

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Validation of a delirium predictive model in patients admitted to surgical intensive care units: a multicenter study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057890
Article Type:	Original research
Date Submitted by the Author:	03-Oct-2021
Complete List of Authors:	Chaiwat, Onuma; Mahidol University Faculty of Medicine Siriraj Hospital, Department of Anesthesiology; Mahidol University Faculty of Medicine Siriraj Hospital, Siriraj Integrated Perioperative Geriatric Excellent Research Center Chittawatanarat, Kaweesak ; Chiang Mai University Faculty of Medicine, Department of Surgery Mueankwan, Sirirat ; Chiang Mai University Faculty of Medicine, Department of Surgery Morakul, Sunthiti ; Mahidol University Faculty of Medicine Ramathibodi Hospital, Department of Anesthesiology Dilokpattanamongkol, Pitchaya ; Mahidol University Faculty of Pharmacy, Department of Pharmacy Thanakiattiwibun, Chayanan ; Mahidol University Faculty of Medicine Siriraj Hospital, Siriraj Integrated Perioperative Geriatric Excellent Research Center Siriussawakul, Arunotai; Mahidol University Faculty of Medicine Siriraj Hospital, Department of Anesthesiology; Mahidol University Faculty of Medicine Siriraj Hospital, Siriraj Integrated Perioperative Geriatric Excellent Research Center
Keywords:	Adult intensive & critical care < ANAESTHETICS, INTENSIVE & CRITICAL CARE, Delirium & cognitive disorders < PSYCHIATRY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Validation of a delirium predictive model in patients admitted to surgical intensive care units: a multicenter study

Onuma Chaiwat^{1, 5*},

Kaweesak Chittawatanarat²,

Sirirat Mueankwan²,

Sunthiti Morakul³,

Pitchaya Dilokpattanamongkol⁴,

Chayanan Thanakiattiwibun⁵,

Arunotai Siriussawakul^{1,5}

*Correspondence: onuma.cha@mahidol.ac.th

Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University,

Bangkok 10700 Thailand

Full list of author information is available at the end of the article

Abstract

Objective To internally and externally validate a delirium predictive model for adult patients admitted to intensive care units (ICUs) following surgery.

Design A prospective, observational, multicenter study.

Setting Three university-affiliated teaching hospitals in Thailand.

Participants Adults aged over 18 years were enrolled if they were admitted to a surgical ICU (SICU) within a week of undergoing an operation.

Main outcome measures Validation was performed of the previously developed delirium predictive model: Age + $(5 \times \text{SOFA}) + (15 \times \text{benzodiazepine use}) + (20 \times \text{DM}) + (20 \times \text{mechanical ventilation}) + (20 \times \text{modified IQCODE} > 3.42).$

Results In all, 380 SICU patients were recruited. Internal validation on 150 patients resulted in an area under a receiver operating characteristic curve (AUROC) of 0.76 (0.683 to 0.837). External validation on 230 patients resulted in an AUROC of 0.85 (0.789 to 0.906). The AUROC of all validation cohorts was 0.83 (0.785 to 0.872). The optimum cutoff value to discriminate between a high and low probability of postoperative delirium in SICU patients was 115. This cutoff offered the highest value for Youden's index (0.50), the best AUROC, and the optimum values for sensitivity (78.9%) and specificity (70.9%).

Conclusions The model developed by the previous study was able to predict the occurrence of postoperative delirium in critically ill surgical patients admitted to SICUs. Consequently, high-risk patients are able to be identified, and both nonpharmacological and pharmacological prevention protocols can be subsequently implemented to improve the clinical outcomes.

Keywords: postoperative delirium, predictive model, surgical intensive care units, validation

Strengths and limitations of this study

- The developed delirium predictive model consists of 6 risk factors was able to predict the occurrence of postoperative delirium in critically ill surgical patients
- The internal and external validation demonstrated moderate to good statistical performance, with the AUROC being comparable to that of the development cohort
- The optimum cutoff value to discriminate between a high and low probability of POD in SICU patients was 115

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BACKGROUND

Delirium, a disturbance of consciousness, is both acute and fluctuating. It is characterized by the lessened ability of an individual to focus, maintain, or shift attention. It is also associated with cognitive changes and disruptions in perception that are secondary to a general medical condition. Delirium is an extremely common condition among hospitalized patients. Its incidence varies with the study population, but higher rates are observed among geriatric, postsurgical, intensive care unit (ICU), cardiac surgery, and hip-fracture patients ¹⁻⁴. Postoperative delirium (POD) among patients who have been treated with surgery and anesthesia is typically found during the first 3 postoperative days ⁵. Although the POD can be transient, it is linked to poor outcomes. These include long stays in postanesthesia care units (PACUs), ICUs, and hospitals; high medical-complication rates; and raised mortality levels ⁶.

Several tools for assessing delirium have been validated. Among those is the Confusion Assessment Method for the ICU (CAM-ICU), which shows high sensitivity and specificity ⁷. The CAM-ICU has been translated into Thai, and it, too, has demonstrated good sensitivity and specificity for critically ill patients ⁸. In Thailand, there are limited data relating to POD as well as delirium among critically ill patients. Muangpaisan *et al.*, 2015 ⁹ reported the incidence of delirium was 22.5% in hip surgery. Their investigation also identified the following risk factors: age, premorbid function, dementia/cognitive impairment, the nonstop administration of nonsteroidal anti-inflammatory drugs, and postoperative sedative use. Another study reported a 44.0% prevalence of delirium among critically ill, old patients at a medical ICU in northeastern Thailand. That work found that the independent factors related to delirium were the use of physical restraints, a history of stroke, and multiple bed changes ¹⁰.

Given that delirium can result in poor clinical outcomes, predictions of its occurrence among patients who are at risk of delirium are especially important. During the recent decade, some predictive scoring systems for delirium have been proposed for use with various

BMJ Open

populations. For instance, the PRE-DELIRC (PREdiction of DELIRlum in ICU patients) delirium risk prediction tool was developed for intensive care patients ¹¹. This model utilizes 10 parameters. It had an area under a receiver operating characteristic curve (AUROC) of 0.87 (95% confidence interval [CI], 0.85 to 0.89). Temporal validation and external validation resulted in an AUROC of 0.89 (0.86–0.92) and 0.84 (0.82–0.87), respectively ¹¹. Another tool, the Risk Model for Delirium, assesses a number of predisposing risk factors for delirium in hip fracture patients. They are delirium during previous hospitalization; the presence of dementia; substandard performance in a clock-drawing test; advanced age; hearing impairment; visual impairment; the need for domestic help, assistance with meal preparation, or help with physical care; the use of heroin, methadone, or morphine; and the consumption of alcoholic beverages. This model showed good intraclass correlation coefficient (0.77), sensitivity (80.4%), and AUROC (0.73)¹². Furthermore, Kim *et al* developed the DELirium Prediction based on Hospital Information (Delphi) system for general surgery patients. Delphi demonstrated good AUROCs for both the developed (0.91) and validated models (0.98)¹³. Nevertheless, each of the above models was developed for specific application with medical critically ill, general surgical, or particular orthopedic patients, and the scoring systems tend to be overly complicated.

The Siriraj Integrated Perioperative Geriatric (SIPG) Excellent Research Center has studied the incidence, risk factors, and predictive scores of POD in critically ill surgical patients. The independent risk factors for delirium identified by a multivariate analysis were age, diabetes mellitus, severity of disease (assessed by the sequential organ failure assessment [SOFA] score), perioperative use of benzodiazepine, and mechanical ventilation. The following predictive score was created:

Age + $(5 \times \text{SOFA})$ + $(15 \times \text{benzodiazepine use})$ + $(20 \times \text{DM})$ +

 $(20 \times \text{mechanical ventilation}) + (20 \times \text{modified IQCODE} > 3.42)$

BMJ Open

 Its AUROC was 0.84 (95% CI, 0.786–0.897). A cutoff value of 125 demonstrated a sensitivity of 72.1% and a specificity of 80.9¹⁴. Thus, we were interested in validating the model. To this end, internal validation was performed at our hospital, while external validation was conducted at 2 other academic hospitals. There has been no previous investigation of a predictive model for POD in patients in surgical ICUs (SICUs). By identifying critically ill patients at high risk of developing POD, a model would enable the implementation of non-pharmacological and pharmacological preventive measures to avoid severe complications. The aim of this study was to validate the use of the proposed POD predictive scoring tool in SICUs.

Toeer teriewony

Design

A prospective, observational, cohort study was conducted. The study was approved by the Siriraj Institutional Review Board of the Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (Si 623/2017, Chairperson Prof. Chairat Shayakul, M.D.) on 20 October 2017; the Committee on Human Rights Related to Research Involving Human Subjects, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (MURA 2017/574, Chairperson Asst. Prof. Chusak Okascharoen, M.D.) on 27 November 2017; and Research Ethics Committee 4 at the Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand (SUR-2560-05016, Chairperson Emeritus Prof. Panja Kulapongs, M.D.) on 28 November 2017. Written informed consent was obtained from the participants before their entry into the study. The trial was registered with the Thai Clinical Trials elie, Registry (TCTR20180105001).

Study population

The study was conducted on 380 SICU patients at 3 hospitals: Siriraj, Ramathibodi, and Maharaj Nakorn Chiang Mai.

The study population comprised patients who were at least 18 years of age and were admitted to a SICU within 7 days of surgery at Siriraj, Ramathibodi, or Maharaj Nakorn Chiang Mai Hospital. In addition, patients for the internal validation cohort were 65 years or older and had been admitted to a Siriraj Hospital SICU^{15, 16} for a stay anticipated to exceed 24 hours. At all 3 hospitals, we excluded SICU patients who had (1) not undergone any operations; (2) communication problems (unable to communicate in Thai, or having a severe visual or auditory impairment interfering with communication); or (3) a Richmond Agitation Sedation Scale (RASS) score of -4 or -5 during the whole of their ICU stay. A flowchart illustrating the

BMJ Open

patient selection processes for the development and validation cohorts is presented in Figure 1.

Measurement instruments

Delirium was assessed using the Thai version of the CAM-ICU. Delirium was identified by the following 4 features: 1) a change or fluctuation in baseline mental status; 2) inattention; and either 3) an altered level of consciousness; or 4) disorganized thinking ¹⁷. The Thai version has demonstrated satisfactory validity and reliability (specificity, 94.7%; sensitivity, 92.3%) ⁸. As to the level of consciousness, it was assessed by the RASS. It utilizes a 10-point scale ranging from –5 to +4. The delirium subtypes were recorded as hypoactive (RASS –1 to –3), hyperactive (RASS +1 to +4), and mixed type (hypo- and hyperactive) ¹⁸. With regard to dementia, it was evaluated via the Thai version of the Modified Informant Questionnaire on Cognitive Decline in the Elderly (modified IQCODE). The questionnaire consists of 32 items, with assessments of patients being made by their caregivers. The optimal cutoff score for the modified IQCODE is 3.42 (sensitivity, 90%; specificity, 95%; and accuracy, 92%) ¹⁹. Lastly, the severity of illness at SICU admission was evaluated using the Acute Physiology and Chronic Health Evaluation II (APACHE II) scoring system, and SOFA scores.

Data collection

The predisposing and precipitating factors potentially linked to the onset of delirium were grouped as preoperative, intraoperative, and postoperative variables. The preoperative risk factors were demographic variables obtained from a review of an individual patient's medical records and interviews with any proxies. Each patient's cognitive status was measured using the modified IQCODE ¹⁹.

The intraoperative variables were obtained from anesthetic records. They consisted of the surgical type (abdominal, vascular, orthopedic, urological, gynecological, and head and

BMJ Open

neck); admission type (emergency or elective); operation time; intraoperative blood loss; amount of blood transfused; and total fluid intake. Intraoperative hypotension was deemed to be either a systolic pressure below 90 mmHg or the need to be treated with medications. Intraoperative hypoxemia was defined as an oxygen saturation (derived from pulse oximetry) of below 90% for any duration.

The postoperative variables were primarily obtained from the SICU data records. They were the use of mechanical ventilation, physical restraints, or a Foley's catheter; the presence of sleep deprivation or shock; exposure to psychoactive drugs (benzodiazepines, opioids, and sedatives); and the presence of coma (indicated by a RASS score of -4 or -5).

Preparation of research team

 The clinical researchers administering the Thai CAM-ICU were physicians and nurses who had been trained by the principal investigator. To ensure reliability among the assessors, inter-rater reliability scores were calculated. Once their kappa score reached 0.8, the trained physicians and nurses were permitted to perform the Thai CAM-ICU assessments.

Patient assessments

Patients provided informed consent in writing. Delirium was evaluated at least twice daily (once during the 12 hours from 6.00 AM, and once during the 12 hours after 6.00 PM), and whenever patients developed a mental change. Delirium was screened routinely utilizing a 2-step process. Initially, the patients' level of consciousness was assessed using the RASS. If the score was between -3 and +4, the evaluators proceeded to Step 2 (assessment of the patient with the Thai version of CAM-ICU). However, if Step 1 produced a -4 RASS score (responsive only to physical stimulus) or a -5 RASS score (unresponsive to physical and verbal stimulus), Step 2 was not performed. If a patient was found to be sedated in the first step, the dose of the

BMJ Open

sedative medication was adjusted. The patient was later assessed with the CAM-ICU once a RASS score of -3 or higher was achieved.

The second step involved the determination of the patient's delirium level using the Thai version of CAM-ICU, employing standard methodology. The assessments commenced on the first day after the patient's operation and continued for 7 days, or until either discharge from the ICU or the death of the patient. Patients with delirium were further assessed until the CAM-ICU was negative for 24 hours. Thereafter, the ICU attending physician was notified for further management.

Internal and external validation

After development of a predictive model from a prospective cohort study that took place between February 2016 and February 2017, we did a second prospective cohort study in the same hospital for internal validation of the model between April 2018 and December 2019. In the meantime, we externally validated the predictive model with data from intensive care surgical patients admitted to 2 other university hospitals in Thailand. They were Ramathibodi Hospital, Mahidol University, and Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University. Trained intensive care nurses at those hospitals used the CAM-ICU at least twice daily (Table 1). The validation process was conducted according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) Statement²⁰, a guideline specifically designed for the reporting of studies developing or validating a multivariable prediction model, whether for diagnostic or prognostic purposes.

Statistical analysis

Demographic variables are presented as mean ± standard deviation and median (interquartile range [IQR]) for continuous data, and frequency and percentage for categorical data. Group

comparisons were performed using the independent-samples t-test, Mann–Whitney U test, chisquared test, or Fisher's exact test, as appropriate.

In both validation studies, we multiplied regression coefficients for each risk factor in the predictive model by the observed patients' values. The outcome was a calculated predicted probability, on which we built a new AUROC. Finally, an ROC curve was plotted to determine the best cutoff in terms of Youden's index, sensitivity, specificity, and 95% CI. The Youden's index was the difference between the true and the false positive rates. Maximizing this index allows an optimal cutoff value to be found from the ROC curve, independently from the prevalence ^{21, 22}. Finally, to examine how well the model was calibrated, we calculated linear predictor values for each patient of every cohort by using the coefficients from the model. We used these linear predictors in a logistic regression model to test whether the prediction rule was well calibrated, resulting in a calibration slope and an intercept. A calibration slope of 1 and an intercept of 0 show a perfect calibration ^{23, 24}. Statistics were analyzed using PASW Statistics for Windows (version 18; SPSS Inc., Chicago, IL, USA); and MedCalc statistical software (version 17.6; MedCalc Software BVBA, Ostend, Belgium).

RESULTS

Patients

The patients were enrolled between February 2016 and February 2017¹⁴ for the development cohort, and between April 2018 and December 2019 for the internal and external validation studies. In all, 1,437 SICU patients were excluded for the reasons given in Figure. 1, and 380 were recruited. The mean age of the patients in the internal validation cohort was 75.1 ± 7.5 years, while the mean for the patients in the external validation cohort was 56.9 ± 17.3 years. The mean age of all of the patients in the 2 validation cohorts was 64.1 ± 16.8 years. More than half of the patients in the validation cohort were males. Details relating to the demographic and intraoperative data, ICU admission, and the medications used are given in Table 2. There was a higher proportion of patients with hypertension, diabetes mellitus (DM), and cardiac disease in the internal validation cohort than the external validation cohorts, respectively, compared with 24.4% in the development cohort. The majority of patients in all cohorts underwent intra-abdominal surgery. The median SOFA score was 4 (IQR 1–6) for all validation cohort. The percentage of benzodiazepine use in the development cohort (10% vs. 25.2%; Table 2).

Development study

Of the 412 recruited patients, a total of 162 were excluded for the reasons detailed in Figure. 1. As a result, 250 patients were enrolled, 61 of whom (24.4%) developed delirium (Table 2). The predictive model was derived from a multiple logistic regression that used significant risk factors. The final formula required 6 factors (2 quantitative factors, and 4 binary factors). The formula of the predictive model was:

Age + $(5 \times \text{SOFA})$ + $(15 \times \text{benzodiazepine use})$ + $(20 \times \text{DM})$ +

 $(20 \times \text{mechanical ventilation}) + (20 \times \text{modified IQCODE} > 3.42)$

The AUROC was 0.84 (95% CI, 0.786–0.897; Figure 2A). The cutoff value of ≥ 125 demonstrated a sensitivity of 72.1% and a specificity of 80.9% ¹⁴.

Validation study

Internal validation of predictive model

For the prospective validation study, we recruited 984 consecutive patients who were aged over 65 years; however, 834 were subsequently excluded (Figure. 1). Of the remaining 150 patients, 60 (40%) developed delirium (Table 2). The internal validation resulted in an AUROC of 0.76 (0.683 to 0.837; Figure. 2B), with a calibration slope of 0.972 and an intercept of 0.009 (Figure. 3A).

External validation of predictive model

We performed the external validation study on critically ill surgical patients admitted to SICUs at Ramathibodi and Maharaj Nakorn Chiang Mai Hospitals. Of the 833 recruited patients, 603 were excluded (Figure. 1). As a result, 230 patients were enrolled: 62 (27%) at Ramathibodi Hospital, and 168 (73%) at Maharaj Nakorn Chiang Mai Hospital. The incidence of delirium in the external validation cohort was 21% (Table 2). The external validation resulted in an AUROC of 0.85 (0.789 to 0.906; Figure. 2C), with a calibration slope of 0.929 and an intercept of 0.006 (Figure. 3B).

Optimal cutoff value of predictive model

The AUROCs of the development, internal, and external validation cohorts were comparable (0.84 for the development cohort, 0.76 for the internal validation cohort, and 0.85 for the external validation cohort; Figure. 2). As no differences in prediction existed between the 3 validation studies, we pooled the data of all validation cohorts (n = 380). That revealed that 109 patients (29%) developed delirium (Table 2). Consequently, the AUROC of all of the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

 validation cohorts was 0.83 (0.785 to 0.872; Figure. 2D). The recalibration of all validation study showed a calibration slope of 0.945 and an intercept of 0.007. (Fig 3C) The optimum cutoff value to discriminate between a high and low probability of POD in SICU patients was 115. This cutoff presented the highest value of Youden's index (0.50), the best AUROC, and the optimum values for sensitivity (78.9%) and specificity (70.9%; Table 3). The last 2 values were similar to the sensitivity (78.8%) and specificity (70.4%) of the development cohort.

for peet teriew only

DISCUSSION

Given the high costs of managing delirium and its consequential complications, it is essential to identify individuals at high risk of developing the condition and to deliver evidenced-based preventive measures. This multicenter-study demonstrated the performance of the internal and external validation of a proposed model ¹⁴ that had been developed to predict POD in patients admitted postoperatively to an SICU. It is essential to confirm the predictive performance of the model before its use outside the development setting. The external validation showed moderate to good statistical performance, with the AUROC of the external cohort being comparable to that of the development cohort. In addition, the new cutoff value also demonstrated optimum sensitivity and specificity values that were equivalent to those achieved for the development cohort. However, the performance of the internal validation cohort was not as high as the development and external validation cohort only included patients aged 65 years or older, resulting in a higher incidence of delirium.

Recently, 2 ICU delirium predictive models-the early predictive model for ICU delirium (E-PRE-DELIRIC), and the recalibrated predictive model for ICU delirium (PRE-DELIRIC) have been developed and validated ^{11, 25, 26}. These 2 models are currently used in clinical practice and in research to predict the development of delirium in ICUs. The PRE-DELIRIC model consists of 10 predictors that are available during the first 24 hours after admission to an ICU [25]. The E-PRE-DELIRIC is composed of 9 parameters available at time of ICU admission. Wassenaar *et al.*, 2019 ²⁷ recently conducted an external validation of both assessment tools, using either the CAM-ICU or the Intensive Care Delirium Screening Checklist for delirium assessment. The researchers reported moderate-to-good statistical performances. Nevertheless, the formulas for those 2 models were quite complicated, using several parameters, and they were developed in a mixed-ICU setting (medical and surgical

BMJ Open

populations). Given that cognitive impairment (including dementia) and severity of illness have been recognized as strong predictors for delirium in hospitalized patients, ^{28, 29} the E-PRE-DELIRIC system included only a history of cognitive impairment but no severity scores. In contrast, the PRE-DELIRIC model included only APACHE II scores, but no information on cognitive impairment.

The currently proposed predictive model for POD in critically ill surgical patients has several strengths. Firstly, it was developed specifically for surgical patients, and it demonstrated high accuracy. In addition, it employs only 5 parameters, which makes it relatively easy to calculate. Furthermore, dementia is assessed by both the patient's history and the modified IQCODE assessment tool. A previous study found that the prevalence of dementia among elderly delirious patients was 5 times higher when evaluated by the modified IQCODE tool than when using information obtained solely from history taking ³⁰. Consequently, the proposed predictive model was validated in the same hospital and in 2 other academic hospitals. Although we recruited only elderly patients for the internal validation cohort, the AUROC showed an acceptable value. For the external validation cohort in the SICUs of the 2 other hospitals, we performed quality control by determining the inter-rater reliability of CAM-ICU assessment before commencing the study. There were differences in the patient case-mix of the external and development validation samples. In particular, relative to the development group, the external validation cohort had a lower age, a lower percentage of patients with mechanical ventilation, a higher percentage of dementia, and a lower percentage of benzodiazepine use. Despite that, the models' discriminative performance showed the same value (AUROC 0.84 for the development cohort, and 0.85 for the external validation cohort). In short, for the all-validation cohort, the AUROC was approximately the same as that for the development and the external validation cohorts. A score of ≥ 115 was the best cutoff value to predict the occurrence of delirium in SICUs. This cutoff presented the highest value for

Youden's index (0.50), the best AUROC, and the optimum values for sensitivity (78.9%) and specificity (70.9%). Additionally, the predictive value depends on a disease's prevalence in the population group that is being diagnosed ³¹. A good model must have sufficient prevalence, high sensitivity, and high specificity, and it should allow diagnosis before a patient displays symptoms ^{31, 32}.

