

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Incident falls are strongly associated with subsequent fracture risk in patients attending the FLS after an index fracture: a 3-year prospective cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058983
Article Type:	Original research
Date Submitted by the Author:	27-Nov-2021
Complete List of Authors:	Vranken, Lisanne; VieCuri Medical Centre, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine; Research School NUTRIM Wyers, Caroline; VieCuri Medical Centre, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine, Research School NUTRIM Janzing, Heinrich M. J.; VieCuri Medical Centre, Department of Surgery Kaarsemakers, S.; VieCuri Medical Centre, Department of Surgery Kaarsemakers, S.; VieCuri Medical Centre, Department of Orthopedic Surgery Driessen, Johanna; Maastricht University Medical Centre+, Department of Clinical Pharmacy and Toxicology; Maastricht University, Department of Clinical Pharmacy and Toxicology Eisman, John; Garvan Institute of Medical Research, Osteoporosis and bone biology; The University of Notre Dame Australia, School of Medicine Sydney Center, Jacqueline; Garvan Institute of Medical Research, Osteoporosis and bone biology; UNSW, School of Population Health Nguyen, T.V.; Garvan Institute of Medical Research; Bone Biology Division Bliuc, Dana; Garvan Institute of Medical Research, Bone Biology Division Bliuc, Dana; Garvan Institute of Medical Research, Bone Biology Division Bliuc, Dana; Garvan Institute of Medical Research, Bone and Mineral Research Program Geusens, Piet; Maastricht Universitair Medisch Centrum+, Department of Internal Medicine, Subdivision Reumatology; Maastricht University, CAPHRI School for Public Health and Primary Care van den Bergh, Joop; Maastricht Universitair Medisch Centrum+, Department of Internal Medicine, Research School NUTRIM; VieCuri Medisch Centrum, Department of Internal Medicine
Keywords:	INTERNAL MEDICINE, Orthopaedic & trauma surgery < SURGERY, GENERAL MEDICINE (see Internal Medicine)

1	
2	
3	
4	SCHULARUNE
5	Manuscripts
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47	
40	
49 50	
50	
52	
52	
54	
55	
55	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Review only

BMJ Open

Incident falls are strongly associated with subsequent fracture risk in patients attending the FLS after an index fracture: a 3-year prospective cohort study.

L. Vranken ^{1,2,3}, C.E. Wyers ^{1,2,3}, R.Y. Van der Velde ^{1,2,3}, H.M.J. Janzing ⁴, S. Kaarsemakers ⁵, J.H.M. Driessen ^{6,7}, J.A. Eisman ^{8,9,10}, J.R. Center ^{8,10}, T.V. Nguyen ^{8,10,11}, T. Tran ⁸, D. Bliuc ⁸, P.P.M.M. Geusens ^{12,13,14}, J.P.W. Van den Bergh ^{1,2,3,14,*}

- 1. Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center +, Maastricht, The Netherlands
- 3. NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- 4. Department of Surgery, VieCuri Medical Center, Venlo, The Netherlands
- 5. Department of Orthopedic Surgery, VieCuri Medical Center, Venlo, The Netherlands
- Department of Clinical Pharmacy and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, CARIM School for Cardiovascular Disease, Maastricht University Medical Center +, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- 7. Department of Clinical Pharmacy and Toxicology, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
- 8. Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, Australia
- 9. School of Medicine Sydney, University of Notre Dame Australia, Sydney, Australia
- 10. School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, Australia

- 11. School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- 12. CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
- 13. Department of Internal Medicine, Subdivision Rheumatology, Maastricht University Medical Center +, Maastricht, The Netherlands
- 14. Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Corresponding author

Corresponding author

Name: J.P.W. van den Bergh

Postal address: Tegelseweg 210, 5912 BL Venlo reliez oni

E-mail: j@vdbergh.org

Telephone: 0031-773205555

Fax numbers: 0031-773206279

Abstract

Objectives:

Falls are a strong risk factor for fractures, independent of bone mineral density (BMD) and clinical risk factors. The aim of this study was to evaluate the risk of subsequent fractures in patients who attended the Fracture Liaison Service (FLS), with and without incident falls after the index fracture.

Method:

A 3-year prospective observational cohort study was conducted in patients aged 50+ years with a recent clinical fracture, starting at the time they attended the FLS. Patients were treated with anti-osteoporosis medication according to the Dutch osteoporosis guideline. Falls were recorded weekly in fall diaries. Subsequent fractures were recorded in fall diaries and annual questionnaires and were radiologically confirmed. The Cox's proportional hazards model was employed to estimate the association between fall and fracture risk, adjusted for predefined covariates including age, gender, index fracture type, BMD, and prevalent vertebral fractures status.

Results:

The study included 488 patients (71.9% women, mean age 64.6 ± 8.6 years). During the 3-year follow-up, 959 falls had been ascertained in 296 (60.7%) patients (*i.e.*, fallers), and 60 subsequent fractures were ascertained in 53 (10.9%) patients. Of the fractures, 47 (78.3%) were fall-related, of which 25 (53.2%) were sustained at the first fall incident at a median of 34 weeks. An incident fall was associated with an approximately 9-fold (hazard ratio 8.6; 95% CI, 3.1 to 23.8) increase in the risk of subsequent fractures. **Conclusion**:

These data suggest that subsequent fractures among patients on treatment prescribed in a FLS setting are common, and an incident falls is a strong predictor of subsequent fracture risk, and that immediate attention for fall risk could be beneficial in an FLS model of care.

Strengths and limitations

- Although this is one of the largest prospective studies in a FLS population focusing on the incidence of falls after an index fracture, the number of patients is modest, and the number of subsequent fractures relatively small.
- Data on falls were collected prospectively using fall diaries. However, no procedures were in place to validate self-reported falls.
- No information was available on falls between the index fracture and enrollment in the study.
- Relatively healthy patients participated in the study, which may have resulted in an underestimation of incident falls and subsequent fractures.

J.C.Z. ONL

 BMJ Open

Introduction

Patients with a recent fracture have a high imminent risk of subsequent fractures as shown after most fractures ⁽¹⁻⁶⁾, and a high risk of subsequent falls, as shown after a recent hip fracture ⁽⁷⁻¹¹⁾. The Fracture Liaison Service (FLS) is considered the most effective organizational approach for secondary fracture prevention in patients after the age of 50 years with a recent fracture.

Most fractures are caused by a fall, but most falls do not result in a fracture ^(12,13). Falls are a major contributing factor to the occurrence of fractures, independent and additive to the risk attributable to age and bone mineral density (BMD) ⁽¹⁴⁻¹⁷⁾. Guidelines on the FLS therefore recommend fall prevention and prescription of anti-osteoporosis medication (AOM) in high risk patients ⁽¹⁸⁻²²⁾. However, it is not well known to what extent the imminent risk of subsequent fractures after an index fracture can be attributed to incident falls. We hypothesized that the risk of subsequent fractures would be substantially higher in patients with falls after a recent fracture than in those without falls. The aim of this study was therefore to evaluate the incidence of falls and subsequent fractures, and the risk of subsequent fractures in those with and without falls after a recent index fracture in patients who attend the FLS.

Methods

Study population and design

A 3-year prospective observational cohort study was conducted including 500 consecutive patients aged between 50 and 90 years with a recent, radiologically confirmed clinical vertebral or non-vertebral low-trauma fracture, and who were willing and able to participate. Patients were recruited at the FLS in VieCuri Medical Center, Venlo, The Netherlands.

Low-trauma fractures were defined as fractures that resulted from a fall from standing height or less. Excluded were non-Caucasian patients, patients with bone metastasis, failure of prosthesis or osteomyelitis, and patients with cognitive impairment.

According to standard care, a nurse specialized in osteoporosis invited all patients aged 50 year and older, who visited the emergency department because of a recent clinical vertebral or non-vertebral fracture, to the FLS. All patients who responded and agreed to be evaluated were scheduled an appointment for fracture risk evaluation. Fracture risk evaluation included a detailed questionnaire for evaluation of risk factors for fractures and falls, including medical history and medication use. Also, height and weight were measured, a bone mineral density (BMD) measurement with dual-energy X-ray absorptiometry (DXA) of the lumbar spine, total hip, and femoral neck, with vertebral fracture assessment (VFA) was performed, and a blood sample was collected to detect contributors to secondary osteoporosis and metabolic bone disease ⁽²³⁾. According to the Dutch osteoporosis guideline ⁽²⁴⁾, AOM was started in patients with osteoporosis or having at least one moderate to severe prevalent vertebral fracture according to Genant et al. ⁽²⁵⁾. Bisphosphonates and denosumab were first-choice treatments. Teriparatide was restricted to patients already on another AOM with at least 3 fractures, of which 2 were vertebral fractures.

