algorithm for the rap-
id assessment of anatomical risk directly from unpro-
cessed CTCA images.

3. To develop a novel CAD risk model combining tradi-
tional risk factors with anatomical risk.

Study type
GeoCAD is a retrospective cohort study (figure 1). It 
is a proof- of- concept study to test the hypothesis that 
advanced image- derived patient- specific information can 
accurately predict long- term cardiovascular events.

Study population
Retrospectively, 1000 adult patients referred for CTCA 
due to suspected CAD will be identified from the CTCA 
database at Spectrum Medical Imaging, Sydney, Australia. 
We will identify patients who have undergone at least two 
CTCA scans from 2010 onwards (due to avaiable CTCA 
image resolution) to allow comparison of geometry and 
plaque features over time. We will use the oldest records 
available to allow for a longer follow- up period. The 
patients will be selected and screened and patients who 
meet all of the inclusion criteria and none of the exclu-
sion criteria will be selected for the study.

Inclusion criteria
 ► Patients who were referred for at least two CTCA scans 

for investigation of suspected CAD from 2010 onwards 
at Spectrum Medical Imaging.

 ► Age: 18 years or older.

Exclusion criteria
 ► Patients who have had a prior myocardial infarction 

(MI), percutaneous coronary intervention (PCI) or 
coronary artery bypass grafting (CABG).

Data collection
Imaging and associated data will be collected from Spec-
trum Medical Imaging and will include the following:

 ► CTCA digital imaging and communication in medi-
cine (DICOM) files.

 ► Coronary dominance.
 ► Presence or absence of the ramus intermediate artery.
 ► Coronary artery calcium score.
 ► Location, severity and plaque composition of all 

lesions according to the 16- segment American Heart 
Association classification.46

Clinical data will be collected from Spectrum Medical 
Imaging and from administrative datasets linked by the 
NSW Centre for Health Record Linkage (CHeReL) 
(Admitted Patient Data Collection (APDC), the Registry 
of Births, Deaths and Marriages, and the Australian Coor-
dinating Registry Cause of Death Unit Record File). APDC 
records include contain diagnoses coded according to 
the International Classification of Diseases, 10th Revision, 

Australian Modification and procedures coded according 
to the Australian Classification of Health Interventions. 
Clinical data will include the following:

Demographic data (age, sex).
SMuRFs (hypertension, diabetes mellitus, dyslipidae-
mia, smoking).
A medical history (eg, prior MI, PCI or CABG).
Medication history.
5. Clinical outcomes (all- cause death, cardiovascular 
death, coronary angiography, hospitalisation for heart 
failure, non- fatal MI, non- fatal stroke, revascularisation 
and unstable angina requiring hospitalisation).
7. Major adverse cardiovascular events will be defined 
as cardiovascular death, non- fatal MI and non- fatal 
stroke.

Data governance
Data management practices will follow the principles 
of the Australian Code for the Responsible Conduct 
of Research. A research data management plan for the 
project has been established and managed using the 
University of New South Wales (UNSW) ResToolkit plat-
form. All research data will be classified according to 
UNSW Classification Standards and handled in accor-
dance to UNSW data handling guidelines.

Appropriate cases matching the inclusion and exclu-
sion criteria will be selected and their accession numbers 
noted. DICOM files and reports for cases will be down-
loaded from a central repository at Spectrum Medical 
Imaging to a local server inside the firewall. DM will 
semiautomatically anonymise and copy the data to secure 
password protected storage on UNSW servers through an 
encrypted channel. DM will not be involved in the anal-
ysis of linked data. The researchers analysing the data will 
have only access to the anonymised data. The provided 
data will be transferred to the Data Archive provisioned 
for this project (RDMP ID: D0240165), rated as appro-
priate for sensitive data, using the Data Archive web appli-
cation. Data on UNSW Data Archive are encrypted and 
access to UNSW Data Archive is password protected and 
require connection to UNSW’s virtual private network 
(VPN) with a valid university account.

The imaging data will be securely linked with the 
CHeReL datasets as follows:
1. Splitting, data integration and disclosure: Identifying 

information such as name, address and date of birth 
is separated from content information such as imag-
ing data. All participants will be assigned an arbitrary 
Person Number which replaces identifying informa-
tion. A research project- specific person number (PPN) 
will be made for each participant using an encrypted 
version of the arbitrary person number. All records for 
a participant will have the same PPN.