Strengths and limitations

The significant strength of our study is that it was the first multicenter study in Thailand to evaluate the performance of a proposed predictive model for delirium in SICUs. The early prediction of the development of delirium in ICU patients facilitates the implementation of prevention protocols. These interventions can be non-pharmacological (such as cognitive stimulation, early mobilization, and enhanced sleep ^{33, 34} or pharmacological (like the prophylactic administration of dexmedetomidine ³⁵ to high-risk patients).

Several limitations need to be addressed. Firstly, only the CAM-ICU was used to assess delirium. In the current work, the researchers (physicians and nurses) who evaluated delirium using this tool were well-trained, and their ratings are therefore regarded as accurate. However, other research showed that the accuracies of delirium assessments performed by bedside nurses in daily practice demonstrated lower sensitivity and specificity than our clinical researchers achieved ³⁶. The skill level of staff undertaking assessments in a clinical setting may therefore influence the results of the predictive model. In addition, the internal validation cohort only included critically ill elderly patients. The optimum cutoff value that resulted in the best sensitivity and specificity might be different from the all-validation and development cohorts. Moreover, differences in risk factors might affect the predictive model. We did not perform a logistic regression for the validation cohort in order to identify independent risk factors for delirium. This is because the prognostic ability demonstrated by the AUROC of the internal

and external validation groups showed moderate-to-good performance. Lastly, the predictive model only used parameters available at the time of SICU admission. Any changes in patients' conditions during their stay can affect the probability of their developing delirium. Our model did not account for such changes.

CONCLUSIONS

The model reported in this study can predict which critically ill surgical patients will develop POD in SICUs. Consequently, high-risk patients can be identified, and both non-pharmacological and pharmacological prevention protocols can be implemented to improve the clinical outcomes. The use of this selective strategy is appropriate in a resource-limited country, in which the administration of a prevention protocol for all critically-ill patients is not viable.

Author affiliations

¹Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

²Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai Thailand.
³Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

⁴Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand. ⁵Siriraj Integrated Perioperative Geriatric Excellent Research Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Contributions

OC and AS contributed to the design of the study. OC, KC and S. Morakul were involved in data management and oversaw the project. KC, S. Mueankwan, S. Morakul, PD, contributed to data collection. CT contributed to data analysis. OC and CT contributed to the interpretation of the results and drafting the manuscript. All authors read and approved the final manuscript.

Funding

This study was supported by the Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand (IO: R016132015). The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Data availability statement

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Ethics statements

Patient consent for publication

Not applicable.

Ethics approval

This study was conducted according to the ethical standards established by the 1964 Declaration of Helsinki. The study was approved by the Siriraj Institutional Review Board of the Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (Si 623/2017, Chairperson Prof. Chairat Shayakul, M.D.) on 20 October 2017; the Committee on Human Rights Related to Research Involving Human Subjects, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (MURA 2017/574, Chairperson Asst. Prof. Chusak Okascharoen, M.D.) on 27 November 2017; and Research Ethics Committee 4 at the Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand (SUR-2560-05016, Chairperson Emeritus Prof. Panja Kulapongs, M.D.) on 28 November 2017. Written informed consent was obtained from the participants before their entry into the study. The trial was registered with the Thai Clinical Trials Registry (TCTR20180105001).

Acknowledgements

The authors gratefully acknowledge the patients who generously agreed to participate in this

study, and Assist. Prof. Dr. Chulaluk Komoltri, M.P.H. Biostatistics, for the statistical analyses.

to peer teriew only

References

- Marcantonio ER, Goldman L, Mangione CM, et al. A clinical prediction rule for delirium after elective noncardiac surgery. *JAMA* 1994;271:134-9. https://doi:10.1001/jama. 1994.03510260066030.
- Serafim RB, Dutra MF, Saddy F, Tura B, de Castro JE, Villarinho LC, et al. Delirium in postoperative nonventilated intensive care patients: risk factors and outcomes. *Ann Intensive Care* 2012;2:1–6. https://doi: 10.1186/2110-5820-2-51.
- Pandharipande P, Cotton BA, Shintani A., et al. Prevalence and risk factors for development of delirium in trauma and surgical ICU patients. *J Trauma* 2008;65:34–41. https://doi: 10.1097/TA.0b013e31814b2c4d.
- 4. Schenning KJ, Deiner SG. Postoperative delirium: a review of risk factors and tools of prediction. *Curr Anesthesiol Rep* 2015; 5: 48–56. https://doi:10.1007/s40140-014-0086-1
- 5. Whitlock EL, Vannucci A, Avidan MS. Postoperative delirium. *Minerva Anestesiol* 2011;77:448–56.
- Leslie DL, Marcantonio ER, Zhang Y, et al. One-year health care costs associated with delirium in the elderly population. *Arch Intern Med* 2008;168:27–32. https://doi: 10.1001/archinternmed.2007.4.
- Gusmao-Flores D, Salluh JI, Chalhub RÁ, et al. The confusion assessment method for the intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies. *Crit Care* 2012;16:R115. https://doi: 10.1186/cc11407.
- 8 Pipanmekaporn T, Wongpakaran N, Mueankwan S, et al. Validity and reliability of the Thai version of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). *Clin Interv Aging* 2014;9:879–85. https://doi: 10.2147/CIA.S62660.
- 9. Muangpaisan W, Wongprikron A, Srinonprasert V, et al. Incidence and risk factors of

acute delirium in older patients with hip fracture in Siriraj Hospital. *J Med Assoc Thai* 2015;98:423–30.

- Limpawattana P, Panitchote A, Tangvoraphonkchai K, et al. Delirium in critical care: a study of incidence, prevalence, and associated factors in the tertiary care hospital of older Thai adults. *Aging Ment Health* 2016;20:74–80. https://doi: 10.1080/13607863. 2015.1035695.
- 11. Van den Boogaard M, Pickkers P, Slooter AJC, et al. Development and validation of PRE-DELIRC (PREdiction of DELIRlum in ICU patients) delirium prediction model for intensive care patients: observational multicente study. *BMJ* 2012;344:e420. https:// doi:10.1136/bmj.e420.
- Moerman S, Tuinebreijer WE, Boo MD, Pilot P, Nelissen RG, Vochteloo AJ. Validation of the risk model for delirium in hip fracture patients. *Gen Hosp Psychiatry* 2012;34:153– 9. https://doi: 10.1016/j.genhosppsych.2011.11.011.
- Kim MY, Park UJ, Kim HT, et al. DELirium Prediction Based on Hospital Information (Delphi) in General Surgery Patients. *Medicine* 2016;95:2–7. https://doi: 10.1097/MD. 0000000000003072.
- Chaiwat O, Chanidnuan M, Pancharoen W, et al. Postoperative delirium in critically ill surgical patients: incidence, risk factors, and predictive scores. *BMC Anesthesiol* 2019;19:39. doi: 10.1186/s12871-019-0732-8.
- Robinson TN, Raeburn CD, Tran ZV, et al. Postoperative delirium in the elderly. risk factors and outcomes. *Ann Surg* 2009;249:173–8. https://doi: 10.1097/SLA. 0b013e31818e4776.
- Böhner H, Hummel TC, Habel U, et al. Predicting Delirium After Vascular Surgery. A Model Based on Pre- and Intraoperative Data. *Ann Surg* 2003;238:149–56. https://doi: 10.1097/01.sla.0000077920.38307.5f.

BMJ Open

17.	Ely EW, Margolin R, Francis, J, et al. Evaluation of delirium in critically ill patients:
	Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU).
	<i>Crit Care Med</i> 2001;29:1370–9. https://doi: 10.1097/00003246-200107000-00012.
18.	Peterson JF, Pun BT, Dittus RS, et al. Delirium and its motoric subtypes: a study of 614
	critically ill patients. J Am Geriatr Soc 2006;54:479-84. https://doi: 10.1111/j.1532-
	5415.2005.00621.x.
19.	Siri S, Okanurak K, Chansirikanjana S, et al. Modified Informant Questionnaire on
	Cognitive decline in the Elderly (IQCODE) as a screening test for dementia for Thai
	elderly. Southeast Asian J Trop Med Public Health 2006;37:587–94.
20.	Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable
	prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD
	statement. BMC Medicine. 2015;13:1. https://doi.org/10.1186/s12916-014-0241-z
21.	Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-5. https://doi:
	10.1002/1097-0142(1950)3:1<32:aid-cncr2820030106>3.0.co;2-3.
22.	Galley HF. Editorial II: Solid as a ROC. Br J Anaesth 2004;93:623-6. https://doi:
	10.1093/bja/aeh247.
23.	Steyerberg EW, Eijkemans MJ, Harrell FE Jr, et al. Prognostic modeling with logistic
	regression analysis: in search of a sensible strategy in small data sets. Med Decis Mak Int
	J Soc Med Decis Mak 2001;21:45–56.
24.	Van Calster, B., McLernon, D.J., van Smeden, M. et al. Calibration: the Achilles heel of
	predictive analytics. BMC Med 2019;17. https://doi.org/10.1186/s12916-019-1466-7.
25.	van den Boogaard M, Schoonhoven L, Maseda E, et al. Recalibration of the delirium
	prediction model for ICU patients (PRE-DELIRIC): A multinational observational study.
	Intensive Care Med 2014;40:361-9. https://doi: 10.1007/s00134-013-3202-7.

26. Wassenaar A, van den Boogaard M, van Achterberg T, et al. Multinational development

and validation of an early prediction model for delirium in ICU patients. *Intensive Care Med* 2015;41:1048–56. https://doi: 10.1007/s00134-015-3777-2.

- 27. Wassenaar A, Schoonhoven L, Devlin JW, et al. External Validation of Two Models to Predict Delirium in Critically III Adults Using Either the Confusion Assessment Method-ICU or the Intensive Care Delirium Screening Checklist for Delirium Assessment. *Crit Care Med* 2019;47:e827-35. https://doi: 10.1097/CCM.00000000003911.
- Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet 2014;383:911–22. https://doi: 10.1016/S0140-6736(13)60688-1.
- Devlin JW, Skrobik Y, Gélinas C, et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. *Crit Care Med* 2018;46:e825-73. https://doi: 10.1097/CCM.00000000003299.
- 30. To-adithep P, Wongviriyawong T, Thanakiattiwibun C, Chanidnuan M, Pancharoen W, Chaiwat O. Prevalence of Dementia among Elderly Surgical Patients using Thai Modified IQ CODE: A Cross-Sectional Study. *J Med Assoc Thai* 2018;101:83.
- 31. Grimes DA, Schulz KF. Uses and abuses of screening tests. *Lancet* 2002;359:881–4. https://doi: 10.1016/S0140-6736(02)07948-5.
- 32. Knottnerus JA, van Weel C, Muris JW. Evaluation of diagnostic procedures. *BMJ* 2002;324:477–80. https://doi: 10.1136/bmj.324.7335.477.
- Hanison J, Conway D: A multifaceted approach to prevention of delirium on intensive care. *BMJ Qual Improv Rep* 2015;12:4–12. https://doi: 10.1136/bmjquality.u209656. w4000.
- 34. Rivosecchi RM, Kane-Gill SL, Svec S, et al. The implementation of a nonpharmacologic protocol to prevent intensive care delirium. *J Crit Care* 2016;31:206–11. https://doi:10.1016/j.jcrc.2015.09.031.

- 35. Su X, Meng Z-T, Wu X-H, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. *The Lancet* 2016;388:1893–1902. https://doi: 10.1016/S0140-6736(16)30580-3.
- 36. an Eijk MM, van den Boogaard M, van Marum RJ, et al. Routine use of the confusion assessment method for the intensive care unit: a multicenter study. *Am J Respir Crit Care Med* 2011;184:340–4. https://doi: 10.1164/rccm.201101-0065OC.

to beet terien only

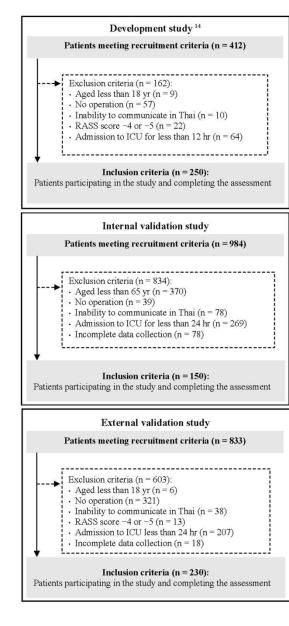
Table 1. Characteristics	of participating hospitals
--------------------------	----------------------------

Participating	Institution	ICU beds	ICU	CAM-ICU
hospital		for adults	population	screenings
Siriraj Hospital	Faculty of Medicine Siriraj Hospital,	14 beds	Surgery	2/day;
	Mahidol University			IRR > 0.8
Ramathibodi Hospital	Faculty of Medicine Ramathibodi	12 beds	Surgery	2/day;
	Hospital, Mahidol University			IRR > 0.8
Maharaj Nakorn	Faculty of Medicine, Chiang Mai	7 beds	Surgery	2/day; IRR
Chiang Mai Hospital	University			not
				measured

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

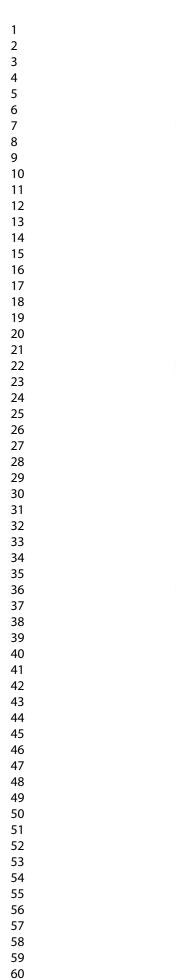
Table 2. Characteristics of patients in development a	and validation groups
---	-----------------------

Variable	Development	Internal	External	All validatio	
	(n = 250)	validation	validation	(n = 380)	
		(n = 150)	(n = 230)		
Demographic data					
Age (years)	64.2 ± 16.4	75.1 ± 7.5	56.9 ± 17.3	64.1 ± 16.8	
Sex; male	121 (48.4%)	84 (56.0%)	128 (55.7%)	212 (55.8%)	
Comorbidities					
Hypertension	155 (62.0%)	101 (67.3%)	109 (47.4%)	210 (55.3%)	
DM	63 (25.2%)	41 (27.3%)	49 (21.3%)	90 (23.7%)	
Cardiac disease	64 (25.6%)	37 (24.7%)	33 (14.3%)	70 (18.4%)	
ESRD or CKD stage 4–5	34 (13.6%)	30 (20.0%)	75 (32.6%)	105 (27.6%)	
Modified IQCODE score ≥ 3.42	16 (6.4%)	20 (13.3%)	27 (11.7%)	47 (12.4%)	
Current alcohol consumption	17 (6.8%)	12 (8.0%)	41 (17.8%)	53 (13.9%)	
Incidence of delirium	61 (24.4%)	60 (40.0%)	49 (21.3%)	109 (28.7%)	
Type of delirium					
Hypoactive	44 (72%)	16 (26.7%)	26 (11.3%)	42 (11.1%)	
Hyperactive	9 (15%)	17 (28.3%)	6 (2.6%)	23 (6.1%)	
Mixed	8 (13%)	27 (45%)	17 (7.4%)	44 (11.6%)	
Intraoperative data					
Emergency surgery	108 (43.2%)	64 (42.7%)	73 (31.7%)	137 (36.1%)	
Type of surgery					
Vascular	52 (20.8%)	43 (28.7%)	26 (11.3%)	69 (18.2%)	
Intra-abdominal	88 (35.2%)	79 (52.7%)	81 (35.2%)	160 (42.1%)	
Orthopedic	29 (11.6%)	8 (5.3%)	10 (4.3%)	18 (4.7%)	
Gynecological	26 (10.4%)	1 (0.7%)	4 (1.7%)	5 (1.3%)	
Other	55 (22.0%)	19 (12.7%)	109 (47.4%)	128 (33.7%)	
Hypoxia	10 (4.0%)	8 (5.3%)	2 (0.9%)	10 (2.6%)	
Intraoperative hypotension	196 (78.4%))	127 (84.7%)	93 (40.4%)	220 (57.9%)	
ICU admission					
Sepsis	61 (24.4%)	39 (26.0%)	30 (13.0%)	69 (18.2%)	
APACHE II score	9 (6–11)	14 (11–19)	12 (8–17)	12 (9–17)	
SOFA score	3 (2–6)	4 (3–6)	4 (1-6)	4 (2–6)	
Mechanical ventilation	185 (74.0%)	126 (84.0%)	153 (66.5%)	279 (73.4%)	
Medication					
Benzodiazepine	63 (25.2%)	19 (12.7%)	19 (8.3%)	38 (10.0%)	
Opioid	244 (97.6%)	140 (93.3%)	203 (88.3%)	343 (90.3%)	


Data are presented as mean \pm SD, median (IQR), or n (%).

Abbreviations: APACHE II score, Acute Physiology and Chronic Health Evaluation II score; CKD, chronic kidney disease; DM, diabetes mellitus; ESRD, end state renal disease; Modified IQCODE, Modified Informant Questionnaire on Cognitive Decline in the Elderly; SOFA score, Sequential Organ Failure Assessment score

Development (n = 250)		l		Internal validation (n = 150) J		External validation (n = 230)		$J_{\underline{c}}^{\underline{N}}$ All validation (n = 380)		J		
value	Sensitivity (95% CI)	Specificity (95% CI)		Sensitivity (95% CI)	Specificity (95% CI)		Sensitivity (95% CI)	Specificity (95% CI)	June 2022	Sensitivity (95% CI)	Specificity (95% CI)	-
≥100	95.1% (86.3–99.0)	50.3% (42.9–57.6)	0.45	100.0% (94.0– 100.0)	21.1% (13.2–31.0)	0.21	87.8% (75.2–95.4)	64.6% (57.2–71.6)	0.5%nloadeddrom	94.5% (88.4–98.0)	50.2% (44.1–56.3)	0.4
≥ 105	90.2% (79.8–96.3)	56.1% (48.7–63.3)	0.46	96.7% (88.5–99.6)	27.8% (18.9–38.2)	0.25	79.6% (65.7–89.8)	66.7% (59.5–73.7)	0.44fron	89.0% (81.6–94.2)	53.9% (47.7–59.9)	0.4
≥110	83.6% (71.9–91.9)	63.0% (55.7–69.9)	0.47	90.0% (79.5–96.2)	34.4% (24.7–45.2)	0.24	75.5% (61.1–86.7)	75.1% (68.2–81.3)		83.5% (75.2–89.9)	61.6% (55.6–67.4)	0.43
≥115	78.7% (66.3–88.1)	70.4% (63.3–76.8)	0.49	86.7% (75.4–94.1)	50.0% (39.3–60.7)	0.37	69.4% (54.6–81.8)	81.2% (74.8–86.7)	0.5 th 0.5 th 0.5 th 0.5 th 0.4 ^t 0.4 ^t 0.4 ^t	78.90% (70.0–86.1)	70.9% (65.1–76.2)	0.50
≥120	75.4% (62.7–85.5)	74.1% (67.2–80.2)	0.50	83.3% (71.5–91.7)	60.0% (49.1–70.2)	0.47	61.2% (46.2–74.8)	86.2% (80.3–90.9)	0.48m/	73.3% (64.1–81.4)	77.5% (72.1–82.3)	0.50
≥125	72.1% (59.2–82.9)	81.0% (74.6–86.3)	0.53	78.3% (65.8–87.9)	68.9% (58.3 to 78.2)	0.47	55.1% (40.2–69.3)	90.1% (84.7–94.0)	0.4 0.4 0.4 0.4	67.9% (58.3–76.5)	83.0% (78.0–87.3)	0.50
≥130	67.2% (54.0–78.7)	87.3% (81.7–91.7)	0.54	61.7% (48.2–73.9)	72.2% (61.8 to 81.2)	0.34	46.9% (32.5–61.7)	93.4% (88.7–96.5)		55.1% (45.2–64.6)	86.4% (81.7–90.2)	0.42
bbreviatio	on: J, Youden's ii	ndex							2024 by gu			
									guest. Protected by copyright			


1 2 3	
4	Figure legends
5 6 7	Figure 1. Flowchart of development and validation studies
8 9	Figure 2. Receiver operating characteristic (ROC) curves and calculated areas under
10 11	the curve (AUC)
12 13	(A) Development study of the delirium predictive score
14 15 16	(B) Internal validation study of the delirium predictive score
17 18	(C) External validation study of the delirium predictive score
19 20	(D) All validation study of the delirium predictive score
21 22 23	Figure 3. Calibration plot of pooled data
24 25	(A) Internal validation study of the delirium predictive score (n=150)
26 27	(B) External validation study of the delirium predictive score (n=230)
28 29 30	(C) All validation study of the delirium predictive score (n=380)
31 32	
33 34	
35 36	(C) All valuation study of the definition predictive score (II–580)
37 38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58	

90x185mm (300 x 300 DPI)