The study protocol (registration number NL45707.072.13) was approved by an independent Medical Ethics Committee and complied with the Declaration of Helsinki. All patients gave written informed consent prior to participation.

Falls and subsequent fractures

 During the 3-year follow-up, patients were requested to record falls weekly in a fall diary. Fall registration started at the beginning of the study, mean 3.5 ± 1.0 months after the index fracture. A fall was defined as an unintentional change in position

BMJ Open

resulting in coming to rest on the ground or other lower level ⁽²⁶⁾. Patients were asked to return their fall diaries by mail at 3 and 6 months, and during the study visit at 1, 2 and 3 year of follow-up. They were contacted by telephone if the fall diary was not received or incomplete. Patients were categorized as those with at least one incident fall (*i.e.,* faller) or without an incident fall (*i.e.,* non-faller) during follow-up.

When patients recorded a fall in their diary, they were also asked to record whether or not they sustained a subsequent clinical fracture as a direct result of the fall. Additionally, at 1-, 2-, and 3-year follow-up, patients had to complete a detailed questionnaire, including a question on whether they sustained a fracture due to another trauma than a fall or without an overt trauma. All subsequent fractures were radiologically confirmed according to radiology reports in the electronic patient records. Since no imaging of the spine was performed at the end of the study, all reported vertebral fractures were symptomatic, clinical vertebral fractures. A distinction was made between subsequent fractures that were directly caused by a fall (*i.e.*, fall-related fractures), and those that occurred without an overt trauma or were the result of another trauma than a fall (*i.e.*, non-fall-related fractures).

Data analysis

Baseline characteristics were compared between fallers and non-fallers, and between patients with and without subsequent fractures using the Student's t test or Wilcoxon test for continuous variables, and Chi-squared or Fisher's exact test for categorical variables where appropriate. The incidence rate of falls and subsequent fractures per 100 person-years was estimated at 3 and 6 months and 1, 2 and 3 year follow-up, assuming a Poisson distribution. Kaplan Meier curves were made for incident falls and subsequent fractures, in which patients were included once, and only the first incident fall or subsequent fracture was included. Cox proportional hazards regression was used

BMJ Open

to determine the association between incident falls and subsequent fractures, yielding hazard ratios (HR) and 95% confidence intervals (CI). Proportional hazard assumptions were not violated. Follow-up time was determined by the first subsequent fracture, lost-to-follow-up or the end of the study, whatever occurred first. All analyses were adjusted for the predefined covariates, including age, gender, index fracture type (major or hip versus any other fracture), BMD (lowest measured at lumbar spine, total hip, femoral neck), prevalent vertebral fractures (moderate or severe versus mild or no prevalent vertebral fractures). Lowest BMD was measured at the femoral neck in 470 participants, at the total hip in 3 participants, and at the lumber spine in 15 participants. A p-value < 0.05 was considered statistically significant.

Two sensitivity analyses were planned; (i) excluding patients with index and subsequent finger or toe fractures, and (ii) by classifying patients with a non-fall-related subsequent fracture as non-faller, even if they fell at another time during follow-up.

Patient and public involvement

Patients or members of the public were not involved in the design, or conduct, or reporting, or dissemination plans of the research.

Results

Study population

Among 1220 patients approached from the FLS , 1011 patients met the study criteria. Of the 1011 patients, 511 were not willing or able to participate in the study, and after excluding 12 patients with missing fall data, ultimately 488 patients were available for analysis (**Supplementary Figure 1**).

The mean time between the index fracture and FLS visit at which patients were included for this study was 3.9 ± 1.1 months for patients with a hip fracture and 3.5 ± 1.0

BMJ Open

months for patients with other fractures. Baseline characteristics of the 488 study participants are presented in **Table 1**. Mean age was 64.6 ± 8.6 year and 71.9% of the patients were women. In 86.5% of patients, the index fracture was caused by a fall, and 28.5% of patients had at least one other fall in the year before the start of the study. At baseline, 21.9% of patients were diagnosed with osteoporosis, 51.1% with osteopenia, and 27.1% had a normal BMD. Moderate to severe (i.e., grade 2-3) prevalent vertebral fractures were present in 14.3% of patients. AOM was prescribed in 34.2% of patients (8 (1.6%) were already using AOM, and 159 (32.6%) started using AOM at baseline visit).

Compared to eligible FLS attenders, who were not willing or able to participate in our study, patients included in our study were younger, had fewer major or hip fractures, had a higher BMD, and a lower proportion had prevalent vertebral fractures (see **Supplementary Table 1**).

Falls

During a median follow-up of 3 years (range 0.1 to 3.0), 296 (60.7%) patients recorded 959 falls, corresponding to 68.6 falls per 100 person-years. The cumulative fall incidences and incidence rates per 100 person-years at 3 and 6 months, and at 1, 2 and 3 year follow-up are presented in **Figure 1**. Of the 296 patients with at least one fall, 115 (38.9%) had one fall and 181 (61.1%) had two or more falls (up to 39 falls in one patient).

A first fall was recorded by 189/488 (38.7%) patients during the first year of follow-up, by 56/299 (18.7%) during the second, and by 51/243 (21.0%) during the third year of follow-up. The median time to the first fall was 34 (range 1-156) weeks. Of the 959 falls, 47 (4.9%) resulted in a subsequent fall-related fracture.

There were no significant differences in baseline characteristics between patients with and without a fall during the 3-year follow-up, except for that a higher proportion

of patients with incident falls reported at least one fall in the year before the start of the study (34.5% vs. 19.3%, p < 0.001) (see **Table 1**). There were no significant differences in baseline characteristics between patients with one fall and those with multiple falls (data not shown).

Subsequent fractures

 In total, 53 (10.9%) patients recorded 60 subsequent fractures, corresponding to 4.29 subsequent fractures per 100 person-years. The cumulative subsequent fracture incidences and incidence rates (per 100-person years) at 3 and 6 months, and at 1, 2 and 3 year follow-up are presented in **Figure 2**. Of all subsequent fractures, 47 (78.3%) were fall-related, and 13 (21.7%) were non-fall-related. Fall-related subsequent fracture sites were: radius and ulna (n=9), tibia and fibula (n=8), proximal femur (n=4), metatarsal (n=4), hand phalanx (n=4), symptomatic vertebra (n=3), proximal humerus (n=3), clavicula (n=3), costal bones (n=2), scapula (n=2), pelvic bone (n=1), metacarpal (n=1), tarsal (n=1), patella (n=1), and foot phalanx (n=1), whereas subsequent non-fall-related fractures sites were: symptomatic vertebral (n=5), metatarsal (n=2), foot phalanx (n=5), and hand phalanx (n=1). Half (53.2%) of all fall-related subsequent fractures were sustained at the first fall.

Baseline characteristics for patients with and without subsequent fractures are presented in **Table 1**.

Of the 296 patients with at least one fall, 41 (13.9%) had 46 fall-related subsequent fractures, 7 (2.4%) had 7 non-fall-related subsequent fractures, and 1 (0.3%) had 1 falland 1 non-fall-related subsequent fracture. Of the 192 patients without a fall, 4 (2.1%) had 5 non-fall-related subsequent fractures. Of note, the risk of subsequent fractures was higher in patients with at least one fall than in those without a fall (adjusted HR (95% CI): 8.6 (3.1-23.8); cumulative incidence: 16.6%% versus 2.1%) (**Figure 3 and Table 2**).

BMJ Open

Results were similar when femoral neck BMD instead of the lowest BMD was used for adjustments (adjusted HR (95% CI): 8.3 (3.0-23.0)). Additionally, subsequent fracture risk was higher in patients with moderate or severe prevalent vertebral fractures than in those with no or mild prevalent vertebral fractures (adjusted HR (95% CI): 3.9 (2.1-7.3); cumulative incidence: 24.3% versus 8.6%) (**Table 2**).

The association between falls and subsequent fractures remained significant in sensitivity analyses (i) excluding patients with index and subsequent finger and toe fractures (adjusted HR (95% CI): 8.2 (2.5-26.6)), and (ii) by classifying patients with a non-fall-related subsequent fracture as non-faller (adjusted HR (95% CI): 2.9 (1.5-5.6)).