2. Creating a research dataset: Using the PPN, the re-
search team can combine records for a participant 
without accessing identifying information. The data 
are made available to the analysing research team in a 
non- identifiable format.
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Data analysis plan
Shape features
It is important to note that the analysis of the vessel geom-
etry and its haemodynamics in the same patient years 
apart will provide critical and unprecedented insights into 
the development of stable CAD, allowing for the compar-
ison of arterial geometry and plaque changes over time 
to elucidate the role of haemodynamics. Deep learning 
methods have gained significant popularity in image 
segmentation and analysis, particularly due to the success 
of U- Net in segmenting medical images.47 Virtual models 
of the coronary anatomy will be reconstructed from the 
CTCA image using deep convolutional neural networks 
based on nnU- Net architecture,48 as this method has been 
shown to work well in automated coronary artery segmen-
tation.49 After Taubin’s algorithm smoothing and vessel 
centrelines extraction with Vascular Modelling Toolkit,50 
relevant geometric arterial tree features will be quantified 
using in- house python scripts. This includes the median 
branch diameters, tortuosities, curvature (Frenet- Serret 
formulas with the average curvature used for analysis).51 52 
The processing time for each case is approximately 2 min 
on a single core 2.9GHz Xeon ES- 2670.

Haemodynamic indicators
Haemodynamics will be computed using validated 
machine learning models,45 taking less than one minute 
per case on a single core 2.9GHz Xeon ES- 2670. This 
allows the generation of haemodynamic risk indicators 
based on vessel geometry, avoiding the need for high 
computation cost associated with standard computa-
tional modelling. Transient simulations will be used 
to investigate pulsatile flow conditions throughout the 
cardiac cycle. Non- Newtonian behaviour of blood will be 
accounted for using the Carreau- Yasuda viscosity model.53 
The haemodynamic modelling follows experts’ recom-
mendations for coronary modelling.54

Machine learning
Building on our previous machine learning haemody-
namics predictions from reconstructed models,45 addi-
tional features such as demographic information and 
medical history will be incorporated into the model to 
improve the prediction accuracy. Locally connected 
layers,55 will be used to build 2D feature maps from the 
global shape, clinical and demographics information, 
generating feature maps that can appropriately model 
the effect of this information in different regions of the 
bifurcation. Convolutional neural network layers are 
used to predict haemodynamic metrics, vessel response 
and expected disease development over the surface of the 
coronary vessels. The deep learning model will be used to 
generate pixelwise predictions, which can be correlated 
against the follow- up imaging to investigate localised 
plaque growth and progression based on haemodynamic 
descriptors, as well as overall risk metrics which will be 
evaluated versus the all- cause mortality. Additionally, 
random forest models56 will be trained on the same data to 

investigate performance of traditional machine learning 
methods versus deep learning, and potentially provide 
a more intrepretable risk model. The performance of 
the trained models will be evaluated and compared 
using 10- fold cross validation. The Area Under Receiver 
Operating Characteristics Curve57 metric will be used to 
compare predictions of the machine learning models to 
existing literature on machine learning risk models41 as 
well as traditional models. This allows for easy compari-
sons against other models as it is commonly reported and 
simple to intrepret.

Statistical analysis plan
Additional statistical analysis will explore the relationships 
between our developed non- traditional potential risk 
factors and clinical endpoint data. Continuous variables 
will be presented as mean (±SD) and categorical variables 
as proportions (%). Comparisons between groups will 
be performed using independent Student’s t- tests with 
Bonferroni correction for continuous variables and χ2 
or Fisher’s exact tests for continuous variables. Univar-
iate and multivariate analyses will be performed using 
Mantel- Haenszel logistic regression. Univariate variables 
with p<0.10 will be included in the multivariate analysis. 
The discriminative performance of the multivariable 
model will be assessed using Harrell’s c- statistic. Compar-
isons between the multivariable models will be assessed 
using net reclassification index. A two- tailed p<0.05 with 
Bonferroni correction will be considered significant. Our 
sample size of 1000 will be sufficient because we estimated 
that we will need a sample size of at least 445 patients to 
show that a c- statistic of 0.80 is significantly different from 
the null hypothesis (assuming a c- statistic of 0.71 for the 
Framingham risk score), considering a p value of 0.05, 
power of 80% and event rate of 20%.