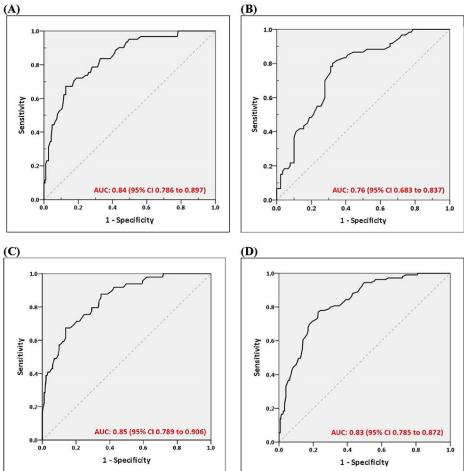
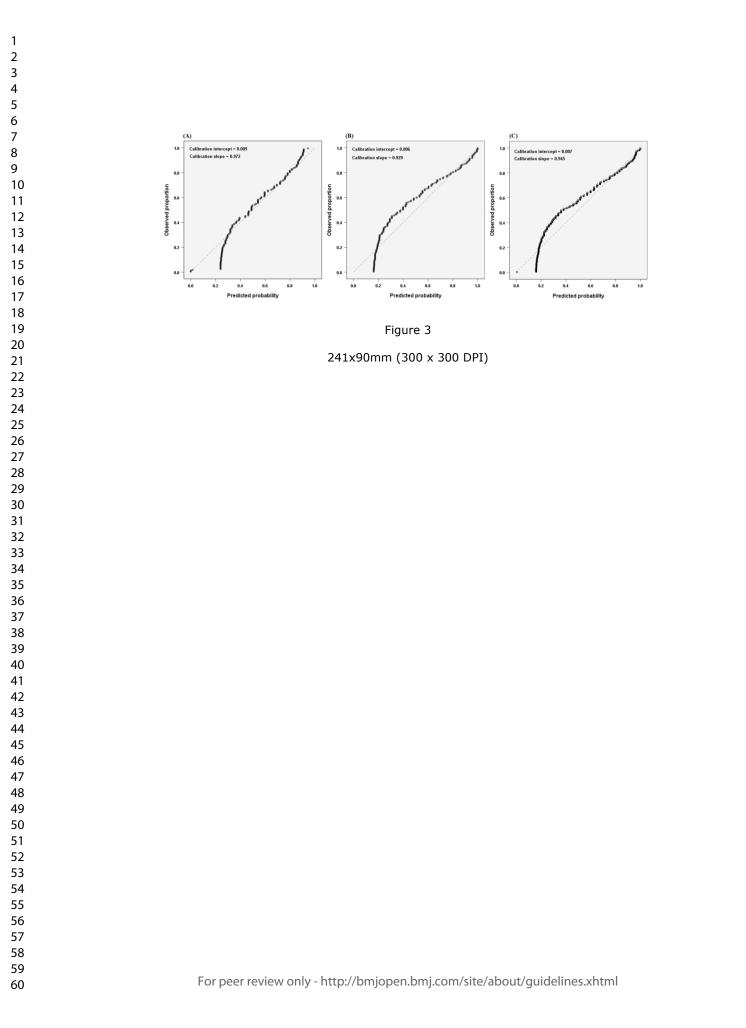



Figure 2 90x90mm (300 x 300 DPI)

BMJ Open

BMJ Open

TRAPOD

TRIPOD Checklist: Prediction Model Validation

Section/Topic	Item	Checklist Item	
Title and abstract			
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the	Τ
	-	target population, and the outcome to be predicted.	
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	
Introduction			
Background and	3a	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	
objectives	3b	Specify the objectives, including whether the study describes the development or validation of the model or both.	
Methods	I		-
inethous	1	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data),	Т
Source of data	4a	separately for the development and validation data sets, if applicable.	
	4b	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	
	5a	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	
Participants	5b	Describe eligibility criteria for participants.	$^{+}$
	5c	Give details of treatments received, if relevant.	1
		Clearly define the outcome that is predicted by the prediction model, including how and	
Outcome	6a	when assessed.	
	6b	Report any actions to blind assessment of the outcome to be predicted.	
	7a	Clearly define all predictors used in developing or validating the multivariable prediction	
Predictors	7 d	model, including how and when they were measured.	
	7b	Report any actions to blind assessment of predictors for the outcome and other predictors.	
Sample size	8	Explain how the study size was arrived at.	
Missing data	9	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	
Statistical	10c	For validation, describe how the predictions were calculated.	
analysis methods	10d	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	
	10e	Describe any model updating (e.g., recalibration) arising from the validation, if done.	
Risk groups	11	Provide details on how risk groups were created, if done.	
Development vs.	12	For validation, identify any differences from the development data in setting, eligibility	
validation		criteria, outcome, and predictors.	
Results		Describe the flow of participants through the study, including the number of participants	Т
	13a	with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	
Participants	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	
	13c	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	
Model performance	16	Report performance measures (with Cls) for the prediction model.	
Model-updating	17	If done, report the results from any model updating (i.e., model specification, model performance).	
Discussion			-
		Discuss any limitations of the study (such as nonrepresentative sample, few events per	
Limitations	18	predictor, missing data).	
Interpretation	19a	For validation, discuss the results with reference to performance in the development data, and any other validation data.	
,	19b	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	
Implications	20	Discuss the potential clinical use of the model and implications for future research.	
Other information			-
Supplementary information	21	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	
Funding	22	Give the source of funding and the role of the funders for the present study.	T

We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Validation of a delirium predictive model in patients admitted to surgical intensive care units: a multicenter prospective observational cohort study

1	BM1 On an
Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057890.R1
Article Type:	Original research
Date Submitted by the Author:	01-Apr-2022
Complete List of Authors:	Chaiwat, Onuma; Mahidol University Faculty of Medicine Siriraj Hospital, Department of Anesthesiology; Mahidol University Faculty of Medicine Siriraj Hospital, Integrated Perioperative Geriatric Excellent Research Center Chittawatanarat, Kaweesak ; Chiang Mai University Faculty of Medicine, Department of Surgery; Chiang Mai University Faculty of Medicine, Clinical surgical research center Mueankwan, Sirirat ; Chiang Mai University Faculty of Medicine, Surgical critical care unit, Department of Surgery Morakul, Sunthiti ; Mahidol University Faculty of Medicine Ramathibodi Hospital, Department of Anesthesiology Dilokpattanamongkol, Pitchaya ; Mahidol University Faculty of Pharmacy, Department of Pharmacy Thanakiattiwibun, Chayanan ; Mahidol University Faculty of Medicine Siriraj Hospital, Integrated Perioperative Geriatric Excellent Research Center Siriussawakul, Arunotai; Mahidol University Faculty of Medicine Siriraj Hospital, Department of Anesthesiology; Mahidol University Faculty of Medicine Siriraj Hospital, Integrated Perioperative Geriatric Excellent Research Center Siriussawakul, Arunotai; Mahidol University Faculty of Medicine Siriraj Hospital, Department of Anesthesiology; Mahidol University Faculty of Medicine Siriraj Hospital, Integrated Perioperative Geriatric Excellent Research Center
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Intensive care
Keywords:	Adult intensive & critical care < ANAESTHETICS, INTENSIVE & CRITICAL CARE, Delirium & cognitive disorders < PSYCHIATRY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1	Validation of a delirium predictive model in patients admitted to surgical
2	intensive care units: a multicenter prospective observational cohort study
3	
4	Onuma Chaiwat ^{1, 7*} ,
5	Kaweesak Chittawatanarat ^{2, 3} ,
6	Sirirat Mueankwan ⁴ ,
7	Sunthiti Morakul ⁵ ,
8	Pitchaya Dilokpattanamongkol ⁶ ,
9	Chayanan Thanakiattiwibun ⁷ ,
10	Arunotai Siriussawakul ^{1,7}
11	
12	*Correspondence: onuma.cha@mahidol.ac.th
13	Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University,
14	Bangkok 10700 Thailand
15	
16	Full list of author information is available at the end of the article

Abstract

BMJ Open

4 5	1,	
6 7 8	18	Objective To internally and externally validate a delirium predictive model for adult patients
9 10	19	admitted to intensive care units (ICUs) following surgery.
11 12	20	Design A prospective, observational, multicenter study.
13 14	21	Setting Three university-affiliated teaching hospitals in Thailand.
15 16 17	22	Participants Adults aged over 18 years were enrolled if they were admitted to a surgical ICU
18 19	23	(SICU) and had the surgery within 7 days before SICU admission.
20 21	24	Main outcome measures Postoperative delirium was assessed using the Thai version of the
22 23 24	25	CAM-ICU. The assessments commenced on the first day after the patient's operation and
25 26	26	continued for 7 days, or until either discharge from the ICU or the death of the patient.
27 28	27	Validation was performed of the previously developed delirium predictive model: Age + (5 \times
29 30 31	28	SOFA) + (15 × benzodiazepine use) + (20 × DM) + (20 × mechanical ventilation) + (20 ×
32 33	29	modified IQCODE > 3.42).
34 35	30	Results In all, 380 SICU patients were recruited. Internal validation on 150 patients with the
36 37	31	mean age of 75 ± 7.5 year resulted in an area under a receiver operating characteristic curve
38 39 40	32	(AUROC) of 0.76 (0.683 to 0.837). External validation on 230 patients with the mean age of
41 42	33	57 ± 17.3 year resulted in an AUROC of 0.85 (0.789 to 0.906). The AUROC of all validation
43 44	34	cohorts was 0.83 (0.785 to 0.872). The optimum cutoff value to discriminate between a high
45 46 47	35	and low probability of postoperative delirium in SICU patients was 115. This cutoff offered
48 49	36	the highest value for Youden's index (0.50), the best AUROC, and the optimum values for
50 51	37	sensitivity (78.9%) and specificity (70.9%).
52 53 54	38	Conclusions The model developed by the previous study was able to predict the occurrence
55 56	39	of postoperative delirium in critically ill surgical patients admitted to SICUs.
57 58	40	Registration: Thai Clinical Trail Registry (TCTR ID: TCTR20180105001), 05 January 2018
59 60	41	Keywords: postoperative delirium, predictive model, surgical intensive care units, validation

2	
3	42
4 5	
6	
7	43
8	
9	44
10	
11 12	45
13	
14	46
15	
16	47
17	
18 19	48
20	
21	49
22	
23	50
24 25	
25 26	
20	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47 48	
40 49	
50	
51	
52	
53	
54 55	
55 56	
50 57	
58	
59	
60	

Strengths and limitations of this study

43	• The developed delirium predictive model consists of 6 risk factors was able to
44	predict the occurrence of postoperative delirium in critically ill surgical patients
45	• The internal and external validation demonstrated moderate to good statistical
46	performance, with the AUROC being comparable to that of the development
47	cohort
48	• The optimum cutoff value to discriminate between a high and low probability of
49	POD in SICU patients was 115
50	
	POD in SICU patients was 115

51 BACKGROUND

Delirium, a disturbance of consciousness, is both acute and fluctuating. Delirium is an extremely common condition among hospitalized patients. Its incidence varies with the study population, but higher rates are observed among geriatric, postsurgical, intensive care unit (ICU), cardiac surgery, and hip-fracture patients ¹⁻⁴. Postoperative delirium (POD) among patients who have been treated with surgery and anesthesia is typically found during the first 3 postoperative days ⁵. Although the POD can be transient, it is linked to poor outcomes. These include long stays in postanesthesia care units (PACUs), ICUs, and hospitals; high medical-complication rates; and raised mortality levels ⁶.

Several tools for assessing delirium have been validated. Among those is the Confusion Assessment Method for the ICU (CAM-ICU), which shows high sensitivity and specificity ⁷. The CAM-ICU has been translated into Thai, and it, too, has demonstrated good sensitivity and specificity for critically ill patients⁸. In Thailand, there are limited data relating to POD as well as delirium among critically ill patients. Muangpaisan et al., 2015 9 reported the incidence of delirium was 22.5% in hip surgery. Their investigation also identified the following risk factors: age, premorbid function, dementia/cognitive impairment, the nonstop administration of nonsteroidal anti-inflammatory drugs, and postoperative sedative use. Another study reported a 44.0% prevalence of delirium among critically ill, old patients at a medical ICU in northeastern Thailand. That work found that the independent factors related to delirium were the use of physical restraints, a history of stroke, and multiple bed changes ¹⁰.

Given that delirium can result in poor clinical outcomes, predictions of its occurrence among patients who are at risk of delirium are especially important. During the recent decade, some predictive scoring systems for delirium have been proposed for use with various populations. For instance, the PRE-DELIRC (PREdiction of DELIRlum in ICU patients) delirium risk prediction tool was developed for intensive care patients ¹¹. This model utilizes

10 parameters. It had an area under a receiver operating characteristic curve (AUROC) of 0.87 (95% confidence interval [CI], 0.85 to 0.89). Temporal validation and external validation resulted in an AUROC of 0.89 (0.86–0.92) and 0.84 (0.82–0.87), respectively ¹¹. Another tool, the Risk Model for Delirium, assesses a number of predisposing risk factors for delirium in hip fracture patients. This model showed good intraclass correlation coefficient (0.77), sensitivity (80.4%), and AUROC (0.73)¹². Furthermore, Kim et al developed the DELirium Prediction based on Hospital Information (Delphi) system for general surgery patients. Delphi demonstrated good AUROCs for both the developed (0.91) and validated models (0.98)¹³. Nevertheless, each of the above models was developed for specific application with medical critically ill, general surgical, or particular orthopedic patients, and the scoring systems tend to be overly complicated.

The Siriraj Integrated Perioperative Geriatric (SIPG) Excellent Research Center has studied the incidence, risk factors, and predictive scores of POD in critically ill surgical patients. The independent risk factors for delirium identified by a multivariate analysis were age, diabetes mellitus, severity of disease (assessed by the sequential organ failure assessment [SOFA] score), perioperative use of benzodiazepine, mechanical ventilation and dementia defined by the Thai version of the Modified Informant Questionnaire on Cognitive Decline in the Elderly (modified IQCODE) scores > 3.42. The following predictive model was created:

Age + $(5 \times SOFA)$ + $(15 \times benzodiazepine use)$ + $(20 \times DM)$ +

 $(20 \times \text{mechanical ventilation}) + (20 \times \text{modified IQCODE} > 3.42)$

96 Its AUROC was 0.84 (95% CI, 0.786–0.897). A cutoff value of 125 demonstrated a sensitivity 97 of 72.1% and a specificity of 80.9¹⁴. Thus, we were interested in validating the model. To this 98 end, internal validation was performed at our hospital, while external validation was conducted 99 at 2 other academic hospitals. There has been no previous investigation of a predictive model 100 for POD in patients in surgical ICUs (SICUs). The aim of this study was to validate the use of

1 2		
3 4	101	the proposed POD predictive scoring tool in SICUs in order to identify patients who tend to
5 6	102	develop delirium.
7 8 9 10 11 23 14 15 16 7 8 9 21 22 32 25 27 28 9 0 12 33 34 35 37 8 9 41 42 34 45 67 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 26 7 89 0 12 23 45 56 7 89 0 12 23 45 56 7 89 0 12 23 45 56 7 89 0 12 23 45 56 7 89 0 12 23 45 56 7 89 0 12 23 24 55 56 7 89 0 12 23 24 55 56 7 89 0 12 23 24 55 55 55 55 55 55 56 7 89 0 12 33 23 23 24 56 7 89 0 12 23 24 56 7 89 0 12 23 24 5 56 7 89 0 12 23 24 55 55 55 55 55 55 55 55 55 55 55 55 55	103	

METHODS

A prospective, observational, cohort study was conducted. The study was approved by the Siriraj Institutional Review Board of the Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (Si 623/2017, Chairperson Prof. Chairat Shayakul, M.D.) on 20 October 2017; the Committee on Human Rights Related to Research Involving Human Subjects, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (MURA 2017/574, Chairperson Asst. Prof. Chusak Okascharoen, M.D.) on 27 November 2017; and Research Ethics Committee 4 at the Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand (SUR-2560-05016, Chairperson Emeritus Prof. Panja Kulapongs, M.D.) on 28 November 2017. Written informed consent was obtained from the participants before their entry into the study. The trial was registered with the Thai Clinical Trials Lie4 Registry (TCTR20180105001). **Study population** The study was conducted on 380 SICU patients at 3 hospitals: Siriraj, Ramathibodi, and Maharaj Nakorn Chiang Mai. The study population comprised patients who were at least 18 years of age and were admitted to a SICU within 7 days of surgery at Siriraj, Ramathibodi, or Maharaj Nakorn Chiang Mai Hospital (Table 1). In addition, patients for the internal validation cohort were 65 years or older and had been admitted to a Siriraj Hospital SICU ^{15, 16} for a stay anticipated to exceed 24

hours. At all 3 hospitals, we excluded SICU patients who had (1) not undergone any operations; (2) communication problems (unable to communicate in Thai, or having a severe visual or

auditory impairment interfering with communication); or (3) a Richmond Agitation Sedation

Scale (RASS) score of -4 or -5 during the whole of their ICU stay. A flowchart illustrating the

2		
3		
4		
5		
6		
7		
8		
9		
1	0	
	1	
1		
	3	
1	4	
1		
	6	
	7	
1	8	
	9	
	0	
2		
2		
	3	
	4	
2	5	
2	6	
2	7	
	8	
	9	
	0	
3		
3		
	3	
3	4	
3	5	
3	6	
3		
	, 8	
	9	
-	-	
	0	
4		
	2	
4	3	
4	4	
4		
	6	
4 4		
	8	
	9	
5	0	
5		
	2	
5		
	4	
5		
	6	
5		
	8	
5	9	
б	0	

patient selection processes for the development and validation cohorts is presented in Figure 1.

131 **Patient and public involvement**

132 No patient involved.

² 133

134 Measurement instruments

135 Delirium was assessed using the Thai version of the CAM-ICU (S1). Delirium was identified 136 by the following 4 features: 1) a change or fluctuation in baseline mental status; 2) inattention; 137 and either 3) an altered level of consciousness; or 4) disorganized thinking ¹⁷. The Thai version has demonstrated satisfactory validity and reliability (specificity, 94.7%; sensitivity, 92.3%)⁸. 138 139 As to the level of consciousness, it was assessed by the RASS. It utilizes a 10-point scale 140 ranging from -5 to +4. The delirium subtypes were recorded as hypoactive (RASS -1 to -3), 141 hyperactive (RASS +1 to +4), and mixed type (hypo- and hyperactive) ¹⁸. With regard to 142 dementia, it was evaluated via the Thai version of modified IQCODE (S2). The questionnaire 143 consists of 32 items, with assessments of patients being made by their caregivers. The optimal cutoff score for the modified IQCODE is 3.42 (sensitivity, 90%; specificity, 95%; and 144 accuracy, 92%)¹⁹. Lastly, the severity of illness at SICU admission was evaluated using the 145 146 Acute Physiology and Chronic Health Evaluation II (APACHE II) scoring system, and SOFA 147 scores.

148Patients provided informed consent in writing. Delirium was evaluated at least twice149daily (once during the 12 hours from 6.00 AM, and once during the 12 hours after 6.00 PM),150and whenever patients developed a mental change. Delirium was screened routinely utilizing a1512-step process. Initially, the patients' level of consciousness was assessed using the RASS. If152the score was between -3 and +4, the evaluators proceeded to Step 2 (assessment of the patient153with the Thai version of CAM-ICU). However, if Step 1 produced a -4 RASS score (responsive

only to physical stimulus) or a -5 RASS score (unresponsive to physical and verbal stimulus), Step 2 was not performed. If a patient was found to be sedated in the first step, the dose of the sedative medication was adjusted. The patient was later assessed with the CAM-ICU once a RASS score of -3 or higher was achieved.

The second step involved the determination of the patient's delirium level using the Thai version of CAM-ICU, employing standard methodology. The assessments commenced on the first day after the patient's operation and continued for 7 days, or until either discharge from the ICU or the death of the patient. Patients with delirium were further assessed until the CAM-ICU was negative for 24 hours. Thereafter, the ICU attending physician was notified for further management.

Data collection

The predisposing and precipitating factors potentially linked to the onset of delirium were grouped as preoperative, intraoperative, and postoperative variables. The preoperative risk factors were demographic variables obtained from a review of an individual patient's medical records and interviews with any proxies. Each patient's cognitive status was measured using the modified IOCODE ¹⁹.

The intraoperative variables were obtained from anesthetic records. They consisted of the surgical type (abdominal, vascular, orthopedic, urological, gynecological, and head and neck); admission type (emergency or elective); operation time; intraoperative blood loss; amount of blood transfused; and total fluid intake. Intraoperative hypotension was deemed to be either a systolic pressure below 90 mmHg or the need to be treated with medications.^{20, 21} Intraoperative hypoxemia was defined as an oxygen saturation (derived from pulse oximetry) of below 90% for any duration.

178 The postoperative variables were primarily obtained from the SICU data records. They

BMJ Open

179 were the use of mechanical ventilation, physical restraints, or a Foley's catheter; the presence 180 of sleep deprivation or shock; exposure to psychoactive drugs (benzodiazepines, opioids, and 181 sedatives); and the presence of coma (indicated by a RASS score of -4 or -5).

Preparation of research team

The clinical researchers administering the Thai CAM-ICU were physicians and nurses who had been trained by the principal investigator. To ensure reliability among the assessors, inter-rater reliability scores were calculated. Once their kappa score reached 0.8, the trained physicians and nurses were permitted to perform the Thai CAM-ICU assessments.

189 Internal and external validation

After development of a predictive model from a prospective cohort study that took place between February 2016 and February 2017, we did a second prospective cohort study in the same hospital for internal validation of the model between April 2018 and December 2019. In the meantime, we externally validated the predictive model with data from intensive care surgical patients admitted to 2 other university hospitals in Thailand. They were Ramathibodi Hospital, Mahidol University, and Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University. Trained intensive care nurses at those hospitals used the CAM-ICU at least twice daily. The validation process was conducted according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) Statement²², a guideline specifically designed for the reporting of studies developing or validating a multivariable prediction model, whether for diagnostic or prognostic purposes.

202 Statistical analysis

203 The sample size was estimated based on the reported 78% accuracy of development predictive

204 score.¹⁴ Based on the estimated accuracy of 80% (p=0.80) and a 4% error (d = 0.04), an 5% 205 alpha ($\alpha = 0.05$), the sample size of 380 cases was calculated.

Demographic variables are presented as mean ± standard deviation or median (interquartile
 range [IQR]) for continuous data, and frequency and percentage for categorical data.