Discussion

In this 3-year prospective observational cohort study in patients aged 50+ years with a recent clinical fracture, treated according to current Dutch osteoporosis guidelines at a FLS, 60.7% of patients had at least one fall, and 10.9% had at least one subsequent fracture. The majority (78.3%) of subsequent fractures was caused by a fall, and of all fall-related subsequent fractures, 53.2% occurred at the first fall. Subsequent fracture risk was nine-fold higher in fallers than in non-fallers.

Literature reporting fall incidence in fracture patients is limited. Comparable to our results, Van Helden et al. ⁽²⁷⁾ reported a 3-month fall incidence of 15% in patients with a recent fracture at a FLS, and Matsumoto et al. ⁽²⁸⁾ reported a 1-year fall incidence of 40% in ambulatory patients with a recent fracture. Various other studies included older, hip fracture patients and reported higher one year fall incidences up to 55% ⁽⁷⁻¹¹⁾, except for the study from Yeh et al. that reported a lower 1-year fall incidence (31%) ⁽²⁹⁾. Higher fall incidences in hip fracture studies can partially be explained by the older study population. Unfortunately, other fall risk factors cannot be compared. An explanation for the lower fall incidence in the study by Yeh et al. may be that

information on the occurrence of falls was provided by patients and family caregivers, which may have resulted in under registration of falls.

 A comparison between the fall incidence in our study and that in the general population is difficult to make, because population-based studies were conducted in a 65+ aged, community-dwelling population, whereas approximately 50% of our study population was <65 years old. The proportion of community-dwelling people aged 65+ years sustaining at least one fall over a 1-year period ranged from 28 to 35% ⁽³⁰⁻³²⁾, with an increasing incidence with increasing age ⁽³³⁾. The 1-year fall incidence reported is our study is comparable to that in an older (65+ aged) population, and therefore relatively high. However, in contrast to what has been reported in literature, we found no higher 3-year fall incidence with increasing age. An explanation for this could be that, especially in the older age group, relatively more healthy patients participated in our study, resulting in a lower fall incidence in older age group. Another explanation could be that patients aged 50-65 years are more physically active, and therefore fall more often.

Compared to our results, previously published FLS studies reported lower ^(34,35), similar ^(27,36,37), and higher ^(38,39) subsequent fracture rates. Differences can be explained by differences in patient selection. Studies that included older patients ⁽³⁸⁾ and patients with more severe fractures ⁽³⁹⁾ reported higher subsequent fracture rates, whereas studies that excluded hand and foot index and subsequent fractures ⁽³⁴⁾ or frail patients reported lower rates ⁽³⁵⁾.

In 2010, the Dutch population consisted of approximately 6,000,000 people aged 50+ years, of whom 119,419 sustained a fracture that year ⁽⁴⁰⁾, corresponding to a calculated annual fracture incidence of 2.0% in the general Dutch 50+ population. Compared to the general Dutch 50+ population, the fracture incidence was more than 2 times higher in our study, even in the 3rd year of follow-up. In our study, fracture incidence remained high despite treatment according to the current osteoporosis

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

guideline, raising the question of what more can be done to prevent subsequent fractures. Even though conflicting results have been published about the effect of fall prevention strategies on subsequent fracture ⁽⁴¹⁾, we hypothesize that fall interventions could be effective in patients at highest risk, namely those with a recent fracture at risk of falling. Furthermore, according to literature, recurrent fallers have an almost fourfold increased odds of sustaining a fall-related fracture compared to individuals with a single fall ⁽⁴²⁾. However, we found that the majority of subsequent fall-related fractures occur at the first fall after the index fracture, with a median time to the first fall of 34 weeks. Moreover, fall incidence was highest in the first year. This implies that the FLS patients with a high fall risk should be identified immediately, because there is a small window of opportunity to prevent falls and fall-related subsequent fractures.

Remarkably, in contrast to previous studies indicating that imminent fracture risk that was highest in the first year after an index fracture ^(43,44), there was a linear subsequent fracture incidence during 3-year follow-up in this study. An explanation for the linear subsequent fracture incidence may be the relatively healthy patients who agreed to participate in our study. Compared to non-attenders, they were younger, and a lower proportion had a major baseline fracture, a prevalent vertebral fracture, and osteoporosis, and if indicated, were more likely to receive AOM. Importantly, in addition to falls, moderate to severe prevalent vertebral fractures at baseline were associated with subsequent fractures, even though anti-osteoporosis medication had been prescribed to these patients according to the current Dutch osteoporosis guideline.

This study has several limitations. Although, this is one of the largest prospective studies in a FLS population focusing on the incidence of falls after an index fracture, the number of patients is modest, and the number of subsequent fractures relatively low. Therefore, the association between falls and fall-related, and non-fall-related subsequent fractures could not be analyzed separately. A fall 'not-resulting-in-a-

BMJ Open

subsequent-fracture' might indicate frailty of patients, and might be different from those falls that directly resulted in a subsequent fracture. Future studies are needed to investigate this difference. Finally, because of small numbers, subgroup analyses should not be performed. Furthermore, data on falls were collected prospectively using fall diaries that had to be returned at 3 and 6 months, and 1, 2, and 3 year. However, no procedures were in place to validate self-reported falls, and it is possible that recall bias, could have led to under registration of falls. Moreover, no information was available on falls between the index fracture and enrollment in the study. Finally, relatively healthy patients participated in the study. Compared to non-attenders, they were younger, a lower proportion had a major baseline fracture, a prevalent vertebral fracture, and osteoporosis. The proportion of patients with a fall and subsequent fractures could be expected to be even higher in the total FLS population.

In conclusion, in this 3-year prospective observational cohort study in FLS patients, subsequent fracture incidence was high despite being prescribed antiosteoporosis medications according to the current Dutch osteoporosis guideline. Subsequent fracture risk was nine-fold higher in fallers than in non-fallers, and the majority of fall-related subsequent fractures occurred at the first fall at a median time of 34 weeks. These findings emphasize that immediate attention for fall risk reduction could be beneficial in FLS care. Further research is needed to determine predictors for falls to identify patients at highest risk of falling.

Figures and tables

Table 1. Baseline cha	aracteristics of 48	38 participants s	tratified by in	cident fall a	and subsequent fi	racture status.	
	Total population (n=488)	Non-fallers (n=192)	Fallers (n=296)	P-value	No subsequent fracture (n=435)	Subsequent fracture (n=53)	P-value
Age (years)	64.6 ± 8.6	64.4 ± 8.0	64.8 ± 9.0	0.608	64.5 ± 8.8	65.3 ± 7.1	0.488
Female gender	351 (71.9)	130 (67.7)	221 (74.7)	0.095	308 (70.8)	43 (81.1)	0.114
Baseline fracture							
- Finger or toe	55 (11.3)	30 (15.6)	25 (8.4)	0.060	49 (11.3)	6 (11.3)	0.460
- Minor	303 (62.1)	109 (56.8)	194 (65.5)		270 (62.1)	33 (62.3)	
- Major	104 (21.3)	44 (22.9)	60 (20.3)		95 (21.8)	9 (17.0)	
- Hip	26 (5.3)	9 (4.7)	17 (5.7)		21 (4.8)	5 (9.4)	
- Fall-related *	422 (86.5)	164 (85.4)	258 (87.2)	0.582	378 (86.9)	44 (83.0)	0.436
Fall previous year §							
- 0	349 (71.5)	155 (80.7)	194 (65.5)	< 0.001	315 (72.4)	34 (64.2)	0.208
- ≥ 1	139 (28.5)	37 (19.3)	102 (34.5)		120 (27.6)	19 (35.8)	
BMD							
- Normal BMD	132 (27.1)	54 (28.1)	78 (26.4)	0.906	123 (28.3)	9 (17.0)	0.081
- Osteopenia	249 (51.0)	97 (50.5)	152 (51.4)		222 (51.0)	27 (50.9)	
- Osteoporosis	107 (21.9)	41 (21.4)	66 (22.3)		90 (20.7)	17 (32.1)	
Prevalent vertebral fracture #\$							
- None	356 (73.0)	139 (72.4)	217 (73.3)	0.572	328 (75.4)	28 (52.8)	< 0.001
- Grade 1	62 (12.7)	22 (11.5)	40 (13.5)		54 (12.4)	8 (15.1)	
- Grade 2-3	70 (14.3)	31 (16.1)	39 (13.2)		53 (12.2)	17 (32.1)	
Anti-osteoporosis treatment	167 (34.2)	70 (36.5)	97 (32.8)	0.402	142 (32.6)	25 (47.2)	0.035