Ethics and dissemination
The study protocol has been approved by the St Vincent’s 
Hospital Human Research Ethics Committee, Sydney—
2020/ETH02127 and the NSW Population and Health 
Service Research Ethics Committee—2021/ETH00990. 
The committee granted a waiver of the usual requirement 
of consent. The project outcomes will be published in 
peer- reviewed and biomedical journals, scientific confer-
ences and as a higher degree research thesis. Patient 
confidentiality will be maintained by not including any 
individually identifying information in publications. Non- 
identifiable data (statistical shape analyses and haemody-
namic simulations) will be shared with other researchers 
on the Coronary Atlas website. We will not share any raw 
imaging data or unit record data with other researchers.

DISCUSSION
The role of adverse anatomical features in CAD risk 
remains unclear. Several studies have suggested that bifur-
cation angle (figure 2), defined as the angle between the 
daughter vessels after branching, is a geometric risk factor 
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for atherosclerosis.19–21 However several later studies have 
shown that bifurcation angle alone has minimal haemo-
dynamic impact,22–24 and that in fact the combination 
with other shape characteristics (inflow angle, diameter 
and tortuosity) determine either a stronger or mitigating 
effects on WSS. Others showed that vessel tortuosity,23 58 
curvature24 and cross- sectional area,25 26 may also play a 
role in local WSS development.59 Overall, inconsistent 
observations of geometric parameters in the literature 
suggest that anatomical risk factors remain little under-
stood, possibly due to their complex three- dimensional 
structure with interdependent haemodynamic impact of 
several shape characteristics.22

Current absolute cardiovascular disease risk calculators 
in Australia are based on the Framingham risk equation.1 
The model was developed to estimate an individual’s five- 
year and 10- year risk of cardiovascular disease using a 
point- score algorithm including clinical risk factors (age, 
female sex, systolic blood pressure, total cholesterol, 
high- density lipoprotein cholesterol, smoking, diabetes 
and electrocardiographic left ventricular hypertrophy). A 
recent meta- analysis of validation studies evaluating the 
discriminative performance of the 10- year Framingham 
risk model found a pooled c- statistic of 0.68 (95% CI 0.66 
to 0.69) to 0.71 (95% CI 0.66 to 0.76).5 From this modest 
discriminative power, it becomes clear that the adverse 
cardiovascular events in one- in- four patients remains 
unexplainable by the Framingham risk model, and that 
there is an urgent need to identify the remaining risk 
factors for atherosclerosis. Indeed, a recent study using 
two large multi- centre Australian registries showed that a 
substantial and increasing proportion of STEMI patients 
were individuals without SMuRFs.7 Moreover, 19% of 
patients were SMuRF- less, and this proportion increased 
from 14% to 23% during the study period. Concerningly, 
SMuRF- less patients had a higher in- hospital mortality 
rate than patients with one or more SMuRF (6% vs 4%, 
p=0.032). It is likely that advanced image- derived patient- 
specific information can account for some of these 
unexplained susceptibilities to atherosclerosis in SMuRF- 
less individuals, and even be detected through imaging 
analysis.

CTCA technology already has a well- established role 
in the field of preventive cardiology. The Scottish CT of 
the Heart and Prospective Multicentre Imaging Study for 
Evaluation of Chest Pain trials were landmark studies, 
showing that a CTCA- guided strategy improves clinical 
outcomes in symptomatic patients with stable angina, 
increasing the diagnostic certainty and frequency of 
CAD and the subsequent implementation of appropriate 
secondary prevention and revascularisation.60–62

Still, the role of CTCA in asymptomatic patients with 
CAD remains somewhat uncertain. The Factor- 64 trial has 
been the only randomised clinical trial to date to assess 
the prognostic value of routine CTCA screening for CAD 
in this population.63 More than 900 high- risk diabetic 
patients were randomised for either CTCA or standard 
national guidelines- based optimal medical care, whereby, 
at four years follow- up, there was no difference in the 
primary outcome of death, non- fatal MI or unstable 
angina requiring hospitalisation. However, the trial was 
not adequately powered due to a lower than anticipated 
event rate. Similarly, a meta- analysis evaluating the prog-
nostic value of CTCA in more than 6000 diabetic patients, 
whereby two- thirds were asymptomatic, observed a higher 
hazard ratio for obstructive CAD if revascularisation was 
included as an endpoint—meaning that CTCA in some 
of this population could have important prognostic impli-
cations.64 Still, registry studies in broader asymptomatic 
populations have also suggested that CTCA findings 
(location, severity and plaque composition) have incre-
mental prognostic utility beyond traditional risk factors 
alone.65