In both validation studies, we multiplied regression coefficients for each risk factor in the predictive model by the observed patients' values. The outcome was a calculated predicted probability, on which we built a new AUROC. Finally, an ROC curve was plotted to determine the best cutoff in terms of Youden's index, sensitivity, specificity, and 95% CI. The Youden's index was the difference between the true and the false positive rates. Maximizing this index allows an optimal cutoff value to be found from the ROC curve, independently from the prevalence ^{23, 24}. Finally, to examine how well the model was calibrated, we calculated linear predictor values for each patient of every cohort by using the coefficients from the model. We used these linear predictors in a logistic regression model to test whether the prediction rule was well calibrated, resulting in a calibration slope and an intercept. A calibration slope of 1 and an intercept of 0 show a perfect calibration ^{25, 26}. Statistics were analyzed using PASW Statistics for Windows (version 18; SPSS Inc., Chicago, IL, USA); and MedCalc statistical software (version 17.6; MedCalc Software BVBA, Ostend, Belgium).

RESULTS

223 Patients

The patients were enrolled between February 2016 and February 2017¹⁴ for the development cohort, and between April 2018 and December 2019 for the internal and external validation studies. In all, 1,437 SICU patients were excluded for the reasons given in Figure. 1, and 380 were recruited. The mean age of the patients in the internal validation cohort was 75.1 ± 7.5 years, while the mean for the patients in the external validation cohort was 56.9 ± 17.3 years. The mean age of all of the patients in the 2 validation cohorts was 64.1 ± 16.8 years. More than half of the patients in the validation cohort were males. Details relating to the demographic and intraoperative data, ICU admission, and the medications used are given in Table 2. There was a higher proportion of patients with hypertension, diabetes mellitus (DM), and cardiac disease in the internal validation cohort than the external validation cohort. The incidence of delirium was 40.0%, 21.3%, and 28.7% in the internal, external, and all validation cohorts, respectively, compared with 24.4% in the development cohort. The majority of patients in all cohorts underwent intra-abdominal surgery. The median SOFA score was 4 (IQR 1–6) for all validation cohorts, which was higher than the median of 3 (IQR 2-6) for the development cohort. The percentage of benzodiazepine use in the development cohort (10% vs. 25.2%; Table 2).

46 240 **Development study**

Of the 412 recruited patients, a total of 162 were excluded for the reasons detailed in Figure.
1. As a result, 250 patients were enrolled, 61 of whom (24.4%) developed delirium (Table 2).
The predictive model was derived from a multiple logistic regression that used significant risk
factors. The final formula required 6 factors (2 quantitative factors, and 4 binary factors). The
formula of the model was:

60 246

Age + $(5 \times SOFA)$ + $(15 \times benzodiazepine use)$ + $(20 \times DM)$ +

1 2		
3 4	247	$(20 \times \text{mechanical ventilation}) + (20 \times \text{modified IQCODE} > 3.42)$
5 6	248	The AUROC was 0.84 (95% CI, 0.786–0.897). The cutoff value of \geq 125 demonstrated a
7 8 9 10 11	249	sensitivity of 72.1% and a specificity of 80.9% ¹⁴ .
	250	
12 13	251	Validation study
14 15	252	Internal validation of predictive model
16 17 18	253	For the prospective validation study, we recruited 984 consecutive patients who were aged over
19 20	254	65 years; however, 834 were subsequently excluded (Figure. 1). Of the remaining 150 patients,
21 22 23 24 25	255	60 (40%) developed delirium (Table 2). The internal validation resulted in an AUROC of 0.76
	256	(0.683 to 0.837; Figure. 2A), and this AUROC was not significantly different from the AUROC
26 27	257	of the developed predictive model ($P = 0.092$), with a calibration slope of 0.972 and an intercept
28 29	258	of 0.009 (Figure. 2B).
30 31 32	259	
32 33 34	260	External validation of predictive model
35 36 37 38 39	261	We performed the external validation study on critically ill surgical patients admitted to SICUs
	262	at Ramathibodi and Maharaj Nakorn Chiang Mai Hospitals. Of the 833 recruited patients, 603
39 40 41	263	were excluded (Figure. 1). As a result, 230 patients were enrolled: 62 (27%) at Ramathibodi
42 43	264	Hospital, and 168 (73%) at Maharaj Nakorn Chiang Mai Hospital. The incidence of delirium
44 45	265	in the external validation cohort was 21% (Table 2). The external validation resulted in an
46 47 48	266	AUROC of 0.85 (0.789 to 0.906; Figure. 2C), and it was not significantly different from the
49 50	267	AUROC of the developed predictive model ($P = 0.865$), with a calibration slope of 0.929 and
51 52	268	an intercept of 0.006 (Figure. 2D).
53 54	269	

Optimal cutoff value of predictive model

 $^{58}_{59}$ 271 The AUROCs of the development, internal, and external validation cohorts were comparable

 (0.84 for the development cohort, 0.76 for the internal validation cohort, and 0.85 for the external validation cohort). As no differences in prediction existed between the 3 validation studies, we pooled the data of all validation cohorts (n = 380). That revealed that 109 patients (29%) developed delirium (Table 2). Consequently, the AUROC of all of the validation cohorts was 0.83 (0.785 to 0.872; Figure. 2E). The recalibration of all validation study showed a calibration slope of 0.945 and an intercept of 0.007 (Figure 2F). The optimum cutoff value to discriminate between a high and low probability of POD in SICU patients was 115. This cutoff presented the highest value of Youden's index (0.50), the best AUROC, and the optimum values for sensitivity (78.9%) and specificity (70.9%; Table 3). The last 2 values were similar to the sensitivity (78.8%) and specificity (70.4%) of the development cohort.

DISCUSSION

 Given the high costs of managing delirium and its consequential complications, it is essential to identify individuals at high risk of developing the condition and to deliver evidenced-based preventive measures. This multicenter-study demonstrated the performance of the internal and external validation of a proposed model ¹⁴ that had been developed to predict POD in patients admitted postoperatively to an SICU. It is essential to confirm the predictive performance of the model before its use outside the development setting. The external validation showed moderate to good statistical performance, with the AUROC of the external cohort being comparable to that of the development cohort. In addition, the new cutoff value also demonstrated optimum sensitivity and specificity values that were equivalent to those achieved for the development cohort. However, the performance of the internal validation cohort was not as high as the development and external validation cohort (AUROC, 0.76). This was because the internal validation cohort only included patients aged 65 years or older, resulting in a higher incidence of delirium.

Recently, 2 ICU delirium predictive models-the early predictive model for ICU delirium (E-PRE-DELIRIC), and the recalibrated predictive model for ICU delirium (PRE-DELIRIC) have been developed and validated ^{11, 27, 28}. These 2 models are currently used in clinical practice and in research to predict the development of delirium in ICUs. The PRE-DELIRIC model consists of 10 predictors that are available during the first 24 hours after admission to an ICU ²⁷. The E-PRE-DELIRIC is composed of 9 parameters available at time of ICU admission. Wassenaar et al., 2019²⁹ recently conducted an external validation of both assessment tools, using either the CAM-ICU or the Intensive Care Delirium Screening Checklist for delirium assessment. The researchers reported moderate-to-good statistical performances. Nevertheless, the formulas for those 2 models were quite complicated, using several parameters, and they were developed in a mixed-ICU setting (medical and surgical

BMJ Open

populations). Given that cognitive impairment (including dementia) and severity of illness have been recognized as strong predictors for delirium in hospitalized patients, ^{30, 31} the E-PRE-DELIRIC system included only a history of cognitive impairment but no severity scores. In contrast, the PRE-DELIRIC model included only APACHE II scores, but no information on cognitive impairment.

The currently proposed predictive model for POD in critically ill surgical patients has several strengths. Firstly, it was developed specifically for surgical patients, and it demonstrated high accuracy. In addition, it employs only 5 parameters, which makes it relatively easy to calculate. Furthermore, dementia is assessed by both the patient's history and the modified IQCODE assessment tool. A previous study found that the prevalence of dementia among elderly delirious patients was 5 times higher when evaluated by the modified IQCODE tool than when using information obtained solely from history taking ³². Consequently, the proposed predictive model was validated in the same hospital and in 2 other academic hospitals. Although we recruited only elderly patients for the internal validation cohort, the AUROC showed an acceptable value. For the external validation cohort in the SICUs of the 2 other hospitals, we performed quality control by determining the inter-rater reliability of CAM-ICU assessment before commencing the study. There were differences in the patient case-mix of the external and development validation samples. In particular, relative to the development group, the external validation cohort had a lower age, a lower percentage of patients with mechanical ventilation, a higher percentage of dementia, and a lower percentage of benzodiazepine use. Despite that, the models' discriminative performance showed the same value (AUROC 0.84 for the development cohort, and 0.85 for the external validation cohort). In short, for the all-validation cohort, the AUROC was approximately the same as that for the development and the external validation cohorts. A score of ≥ 115 was the best cutoff value to predict the occurrence of delirium in SICUs. This cutoff presented the highest value for

Youden's index (0.50), the best AUROC, and the optimum values for sensitivity (78.9%) and
specificity (70.9%). Additionally, the predictive value depends on a disease's prevalence in the
population group that is being diagnosed ³³. A good model must have sufficient prevalence,
high sensitivity, and high specificity, and it should allow diagnosis before a patient displays
symptoms ^{33, 34}.

339 Strengths and limitations

The significant strength of our study is that it was the first multicenter study in Thailand to evaluate the performance of a proposed predictive model for delirium in SICUs. The early prediction of the development of delirium in ICU patients facilitates the implementation of prevention protocols. These interventions can be non-pharmacological (such as cognitive stimulation, early mobilization, and enhanced sleep) ^{35, 36} or pharmacological (like the prophylactic administration of dexmedetomidine ³⁷ to high-risk patients).

Several limitations need to be addressed. Firstly, only the CAM-ICU was used to assess delirium. In the current work, the researchers (physicians and nurses) who evaluated delirium using this tool were well-trained, and their ratings are therefore regarded as accurate. However, other research showed that the accuracies of delirium assessments performed by bedside nurses in daily practice demonstrated lower sensitivity and specificity than our clinical researchers achieved ³⁸. The skill level of staff undertaking assessments in a clinical setting may therefore influence the results of the predictive model. In addition, the internal validation cohort only included critically ill elderly patients. The optimum cutoff value that resulted in the best sensitivity and specificity might be different from the all-validation and development cohorts. Moreover, differences in risk factors might affect the predictive model. We did not perform a logistic regression for the validation cohort in order to identify independent risk factors for delirium. This is because the prognostic ability demonstrated by the AUROC of the internal

Page 19 of 36

BMJ Open

and external validation groups showed moderate-to-good performance. Lastly, the predictive
model only used parameters available at the time of SICU admission. Any changes in patients'
conditions during their stay can affect the probability of their developing delirium. Our model
did not account for such changes.

363 CONCLUSIONS

The model reported in this study can predict which critically ill surgical patients will develop POD in SICUs. Consequently, high-risk patients can be identified, and both nonpharmacological and pharmacological prevention protocols can be implemented to improve the clinical outcomes. The use of this selective strategy is appropriate in a resource-limited country, in which the administration of a prevention protocol for all critically-ill patients is not viable.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 36

1 2		
2 3 4	371	Author affiliations
5 6 7	372	¹ Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University,
7 8 9	373	Bangkok, Thailand.
10 11	374	² Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai Thailand.
12 13	375	³ Clinical surgical research center, Faculty of Medicine, Chiang Mai University, Chiang Mai,
14 15 16	376	Thailand
17 18	377	⁴ Surgical critical care unit, Department of Surgery, Faculty of Medicine, Chiang Mai
19 20	378	University, Chiang Mai, Thailand
21 22 23	379	⁵ Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol
24 25	380	University, Bangkok, Thailand.
26 27	381	⁶ Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
28 29 30	382	⁷ Integrated Perioperative Geriatric Excellent Research Center, Faculty of Medicine Siriraj
31 32	383	Hospital, Mahidol University, Bangkok, Thailand.
33 34	384	
35 36 37	385	Contributions
38 39	386	OC and AS contributed to the design of the study. OC, KC and S. Morakul were involved in
40 41	387	data management and oversaw the project. KC, S. Mueankwan, S. Morakul, PD, contributed
42 43 44	388	to data collection. CT contributed to data analysis. OC and CT contributed to the
44 45 46	389	interpretation of the results and drafting the manuscript. All authors read and approved the
47 48	390	final manuscript.
49 50	391	
51 52 53	392	Funding
54 55	393	This study was supported by the Faculty of Medicine Siriraj Hospital, Mahidol University,
56 57	394	Thailand (IO: R016132015). The funders had no role in study design, data collection, and
58 59 60	395	analysis, decision to publish, or preparation of the manuscript.

1		
2 3	206	
4	396	
5 6	397	Competing interests
7 8 9	398	The authors declare that they have no competing interests.
10 11	399	
12 13 14	400	Data availability statement
15 16	401	The datasets used and analyzed during the current study are available from the corresponding
17 18	402	author on reasonable request.
19 20 21	403	
22 23	404	Ethics statements
24 25 26	405	Patient consent for publication
27 28	406	Not applicable.
29 30	407	
31 32 33	408	Ethics approval
34 35	409	This study was conducted according to the ethical standards established by the 1964
36 37 38	410	Declaration of Helsinki. The study was approved by the Siriraj Institutional Review Board of
38 39 40	411	the Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (Si 623/2017, Chairperson Prof. Chairat Shayakul, M.D.) on 20 October 2017; the Committee on
41 42	412 413	Human Rights Related to Research Involving Human Subjects, Faculty of Medicine
43 44 45	414	Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (MURA 2017/574,
46 47	415	Chairperson Asst. Prof. Chusak Okascharoen, M.D.) on 27 November 2017; and Research
48 49 50	416	Ethics Committee 4 at the Faculty of Medicine, Chiang Mai University, Chiang Mai,
50 51 52	417	Thailand (SUR-2560-05016, Chairperson Emeritus Prof. Panja Kulapongs, M.D.) on 28
53 54	418	November 2017. Written informed consent was obtained from the participants before their
55 56 57	419	entry into the study. The trial was registered with the Thai Clinical Trials Registry
58 59 60	420	(TCTR20180105001).

1 2		
2 3 4	421	
5 6	422	
7 8 9	423	Acknowledgements
9 10 11	424	The authors gratefully acknowledge the patients who generously agreed to participate in this
12 13	425	study, and Assist. Prof. Dr. Chulaluk Komoltri, M.P.H. Biostatistics, for the statistical analyses.
14 15 16	426	
10 17 18	427	Supplemental file
19 20 21	428	S1. Confusion Assessment method for the ICU (CAM-ICU) tool
21 22 23	429	S2. Modified Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) tool
24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 9 40 41 42 43 44 50 51 253 54 55 56 57 89 60	430	S2. Modified Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) tool

BMJ Open

2 3 4	431	Re	eferences
5 6	432	1.	Marcantonio ER, Goldman L, Mangione CM, et al. A clinical prediction rule for delirium
7 8 9	433		after elective noncardiac surgery. JAMA 1994;271:134-9. https://doi:10.1001/jama.
10 11	434		1994.03510260066030.
12 13	435	2.	Serafim RB, Dutra MF, Saddy F, Tura B, de Castro JE, Villarinho LC, et al. Delirium in
14 15 16	436		postoperative nonventilated intensive care patients: risk factors and outcomes. Ann
17 18	437		Intensive Care 2012;2:1-6. https://doi: 10.1186/2110-5820-2-51.
19 20	438	3.	Pandharipande P, Cotton BA, Shintani A., et al. Prevalence and risk factors for
21 22	439		development of delirium in trauma and surgical ICU patients. J Trauma 2008;65:34-41.
23 24 25	440		https://doi: 10.1097/TA.0b013e31814b2c4d.
26 27	441	4.	Schenning KJ, Deiner SG. Postoperative delirium: a review of risk factors and tools of
28 29	442		prediction. Curr Anesthesiol Rep 2015; 5: 48–56. https://doi:10.1007/s40140-014-0086-1
30 31 32	443	5.	Whitlock EL, Vannucci A, Avidan MS. Postoperative delirium. Minerva Anestesiol
33 34	444		2011;77:448–56.
35 36	445	6.	Leslie DL, Marcantonio ER, Zhang Y, et al. One-year health care costs associated with
37 38 39	446		delirium in the elderly population. Arch Intern Med 2008;168:27-32. https://doi:
40 41	447		10.1001/archinternmed.2007.4.
42 43	448	7.	Gusmao-Flores D, Salluh JI, Chalhub RÁ, et al. The confusion assessment method for the
44 45 46	449		intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC)
47 48	450		for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies.
49 50	451		Crit Care 2012;16:R115. https://doi: 10.1186/cc11407.
51 52 53	452	8	Pipanmekaporn T, Wongpakaran N, Mueankwan S, et al. Validity and reliability of the
55 54 55	453		Thai version of the Confusion Assessment Method for the Intensive Care Unit (CAM-
56 57	454		ICU). Clin Interv Aging 2014;9:879-85. https://doi: 10.2147/CIA.S62660.
58 59 60	455	9.	Muangpaisan W, Wongprikron A, Srinonprasert V, et al. Incidence and risk factors of

2 3	456		acute delirium in older patients with hip fracture in Siriraj Hospital. J Med Assoc Thai
4 5			
6 7	457		2015;98:423–30.
8 9	458	10.	Limpawattana P, Panitchote A, Tangvoraphonkchai K, et al. Delirium in critical care: a
10 11	459		study of incidence, prevalence, and associated factors in the tertiary care hospital of older
12 13	460		Thai adults. Aging Ment Health 2016;20:74-80. https://doi: 10.1080/13607863.
14 15	461		2015.1035695.
16 17 18	462	11.	Van den Boogaard M, Pickkers P, Slooter AJC, et al. Development and validation of PRE-
18 19 20	463		DELIRC (PREdiction of DELIRlum in ICU patients) delirium prediction model for
21 22	464		intensive care patients: observational multicente study. BMJ 2012;344:e420. https://
23 24	465		doi:10.1136/bmj.e420.
25 26 27	466	12.	Moerman S, Tuinebreijer WE, Boo MD, Pilot P, Nelissen RG, Vochteloo AJ. Validation
27 28 29	467		of the risk model for delirium in hip fracture patients. Gen Hosp Psychiatry 2012;34:153-
30 31	468		9. https://doi: 10.1016/j.genhosppsych.2011.11.011.
32 33	469	13.	Kim MY, Park UJ, Kim HT, et al. DELirium Prediction Based on Hospital Information
34 35 36	470		(Delphi) in General Surgery Patients. Medicine 2016;95:2-7. https://doi: 10.1097/MD.
37 38	471		00000000003072.
39 40	472	14.	Chaiwat O, Chanidnuan M, Pancharoen W, et al. Postoperative delirium in critically ill
41 42 43	473		surgical patients: incidence, risk factors, and predictive scores. BMC Anesthesiol
45 44 45	474		2019;19:39. doi: 10.1186/s12871-019-0732-8.
46 47	475	15.	Robinson TN, Raeburn CD, Tran ZV, et al. Postoperative delirium in the elderly. risk
48 49	476		factors and outcomes. Ann Surg 2009;249:173–8. https://doi: 10.1097/SLA.
50 51	477		0b013e31818e4776.
52 53 54	478	16	Böhner H, Hummel TC, Habel U, et al. Predicting Delirium After Vascular Surgery. A
55		10.	
56 57 58	479		Model Based on Pre- and Intraoperative Data. Ann Surg 2003;238:149-56. https://doi:
58 59	480		10.1097/01.sla.0000077920.38307.5f.
60			

Page 25 of 36

BMJ Open

1 2			
3 4	481	17.	Ely EW, Margolin R, Francis, J, et al. Evaluation of delirium in critically ill patients:
5 6	482		Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU).
7 8 9	483		Crit Care Med 2001;29:1370-9. https://doi: 10.1097/00003246-200107000-00012.
10 11	484	18.	Peterson JF, Pun BT, Dittus RS, et al. Delirium and its motoric subtypes: a study of 614
12 13	485		critically ill patients. J Am Geriatr Soc 2006;54:479-84. https://doi: 10.1111/j.1532-
14 15	486		5415.2005.00621.x.
16 17 18	487	19.	Siri S, Okanurak K, Chansirikanjana S, et al. Modified Informant Questionnaire on
19 20	488		Cognitive decline in the Elderly (IQCODE) as a screening test for dementia for Thai
21 22	489		elderly. Southeast Asian J Trop Med Public Health 2006;37:587–94.
23 24 25	490	20.	Brady K, Hogue CW. Intraoperative hypotension and patient outcome: does "one size fit
25 26 27	491		all?". Anesthesiology. 2013;119:495-7. doi: 10.1097/ALN.0b013e3182a10cce.
28 29	492	21.	Walsh M, Devereaux PJ, Garg AX, et al. Relationship between intraoperative mean arterial
30 31	493		pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of
32 33 34	494		hypotension. Anesthesiology. 2013;119:507-15. doi:10.1097/ALN.0b013e3182a10e26
35 36	495	22.	Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable
37 38	496		prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD
39 40 41	497		statement. BMC Medicine. 2015;13:1. https://doi.org/10.1186/s12916-014-0241-z
41 42 43	498	23.	Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-5. https://doi:
44 45	499		10.1002/1097-0142(1950)3:1<32:aid-cncr2820030106>3.0.co;2-3.
46 47	500	24.	Galley HF. Editorial II: Solid as a ROC. Br J Anaesth 2004;93:623-6. https://doi:
48 49 50	501		10.1093/bja/aeh247.
51 52	502	25.	Steyerberg EW, Eijkemans MJ, Harrell FE Jr, et al. Prognostic modeling with logistic
53 54	503		regression analysis: in search of a sensible strategy in small data sets. Med Decis Mak Int
55 56 57	504		J Soc Med Decis Mak 2001;21:45–56.
57 58 59 60	505	26.	Van Calster, B., McLernon, D.J., van Smeden, M. et al. Calibration: the Achilles heel of