Continuous variables are shown in mean ± SD (standard deviation), categorical variables are shown as number of patients (%). * Signifying that fracture was caused by a fall. § Fall resulting in baseline fracture not included. # According to Genant et al. \$ According to most severe prevalent vertebral fracture. Abbreviations: BMD, bone mineral density.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Predictor	Unit of comparison	Hazard ratio and 95% confidence	P-value
		interval	
Gender	Women vs men	1.39 (0.68 - 2.83)	0.362
Age	+5 years	0.97 (0.82 - 1.13)	0.662
Index fracture	Major or hip vs all other	0.68 (0.35 - 1.33)	0.263
BMD	-0.12 g/cm ²	1.30 (0.95 - 1.78)	0.101
Prevalent vertebral fracture	Yes vs no	3.88 (2.07 – 7.27)	< 0.0001
Fall	Yes vs no	8.58 (3.09 - 23.8)	< 0.0001

to peer teries only

Figure legends

- **Figure 1.** Cumulative incidence of falls stratified by gender.
- Figure 2. Cumulative incidence of subsequent fractures stratified by gender.
- Figure 3. Cumulative incidence of subsequent fractures stratified by fall status.

tor peet terier on

Contributors

 LV collected data, carried out data analysis and drafted the manuscript. CW and JB developed the study design and wrote the research protocol, collected data, and critically reviewed the manuscript. PG developed the study design and wrote the research protocol, and critically reviewed the manuscript. RV collected data and critically reviewed the manuscript. TN and TT assisted with data analysis and critically reviewed the manuscript. HJ, SK, JD, JA, JC and DB critically reviewed the manuscript. All authors approved the final version of the manuscript.

Competing interest

Dr. Vranken, Dr. Wyers, Dr. Van der Velden, Dr. Janzing, Dr. Kaarsemakers, Dr. Driessen, Dr. Eisman, Dr. Tran, and Dr. Bliuc have nothing to disclose.

Dr. Center reports honoraria for educational talks from Amgen, part support for educational meetings from Amgen, and advisory board participation for Amgen and Bayer, outside the submitted work.

Dr. Nguyen reports honoraria for lectures sponsored from Merck, and participation as executive member Asia Pacific Consortium on Osteoporosis, outside the submitted work.

Dr. Geusens reports grants from Amgen, Pfizer, MSD, UCB, Abbott, Lilly, BMS, Novartis, Roche, and Will Pharma, and honoraria for lectures from Amgen and Lilly, outside the submitted work. Dr. van den Bergh reports grants for lectures from UCB, and Amgen, outside the submitted work.

Funding

This work was supported by the Weijerhorst Foundation, grand number not applicable. The Weijerhorst Foundation was not involved in conducting the study, analyzing the data or writing the manuscript.

Patient consent for publication

Patient consent for publication was not required.

This study (protocol ID number NL45707.072.13) has been approved by the Independent

References

- Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jonsson B. Fracture risk following an osteoporotic fracture. Osteoporos Int. 2003 Dec 23;15(3):175–9.
- Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A. A meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004 Aug;35(2):375–82.
- van Helden S, Cals J, Kessels F, Brink P, Dinant G-J, Geusens P. Risk of new clinical fractures within 2 years following a fracture. Osteoporosis International. 2006;17(3):348–54.
- 4. Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of Subsequent Fracture After Low-Trauma Fracture in Men and Women. JAMA. American Medical Association; 2007 Jan 24;297(4):387–94.
- 5. Briggs AM, Sun W, Miller LJ, Geelhoed E, Huska A, Inderjeeth CA. Hospitalisations, admission costs and re-fracture risk related to osteoporosis in Western Australia are substantial: a 10-year review. Aust N Z J Public Health. 2015 Dec;39(6):557–62.
- Balasubramanian A, Zhang J, Chen L, Wenkert D, Daigle SG, Grauer A, Curtis JR. Risk of subsequent fracture after prior fracture among older women. Osteoporos Int. 2019 Jan;30(1):79–92.
- McKee KJ, Orbell S, Austin CA, Bettridge R, Liddle BJ, Morgan K, Radley K. Fear of falling, falls efficacy, and health outcomes in older people following hip fracture. Disabil Rehabil. 2002 Apr 15;24(6):327–33.

BMJ Open

- 3 4	8.	Shumway-Cook A, Ciol MA, Gruber W, Robinson C. Incidence of and risk factors for
5 6		falls following hip fracture in community-dwelling older adults. Phys Ther. 2005
7 8		Jul;85(7):648–55.
9 10 11	9.	Kristensen MT, Foss NB, Kehlet H. Timed "up & go" test as a predictor of falls
12 13		within 6 months after hip fracture surgery. Phys Ther. 2007 Jan;87(1):24–30.
14 15	10.	Berggren M, Stenvall M, Olofsson B, Gustafson Y. Evaluation of a fall-prevention
16 17 18		program in older people after femoral neck fracture: a one-year follow-up.
19 20		Osteoporosis International. 2008 Jun;19(6):801–9.
21 22	11.	Lloyd BD, Williamson DA, Singh NA, Hansen RD, Diamond TH, Finnegan TP, Allen
23 24 25		BJ, Grady JN, Stavrinos TM, Smith EUR, Diwan AD, Fiatarone Singh MA. Recurrent
26 27		and injurious falls in the year following hip fracture: a prospective study of
28 29		incidence and risk factors from the Sarcopenia and Hip Fracture study. J. Gerontol.
30 31 22		A Biol. Sci. Med. Sci. 2009 May;64(5):599-609.
33 34	12.	Masud T, Morris RO. Epidemiology of falls. Age and Ageing. 2001 Nov;30 Suppl
35 36		4(suppl 4):3–7.
37 38 20	13.	Morrison A, Fan T, Sen SS, Weisenfluh L. Epidemiology of falls and osteoporotic
40 41		fractures: a systematic review. Clinicoecon Outcomes Res. Dove Press; 2013;5:9–
42 43		18.
44 45	14.	Geusens P, Autier P, Boonen S, Vanhoof J, Declerck K, Raus J. The relationship
40 47 48		among history of falls, osteoporosis, and fractures in postmenopausal women.
49 50		Arch Phys Med Rehabil. 2002 Jul;83(7):903–6.
51 52	15.	Kaptoge S, Benevolenskaya LI, Bhalla AK, Cannata JB, Boonen S, Falch JA,
53 54 55		Felsenberg D. Finn ID. Nuti R. Hoszowski K. Lorenc R. Miazgowski T. Jajic I. Lyritis
56 57		G Masarvk P Naves-Diaz M Poor G Reid DM Scheidt-Nave C Stepan II Todd CI
58 59		Weber K Woolf AD Roy DK Lunt M Pye SR O'neill TW Silman AI Reeve I Low
60		weber is, woon no, itoy ois, built in, i ye sis, o nem i w, sinnan Aj, iteve j. Low

BMJ Open

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ ⊃1
21
22
23
24
25
26
27
28
29
30
31
32
22
27
54 25
35
36
37
38
39
40
41
42
43
44
45
46
47
47
40
49 50
50
51
52
53
54
55
56
57
58
59
60
00

1

BMD is less predictive than reported falls for future limb fractures in womenacross Europe: results from the European Prospective Osteoporosis Study. Bone.2005 Mar;36(3):387–98.