Several studies have demonstrated the predictive value 
of the coronary artery calcium score in addition to tradi-
tional risk factors for CAD.27 28 The South Bay Heart 
Watch Study found that a calcium score higher than 300 
combined with the Framingham risk score significantly 
improved the discriminative ability (c- statistic 0.68 vs 
0.63, p<0.001).27 Similarly, the St. Francis Heart Study 
showed that coronary artery calcium score was supe-
rior to the Framingham risk index for the prediction 
of atherosclerotic cardiovascular disease events (c- sta-
tistic 0.79 vs 0.69, p=0.0006).28 It should also be noted 
that the distribution of calcium was found to be more 
significant in predicting cardiovascular events than the 
calcium score alone.66 67 Specifically, in more than 1200 
participants from the Offspring and Third Generation 
cohorts of the Framingham Heart Study, it was shown 
that the number of coronary arteries with calcium, and 
especially the presence of calcium in the proximal domi-
nant coronary artery, independently predicted coronary 
heart disease after adjustment for the Framingham risk 
score and coronary artery calcium score.67 The addition 
of calcium distribution improved the discriminatory 
capacity of the multivariable model with the Framingham 
risk score and calcium score for coronary heart disease 
events (c- statistic 0.79 to 0.80 vs 0.77, relative integrated 
discriminatory index 0.14). This study confirmed the 
observations of an earlier analysis of 3262 participants in 

Figure 2 Three- dimensional representation of candidate 
anatomical biomarkers: (1) bifurcation angle (angle B), defined 
as the angle between the daughter vessels after branching, 
(2) inflow angle, defined as the angle with which the proximal 
vessel enters the bifurcation plane, (3) diameter, (4) curvature 
(1/radius) and (5) tortuosity (length/diameter).
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the Multi- Ethnic Study of Atherosclerosis cohort, which 
showed that diffusely distributed calcium, as assessed by 
the number of coronary arteries with calcified plaque, 
significantly improved the capacity to predict cardiovas-
cular events beyond the calcium score (c- statistic 0.67 vs 
0.64, p=0.0001).66

Beyond calcium scoring, machine learning- based 
approaches have been the latest focus of the field and 
enable the effective processing of even very large datasets 
with promising potential for cloud- based clinical integra-
tion. However, key challenges in such an undertaking are 
the comparability, and reproducibility across different 
clinical cohorts, imaging specifications and scan proto-
cols, and of course most importantly, the assurances of 
patient confidentiality and data security.68

Machine learning methods have been predominantly 
used in conjunction with medical images and other medical 
data69 70 to train multiple non- linear classifiers (support 
vector machine, logistic regression, tree- based models, 
deep neural networks) to predict mortality rates.71 72 
CTCA applied deep learning applications allowed detec-
tion and quantification of calcified plaques,73–75 as well as 
correlating calcium score to mortality.41 Standard blood 
test results are also often included in machine learning 
models for risk stratification.76

While promising, these machine learning methods are 
not matured enough to replace the traditional Fram-
ingham score,77 and further research and exploration of 
the field is required. Existing machine learning methods 
usually rely on generalised adverse features for CAD risk 
prediction which may lead to low reproducibility.68 Addi-
tionally, current machine learning approaches,37–41 71 72 
focus primarily on systemic risk factors. This does not 
consider the observed trends that particular locations 
within the coronary tree, for example, bifurcations,10 
are at significantly higher risk of disease. More advanced 
comprehensive machine learning risk prediction and 
intervention recommendation systems are at an early 
stage of algorithm development, and to our knowledge, 
there is no prior work on a comprehensive machine 
learning incorporating haemodynamic information 
within CAD risk models.

In summary, there is a tremendous opportunity to 
improve the accuracy of CAD risk prediction by inte-
grating additional patient- specific anatomical risk with 
traditional risk models. We hope that incorporating 
haemodynamic metrics, which can provide significantly 
more granular information beyond the traditionally used 
models can better predict the expected vessel response 
and future outcomes. The use of anatomical surrogate 
markers for CAD will enable us to extend the applica-
tion of CTCA- guided risk prediction from diseased indi-
viduals to normal populations without atherosclerosis, 
generate new understandings of disease mechanisms and 
its development in individuals, and open future path-
ways for application to imaging modalities without or 
with reduced radiation. This unprecedented opportunity 
has been underpinned by advanced imaging analysis, 

sophisticated computational technology and state- of- 
the- art machine learning algorithms, which offer a fast 
and practical approach for CAD risk assessment in large- 
scale population studies. Understanding the mechanism 
of personal susceptibility to atherosclerosis opens up the 
opportunity for early implementation of targeted thera-
pies and may be a key in addressing the growing burden 
of CAD, especially in individuals without SMuRFs.
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