Page 26 of 36

BMJ Open

2 3 4	506		predictive analytics. BMC Med 2019;17. https://doi.org/10.1186/s12916-019-1466-7.
5 6	507	27.	van den Boogaard M, Schoonhoven L, Maseda E, et al. Recalibration of the delirium
7 8 9	508		prediction model for ICU patients (PRE-DELIRIC): A multinational observational study.
9 10 11	509		Intensive Care Med 2014;40:361-9. https://doi: 10.1007/s00134-013-3202-7.
12 13	510	28.	Wassenaar A, van den Boogaard M, van Achterberg T, et al. Multinational development
14 15 16	511		and validation of an early prediction model for delirium in ICU patients. Intensive Care
17 18	512		Med 2015;41:1048-56. https://doi: 10.1007/s00134-015-3777-2.
19 20	513	29.	Wassenaar A, Schoonhoven L, Devlin JW, et al. External Validation of Two Models to
21 22	514		Predict Delirium in Critically Ill Adults Using Either the Confusion Assessment Method-
23 24 25	515		ICU or the Intensive Care Delirium Screening Checklist for Delirium Assessment. Crit
26 27	516		Care Med 2019;47:e827-35. https://doi: 10.1097/CCM.000000000003911.
28 29	517	30.	Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet
30 31 32	518		2014;383:911-22. https://doi: 10.1016/S0140-6736(13)60688-1.
33 34	519	31.	Devlin JW, Skrobik Y, Gélinas C, et al. Clinical Practice Guidelines for the Prevention
35 36	520		and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption
37 38 39	521		in Adult Patients in the ICU. Crit Care Med 2018;46:e825-73. https://doi:
40 41	522		10.1097/CCM.0000000003299.
42 43	523	32.	To-adithep P, Wongviriyawong T, Thanakiattiwibun C, Chanidnuan M, Pancharoen W,
44 45 46	524		Chaiwat O. Prevalence of Dementia among Elderly Surgical Patients using Thai Modified
40 47 48	525		IQ CODE: A Cross-Sectional Study. J Med Assoc Thai 2018;101:83.
49 50	526	33.	Grimes DA, Schulz KF. Uses and abuses of screening tests. Lancet 2002;359:881-4.
51 52	527		https://doi: 10.1016/S0140-6736(02)07948-5.
53 54 55	528	34.	Knottnerus JA, van Weel C, Muris JW. Evaluation of diagnostic procedures. BMJ
56 57	529		2002;324:477-80. htpps://doi: 10.1136/bmj.324.7335.477.
58 59 60	530	35.	Hanison J, Conway D: A multifaceted approach to prevention of delirium on intensive

1 2			
3 4	531		care. BMJ Qual Improv Rep 2015;12:4-12. https://doi: 10.1136/bmjquality.u209656.
5 6 7	532		w4000.
, 8 9	533	36.	Rivosecchi RM, Kane-Gill SL, Svec S, et al. The implementation of a nonpharmacologic
10 11	534		protocol to prevent intensive care delirium. J Crit Care 2016;31:206-11. https://
12 13	535		doi:10.1016/j.jcrc.2015.09.031.
14 15 16	536	37.	Su X, Meng Z-T, Wu X-H, et al. Dexmedetomidine for prevention of delirium in elderly
16 17 18	537		patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial.
19 20	538		The Lancet 2016;388:1893-1902. https://doi: 10.1016/S0140-6736(16)30580-3.
21 22	539	38.	an Eijk MM, van den Boogaard M, van Marum RJ, et al. Routine use of the confusion
23 24 25	540		assessment method for the intensive care unit: a multicenter study. Am J Respir Crit Care
26 27	541		Med 2011;184:340-4. https://doi: 10.1164/rccm.201101-0065OC.
28 29 30 31 32 33 45 36 37 38 90 41 42 43 44 45 46 47 48 951 52 53 45 56 78 90	542		

Table 1. Characteristics of participating hospitals

	Participating	Institution	ICU beds	ICU	CAM-ICU
	hospital		for adults	population	screenings
	Siriraj Hospital	Faculty of Medicine Siriraj Hospital,	14 beds	Surgery	2/day;
		Mahidol University			IRR > 0.8
ł	Ramathibodi Hospital	Faculty of Medicine Ramathibodi	12 beds	Surgery	2/day;
		Hospital, Mahidol University			IRR > 0.8
	Iaharaj Nakorn	Faculty of Medicine, Chiang Mai	7 beds	Surgery	2/day; IRR
	hiang Mai Hospital	University			measured
At	breviations: CAM,	Confusion Assessment Method; ICU,	intensive care	unit; IRR, inte	er-rater reliabil
ех	xpressed as Cohen's κ				

Table 2. Characteristics of patients in development and validation groups

	Variable	Development (n = 250)	Internal validation (n = 150)	External validation (n = 230)	All validation (n = 380)
-	Demographic data				
	Age (years)	64.2 ± 16.4	75.1 ± 7.5	56.9 ± 17.3	64.1 ± 16.8
	Sex; male	121 (48.4%)	84 (56.0%)	128 (55.7%)	212 (55.8%)
	Comorbidities		- ()	()	()
	Hypertension	155 (62.0%)	101 (67.3%)	109 (47.4%)	210 (55.3%)
	DM	63 (25.2%)	41 (27.3%)	49 (21.3%)	90 (23.7%)
	Cardiac disease	64 (25.6%)	37 (24.7%)	33 (14.3%)	70 (18.4%)
	ESRD or CKD stage 4–5	34 (13.6%)	30 (20.0%)	75 (32.6%)	105 (27.6%)
	Modified IQCODE score ≥ 3.42	16 (6.4%)	20 (13.3%)	27 (11.7%)	47 (12.4%)
	Current alcohol consumption	17 (6.8%)	12 (8.0%)	41 (17.8%)	53 (13.9%)
	Incidence of delirium	61 (24.4%)	60 (40.0%)	49 (21.3%)	109 (28.7%)
	Type of delirium	01 (24.470)	00 (40.070)	49 (21.370)	109 (28.770)
		44 (72%)	16 (26.7%)	26(52,10/)	42 (38.5%)
	Hypoactive	44 (72%) 9 (15%)	· · · · ·	26 (53.1%)	· · · · ·
	Hyperactive		17 (28.3%)	6 (12.2%)	23 (21.1%)
	Mixed	8 (13%)	27 (45%)	17 (34.7%)	44 (40.4%)
	Intraoperative data	100 (42 00/)			127 (26 10/)
	Emergency surgery	108 (43.2%)	64 (42.7%)	73 (31.7%)	137 (36.1%)
	Type of surgery				
	Vascular	52 (20.8%)	43 (28.7%)	26 (11.3%)	69 (18.2%)
	Intra-abdominal	88 (35.2%)	79 (52.7%)	81 (35.2%)	160 (42.1%)
	Orthopedic	29 (11.6%)	8 (5.3%)	10 (4.3%)	18 (4.7%)
	Gynecological	26 (10.4%)	1 (0.7%)	4 (1.7%)	5 (1.3%)
	Other	55 (22.0%)	19 (12.7%)	109 (47.4%)	128 (33.7%)
	Нурохіа	10 (4.0%)	8 (5.3%)	2 (0.9%)	10 (2.6%)
	Intraoperative hypotension	196 (78.4%))	127 (84.7%)	93 (40.4%)	220 (57.9%)
	ICU admission				
	Sepsis	61 (24.4%)	39 (26.0%)	30 (13.0%)	69 (18.2%)
	APACHE II score	9 (6–11)	14 (11–19)	12 (8–17)	12 (9–17)
	SOFA score	3 (2-6)	4 (3-6)	4 (1-6)	4 (26)
	Mechanical ventilation	185 (74.0%)	126 (84.0%)	153 (66.5%)	279 (73.4%)
	Medication	× ,			× ,
	Benzodiazepine	63 (25.2%)	19 (12.7%)	19 (8.3%)	38 (10.0%)
	Opioid	244 (97.6%)	140 (93.3%)	203 (88.3%)	343 (90.3%)
	Outcomes	_ (, , , , , , , , , , , , , , , , , , ,			
	Duration of mechanical ventilation (days)	1(0-4)	3 (1 – 7)	1(0-3)	2(1-4)
	Nosocomial infection in ICU	29 (11.6%)	41 (27.3%)	4 (1.7%)	45 (11.8%)
	ICU length of stay (days)	3(2-5)	5(3-10)	3(3-6)	4(3-7)
	ICU mortality	9 (3.6%)	5 (3.3%)	5 (2.2%)	10(2.6%)
	Hospital length of stay (days)	16(10-29)	20(13-34)	16(13-27)	10(2.070) 18(13-29)
		· · · ·	· /	. ,	. ,
8	Hospital mortality	26 (10.4%)	25 (16.7%)	13 (5.7%)	38 (10.0%)

Data are presented as mean \pm SD, median (IQR), or n (%).

Abbreviations: APACHE II score, Acute Physiology and Chronic Health Evaluation II score; CKD, chronic

kidney disease; DM, diabetes mellitus; ESRD, end state renal disease; Modified IQCODE, Modified Informant

Questionnaire on Cognitive Decline in the Elderly; SOFA score, Sequential Organ Failure Assessment score

0	Δ
- 2	y

Cutoff	Development (n = 250)		J	Internal validation (n = 150)		J	External validation (n = 230)		ا bmjopen-2021-057890 on 21 June	All validation (n = 380)		J
value	Sensitivity (95% CI)	Specificity (95% CI)		Sensitivity (95% CI)	Specificity (95% CI)		Sensitivity (95% CI)	Specificity (95% CI)	2022.	Sensitivity (95% CI)	Specificity (95% CI)	-
≥ 100	95.1% (86.3–99.0)	50.3% (42.9–57.6)	0.45	100.0% (94.0– 100.0)	21.1% (13.2–31.0)	0.21	87.8% (75.2–95.4)	64.6% (57.2–71.6)	Downtoaded	94.5% (88.4–98.0)	50.2% (44.1–56.3)	0.
≥ 105	90.2% (79.8–96.3)	56.1% (48.7–63.3)	0.46	96.7% (88.5–99.6)	27.8% (18.9–38.2)	0.25	79.6% (65.7–89.8)	66.7% (59.5–73.7)	0.490 h	89.0% (81.6–94.2)	53.9% (47.7–59.9)	0.
≥ 110	83.6% (71.9–91.9)	63.0% (55.7–69.9)	0.47	90.0% (79.5–96.2)	34.4% (24.7–45.2)	0.24	75.5% (61.1–86.7)	75.1% (68.2–81.3)	0.49m http://bmjop	83.5% (75.2–89.9)	61.6% (55.6–67.4)	0.
≥ 115	78.7% (66.3–88.1)	70.4% (63.3–76.8)	0.49	86.7% (75.4–94.1)	50.0% (39.3–60.7)	0.37	69.4% (54.6–81.8)	81.2% (74.8–86.7)	0.5	78.90% (70.0–86.1)	70.9% (65.1–76.2)	0.
≥ 120	75.4% (62.7–85.5)	74.1% (67.2–80.2)	0.50	83.3% (71.5–91.7)	60.0% (49.1–70.2)	0.47	61.2% (46.2–74.8)	86.2% (80.3–90.9)	0.4%	73.3% (64.1–81.4)	77.5% (72.1–82.3)	0.
≥ 125	72.1% (59.2–82.9)	81.0% (74.6–86.3)	0.53	78.3% (65.8–87.9)	68.9% (58.3 to 78.2)	0.47	55.1% (40.2–69.3)	90.1% (84.7–94.0)	October 3	67.9% (58.3–76.5)	83.0% (78.0–87.3)	0.
≥ 130	67.2% (54.0–78.7)	87.3% (81.7–91.7)	0.54	61.7% (48.2–73.9)	72.2% (61.8 to 81.2)	0.34	46.9% (32.5–61.7)	93.4% (88.7–96.5)	1, 20 2 4 by	55.1% (45.2–64.6)	86.4% (81.7–90.2)	0.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure legends

Figure 2. Receiver operating characteristic (ROC) curves and calculated areas under

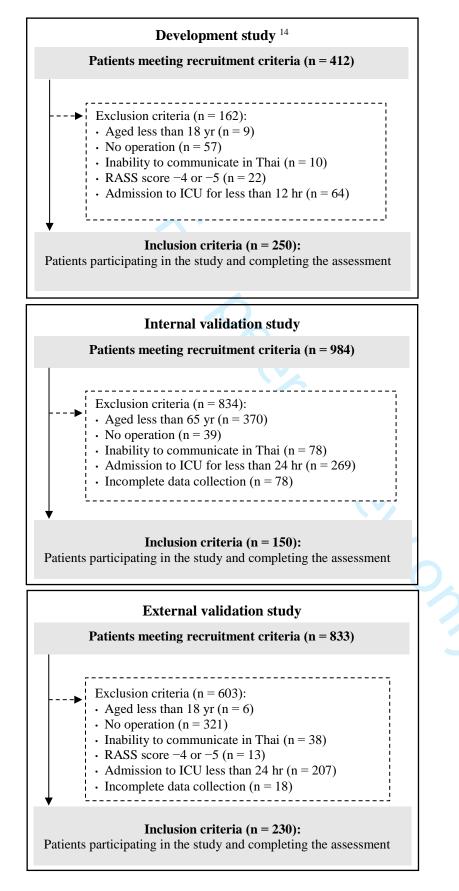
(A and B) Internal validation study of the delirium predictive score

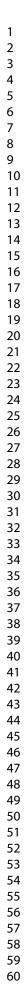
(C and D) External validation study of the delirium predictive score

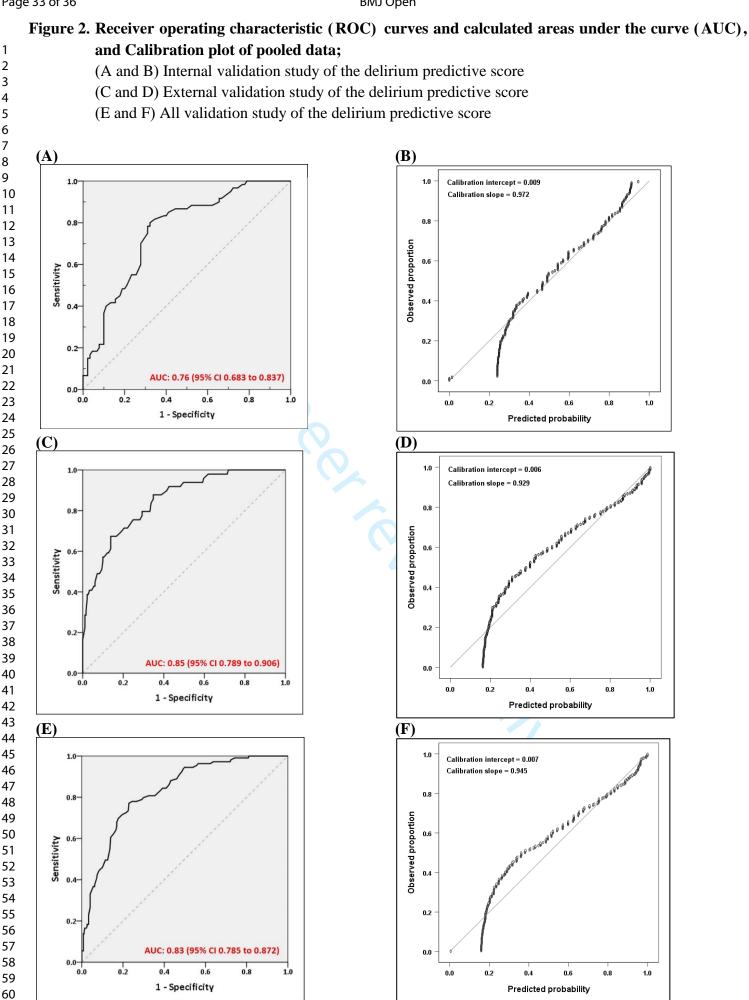
(E and F) All validation study of the delirium predictive score

al valu alidation stuc

the curve (AUC), and Calibration plot of pooled data;

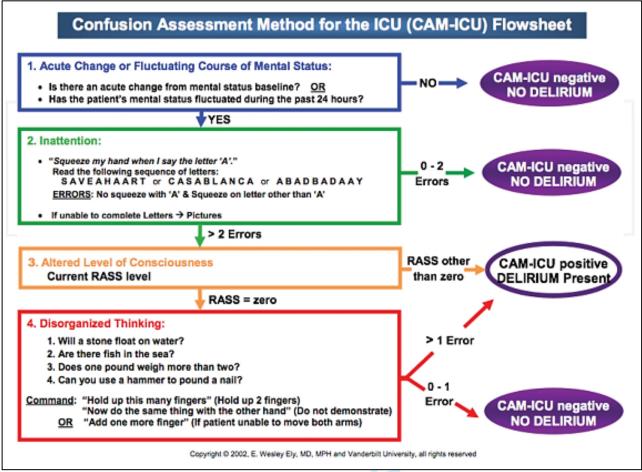

Figure 1. Flowchart of development and validation studies

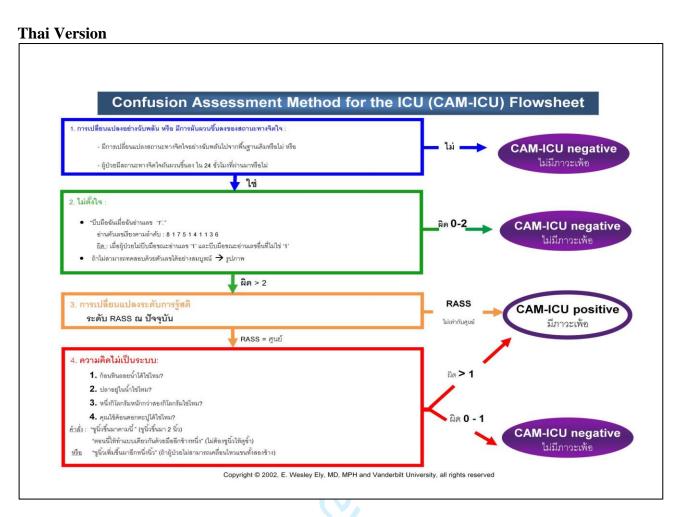

1	
2	
2	
2	
3 4 5 6 7 8 9 10	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
27	
∠∠ רר	
25	
24	
25	
26	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 36	
28	
29	
30	
31	
32	
33	
24	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	


60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1. Flowchart of development and validation studies




Supplemental file

S1. Confusion Assessment method for the ICU (CAM-ICU) tool

English Version

Ely EW, Margolin R, Francis, J, et al. Evaluation of delirium in critically ill patients: Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). *Crit Care Med* 2001;29:1370–9. https://doi: 10.1097/00003246-200107000-00012.

Pipanmekaporn T, Wongpakaran N, Mueankwan S, et al. Validity and reliability of the Thai version of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). *Clin Interv Aging* 2014;9:879–85. https://doi: 10.2147/CIA.S62660.

Supplemental file

S2. Modified Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) tool

English version

		Compari	-	s change with		
	Items	1	2	3	4	5
		Much	A bit	Not much	A bit	Muc
		improve	improve	change	worse	wors
	Recognizing the faces of family and friends					
	Remembering the names of family and friends					
3.	Remembering things about family and friends eg,					
	occupations, birthdays, addresses					
4.	Remembering things that have happened recently					
5.	Recall conversations a few day later					
6.	Forgetting what he/she want to say in the middle					
	of a conversation					
7.	Remembering his/her address and telephone					
	number					
8.	Remembering what day and month it is					
	Remembering where to find things which have					
	been put in a different place from usual					
11.	Remembering things that happened to him/her					
	when he/she was young					
12.	Remembering things he/she learned when he/she					
	was young					
13.	Knowing about important historical events of the					
	past					
14.	Adjusting to any change in his/her day-to-day					
	Knowing how to work familiar machines around					
10.	the house					
16.	Learning to use a new gadget or machines around					
	the house					
17.	Learning the new things that in general					
	Understanding the meaning of unusual words					
	Understanding magazine or newspaper articles					
	Following a story in a book or on TV					
	Contacting with friends or for business purposes					
	Making decisions on everyday matters					
	Handing money for shopping					
	Handing financial matters					
	Handing other everyday arithmetic problems, eg					
29.	knowing how much food to buy, knowing a					
	period of time for doing activity					
26	Using his/her intelligence to understand what's					
20.	going on and to reason things through					
77	Able to sing or pray the used one					
	Selecting appropriate instrument					
	Keep speak repeating					
	Carrying out daily activities					
	Traveling to familiar place					
52.	Working ability					

Thai Version

	ก	ารเปลี่ยนแปลง	ระหว่าง 10 ปี	ที่แล้วกับปัจจุบ์	
	1	2	3	4	5
	ดีขึ้นมาก	ดีขึ้นเล็ก น้อย	ไม่เปลี่ยน แปลง	แย่ลงเล็ก น้อย	แย่ลงมา
1. ความจำเกี่ยวกับหน้าตาคนในครอบครัวหรือญาติ		400	88 D 61 A	400	
 ความจำเกี่ยวกับชื่อคนในครอบครัวหรือญาติ 					
3. ความจำในรายละเอียดของคนในครอบครั้วหรือญาติเกี่ยวกับอาชีพ					
ที่อยู่					
4. ความจำในเหตุการณ์ที่เกิดขึ้นเมื่อ 2-3 วันที่ผ่านมา					
5. ความจำในเรื่องที่สนทนาไปเมื่อ 2-3 วันที่ผ่านมา					
 พูดกุขอข่างต่อเนื่องโดยไม่ลืมสิ่งที่จะพูด 					
7. จำใด้ว่าตอนนี้พักอาศัยอยู่ที่ไหน					
8. จำได้ว่าวันนี้เป็น วัน เดือน อะไร					
9. ความจำเกี่ยวกับที่ประจำที่ใช้เก็บของในบ้าน					
10. จำได้ว่าวางของไว้ที่ไหน					
11. จำเหตุการณ์เกี่ยวกับตนในวัยเด็ก					
12. งำสิ่งที่ตนได้เรียนรู้ในวัยเด็ก					
13. ทราบเหตุการณ์ที่สำคัญในอดีต					
14. ความสามารถในการปรับตัวเข้ากับการเปลี่ยนแปลงใน					
ชีวิตประจำวัน					
15.สามารถใช้เครื่องมือที่กุ้นเคยภายในบ้าน					
16. สามารถเรียนรู้การใช้เครื่องมือ เครื่องใช้ใหม่ๆ ในบ้าน					
17. สามารถเรียนรู้สิ่งใหม่ ๆ ทั่ว ๆ ไป					
18. สามารถเข้าใจความหมายของคำแปลก ๆ					
19. สามารถเข้าใจบทความในหนังสือพิมพ์หรือนิตยสาร					
20. สามารถติดตามเรื่องราวต่างๆ ในวิทยุ หรือโทรทัศน์					
21.สามารถติดต่อลูกหลาน ญาติหรือกิจธุระทั่วๆ ไป					
22. ความสามารถในการตัดสินใจเรื่องต่าง ๆ ในชีวิตประจำวัน					
23. ความสามารถในการใช้จ่าย					
24. ความสามารถในการจัดสรรเรื่องเงิน					
25. สามารถประมาณได้ว่าจะใช้สิ่งของประมาณเท่าไร เช่น จะซื้อ					
อาหารเท่าไร หรือกะเวลาที่ใช้ในการทำกิจกรรมต่างๆ เช่น ใช้เวลา					
ในการเดินทางเท่าไร					
26. สามารถที่จะเข้าใจในสิ่งที่เกิดขึ้น พร้อมกับให้เหตุผลในสิ่งนั้นได้					
27. สามารถร้องเพลงที่เคยร้อง หรือ สวคมนต์ที่เคยสวด					
28. สามารถเลือกใช้เครื่องมือเครื่องใช้ต่าง ๆ ได้อย่างเหมาะสมกับงาน					
29.การพูดจาหรือถามซ้ำๆ					
30. สามารถปฏิบัติกิจวัตรประจำวันของตนเอง					
31. สามารถเดินทางไป-กลับสถานที่ที่กุ้นเคยได้โดยลำพัง					
32. สามารถทำงานที่เคยทำ					

Siri S, Okanurak K, Chansirikanjana S, et al. Modified Informant Questionnaire on Cognitive decline in the Elderly (IQCODE) as a screening test for dementia for Thai elderly. *Southeast Asian J Trop Med Public Health* 2006;37:587–94.