- Harvey NC, Odén A, Orwoll E, Lapidus J, Kwok T, Karlsson MK, Rosengren BE, Ljunggren O, Cooper C, McCloskey E, Kanis JA, Ohlsson C, Mellström D, Johansson H. Falls Predict Fractures Independently of FRAX Probability: A Meta-Analysis of the Osteoporotic Fractures in Men (MrOS) Study. Journal of Bone and Mineral Research. John Wiley & Sons, Ltd; 2017 Dec 8;33(3):510–6.
- Leslie WD, Morin SN, Lix LM, Martineau P, Bryanton M, McCloskey EV, Johansson H, Harvey NC, Kanis JA. Fracture prediction from self-reported falls in routine clinical practice: a registry-based cohort study. Osteoporos Int. Springer London; 2019 Nov;30(11):2195–203.
- 18. Eisman JA, Bogoch ER, Dell R, Harrington JT, McKinney RE Jr., McLellan A, Mitchell PJ, Silverman S, Singleton R, Siris E, for the ASBMR Task Force on Secondary Fracture Prevention. Making the first fracture the last fracture: ASBMR task force report on secondary fracture prevention. Journal of Bone and Mineral Research. Wiley Subscription Services, Inc., A Wiley Company; 2012 Jul 26;27(10):2039–46.
- 19. Lems WF, Dreinhöfer KE, Bischoff-Ferrari H, Blauth M, Czerwinski E, da Silva J, Herrera A, Hoffmeyer P, Kvien T, Maalouf G, Marsh D, Puget J, Puhl W, Poor G, Rasch L, Roux C, Schüler S, Seriolo B, Tarantino U, van Geel T, Woolf A, Wyers C, Geusens P. EULAR/EFORT recommendations for management of patients older than 50 years with a fragility fracture and prevention of subsequent fractures. Ann Rheum Dis. 2016 Dec 22;:annrheumdis–2016–210289–10.
- 20. IOF Fracture Working Group, Åkesson K, Marsh D, Mitchell PJ, McLellan AR, Stenmark J, Pierroz DD, Kyer C, Cooper C. Capture the Fracture: a Best Practice

Page 25 of 33

1

BMJ Open

2 3		Example and global compaign to break the fragility fragture guele. Octoopered
4		Framework and global campaign to break the fraginty fracture cycle. Osteoporos
5 6		Int. Springer London; 2013 Apr 16;24(8):2135–52.
/ 8 9	21.	Dreinhöfer KE, Mitchell PJ, Bégué T, Cooper C, Costa ML, Falaschi P, Hertz K, Marsh
10 11		D, Maggi S, Nana A, Palm H, Speerin R, Magaziner J, on behalf of: the Fragility
12 13		Fracture Network (FFN), European Geriatric Medicine Society (EuGMS), European
14 15		Federation of National Associations of Orthopaedics and Traumatology (EFORT),
16 17 18		International Collaboration of Orthopaedic Nursing (ICON), International Geriatric
19 20		Fracture Society (IGFS), International Osteoporosis Foundation (IOF). A global call
21 22		to action to improve the care of people with fragility fractures. Injury. 2018
23 24 25		Aug;49(8):1393–7.
26 27	22.	Javaid MK, Sami A, Lems W, Mitchell P, Thomas T, Singer A, Speerin R, Fujita M,
28 29		Pierroz DD, Åkesson K, Halbout P, Ferrari S, Cooper C. A patient-level key
30 31 32		performance indicator set to measure the effectiveness of fracture liaison services
33 34		and guide quality improvement: a position paper of the IOF Capture the Fracture
35 36 27		Working Group, National Osteoporosis Foundation and Fragility Fracture Network.
37 38 39		Osteoporos Int. 2020 Apr 8;4(5):e001806.
40 41	23.	Bours SPG, van Geel TACM, Geusens PPMM, Janssen MJW, Janzing HMJ, Hoffland
42 43		GA, Willems PC, van den Bergh JPW. Contributors to secondary osteoporosis and
44 45 46		metabolic bone diseases in patients presenting with a clinical fracture. The Journal
47 48		of Clinical Endocrinology & Metabolism. 2011 May;96(5):1360–7.
49 50 51	24.	Werkgroep CBO, Richtlijn Osteoporose en Fractuurpreventie, derde herziening
52 53		[Dutch]. (CBO, Utrecht, 2011).
54 55	25.	Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a
56 57 58		semiquantitative technique. Journal of Bone and Mineral Research. John Wiley and
59 60		

 Sons and The American Society for Bone and Mineral Research (ASBMR); 1993 Sep;8(9):1137–48.

- 26. The prevention of falls in later life. A report of the Kellogg International WorkGroup on the Prevention of Falls by the Elderly. Dan Med Bull. 1987 Apr;34 Suppl 4:1–24.
- 27. van Helden S, Wyers CE, Dagnelie PC, van Dongen MC, Willems G, Brink PR,
 Geusens PP. Risk of falling in patients with a recent fracture. BMC Musculoskeletal
 Disorders. BioMed Central; 2007 Jun 28;8(1):348.
- 28. Matsumoto H, Makabe T, Morita T, Ikuhara K, Kajigase A, Okamoto Y, Ashikawa E, Kobayashi E, Hagino H. Accelerometry-based gait analysis predicts falls among patients with a recent fracture who are ambulatory: a 1-year prospective study. Int J Rehabil Res. 2015 Jun;38(2):131–6.
- 29. Yeh H-F, Shao J-H, Li C-L, Wu C-C, Shyu Y-IL. Predictors of postoperative falls in the first and second postoperative years among older hip fracture patients. J Clin Nurs. 3rd ed. 2017 Nov;26(21-22):3710–23.
- 30. Prudham D, Evans JG. Factors associated with falls in the elderly: a community study. Age and Ageing. 1981 Aug;10(3):141–6.
- 31. Campbell AJ, Reinken J, Allan BC, Martinez GS. Falls in old age: a study of frequency and related clinical factors. Age and Ageing. 1981 Nov;10(4):264–70.
- Blake AJ, Morgan K, Bendall MJ, Dallosso H, Ebrahim SB, Arie TH, Fentem PH, Bassey EJ. Falls by elderly people at home: prevalence and associated factors. Age and Ageing. 1988 Nov;17(6):365–72.
- World Health Organization WHO. WHO Global Report on Falls Prevention in Older Age. 2017 Jan 6;:1–53.

BMJ Open

2 3	34.	Eekman DA, van Helden SH, Huisman AM, Verhaar HJJ, Bultink IEM, Geusens PP,
4 5 6		Lips P, Lems WF. Optimizing fracture prevention: the fracture liaison service, an
7 8		observational study. Osteoporos Int. Springer London; 2013 Sep 13;25(2):701–9.
9 10 11	35.	Lih A, Nandapalan H, Kim M, Yap C, Lee P, Ganda K, Seibel MJ. Targeted
12 13		intervention reduces refracture rates in patients with incident non-vertebral
14 15		osteoporotic fractures: a 4-year prospective controlled study. Osteoporos Int.
17 18		Springer-Verlag; 2011 Mar;22(3):849–58.
19 20	36.	Van der Kallen J, Giles M, Cooper K, Gill K, Parker V, Tembo A, Major G, Ross L,
21 22 22		Carter J. A fracture prevention service reduces further fractures two years after
23 24 25		incident minimal trauma fracture. Int J Rheum Dis. John Wiley & Sons, Ltd
26 27		(10.1111); 2014 Feb;17(2):195–203.
28 29 30	37.	Huntjens KM, van Geel TA, van Helden S, van den Bergh J, Willems P, Winkens B,
31 32		Geusens PP, Brink PR. The role of the combination of bone and fall related risk
33 34		factors on short-term subsequent fracture risk and mortality. BMC Musculoskeletal
35 36 37		Disorders. BioMed Central; 2013 Apr 4;14(1):721.
38 39	38.	Sanli I, van Helden SH, Broeke Ten RHM, Geusens P, van den Bergh JPW, Brink PRG,
40 41		Poeze M. The role of the Fracture Liaison Service (FLS) in subsequent fracture
42 43 44		prevention in the extreme elderly. Aging Clin Exp Res. 2018 Oct 11;31(8):1105–11.
45 46	39.	Deloumeau A, Moltó A, Roux C, Briot K. Determinants of short term fracture risk in
47 48		patients with a recent history of low-trauma non-vertebral fracture. Bone. 2017
49 50 51		Dec;105:287–91.
52 53	40.	Lötters FJB, van den Bergh JP, de Vries F, Rutten-van Mölken MPMH. Current and
54 55		Future Incidence and Costs of Osteoporosis-Related Fractures in The Netherlands:
50 57 58		Combining Claims Data with BMD Measurements. Calcified Tissue International.
59 60		Springer US; 2016 Mar;98(3):235–43.