BMJ Open

Validation of a delirium predictive model in patients admitted to surgical intensive care units: a multicenter prospective observational cohort study

1	BM1 On an
Journal:	BMJ Open
Manuscript ID	bmjopen-2021-057890.R2
Article Type:	Original research
Date Submitted by the Author:	29-May-2022
Complete List of Authors:	Chaiwat, Onuma; Mahidol University Faculty of Medicine Siriraj Hospital, Department of Anesthesiology; Mahidol University Faculty of Medicine Siriraj Hospital, Integrated Perioperative Geriatric Excellent Research Center Chittawatanarat, Kaweesak ; Chiang Mai University Faculty of Medicine, Department of Surgery; Chiang Mai University Faculty of Medicine, Clinical surgical research center Mueankwan, Sirirat ; Chiang Mai University Faculty of Medicine, Surgical critical care unit, Department of Surgery Morakul, Sunthiti ; Mahidol University Faculty of Medicine Ramathibodi Hospital, Department of Anesthesiology Dilokpattanamongkol, Pitchaya ; Mahidol University Faculty of Pharmacy, Department of Pharmacy Thanakiattiwibun, Chayanan ; Mahidol University Faculty of Medicine Siriraj Hospital, Integrated Perioperative Geriatric Excellent Research Center Siriussawakul, Arunotai; Mahidol University Faculty of Medicine Siriraj Hospital, Department of Anesthesiology; Mahidol University Faculty of Medicine Siriraj Hospital, Integrated Perioperative Geriatric Excellent Research Center
Primary Subject Heading :	Intensive care
Secondary Subject Heading:	Intensive care
Keywords:	Adult intensive & critical care < ANAESTHETICS, INTENSIVE & CRITICAL CARE, Delirium & cognitive disorders < PSYCHIATRY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1	Validation of a delirium predictive model in patients admitted to surgical
2	intensive care units: a multicenter prospective observational cohort study
3	
4	Onuma Chaiwat ^{1, 7*} ,
5	Kaweesak Chittawatanarat ^{2, 3} ,
6	Sirirat Mueankwan ⁴ ,
7	Sunthiti Morakul ⁵ ,
8	Pitchaya Dilokpattanamongkol ⁶ ,
9	Chayanan Thanakiattiwibun ⁷ ,
10	Arunotai Siriussawakul ^{1,7}
11	
12	*Correspondence: onuma.cha@mahidol.ac.th
13	Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University,
14	Bangkok 10700 Thailand
15	
16	Full list of author information is available at the end of the article

Abstract

BMJ Open

4 5	1,	
6 7 8	18	Objective To internally and externally validate a delirium predictive model for adult patients
9 10	19	admitted to intensive care units (ICUs) following surgery.
11 12	20	Design A prospective, observational, multicenter study.
13 14	21	Setting Three university-affiliated teaching hospitals in Thailand.
15 16 17	22	Participants Adults aged over 18 years were enrolled if they were admitted to a surgical ICU
18 19	23	(SICU) and had the surgery within 7 days before SICU admission.
20 21	24	Main outcome measures Postoperative delirium was assessed using the Thai version of the
22 23 24	25	CAM-ICU. The assessments commenced on the first day after the patient's operation and
25 26	26	continued for 7 days, or until either discharge from the ICU or the death of the patient.
27 28	27	Validation was performed of the previously developed delirium predictive model: Age + (5 \times
29 30 31	28	SOFA) + (15 × benzodiazepine use) + (20 × DM) + (20 × mechanical ventilation) + (20 ×
32 33	29	modified IQCODE > 3.42).
34 35	30	Results In all, 380 SICU patients were recruited. Internal validation on 150 patients with the
36 37	31	mean age of 75 ± 7.5 year resulted in an area under a receiver operating characteristic curve
38 39 40	32	(AUROC) of 0.76 (0.683 to 0.837). External validation on 230 patients with the mean age of
41 42	33	57 ± 17.3 year resulted in an AUROC of 0.85 (0.789 to 0.906). The AUROC of all validation
43 44	34	cohorts was 0.83 (0.785 to 0.872). The optimum cutoff value to discriminate between a high
45 46 47	35	and low probability of postoperative delirium in SICU patients was 115. This cutoff offered
48 49	36	the highest value for Youden's index (0.50), the best AUROC, and the optimum values for
50 51	37	sensitivity (78.9%) and specificity (70.9%).
52 53 54	38	Conclusions The model developed by the previous study was able to predict the occurrence
55 56	39	of postoperative delirium in critically ill surgical patients admitted to SICUs.
57 58	40	Registration: Thai Clinical Trail Registry (TCTR ID: TCTR20180105001), 05 January 2018
59 60	41	Keywords: postoperative delirium, predictive model, surgical intensive care units, validation

2	
3	42
4 5	
6	
7	43
8	
9	44
10	
11 12	45
12	
14	46
15	
16	47
17	
18 19	48
20	
21	49
22	
23	50
24 25	
25 26	
20	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47 48	
40 49	
50	
51	
52	
53	
54 55	
55 56	
50 57	
58	
59	
60	

Strengths and limitations of this study

43	• The developed delirium predictive model consists of 6 risk factors was able to
44	predict the occurrence of postoperative delirium in critically ill surgical patients
45	• The internal and external validation demonstrated moderate to good statistical
46	performance, with the AUROC being comparable to that of the development
47	cohort
48	• The optimum cutoff value to discriminate between a high and low probability of
49	POD in SICU patients was 115
50	
	POD in SICU patients was 115

51 BACKGROUND

Delirium, a disturbance of consciousness, is both acute and fluctuating. Delirium is an extremely common condition among hospitalized patients. Its incidence varies with the study population, but higher rates are observed among geriatric, postsurgical, intensive care unit (ICU), cardiac surgery, and hip-fracture patients ¹⁻⁴. Postoperative delirium (POD) among patients who have been treated with surgery and anesthesia is typically found during the first 3 postoperative days ⁵. Although the POD can be transient, it is linked to poor outcomes. These include long stays in postanesthesia care units (PACUs), ICUs, and hospitals; high medical-complication rates; and raised mortality levels ⁶.

Several tools for assessing delirium have been validated. Among those is the Confusion Assessment Method for the ICU (CAM-ICU), which shows high sensitivity and specificity ⁷. The CAM-ICU has been translated into Thai, and it, too, has demonstrated good sensitivity and specificity for critically ill patients⁸. In Thailand, there are limited data relating to POD as well as delirium among critically ill patients. Muangpaisan et al., 2015 9 reported the incidence of delirium was 22.5% in hip surgery. Their investigation also identified the following risk factors: age, premorbid function, dementia/cognitive impairment, the nonstop administration of nonsteroidal anti-inflammatory drugs, and postoperative sedative use. Another study reported a 44.0% prevalence of delirium among critically ill, old patients at a medical ICU in northeastern Thailand. That work found that the independent factors related to delirium were the use of physical restraints, a history of stroke, and multiple bed changes ¹⁰.

Given that delirium can result in poor clinical outcomes, predictions of its occurrence among patients who are at risk of delirium are especially important. During the recent decade, some predictive scoring systems for delirium have been proposed for use with various populations. For instance, the PRE-DELIRC (PREdiction of DELIRlum in ICU patients) delirium risk prediction tool was developed for intensive care patients ¹¹. This model utilizes

10 parameters. It had an area under a receiver operating characteristic curve (AUROC) of 0.87 (95% confidence interval [CI], 0.85 to 0.89). Temporal validation and external validation resulted in an AUROC of 0.89 (0.86–0.92) and 0.84 (0.82–0.87), respectively ¹¹. Another tool, the Risk Model for Delirium, assesses a number of predisposing risk factors for delirium in hip fracture patients. This model showed good intraclass correlation coefficient (0.77), sensitivity (80.4%), and AUROC (0.73)¹². Furthermore, Kim et al developed the DELirium Prediction based on Hospital Information (Delphi) system for general surgery patients. Delphi demonstrated good AUROCs for both the developed (0.91) and validated models (0.98)¹³. Nevertheless, each of the above models was developed for specific application with medical critically ill, general surgical, or particular orthopedic patients, and the scoring systems tend to be overly complicated.

The Siriraj Integrated Perioperative Geriatric (SIPG) Excellent Research Center has studied the incidence, risk factors, and predictive scores of POD in critically ill surgical patients. The independent risk factors for delirium identified by a multivariate analysis were age, diabetes mellitus, severity of disease (assessed by the sequential organ failure assessment [SOFA] score), perioperative use of benzodiazepine, mechanical ventilation and dementia defined by the Thai version of the Modified Informant Questionnaire on Cognitive Decline in the Elderly (modified IQCODE) scores > 3.42. The following predictive model was created:

Age + $(5 \times SOFA)$ + $(15 \times benzodiazepine use)$ + $(20 \times DM)$ +

 $(20 \times \text{mechanical ventilation}) + (20 \times \text{modified IQCODE} > 3.42)$

96 Its AUROC was 0.84 (95% CI, 0.786–0.897). A cutoff value of 125 demonstrated a sensitivity 97 of 72.1% and a specificity of 80.9¹⁴. Thus, we were interested in validating the model. To this 98 end, internal validation was performed at our hospital, while external validation was conducted 99 at 2 other academic hospitals. There has been no previous investigation of a predictive model 100 for POD in patients in surgical ICUs (SICUs). The aim of this study was to validate the use of

1 2		
3 4	101	the proposed POD predictive scoring tool in SICUs in order to identify patients who tend to
5 6	102	develop delirium.
7 8 9 10 11 23 14 15 16 7 8 9 21 22 32 25 27 28 9 0 12 33 34 35 67 89 0 12 23 22 22 22 22 22 22 22 22 22 22 22 22	103	

METHODS

A prospective, observational, cohort study was conducted. The study was approved by the Siriraj Institutional Review Board of the Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (Si 623/2017, Chairperson Prof. Chairat Shayakul, M.D.) on 20 October 2017; the Committee on Human Rights Related to Research Involving Human Subjects, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (MURA 2017/574, Chairperson Asst. Prof. Chusak Okascharoen, M.D.) on 27 November 2017; and Research Ethics Committee 4 at the Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand (SUR-2560-05016, Chairperson Emeritus Prof. Panja Kulapongs, M.D.) on 28 November 2017. Written informed consent was obtained from the participants before their entry into the study. The trial was registered with the Thai Clinical Trials Lie4 Registry (TCTR20180105001). **Study population** The study was conducted on 380 SICU patients at 3 hospitals: Siriraj, Ramathibodi, and Maharaj Nakorn Chiang Mai. The study population comprised patients who were at least 18 years of age and were admitted to a SICU within 7 days of surgery at Siriraj, Ramathibodi, or Maharaj Nakorn Chiang Mai Hospital (Table 1). In addition, patients for the internal validation cohort were 65 years or older and had been admitted to a Siriraj Hospital SICU ^{15, 16} for a stay anticipated to exceed 24

hours. At all 3 hospitals, we excluded SICU patients who had (1) not undergone any operations; (2) communication problems (unable to communicate in Thai, or having a severe visual or

auditory impairment interfering with communication); or (3) a Richmond Agitation Sedation

Scale (RASS) score of -4 or -5 during the whole of their ICU stay. A flowchart illustrating the

2		
3		
4		
5		
6		
7		
8		
9		
1	0	
	1	
1		
	3	
1	4	
1		
	6	
	7	
1	8	
	9	
	0	
2		
2		
	3	
	4	
2	5	
2	6	
2	7	
	8	
	9	
	0	
3		
3		
	3	
3	4	
3	5	
3	6	
3		
	, 8	
	9	
-	-	
	0	
4		
	2	
4	3	
4	4	
4		
	6	
4 4		
	8	
	9	
5	0	
5		
	2	
5		
	4	
5		
	6	
5		
	8	
5	9	
б	0	

patient selection processes for the development and validation cohorts is presented in Figure 1.

131 **Patient and public involvement**

132 No patient involved.

² 133

134 Measurement instruments

135 Delirium was assessed using the Thai version of the CAM-ICU (S1). Delirium was identified 136 by the following 4 features: 1) a change or fluctuation in baseline mental status; 2) inattention; 137 and either 3) an altered level of consciousness; or 4) disorganized thinking ¹⁷. The Thai version has demonstrated satisfactory validity and reliability (specificity, 94.7%; sensitivity, 92.3%)⁸. 138 139 As to the level of consciousness, it was assessed by the RASS. It utilizes a 10-point scale 140 ranging from -5 to +4. The delirium subtypes were recorded as hypoactive (RASS -1 to -3), 141 hyperactive (RASS +1 to +4), and mixed type (hypo- and hyperactive) ¹⁸. With regard to 142 dementia, it was evaluated via the Thai version of modified IQCODE (S2). The questionnaire 143 consists of 32 items, with assessments of patients being made by their caregivers. The optimal cutoff score for the modified IQCODE is 3.42 (sensitivity, 90%; specificity, 95%; and 144 accuracy, 92%)¹⁹. Lastly, the severity of illness at SICU admission was evaluated using the 145 146 Acute Physiology and Chronic Health Evaluation II (APACHE II) scoring system, and SOFA 147 scores.

148Patients provided informed consent in writing. Delirium was evaluated at least twice149daily (once during the 12 hours from 6.00 AM, and once during the 12 hours after 6.00 PM),150and whenever patients developed a mental change. Delirium was screened routinely utilizing a1512-step process. Initially, the patients' level of consciousness was assessed using the RASS. If152the score was between -3 and +4, the evaluators proceeded to Step 2 (assessment of the patient153with the Thai version of CAM-ICU). However, if Step 1 produced a -4 RASS score (responsive

only to physical stimulus) or a -5 RASS score (unresponsive to physical and verbal stimulus), Step 2 was not performed. If a patient was found to be sedated in the first step, the dose of the sedative medication was adjusted. The patient was later assessed with the CAM-ICU once a RASS score of -3 or higher was achieved.

The second step involved the determination of the patient's delirium level using the Thai version of CAM-ICU, employing standard methodology. The assessments commenced on the first day after the patient's operation and continued for 7 days, or until either discharge from the ICU or the death of the patient. Patients with delirium were further assessed until the CAM-ICU was negative for 24 hours. Thereafter, the ICU attending physician was notified for further management.

Data collection

The predisposing and precipitating factors potentially linked to the onset of delirium were grouped as preoperative, intraoperative, and postoperative variables. The preoperative risk factors were demographic variables obtained from a review of an individual patient's medical records and interviews with any proxies. Each patient's cognitive status was measured using the modified IOCODE ¹⁹.

The intraoperative variables were obtained from anesthetic records. They consisted of the surgical type (abdominal, vascular, orthopedic, urological, gynecological, and head and neck); admission type (emergency or elective); operation time; intraoperative blood loss; amount of blood transfused; and total fluid intake. Intraoperative hypotension was deemed to be either a systolic pressure below 90 mmHg or the need to be treated with medications.^{20, 21} Intraoperative hypoxemia was defined as an oxygen saturation (derived from pulse oximetry) of below 90% for any duration.

178 The postoperative variables were primarily obtained from the SICU data records. They

BMJ Open

179 were the use of mechanical ventilation, physical restraints, or a Foley's catheter; the presence 180 of sleep deprivation or shock; exposure to psychoactive drugs (benzodiazepines, opioids, and 181 sedatives); and the presence of coma (indicated by a RASS score of -4 or -5).

Preparation of research team

The clinical researchers administering the Thai CAM-ICU were physicians and nurses who had been trained by the principal investigator. To ensure reliability among the assessors, inter-rater reliability scores were calculated. Once their kappa score reached 0.8, the trained physicians and nurses were permitted to perform the Thai CAM-ICU assessments.

189 Internal and external validation

After development of a predictive model from a prospective cohort study that took place between February 2016 and February 2017, we did a second prospective cohort study in the same hospital for internal validation of the model between April 2018 and December 2019. In the meantime, we externally validated the predictive model with data from intensive care surgical patients admitted to 2 other university hospitals in Thailand. They were Ramathibodi Hospital, Mahidol University, and Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University. Trained intensive care nurses at those hospitals used the CAM-ICU at least twice daily. The validation process was conducted according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) Statement²², a guideline specifically designed for the reporting of studies developing or validating a multivariable prediction model, whether for diagnostic or prognostic purposes.

202 Statistical analysis

203 The sample size was estimated based on the reported 78% accuracy of development predictive

score.¹⁴ Based on the estimated accuracy of 80% (p=0.80) and a 4% error (d = 0.04), an 5% alpha ($\alpha = 0.05$), the sample size of 380 cases was calculated. The sample size calculation was estimated using PASS V.14 (NCSS, Kaysville, Utah, USA).

Demographic variables are presented as mean \pm standard deviation or median (interquartile range [IQR]) for continuous data, and frequency and percentage for categorical data.

In both validation studies, we multiplied regression coefficients for each risk factor in the predictive model by the observed patients' values. The outcome was a calculated predicted probability, on which we built a new AUROC. Finally, an ROC curve was plotted to determine the best cutoff in terms of Youden's index, sensitivity, specificity, and 95% CI. The Youden's index was the difference between the true and the false positive rates. Maximizing this index allows an optimal cutoff value to be found from the ROC curve, independently from the prevalence ^{23, 24}. Finally, to examine how well the model was calibrated, we calculated linear predictor values for each patient of every cohort by using the coefficients from the model. We used these linear predictors in a logistic regression model to test whether the prediction rule was well calibrated, resulting in a calibration slope and an intercept. A calibration slope of 1 and an intercept of 0 show a perfect calibration ^{25, 26}. Statistics were analyzed using PASW Statistics for Windows (version 18; SPSS Inc., Chicago, IL, USA); and MedCalc statistical software (version 17.6; MedCalc Software BVBA, Ostend, Belgium).

RESULTS

Patients

The patients were enrolled between February 2016 and February 2017¹⁴ for the development cohort, and between April 2018 and December 2019 for the internal and external validation studies. In all, 1,437 SICU patients were excluded for the reasons given in Figure. 1, and 380 were recruited. The mean age of the patients in the internal validation cohort was 75.1 ± 7.5 years, while the mean for the patients in the external validation cohort was 56.9 ± 17.3 years. The mean age of all of the patients in the 2 validation cohorts was 64.1 ± 16.8 years. More than half of the patients in the validation cohort were males. Details relating to the demographic and intraoperative data, ICU admission, and the medications used are given in Table 2. There was a higher proportion of patients with hypertension, diabetes mellitus (DM), and cardiac disease in the internal validation cohort than the external validation cohort. The incidence of delirium was 40.0%, 21.3%, and 28.7% in the internal, external, and all validation cohorts, respectively, compared with 24.4% in the development cohort. The majority of patients in all cohorts underwent intra-abdominal surgery. The median SOFA score was 4 (IQR 1–6) for all validation cohorts, which was higher than the median of 3 (IQR 2-6) for the development cohort. The percentage of benzodiazepine use in the development cohort (10% vs. 25.2%; Table 2).

Development study

Of the 412 recruited patients, a total of 162 were excluded for the reasons detailed in Figure. 1. As a result, 250 patients were enrolled, 61 of whom (24.4%) developed delirium (Table 2). The predictive model was derived from a multiple logistic regression that used significant risk factors. The final formula required 6 factors (2 quantitative factors, and 4 binary factors). The formula of the model was:

Age + $(5 \times \text{SOFA})$ + $(15 \times \text{benzodiazepine use})$ + $(20 \times \text{DM})$ +

1		
2 3 4	248	$(20 \times \text{mechanical ventilation}) + (20 \times \text{modified IQCODE} > 3.42)$
5 6	249	The AUROC was 0.84 (95% CI, 0.786–0.897). The cutoff value of \geq 125 demonstrated a
7 8 9	250	sensitivity of 72.1% and a specificity of 80.9% ¹⁴ .
9 10 11	251	
12 13	252	Validation study
14 15	253	Internal validation of predictive model
16 17 18	254	For the prospective validation study, we recruited 984 consecutive patients who were aged over
19 20	255	65 years; however, 834 were subsequently excluded (Figure. 1). Of the remaining 150 patients,
21 22	256	60 (40%) developed delirium (Table 2). The internal validation resulted in an AUROC of 0.76
23 24 25	257	(0.683 to 0.837; Figure. 2A), and this AUROC was not significantly different from the AUROC
25 26 27	258	of the developed predictive model ($P = 0.092$), with a calibration slope of 0.972 and an intercept
28 29	259	of 0.009 (Figure. 2B).
30 31 32	260	
32 33 34	261	External validation of predictive model
35 36	262	We performed the external validation study on critically ill surgical patients admitted to SICUs
37 38	263	at Ramathibodi and Maharaj Nakorn Chiang Mai Hospitals. Of the 833 recruited patients, 603
39 40 41	264	were excluded (Figure. 1). As a result, 230 patients were enrolled: 62 (27%) at Ramathibodi
42 43	265	Hospital, and 168 (73%) at Maharaj Nakorn Chiang Mai Hospital. The incidence of delirium
44 45	266	in the external validation cohort was 21% (Table 2). The external validation resulted in an
46 47 48	267	AUROC of 0.85 (0.789 to 0.906; Figure. 2C), and it was not significantly different from the
48 49 50	268	AUROC of the developed predictive model ($P = 0.865$), with a calibration slope of 0.929 and
51 52	269	an intercept of 0.006 (Figure. 2D).
53 54	270	
55		

271 **Optimal cutoff value of predictive model**

56

57 58

59 60 272 The AUROCs of the development, internal, and external validation cohorts were comparable

BMJ Open

(0.84 for the development cohort, 0.76 for the internal validation cohort, and 0.85 for the external validation cohort). As no significant differences in prediction existed between the 3 validation studies, we pooled the data of all validation cohorts (n = 380). That revealed that 109 patients (29%) developed delirium (Table 2). Consequently, the AUROC of all of the validation cohorts was 0.83 (0.785 to 0.872; Figure. 2E). The recalibration of all validation study showed a calibration slope of 0.945 and an intercept of 0.007 (Figure 2F). The optimum cutoff value to discriminate between a high and low probability of POD in SICU patients was 115. This cutoff presented the highest value of Youden's index (0.50), the best AUROC, and 78.9[°], 3%) and specin. the optimum values for sensitivity (78.9%) and specificity (70.9%; Table 3). The last 2 values were similar to the sensitivity (78.8%) and specificity (70.4%) of the development cohort.

DISCUSSION

 Given the high costs of managing delirium and its consequential complications, it is essential to identify individuals at high risk of developing the condition and to deliver evidenced-based preventive measures. This multicenter-study demonstrated the performance of the internal and external validation of a proposed model ¹⁴ that had been developed to predict POD in patients admitted postoperatively to an SICU. It is essential to confirm the predictive performance of the model before its use outside the development setting. The external validation showed moderate to good statistical performance, with the AUROC of the external cohort being comparable to that of the development cohort. In addition, the new cutoff value also demonstrated optimum sensitivity and specificity values that were equivalent to those achieved for the development cohort. However, the performance of the internal validation cohort was not as high as the development and external validation cohort (AUROC, 0.76). This was because the internal validation cohort only included patients aged 65 years or older, resulting in a higher incidence of delirium.

Recently, 2 ICU delirium predictive models-the early predictive model for ICU delirium (E-PRE-DELIRIC), and the recalibrated predictive model for ICU delirium (PRE-DELIRIC) have been developed and validated ^{11, 27, 28}. These 2 models are currently used in clinical practice and in research to predict the development of delirium in ICUs. The PRE-DELIRIC model consists of 10 predictors that are available during the first 24 hours after admission to an ICU ²⁷. The E-PRE-DELIRIC is composed of 9 parameters available at time of ICU admission. Wassenaar et al., 2019²⁹ recently conducted an external validation of both assessment tools, using either the CAM-ICU or the Intensive Care Delirium Screening Checklist for delirium assessment. The researchers reported moderate-to-good statistical performances. Nevertheless, the formulas for those 2 models were quite complicated, using several parameters, and they were developed in a mixed-ICU setting (medical and surgical

BMJ Open

populations). Given that cognitive impairment (including dementia) and severity of illness have been recognized as strong predictors for delirium in hospitalized patients, ^{30, 31} the E-PRE-DELIRIC system included only a history of cognitive impairment but no severity scores. In contrast, the PRE-DELIRIC model included only APACHE II scores, but no information on cognitive impairment.

The currently proposed predictive model for POD in critically ill surgical patients has several strengths. Firstly, it was developed specifically for surgical patients, and it demonstrated high accuracy. In addition, it employs only 5 parameters, which makes it relatively easy to calculate. Furthermore, dementia is assessed by both the patient's history and the modified IQCODE assessment tool. A previous study found that the prevalence of dementia among elderly delirious patients was 5 times higher when evaluated by the modified IQCODE tool than when using information obtained solely from history taking ³². Consequently, the proposed predictive model was validated in the same hospital and in 2 other academic hospitals. Although we recruited only elderly patients for the internal validation cohort, the AUROC showed an acceptable value. For the external validation cohort in the SICUs of the 2 other hospitals, we performed quality control by determining the inter-rater reliability of CAM-ICU assessment before commencing the study. There were differences in the patient case-mix of the external and development validation samples. In particular, relative to the development group, the external validation cohort had a lower age, a lower percentage of patients with mechanical ventilation, a higher percentage of dementia, and a lower percentage of benzodiazepine use. Despite that, the models' discriminative performance showed the same value (AUROC 0.84 for the development cohort, and 0.85 for the external validation cohort). In short, for the all-validation cohort, the AUROC was approximately the same as that for the development and the external validation cohorts. A score of ≥ 115 was the best cutoff value to predict the occurrence of delirium in SICUs. This cutoff presented the highest value for

Youden's index (0.50), the best AUROC, and the optimum values for sensitivity (78.9%) and
specificity (70.9%). Additionally, the predictive value depends on a disease's prevalence in the
population group that is being diagnosed ³³. A good model must have sufficient prevalence,
high sensitivity, and high specificity, and it should allow diagnosis before a patient displays
symptoms ^{33, 34}.

340 Strengths and limitations

The significant strength of our study is that it was the first multicenter study in Thailand to evaluate the performance of a proposed predictive model for delirium in SICUs. The early prediction of the development of delirium in ICU patients facilitates the implementation of prevention protocols. These interventions can be non-pharmacological (such as cognitive stimulation, early mobilization, and enhanced sleep) ^{35, 36} or pharmacological (like the prophylactic administration of dexmedetomidine ³⁷ to high-risk patients).

Several limitations need to be addressed. Firstly, only the CAM-ICU was used to assess delirium. In the current work, the researchers (physicians and nurses) who evaluated delirium using this tool were well-trained, and their ratings are therefore regarded as accurate. However, other research showed that the accuracies of delirium assessments performed by bedside nurses in daily practice demonstrated lower sensitivity and specificity than our clinical researchers achieved ³⁸. The skill level of staff undertaking assessments in a clinical setting may therefore influence the results of the predictive model. In addition, the internal validation cohort only included critically ill elderly patients. The optimum cutoff value that resulted in the best sensitivity and specificity might be different from the all-validation and development cohorts. Moreover, differences in risk factors might affect the predictive model. We did not perform a logistic regression for the validation cohort in order to identify independent risk factors for delirium. This is because the prognostic ability demonstrated by the AUROC of the internal

Page 19 of 36

BMJ Open

and external validation groups showed moderate-to-good performance. Lastly, the predictive
model only used parameters available at the time of SICU admission. Any changes in patients'
conditions during their stay can affect the probability of their developing delirium. Our model
did not account for such changes.

364 CONCLUSIONS

The model reported in this study can predict which critically ill surgical patients will develop POD in SICUs. Consequently, high-risk patients can be identified, and both nonpharmacological and pharmacological prevention protocols can be implemented to improve the clinical outcomes. The use of this selective strategy is appropriate in a resource-limited country, in which the administration of a prevention protocol for all critically-ill patients is not viable.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 36

2 3 4	372	Author affiliations
5 6	373	¹ Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University,
7 8	374	Bangkok, Thailand.
9 10 11	375	² Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai Thailand.
12 13	376	³ Clinical surgical research center, Faculty of Medicine, Chiang Mai University, Chiang Mai,
14 15	377	Thailand
16 17 18	378	⁴ Surgical critical care unit, Department of Surgery, Faculty of Medicine, Chiang Mai
19 20	379	University, Chiang Mai, Thailand
21 22	380	⁵ Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol
23 24 25	381	University, Bangkok, Thailand.
25 26 27	382	⁶ Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
28 29	383	⁷ Integrated Perioperative Geriatric Excellent Research Center, Faculty of Medicine Siriraj
30 31 32	384	Hospital, Mahidol University, Bangkok, Thailand.
33 34	385	
35 36	386	Contributions
37 38 39	387	OC and AS contributed to the design of the study. OC, KC and S. Morakul were involved in
40 41	388	data management and oversaw the project. KC, S. Mueankwan, S. Morakul, PD, contributed
42 43	389	to data collection. CT contributed to data analysis. OC and CT contributed to the
44 45 46	390	interpretation of the results and drafting the manuscript. All authors read and approved the
40 47 48	391	final manuscript.
49 50	392	
51 52 53	393	Funding
55 55	394	This study was supported by the Faculty of Medicine Siriraj Hospital, Mahidol University,
56 57	395	Thailand (IO: R016132015). The funders had no role in study design, data collection, and
58 59 60	396	analysis, decision to publish, or preparation of the manuscript.

1		
2 3	207	
4	397	
5 6 7	398	Competing interests
7 8 9	399	The authors declare that they have no competing interests.
10 11	400	
12 13 14	401	Data availability statement
15 16	402	The datasets used and analyzed during the current study are available from the corresponding
17 18	403	author on reasonable request.
19 20 21	404	
22 23	405	Ethics statements
24 25 26	406	Patient consent for publication
26 27 28	407	Not applicable.
29 30	408	
31 32	409	Ethics approval
33 34 35	410	This study was conducted according to the ethical standards established by the 1964
36 37	411	Declaration of Helsinki. The study was approved by the Siriraj Institutional Review Board of
38 39 40	412	the Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (Si
40 41 42	413	623/2017, Chairperson Prof. Chairat Shayakul, M.D.) on 20 October 2017; the Committee on
43 44	414	Human Rights Related to Research Involving Human Subjects, Faculty of Medicine
45 46 47	415	Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (MURA 2017/574,
47 48 49	416	Chairperson Asst. Prof. Chusak Okascharoen, M.D.) on 27 November 2017; and Research
50 51	417	Ethics Committee 4 at the Faculty of Medicine, Chiang Mai University, Chiang Mai,
52 53	418	Thailand (SUR-2560-05016, Chairperson Emeritus Prof. Panja Kulapongs, M.D.) on 28
54 55 56	419	November 2017. Written informed consent was obtained from the participants before their
50 57 58	420	entry into the study. The trial was registered with the Thai Clinical Trials Registry
59 60	421	(TCTR20180105001).

1 2		
2 3 4	422	
5 6	423	
7 8 9	424	Acknowledgements
10 11	425	The authors gratefully acknowledge the patients who generously agreed to participate in this
12 13	426	study, and Assist. Prof. Dr. Chulaluk Komoltri, M.P.H. Biostatistics, for the statistical analyses.
14 15 16	427	
17 18	428	Supplemental file
19 20 21	429	S1. Confusion Assessment method for the ICU (CAM-ICU) tool
21 22 23	430	S2. Modified Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) tool
24 25 26 27 28 29 30 31 23 34 35 36 37 38 9 40 41 42 43 44 50 51 52 34 55 57 89 60	431	

1 2			
3 4	432	Re	eferences
5 6 7	433	1.	Marcantonio ER, Goldman L, Mangione CM, et al. A clinical prediction rule for delirium
8 9	434		after elective noncardiac surgery. JAMA 1994;271:134-9. https://doi:10.1001/jama.
10 11 12	435		1994.03510260066030.
12 13 14	436	2.	Serafim RB, Dutra MF, Saddy F, Tura B, de Castro JE, Villarinho LC, et al. Delirium in
15 16	437		postoperative nonventilated intensive care patients: risk factors and outcomes. Ann
17 18	438		Intensive Care 2012;2:1-6. https://doi: 10.1186/2110-5820-2-51.
19 20 21	439	3.	Pandharipande P, Cotton BA, Shintani A., et al. Prevalence and risk factors for
21 22 23	440		development of delirium in trauma and surgical ICU patients. J Trauma 2008;65:34-41.
24 25	441		https://doi: 10.1097/TA.0b013e31814b2c4d.
26 27	442	4.	Schenning KJ, Deiner SG. Postoperative delirium: a review of risk factors and tools of
28 29 30	443		prediction. Curr Anesthesiol Rep 2015; 5: 48–56. https://doi:10.1007/s40140-014-0086-1
31 32	444	5.	Whitlock EL, Vannucci A, Avidan MS. Postoperative delirium. Minerva Anestesiol
33 34	445		2011;77:448–56.
35 36 27	446	6.	Leslie DL, Marcantonio ER, Zhang Y, et al. One-year health care costs associated with
37 38 39	447		delirium in the elderly population. Arch Intern Med 2008;168:27-32. https://doi:
40 41	448		10.1001/archinternmed.2007.4.
42 43	449	7.	Gusmao-Flores D, Salluh JI, Chalhub RÁ, et al. The confusion assessment method for the
44 45 46	450		intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC)
47 48	451		for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies.
49 50	452		Crit Care 2012;16:R115. https://doi: 10.1186/cc11407.
51 52	453	8	Pipanmekaporn T, Wongpakaran N, Mueankwan S, et al. Validity and reliability of the
53 54 55	454		Thai version of the Confusion Assessment Method for the Intensive Care Unit (CAM-
56 57	455		ICU). Clin Interv Aging 2014;9:879-85. https://doi: 10.2147/CIA.S62660.
58 59 60	456	9.	Muangpaisan W, Wongprikron A, Srinonprasert V, et al. Incidence and risk factors of

2 3	457		acute delirium in older patients with hip fracture in Siriraj Hospital. J Med Assoc Thai
4 5	458		2015;98:423–30.
6 7 8	459	10	Limpawattana P, Panitchote A, Tangvoraphonkchai K, et al. Delirium in critical care: a
9		10.	
10 11	460		study of incidence, prevalence, and associated factors in the tertiary care hospital of older
12 13	461		Thai adults. Aging Ment Health 2016;20:74-80. https://doi: 10.1080/13607863.
14 15	462		2015.1035695.
16 17 18	463	11.	Van den Boogaard M, Pickkers P, Slooter AJC, et al. Development and validation of PRE-
19 20	464		DELIRC (PREdiction of DELIRlum in ICU patients) delirium prediction model for
21 22	465		intensive care patients: observational multicente study. BMJ 2012;344:e420. https://
23 24	466		doi:10.1136/bmj.e420.
25 26	467	12.	Moerman S, Tuinebreijer WE, Boo MD, Pilot P, Nelissen RG, Vochteloo AJ. Validation
27 28 29	468		of the risk model for delirium in hip fracture patients. Gen Hosp Psychiatry 2012;34:153-
30 31	469		9. https://doi: 10.1016/j.genhosppsych.2011.11.011.
32 33	470	13.	Kim MY, Park UJ, Kim HT, et al. DELirium Prediction Based on Hospital Information
34 35 36	471		(Delphi) in General Surgery Patients. Medicine 2016;95:2-7. https://doi: 10.1097/MD.
37 38	472		00000000003072.
39 40	473	14.	Chaiwat O, Chanidnuan M, Pancharoen W, et al. Postoperative delirium in critically ill
41 42	474		surgical patients: incidence, risk factors, and predictive scores. BMC Anesthesiol
43 44			
45 46	475		2019;19:39. doi: 10.1186/s12871-019-0732-8.
47 48	476	15.	Robinson TN, Raeburn CD, Tran ZV, et al. Postoperative delirium in the elderly. risk
49 50	477		factors and outcomes. Ann Surg 2009;249:173-8. https://doi: 10.1097/SLA.
51 52	478		0b013e31818e4776.
53 54	479	16.	Böhner H, Hummel TC, Habel U, et al. Predicting Delirium After Vascular Surgery. A
55 56 57	480		Model Based on Pre- and Intraoperative Data. Ann Surg 2003;238:149-56. https://doi:
58 59	481		10.1097/01.sla.0000077920.38307.5f.
60			

Page 25 of 36

BMJ Open

1 2			
3 4	482	17.	Ely EW, Margolin R, Francis, J, et al. Evaluation of delirium in critically ill patients:
5 6	483		Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU).
7 8 9	484		Crit Care Med 2001;29:1370-9. https://doi: 10.1097/00003246-200107000-00012.
10 11	485	18.	Peterson JF, Pun BT, Dittus RS, et al. Delirium and its motoric subtypes: a study of 614
12 13	486		critically ill patients. J Am Geriatr Soc 2006;54:479-84. https://doi: 10.1111/j.1532-
14 15	487		5415.2005.00621.x.
16 17 18	488	19.	Siri S, Okanurak K, Chansirikanjana S, et al. Modified Informant Questionnaire on
19 20	489		Cognitive decline in the Elderly (IQCODE) as a screening test for dementia for Thai
21 22	490		elderly. Southeast Asian J Trop Med Public Health 2006;37:587–94.
23 24 25	491	20.	Brady K, Hogue CW. Intraoperative hypotension and patient outcome: does "one size fit
25 26 27	492		all?". Anesthesiology. 2013;119:495-7. doi: 10.1097/ALN.0b013e3182a10cce.
28 29	493	21.	Walsh M, Devereaux PJ, Garg AX, et al. Relationship between intraoperative mean arterial
30 31	494		pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of
32 33 34	495		hypotension. Anesthesiology. 2013;119:507-15. doi:10.1097/ALN.0b013e3182a10e26
35 36	496	22.	Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable
37 38	497		prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD
39 40 41	498		statement. BMC Medicine. 2015;13:1. https://doi.org/10.1186/s12916-014-0241-z
41 42 43	499	23.	Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-5. https://doi:
44 45	500		10.1002/1097-0142(1950)3:1<32:aid-cncr2820030106>3.0.co;2-3.
46 47	501	24.	Galley HF. Editorial II: Solid as a ROC. Br J Anaesth 2004;93:623-6. https://doi:
48 49 50	502		10.1093/bja/aeh247.
51 52	503	25.	Steyerberg EW, Eijkemans MJ, Harrell FE Jr, et al. Prognostic modeling with logistic
53 54	504		regression analysis: in search of a sensible strategy in small data sets. Med Decis Mak Int
55 56 57	505		J Soc Med Decis Mak 2001;21:45–56.
57 58 59 60	506	26.	Van Calster, B., McLernon, D.J., van Smeden, M. et al. Calibration: the Achilles heel of

Page 26 of 36

2 3 4	507		predictive analytics. BMC Med 2019;17. https://doi.org/10.1186/s12916-019-1466-7.
5 6	508	27.	van den Boogaard M, Schoonhoven L, Maseda E, et al. Recalibration of the delirium
7 8 9	509		prediction model for ICU patients (PRE-DELIRIC): A multinational observational study.
9 10 11	510		Intensive Care Med 2014;40:361-9. https://doi: 10.1007/s00134-013-3202-7.
12 13	511	28.	Wassenaar A, van den Boogaard M, van Achterberg T, et al. Multinational development
14 15 16	512		and validation of an early prediction model for delirium in ICU patients. Intensive Care
17 18	513		Med 2015;41:1048-56. https://doi: 10.1007/s00134-015-3777-2.
19 20	514	29.	Wassenaar A, Schoonhoven L, Devlin JW, et al. External Validation of Two Models to
21 22 23	515		Predict Delirium in Critically Ill Adults Using Either the Confusion Assessment Method-
23 24 25	516		ICU or the Intensive Care Delirium Screening Checklist for Delirium Assessment. Crit
26 27	517		Care Med 2019;47:e827-35. https://doi: 10.1097/CCM.000000000003911.
28 29	518	30.	Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet
30 31 32	519		2014;383:911-22. https://doi: 10.1016/S0140-6736(13)60688-1.
33 34	520	31.	Devlin JW, Skrobik Y, Gélinas C, et al. Clinical Practice Guidelines for the Prevention
35 36	521		and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption
37 38 39	522		in Adult Patients in the ICU. Crit Care Med 2018;46:e825-73. https://doi:
40 41	523		10.1097/CCM.0000000003299.
42 43	524	32.	To-adithep P, Wongviriyawong T, Thanakiattiwibun C, Chanidnuan M, Pancharoen W,
44 45	525		Chaiwat O. Prevalence of Dementia among Elderly Surgical Patients using Thai Modified
46 47 48	526		IQ CODE: A Cross-Sectional Study. J Med Assoc Thai 2018;101:83.
49 50	527	33.	Grimes DA, Schulz KF. Uses and abuses of screening tests. Lancet 2002;359:881-4.
51 52	528		https://doi: 10.1016/S0140-6736(02)07948-5.
53 54 55	529	34.	Knottnerus JA, van Weel C, Muris JW. Evaluation of diagnostic procedures. BMJ
55 56 57	530		2002;324:477-80. htpps://doi: 10.1136/bmj.324.7335.477.
58 59 60	531	35.	Hanison J, Conway D: A multifaceted approach to prevention of delirium on intensive

1 2			
3 4	532		care. BMJ Qual Improv Rep 2015;12:4-12. https://doi: 10.1136/bmjquality.u209656.
5 6	533		w4000.
7 8 9	534	36.	Rivosecchi RM, Kane-Gill SL, Svec S, et al. The implementation of a nonpharmacologic
10 11	535		protocol to prevent intensive care delirium. J Crit Care 2016;31:206-11. https://
12 13	536		doi:10.1016/j.jcrc.2015.09.031.
14 15 16	537	37.	Su X, Meng Z-T, Wu X-H, et al. Dexmedetomidine for prevention of delirium in elderly
16 17 18	538		patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial.
19 20	539		The Lancet 2016;388:1893-1902. https://doi: 10.1016/S0140-6736(16)30580-3.
21 22	540	38.	an Eijk MM, van den Boogaard M, van Marum RJ, et al. Routine use of the confusion
23 24 25	541		assessment method for the intensive care unit: a multicenter study. Am J Respir Crit Care
26 27	542		Med 2011;184:340-4. https://doi: 10.1164/rccm.201101-0065OC.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53 54 55 56 7 89 60	543		