2		
3	41.	Wang Q, Jiang X, Shen Y, Yao P, Chen J, Zhou Y, Gu Y, Qian Z, Cao X. Effectiveness of
4 5		
6 7		exercise intervention on fall-related fractures in older adults: a systematic review
8		and meta-analysis of randomized controlled trials. BMC Geriatr. BioMed Central;
9 10		2020 Sep 4·20(1)·322-11
11 12		
13	42.	Pluijm SMF, Smit JH, Tromp EAM, Stel VS, Deeg DJH, Bouter LM, Lips P. A risk
14 15		profile for identifying community-dwelling elderly with a high risk of recurrent
16 17		
18		falling: results of a 3-year prospective study. Osteoporosis International.
19 20		2006;17(3):417-25.
21	12	wan Cool TACM Huntions KMP wan don Borgh IDW Dinant C. I. Cousons DP. Timing
23	43.	van deer racm, nundens kmb, van den bergil jr w, Dinant d-J, deusens rr. rinning
24 25		of Subsequent Fractures after an Initial Fracture. Curr Osteoporos Rep. 2010 Jun
26 27		18:8(3):118-22.
28		
29 30	44.	van Geel TACM, van Helden S, Geusens PP, Winkens B, Dinant G-J. Clinical
31 32		subsequent fractures cluster in time after first fractures. Ann Rheum Dis. 2008 Jul
33		29.68(1).99_102
34 35		25,00(1).55-102.
36 37		
38		
39 40		
41 42		
43		
44 45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56 57		
58		
צכ		

Figure 2. Cumulative incidence of subsequent fractures stratified by gender.

 6/bmjopen-2021-058983 on 27 July 2022. Downloaded from http://bmjopen.bmj.com/ on June 27, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
0	
/	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	2
1	0
1	/
1	8
1	9
2	0
2	1
2	2
2	3
2	1
2	4 7
2	S
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
2	1
ר כ	-
2	2
3	6
3	7
3	8
3	9
4	0
4	1
4	2
4	3
1	Δ
4	-
4	с С
4	6
4	7
4	8
4	9
5	0
5	1
5	2
5	÷ ۲
5	ר ג
С С	4
5	5
5	6
_	U
5	7
5 5	7 8

60

	Participants	Non-participants	P-value
	(n=500)	(n=511)	
Age in years	64.6 ± 8.6	68.3 ± 9.8	<.001
Female sex	357 (71.4)	396 (77.5)	.026
Baseline fracture			
- Finger or toe	58 (11.6)	53 (10.4)	<.001
- Minor	311 (62.2)	259 (50.7)	
- Major	105 (21.0)	157 (30.7)	
- Hip	26 (5.2)	42 (8.2)	
- Fall-related *	431 (86.2)	441 (86.3)	.963
Fall previous year §	`		
- 0	356 (71.2)	359 (70.3)	.741
- ≥1	144 (28.8)	152 (29.7)	
- ≥ 2	72 (14.4)	87 (17.0)	.252
BMD			
- Normal BMD	135 (27.0)	90 (17.6)	<.001
- Osteopenia	255 (51.0)	258 (50.5)	
- Osteoporosis	110 (22.0)	163 (31.9)	
Prevalent vertebral fracture			
- None	366 (73.2)	349 (68.3)	.010
- Grade 1	63 (12.6)	53 (10.4)	
- Grade 2-3	71 (14.2)	109 (21.3)	
At least one fall past year	143 (29.3)	152 (29.9)	.704

Continues variables are presented as mean ± SD, categorical variables are presented as number of patients (%). § Fall resulting in baseline fracture not included. # According to Genant et al. § According to most severe prevalent vertebral fracture. Abbreviations: BMD, bone mineral density

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1,3
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	3,4
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	5
		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5,6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5,6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	5,6
		of participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed	
		and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	6,7
		confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6,7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	5,6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7,8
		contounding	0
		(b) Describe any methods used to examine subgroups and interactions	0
		(c) Explain how missing data were addressed	8
		(d) If applicable, explain how loss to follow-up was addressed	8
		(<u>e</u>) Describe any sensitivity analyses	8
Results			0
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	8
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	0
		(b) Give reasons for non-participation at each stage	8
		(c) Consider use of a flow diagram	20
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	15
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	NA
		interest	
		(c) Summarise follow-up time (eg, average and total amount)	9
Outcome data	15*	Report numbers of outcome events or summary measures over time	9,10,16,17,18
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	9,10,11
------------------	----	---	----------
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted	
		for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	9,10
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	11
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	13
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	12,13,14
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Incident falls are strongly associated with subsequent fracture risk in patients attending the Fracture Liaison Service after an index fracture: a 3-year prospective cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058983.R1
Article Type:	Original research
Date Submitted by the Author:	18-Apr-2022
Complete List of Authors:	Vranken, Lisanne; VieCuri Medical Centre, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine, Research School NUTRIM Wyers, Caroline; VieCuri Medical Centre, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine, Research School NUTRIM Van der Velde, R.Y.; VieCuri Medical Centre, Department of Internal Medicine, Research School NUTRIM Janzing, Heinrich M. J.; VieCuri Medical Centre+, Department of Surgery Kaarsemakers, S.; VieCuri Medical Centre, Department of Surgery Kaarsemakers, S.; VieCuri Medical Centre, Department of Orthopedic Surgery Driessen, Johanna; Maastricht University Medical Centre+, Department of Clinical Pharmacy and Toxicology; Maastricht University, Department of Clinical Pharmacy and Toxicology Eisman, John; Garvan Institute of Medical Research, Osteoporosis and bone biology; The University of Notre Dame Australia, School of Medicine Sydney Center, Jacqueline; Garvan Institute of Medical Research, Osteoporosis and bone biology; UNSW, School of Population Health Nguyen, T.V.; Garvan Institute of Medical Research, Bone Biology Division Bliuc, Dana; Garvan Institute of Medical Research, Bone Biology Division Bliuc, Dana; Garvan Institute of Medical Research, Bone Biology Division Bliuc, Dana; Garvan Institute of Medical Research, Bone and Mineral Research Program Geusens, Piet; Maastricht Universitair Medisch Centrum+, Department of Internal Medicine, Subdivision Reumatology; Maastricht University, CAPHRI School for Public Health and Primary Care van den Bergh, Joop; Maastricht Universitair Medisch Centrum+, Department of Internal Medicine, Research School NUTRIM; VieCuri Medisch Centrum, Department of Internal Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Rheumatology, Geriatric medicine, General practice / Family practice
Keywords:	INTERNAL MEDICINE, Orthopaedic & trauma surgery < SURGERY,

2	
3 4	GENERAL MEDICINE (see Internal Medicine)
5	
6	
7 8	
9	SCHOLARONE [™]
10	Manuscripts
11	
12	
14	
5	
6 7	
18	
9	
20	
22	
23	
24	
25 26	
27	
28	
19	
50 51	
2	
3	
4 5	
6	
7	
8 0	
0	
1	
2	
3 4	
5	
6	
2 8	
.9	
0	
1	
53	
54	
55	
56 57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

RELEX ONL

Incident falls are strongly associated with subsequent fracture risk in patients attending the Fracture Liaison Service after an index fracture: a 3-year prospective cohort study.

L. Vranken ^{1,2,3}, C.E. Wyers ^{1,2,3}, R.Y. Van der Velde ^{1,2,3}, H.M.J. Janzing ⁴, S. Kaarsemakers ⁵, J.H.M. Driessen ^{6,7}, J.A. Eisman ^{8,9,10}, J.R. Center ^{8,10}, T.V. Nguyen ^{8,10,11}, T. Tran ⁸, D. Bliuc ⁸, P.P.M.M. Geusens ^{12,13,14}, J.P. Van den Bergh ^{1,2,3,14,*}

- 1. Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center +, Maastricht, The Netherlands
- 3. NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- 4. Department of Surgery, VieCuri Medical Center, Venlo, The Netherlands
- 5. Department of Orthopedic Surgery, VieCuri Medical Center, Venlo, The Netherlands
- Department of Clinical Pharmacy and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, CARIM School for Cardiovascular Disease, Maastricht University Medical Center +, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- 7. Department of Clinical Pharmacy and Toxicology, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
- 8. Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, Australia
- 9. School of Medicine Sydney, University of Notre Dame Australia, Sydney, Australia
- 10. School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, Australia

- 11. School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- 12. CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
- 13. Department of Internal Medicine, Subdivision Rheumatology, Maastricht University Medical Center +, Maastricht, The Netherlands
- 14. Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Corresponding author *

Corresponding author

Name: J.P. van den Bergh

Postal address: Tegelseweg 210, 5912 BL Venlo reliez oni

E-mail: j@vdbergh.org

Telephone: 0031-773205555

Fax numbers: 0031-773206279

Abstract

Objectives:

Falls are a strong risk factor for fractures, independent of bone mineral density (BMD) and clinical risk factors. The aim of this study was to evaluate the risk of subsequent fractures in patients who attended the Fracture Liaison Service (FLS), with and without incident falls after the index fracture.