Table 1. Characteristics of participating hospitals

Participating	Institution	ICU beds	ICU	CAM-ICU
hospital		for adults	population	screenings
Siriraj Hospital	Faculty of Medicine Siriraj Hospital,	14 beds	Surgery	2/day;
	Mahidol University			IRR > 0.8
Ramathibodi Hospital	Faculty of Medicine Ramathibodi	12 beds	Surgery	2/day;
	Hospital, Mahidol University			IRR > 0.8
Maharaj Nakorn	Faculty of Medicine, Chiang Mai	7 beds	Surgery	2/day; IRR
iang Mai Hospital	University			measured
obreviations: CAM,	Confusion Assessment Method; ICU,	intensive care	unit; IRR, inte	er-rater reliabi
xpressed as Cohen's κ				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 2. Characteristics of patients in development and validation groups

Variable	Development (n = 250)	Internal validation (n = 150)	External validation (n = 230)	All validatio (n = 380)
Demographic data				
Age (years)	64.2 ± 16.4	75.1 ± 7.5	56.9 ± 17.3	64.1 ± 16.8
Sex; male	121 (48.4%)	84 (56.0%)	128 (55.7%)	212 (55.8%)
Comorbidities				
Hypertension	155 (62.0%)	101 (67.3%)	109 (47.4%)	210 (55.3%)
DM	63 (25.2%)	41 (27.3%)	49 (21.3%)	90 (23.7%)
Cardiac disease	64 (25.6%)	37 (24.7%)	33 (14.3%)	70 (18.4%)
ESRD or CKD stage 4–5	34 (13.6%)	30 (20.0%)	75 (32.6%)	105 (27.6%)
Modified IQCODE score \geq 3.42	16 (6.4%)	20 (13.3%)	27 (11.7%)	47 (12.4%)
Current alcohol consumption	17 (6.8%)	12 (8.0%)	41 (17.8%)	53 (13.9%)
Incidence of delirium	61 (24.4%)	60 (40.0%)	49 (21.3%)	109 (28.7%)
Onset of delirium (days)	1(1-2)	2(1-4)	1(1-1)	1(1-3)
Type of delirium	()	()	()	(-)
Hypoactive	44 (72%)	16 (26.7%)	26 (53.1%)	42 (38.5%)
Hyperactive	9 (15%)	17 (28.3%)	6 (12.2%)	23 (21.1%)
Mixed	8 (13%)	27 (45%)	17 (34.7%)	44 (40.4%)
Intraoperative data	0 (1570)	27 (1570)	17 (31.770)	
Emergency surgery	108 (43.2%)	64 (42.7%)	73 (31.7%)	137 (36.1%)
Type of surgery	100 (15.270)	01 (12.770)	15 (51.170)	157 (50.170)
Vascular	52 (20.8%)	43 (28.7%)	26 (11.3%)	69 (18.2%)
Intra-abdominal	88 (35.2%)	79 (52.7%)	81 (35.2%)	160 (42.1%)
Orthopedic	29 (11.6%)	8 (5.3%)	10 (4.3%)	18 (4.7%)
Gynecological	26 (10.4%)	1 (0.7%)	4 (1.7%)	5 (1.3%)
Other	55 (22.0%)	19 (12.7%)	109 (47.4%)	128 (33.7%)
Нурохіа	10 (4.0%)	8 (5.3%)	2 (0.9%)	128 (33.776)
Intraoperative hypotension	10 (4.0%) 196 (78.4%)	8 (3.37%) 127 (84.7%)	2 (0.9%) 93 (40.4%)	10 (2.0%) 220 (57.9%)
ICU admission	190 (78.476)	127 (84.770)	95 (40.470)	220 (37.976)
	61 (24.4%)	39 (26.0%)	20(12.00/)	(0)(19, 20/)
Sepsis	· /		30 (13.0%)	69 (18.2%) 12 (0 17)
APACHE II score	9(6-11)	14(11-19)	12(8-17)	12(9-17)
SOFA score	3(2-6)	4(3-6)	4(1-6)	4(2-6)
Mechanical ventilation	185 (74.0%)	126 (84.0%)	153 (66.5%)	279 (73.4%)
Medication	(2 (25 20))	10 (12 70/)	10 (0.20/)	20 (10 00/)
Benzodiazepine	63 (25.2%)	19 (12.7%)	19 (8.3%)	38 (10.0%)
Opioid	244 (97.6%)	140 (93.3%)	203 (88.3%)	343 (90.3%)
Outcomes	1 (0 4)	2(1, 7)	1 (0 2)	
Duration of mechanical ventilation (days)	1(0-4)	3(1-7)	1(0-3)	2(1-4)
Nosocomial infection in ICU	29 (11.6%)	41 (27.3%)	4 (1.7%)	45 (11.8%)
ICU length of stay (days)	3(2-5)	5(3-10)	3(3-6)	4(3-7)
ICU mortality	9 (3.6%)	5 (3.3%)	5 (2.2%)	10 (2.6%)
Hospital length of stay (days)	16(10-29)	20 (13 – 34)	16 (13 – 27)	18 (13 – 29)
Hospital mortality	26 (10.4%)	25 (16.7%)	13 (5.7%)	38 (10.0%)

Data are presented as mean \pm SD, median (IQR), or n (%).

Abbreviations: APACHE II score, Acute Physiology and Chronic Health Evaluation II score; CKD, chronic

kidney disease; DM, diabetes mellitus; ESRD, end state renal disease; Modified IQCODE, Modified Informant

Questionnaire on Cognitive Decline in the Elderly; SOFA score, Sequential Organ Failure Assessment score

0	Δ
- 2	y

Cutoff		opment 250)	J	Internal (n =	validation 150)	J		validation 230)	bmjopen-2021-057890 on 21 June		idation 380)	
value	Sensitivity (95% CI)	Specificity (95% CI)		Sensitivity (95% CI)	Specificity (95% CI)		Sensitivity (95% CI)	Specificity (95% CI)	2022.	Sensitivity (95% CI)	Specificity (95% CI)	-
≥ 100	95.1% (86.3–99.0)	50.3% (42.9–57.6)	0.45	100.0% (94.0– 100.0)	21.1% (13.2–31.0)	0.21	87.8% (75.2–95.4)	64.6% (57.2–71.6)	0.500	94.5% (88.4–98.0)	50.2% (44.1–56.3)	0.
≥ 105	90.2% (79.8–96.3)	56.1% (48.7–63.3)	0.46	96.7% (88.5–99.6)	27.8% (18.9–38.2)	0.25	79.6% (65.7–89.8)	66.7% (59.5–73.7)	0.490 h	89.0% (81.6–94.2)	53.9% (47.7–59.9)	0.
≥110	83.6% (71.9–91.9)	63.0% (55.7–69.9)	0.47	90.0% (79.5–96.2)	34.4% (24.7–45.2)	0.24	75.5% (61.1–86.7)	75.1% (68.2–81.3)	0.4m http://bmjop	83.5% (75.2–89.9)	61.6% (55.6–67.4)	0.
≥115	78.7% (66.3–88.1)	70.4% (63.3–76.8)	0.49	86.7% (75.4–94.1)	50.0% (39.3–60.7)	0.37	69.4% (54.6–81.8)	81.2% (74.8–86.7)	0.51 mj.	78.90% (70.0–86.1)	70.9% (65.1–76.2)	0.
≥ 120	75.4% (62.7–85.5)	74.1% (67.2–80.2)	0.50	83.3% (71.5–91.7)	60.0% (49.1–70.2)	0.47	61.2% (46.2–74.8)	86.2% (80.3–90.9)	0.4%	73.3% (64.1–81.4)	77.5% (72.1–82.3)	0.
≥ 125	72.1% (59.2–82.9)	81.0% (74.6–86.3)	0.53	78.3% (65.8–87.9)	68.9% (58.3 to 78.2)	0.47	55.1% (40.2–69.3)	90.1% (84.7–94.0)	0.4er 3	67.9% (58.3–76.5)	83.0% (78.0–87.3)	0.
≥ 130	67.2% (54.0–78.7)	87.3% (81.7–91.7)	0.54	61.7% (48.2–73.9)	72.2% (61.8 to 81.2)	0.34	46.9% (32.5–61.7)	93.4% (88.7–96.5)	1, 2024 by	55.1% (45.2–64.6)	86.4% (81.7–90.2)	0.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure legends

Figure 2. Receiver operating characteristic (ROC) curves and calculated areas under

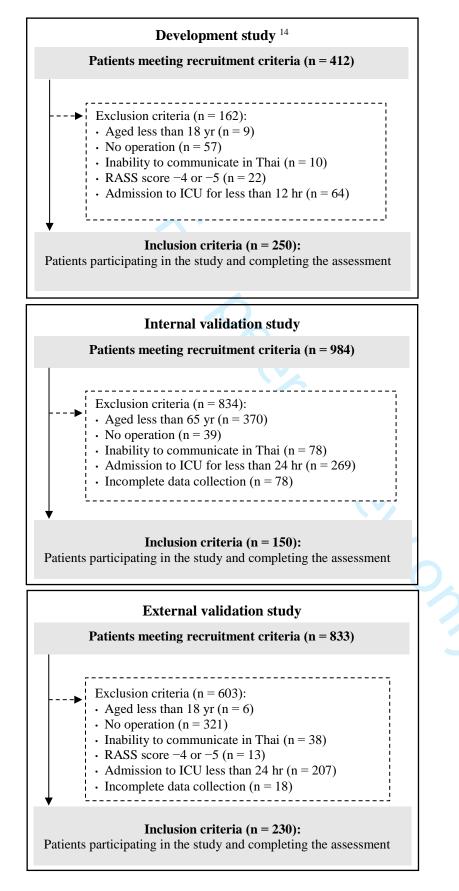
(A and B) Internal validation study of the delirium predictive score

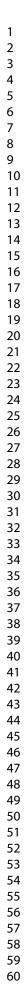
(C and D) External validation study of the delirium predictive score

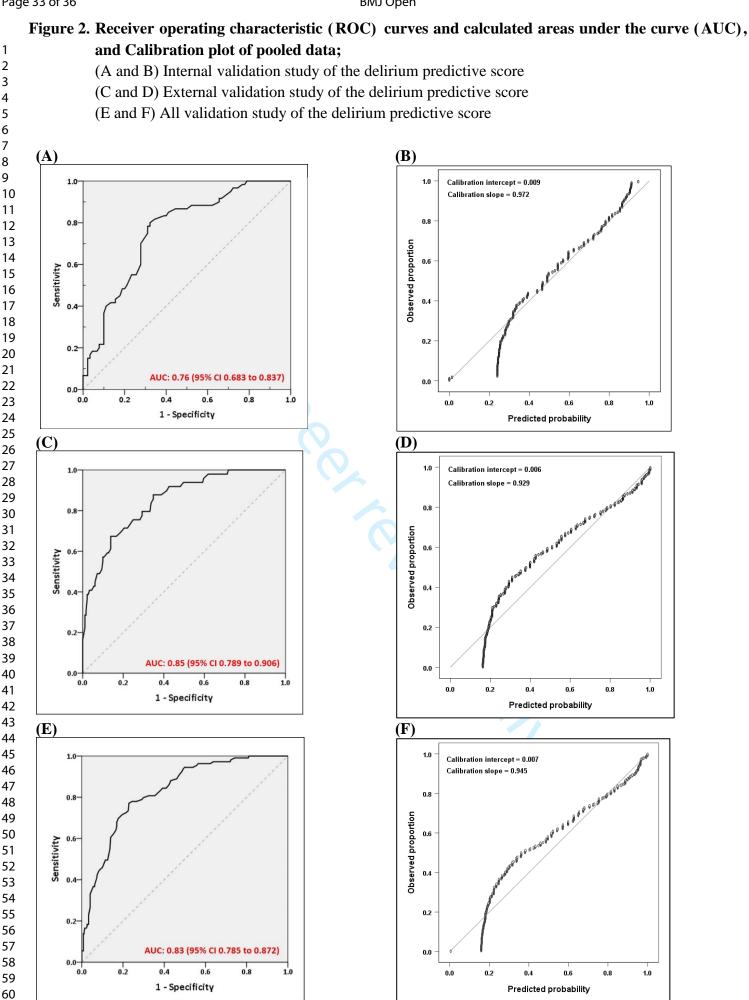
(E and F) All validation study of the delirium predictive score

al valu alidation stuc

the curve (AUC), and Calibration plot of pooled data;

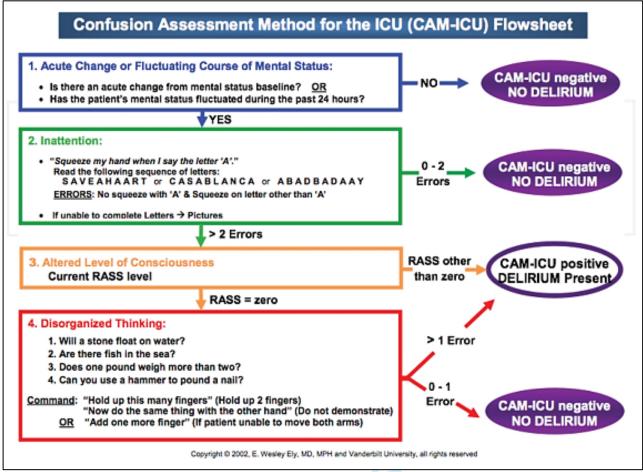

Figure 1. Flowchart of development and validation studies

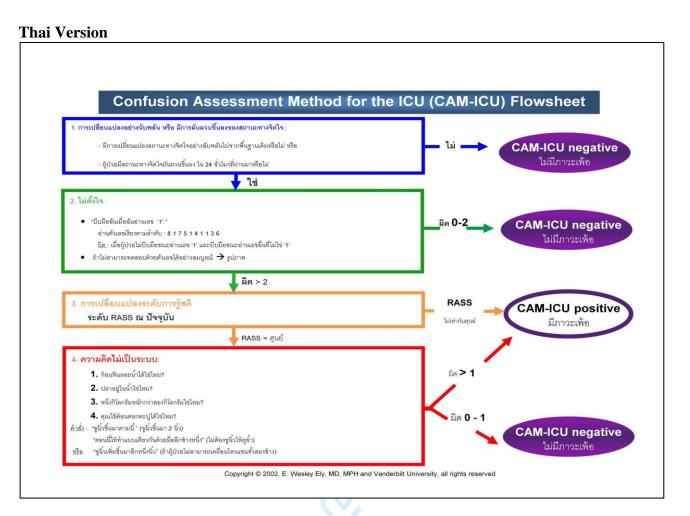

1	
2	
2	
2	
3 4 5 6 7 8 9 10	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
111 122 133 144 155 166 177 188 199 200 211 222 233 244 255 266 277 288 299 300 311 322 333 344 355 366	
28	
29	
30	
31	
37	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	


60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1. Flowchart of development and validation studies




Supplemental file

S1. Confusion Assessment method for the ICU (CAM-ICU) tool

English Version

Ely EW, Margolin R, Francis, J, et al. Evaluation of delirium in critically ill patients: Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). *Crit Care Med* 2001;29:1370–9. https://doi: 10.1097/00003246-200107000-00012.

Pipanmekaporn T, Wongpakaran N, Mueankwan S, et al. Validity and reliability of the Thai version of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). *Clin Interv Aging* 2014;9:879–85. https://doi: 10.2147/CIA.S62660.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplemental file

S2. Modified Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) tool

English version

		Comparing the elder's change with the previous 10 years						
	Items	1	2	3	4	5		
		Much	A bit	Not much	A bit	Muc		
		improve	improve	change	worse	wors		
	Recognizing the faces of family and friends							
	Remembering the names of family and friends							
3.	Remembering things about family and friends eg,							
	occupations, birthdays, addresses							
4.	Remembering things that have happened recently							
5.	Recall conversations a few day later							
6.	Forgetting what he/she want to say in the middle							
	of a conversation							
7.	Remembering his/her address and telephone							
	number							
8.	Remembering what day and month it is							
	Remembering where to find things which have							
	been put in a different place from usual							
11.	Remembering things that happened to him/her							
	when he/she was young							
12.	Remembering things he/she learned when he/she							
	was young							
13.	Knowing about important historical events of the							
	past							
14.	Adjusting to any change in his/her day-to-day							
	Knowing how to work familiar machines around							
10.	the house							
16.	Learning to use a new gadget or machines around							
	the house							
17.	Learning the new things that in general							
	Understanding the meaning of unusual words							
	Understanding magazine or newspaper articles							
	Following a story in a book or on TV							
	Contacting with friends or for business purposes							
	Making decisions on everyday matters							
	Handing money for shopping							
	Handing financial matters							
	Handing other everyday arithmetic problems, eg							
29.	knowing how much food to buy, knowing a							
	period of time for doing activity							
26	Using his/her intelligence to understand what's							
20.	going on and to reason things through							
77	Able to sing or pray the used one							
	Selecting appropriate instrument							
	Keep speak repeating							
	Carrying out daily activities							
	Traveling to familiar place							
52.	Working ability							

Thai Version

	การเปลี่ยนแปลงระหว่าง 10 ปีที่แล้วกับปัจจุบัน				
	1 ดีขึ้นมาก	2 ดีขึ้นเล็ก น้อย	3 ไม่เปลี่ยน แปลง	4 แย่ลงเล็ก น้อย	5 แย่ลงมาก
1. ความจำเกี่ยวกับหน้าตากนในครอบครัวหรือญาติ		400	28 D 61 A	400	
 กวามจำเกี่ยวกับชื่อคนในครอบครัวหรือญาติ 					
 การเจอาสาราสาราชานิยามีการการจุบาที่สาราชานิยาที่ 1 การการสาราชานิยาที่ 1 การการสาราชานิยาที่ 1 การการสาราชานิยาที่ 1 การการการสาราชานิยาที่ 1 การการการการการการการการการการการการการก					
ที่อยู่					
 ความจำในเหตุการณ์ที่เกิดขึ้นเมื่อ 2-3 วันที่ผ่านมา 					
 กวามจำในเรื่องที่สนทนาไปเมื่อ 2-3 วันที่ผ่านมา 					
 พูดคุยอย่างต่อเนื่องโดยไม่ลืมสิ่งที่จะพูด 					
 จำได้ว่าตอนนี้พักอาศัยอยู่ที่ไหน 					
8. จำได้ว่าวันนี้เป็น วัน เดือน อะไร					
 จากการและบล ระ การส ออกร ความจำเกี่ยวกับที่ประจำที่ใช้เกีบของในบ้าน 					
10. จำได้ว่าวางของไว้ที่ไหน					
11.จำเหตุการณ์เกี่ยวกับตนในวัยเด็ก					
12. จำสิ่งที่ตนได้เรียนรู้ในวัยเด็ก					
12. งกันจักษณ์ เคมอนมู เน มงศก 13. ทราบเหตุการณ์ที่สำคัญในอดีต					
13. กรายสกุจการแกล เกญาของคุณ 14. ความสามารถในการปรับตัวเข้ากับการเปลี่ยนแปลงใน					
ชีวิตประจำวัน					
15.สามารถใช้เครื่องมือที่กุ้นเคยภายในบ้าน					
16. สามารถเรียนรู้การใช้เครื่องมือ เครื่องใช้ใหม่ๆ ในบ้าน					
17. สามารถเรียนรู้สิ่งใหม่ ๆ ทั่ว ๆ ไป					
18.สามารถเข้าใจความหมายของคำแปลก ๆ					
19. สามารถเข้าใจบทความในหนังสือพิมพ์หรือนิตยสาร					
20. สามารถติดตามเรื่องราวต่างๆ ในวิทยุ หรือโทรทัศน์					
21. สามารถติดต่อลูกหลาน ญาติหรือกิจธุระทั่วๆ ไป					
22. ความสามารถในการตัดสินใจเรื่องต่าง ๆ ในชีวิตประจำวัน					
23.ความสามารถในการใช้จ่าย					
24. ความสามารถในการจัดสรรเรื่องเงิน					
25.สามารถประมาณได้ว่าจะใช้สิ่งของประมาณเท่าไร เช่น จะซื้อ					
อาหารเท่าไร หรือกะเวลาที่ใช้ในการทำกิจกรรมต่างๆ เช่น ใช้เวลา					
ในการเดินทางเท่าไร					
26. สามารถที่จะเข้าใจในสิ่งที่เกิดขึ้น พร้อมกับให้เหตุผลในสิ่งนั้นได้					
27. สามารถร้องเพลงที่เคยร้อง หรือ สวดมนต์ที่เคยสวด					
27. แกมารถางจุดพแจกเหอวอง หว่อ แวคมนุตทแห่งแรค 28. สามารถเลือกใช้เครื่องมือเครื่องใช้ต่าง ๆ ได้อย่างเหมาะสมกับงาน					
28. ถามารถเถติการแกรยงมอกกรยง เริศาจ ๆ เพียง เงเหมาะ ถุมกาบงาน 29. การพูดจาหรือถามซ้ำๆ					
29. การพูดงาหรอบ เมชา-ๆ 30. สามารถปฏิบัติกิจวัตรประจำวันของตนเอง					
30. ถามารถเดินทางไป-กลับสถานที่ที่คุ้นเคยได้โดยลำพัง					
31. ถามารถเพนทาง เบ-กถบดถานทุกคุนเคอ เคาตอด เพง 32. สามารถทำงานที่เคยทำ					

Siri S, Okanurak K, Chansirikanjana S, et al. Modified Informant Questionnaire on Cognitive decline in the Elderly (IQCODE) as a screening test for dementia for Thai elderly. *Southeast Asian J Trop Med Public Health* 2006;37:587–94.