Method:

A 3-year prospective observational cohort study was conducted in patients aged 50+ years with a recent clinical fracture, starting at the time they attended the FLS. Patients were treated with anti-osteoporosis medication according to the Dutch osteoporosis guideline. Falls were recorded weekly in fall diaries. Subsequent fractures were recorded in fall diaries and annual questionnaires and were radiologically confirmed. The Cox's proportional hazards model was employed to estimate the association between fall and fracture risk, adjusted for predefined covariates including age, gender, index fracture type, BMD, and prevalent vertebral fractures status.

Results:

The study included 488 patients (71.9% women, mean age 64.6 ± 8.6 years). During the 3-year follow-up, 959 falls had been ascertained in 296 (60.7%) patients (*i.e.,* fallers), and 60 subsequent fractures were ascertained in 53 (10.9%) patients. Of the fractures, 47 (78.3%) were fall-related, of which 25 (53.2%) were sustained at the first fall incident at a median of 34 weeks. An incident fall was associated with an approximately 9-fold (hazard ratio 8.6; 95% CI, 3.1 to 23.8) increase in the risk of subsequent fractures. **Conclusion**:

These data suggest that subsequent fractures among patients on treatment prescribed in a FLS setting are common, and an incident falls is a strong predictor of subsequent fracture risk, and that immediate attention for fall risk could be beneficial in an FLS model of care.

Strengths and limitations

- Although this is one of the largest prospective studies in a FLS population focusing on the incidence of falls after an index fracture, the number of patients is modest, and the number of subsequent fractures relatively small.
- Data on falls were collected prospectively using fall diaries. However, no procedures were in place to validate self-reported falls.
- No information was available on falls between the index fracture and enrollment in the study.
- Relatively healthy patients participated in the study, which may have resulted in an underestimation of incident falls and subsequent fractures.

J.C.Z.ONJ

BMJ Open

3	
1	
-	
2	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
18	
10	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	
UU	

1 Introduction

Patients with a recent fracture have a high imminent risk of subsequent fractures
as shown after most fractures (1-6), and a high risk of subsequent falls, as shown after a
recent hip fracture (7-11). The Fracture Liaison Service (FLS) is considered the most
effective organizational approach for secondary fracture prevention in patients after the
age of 50 years with a recent fracture.

7 Most fractures are caused by a fall, but most falls do not result in a fracture 8 (12,13). Falls are a major contributing factor to the occurrence of fractures, independent 9 and additive to the risk attributable to age and bone mineral density (BMD) (14-17). 10 Guidelines on the FLS therefore recommend fall prevention and prescription of anti-11 osteoporosis medication (AOM) in high risk patients (18-22). However, it is not well 12 known to what extent the imminent risk of subsequent fractures after an index fracture 13 can be attributed to incident falls. We hypothesized that the risk of subsequent fractures 14 would be substantially higher in patients with falls after a recent fracture than in those 15 without falls. The aim of this study was therefore to evaluate the incidence of falls and 16 subsequent fractures, and the risk of subsequent fractures in those with and without 17 falls after a recent index fracture in patients who attend the FLS.

19 Methods

18

20 Study population and design

A 3-year prospective observational cohort study was conducted including 500
consecutive patients aged between 50 and 90 years with a recent, radiologically
confirmed clinical vertebral or non-vertebral low-trauma fracture, and who were willing
and able to participate. Patients were recruited at the FLS in VieCuri Medical Center,
Venlo, The Netherlands.

Low-trauma fractures were defined as fractures that resulted from a fall from standing height or less. Excluded were non-Caucasian patients, patients with bone metastasis, failure of prosthesis or osteomyelitis, and patients with cognitive impairment.

According to standard care, a nurse specialized in osteoporosis invited all patients aged 50 year and older, who visited the emergency department because of a recent clinical vertebral or non-vertebral fracture, to the FLS. All patients who responded and agreed to be evaluated were scheduled an appointment for fracture risk evaluation. Fracture risk evaluation included a detailed questionnaire for evaluation of risk factors for fractures and falls, including medical history and medication use. This questionnaire was based on the Dutch guidelines on osteoporosis and fracture prevention, and prevention of falls in the elderly (23,24). Also, height and weight were measured, a bone mineral density (BMD) measurement with dual-energy X-ray absorptiometry (DXA) of the lumbar spine, total hip, and femoral neck, with vertebral fracture assessment (VFA) was performed, and a blood sample was collected to detect contributors to secondary osteoporosis and metabolic bone disease (25). According to the Dutch osteoporosis guideline (23), AOM was started in patients with osteoporosis or having at least one moderate to severe prevalent vertebral fracture according to Genant et al. (26). Bisphosphonates and denosumab were first-choice treatments. Teriparatide was restricted to patients already on another AOM with at least 3 fractures, of which 2 were vertebral fractures.

The study protocol (registration number NL45707.072.13) was approved by an independent Medical Ethics Committee and complied with the Declaration of Helsinki. All patients gave written informed consent prior to participation.

Falls and subsequent fractures

Page 9 of 34

1

56 57 58

59 60

BMJ Open

2	51	During the 3-year follow-up, patients were requested to record falls weekly in a
4 5	52	fall diary. Fall registration started at the beginning of the study, mean 3.5 \pm 1.0 months
6 7	53	after the index fracture. A fall was defined as an unintentional change in position
8 9 10	54	resulting in coming to rest on the ground or other lower level (27). Patients were asked
11 12	55	to return their fall diaries by mail at 3 and 6 months, and during the study visit at 1, 2 $$
13 14 15	56	and 3 year of follow-up. They were contacted by telephone if the fall diary was not
15 16 17	57	received or incomplete. Patients were categorized as those with at least one incident fall
18 19	58	(<i>i.e.,</i> faller) or without an incident fall (<i>i.e.,</i> non-faller) during follow-up.
20 21 22	59	When patients recorded a fall in their diary, they were also asked to record
22 23 24	60	whether or not they sustained a subsequent clinical fracture as a direct result of the fall.
25 26	61	Additionally, at 1-, 2-, and 3-year follow-up, patients had to complete a detailed
27 28 29	62	questionnaire, including a question on whether they sustained a fracture due to another
30 31	63	trauma than a fall or without an overt trauma. All subsequent fractures were
32 33	64	radiologically confirmed according to radiology reports in the electronic patient records.
34 35 36	65	Since no imaging of the spine was performed at the end of the study, all reported
37 38	66	vertebral fractures were symptomatic, clinical vertebral fractures. A distinction was
39 40	67	made between subsequent fractures that were directly caused by a fall (<i>i.e.,</i> fall-related
41 42 43	68	fractures), and those that occurred without an overt trauma or were the result of
44 45	69	another trauma than a fall (<i>i.e.,</i> non-fall-related fractures).
46 47	70	
48 49 50	71	Data analysis
51 52	72	Baseline characteristics were compared between fallers and non-fallers, and between
53 54 55	73	patients with and without subsequent fractures using the Student's t test or Wilcoxon

etween fallers and non-fallers, and between tures using the Student's t test or Wilcoxon test for continuous variables, and Chi-squared or Fisher's exact test for categorical 74 75 variables where appropriate. The incidence rate of falls and subsequent fractures per 76 100 person-years was estimated at 3 and 6 months and 1, 2 and 3 year follow-up,

77	assuming a Poisson distribution. Kaplan Meier curves were made for incident falls and
78	subsequent fractures, in which patients were included once, and only the first incident
79	fall or subsequent fracture was included. Cox proportional hazards regression was used
80	to determine the association between incident falls and subsequent fractures, yielding
81	hazard ratios (HR) and 95% confidence intervals (CI). Proportional hazard assumptions
82	were not violated. Follow-up time was determined by the first subsequent fracture, lost-
83	to-follow-up or the end of the study, whatever occurred first. All analyses were adjusted
84	for the predefined covariates, including age, gender, index fracture type (major or hip
85	versus any other fracture), BMD (lowest measured at lumbar spine, total hip, femoral
86	neck), prevalent vertebral fractures (moderate or severe versus mild or no prevalent
87	vertebral fractures). A p-value < 0.05 was considered statistically significant.
88	Two sensitivity analyses were planned; (i) excluding patients with index and
89	subsequent finger or toe fractures, and (ii) by classifying patients with a non-fall-related
90	subsequent fracture as non-faller, even if they fell at another time during follow-up.
91	
92	Patient and public involvement
93	Patients or members of the public were not involved in the design, or conduct, or
94	reporting, or dissemination plans of the research.
95	
96	Results
97	Study population
98	Among 1220 patients approached from the FLS, 1011 patients met the study
99	criteria. Of the 1011 patients, 511 were not willing or able to participate in the study,
100	and after excluding 12 patients with missing fall data, ultimately 488 patients were
101	available for analysis (Supplementary Figure 1) of whom 34 (7.0%) patients had

1 2 3	102	incomplete follow-up data on incident falls (5 patients died, 8 withdrew consent, 21 had
3 4 5	103	incomplete fall registration).
6 7	104	The mean time between the index fracture and FLS visit at which patients were
8 9 10	105	included for this study was 3.9 \pm 1.1 months for patients with a hip fracture and 3.5 \pm 1.0
11 12	106	months for patients with other fractures. Baseline characteristics of the 488 study
13 14 15	107	participants are presented in Table 1 . Mean age was 64.6 ± 8.6 year and 71.9% of the
15 16 17	108	patients were women. In 86.5% of patients, the index fracture was caused by a fall, and
18 19	109	28.5% of patients had at least one other fall in the year before the start of the study. At
20 21 22	110	baseline, 21.9% of patients were diagnosed with osteoporosis, 51.1% with osteopenia,
22 23 24	111	and 27.1% had a normal BMD. Lowest BMD was measured at the femoral neck in 470
25 26	112	participants, at the total hip in 3 participants, and at the lumber spine in 15 participants.
27 28 29	113	Moderate to severe (i.e., grade 2-3) prevalent vertebral fractures were present in 14.3%
30 31	114	of patients. AOM was prescribed in 34.2% of patients (8 (1.6%) were already using AOM,
32 33	115	and 159 (32.6%) started using AOM at baseline visit).
34 35 36	116	Compared to eligible FLS attenders, who were not willing or able to participate in
37 38	117	our study, patients included in our study were younger, had fewer major or hip
39 40	118	fractures, had a higher BMD, and a lower proportion had prevalent vertebral fractures
41 42 43	119	(see Supplementary Table 1).
44 45	120	
46 47 48	121	Falls
48 49 50	122	During a median follow-up of 3 years (range 0.1 to 3.0), 296 (60.7%) patients
51 52	123	recorded 959 falls, corresponding to 68.6 falls per 100 person-years. The cumulative fall
53 54	124	incidences and incidence rates per 100 person-years at 3 and 6 months, and at 1, 2 and 3
55 56 57	125	year follow-up are presented in Figure 1 . Of the 296 patients with at least one fall, 115
58 59	126	(38.9%) had one fall and 181 (61.1%) had two or more falls (up to 39 falls in one
60	127	patient).

A first fall was recorded by 189/488 (38.7%) patients during the first year of follow-up, by 56/299 (18.7%) during the second, and by 51/243 (21.0%) during the third year of follow-up. The median time to the first fall was 34 (range 1-156) weeks. Of the 959 falls, 47 (4.9%) resulted in a subsequent fall-related fracture.

There were no significant differences in baseline characteristics between patients with and without a fall during the 3-year follow-up, except for that a higher proportion of patients with incident falls reported at least one fall in the year before the start of the study (34.5% vs. 19.3%, p < 0.001) (see **Table 1**). There were no significant differences in baseline characteristics between patients with one fall and those with multiple falls (data not shown).

139 Subsequent fractures

In total, 53 (10.9%) patients recorded 60 subsequent fractures, corresponding to 4.29 subsequent fractures per 100 person-years. The cumulative subsequent fracture incidences and incidence rates (per 100-person years) at 3 and 6 months, and at 1, 2 and 3 year follow-up are presented in **Figure 2**. Of all subsequent fractures, 47 (78.3%) were fall-related, and 13 (21.7%) were non-fall-related. Fall-related subsequent fracture sites were: radius and ulna (n=9), tibia and fibula (n=8), proximal femur (n=4), metatarsal (n=4), hand phalanx (n=4), symptomatic vertebra (n=3), proximal humerus (n=3), clavicula (n=3), costal bones (n=2), scapula (n=2), pelvic bone (n=1), metacarpal (n=1), tarsal (n=1), patella (n=1), and foot phalanx (n=1), whereas subsequent non-fall-related fractures sites were: symptomatic vertebral (n=5), metatarsal (n=2), foot phalanx (n=5), and hand phalanx (n=1). Half (53.2%) of all fall-related subsequent fractures were sustained at the first fall. Baseline characteristics for patients with and without subsequent fractures are

153 presented in **Table 1**.

BMJ Open

1 2 3	154	Of the 296 patients with at least one fall, 41 (13.9%) had 46 fall-related subsequent
4 5	155	fractures, 7 (2.4%) had 7 non-fall-related subsequent fractures, and 1 (0.3%) had 1 fall-
6 7 0	156	and 1 non-fall-related subsequent fracture. Of the 192 patients without a fall, 4 (2.1%)
8 9 10	157	had 5 non-fall-related subsequent fractures. Of note, the risk of subsequent fractures was
11 12	158	higher in patients with at least one fall than in those without a fall (adjusted HR (95% CI):
13 14 15	159	8.6 (3.1-23.8); cumulative incidence: 16.6%% versus 2.1%) (Figure 3 and Table 2).
16 17	160	Results were similar when femoral neck BMD instead of the lowest BMD was used for
18 19 20	161	adjustments (adjusted HR (95% CI): 8.3 (3.0-23.0)). Additionally, subsequent fracture
20 21 22	162	risk was higher in patients with moderate or severe prevalent vertebral fractures than in
23 24	163	those with no or mild prevalent vertebral fractures (adjusted HR (95% CI): 3.9 (2.1-7.3);
25 26 27	164	cumulative incidence: 24.3% versus 8.6%) (Table 2).
28 29	165	The association between falls and subsequent fractures remained significant in
30 31 32	166	sensitivity analyses (i) excluding patients with index and subsequent finger and toe
33 34	167	fractures (adjusted HR (95% CI): 8.2 (2.5-26.6)), and (ii) by classifying patients with a
35 36	168	non-fall-related subsequent fracture as non-faller (adjusted HR (95% CI): 2.9 (1.5-5.6)).
37 38 30	169	
39 40 41	170	Discussion
42 43	171	In this 3-year prospective observational cohort study in patients aged 50+ years
44 45	172	with a recent clinical fracture, treated according to current Dutch osteoporosis
46 47 48	173	guidelines at a FLS, 60.7% of patients had at least one fall, and 10.9% had at least one
49 50	174	subsequent fracture. The majority (78.3%) of subsequent fractures was caused by a fall,
51 52 53	175	and of all fall-related subsequent fractures, 53.2% occurred at the first fall. Subsequent
55 55	176	fracture risk was nine-fold higher in fallers than in non-fallers.
56 57	177	Literature reporting fall incidence in fracture patients is limited. Comparable to
58 59	178	our results, Van Helden et al. (28)reported a 3-month fall incidence of 15% in patients
00	179	with a recent fracture at a FLS, and Matsumoto et al. (29) reported a 1-year fall

incidence of 40% in ambulatory patients with a recent fracture. Various other studies included older, hip fracture patients and reported higher one year fall incidences up to 55% (7-11), except for the study from Yeh et al. that reported a lower 1-year fall incidence (31%) (30). Higher fall incidences in hip fracture studies can partially be explained by the older study population. Unfortunately, other fall risk factors cannot be compared. An explanation for the lower fall incidence in the study by Yeh et al. may be that information on the occurrence of falls was provided by patients and family caregivers, which may have resulted in under registration of falls.

A comparison between the fall incidence in our study and that in the general population is difficult to make, because population-based studies were conducted in a 65+ aged, community-dwelling population, whereas approximately 50% of our study population was <65 years old. The proportion of community-dwelling people aged 65+ years sustaining at least one fall over a 1-year period ranged from 28 to 35% (31-33), with an increasing incidence with increasing age (34). The 1-year fall incidence reported is our study is comparable to that in an older (65+ aged) population, and therefore relatively high. However, in contrast to what has been reported in literature, we found no higher 3-year fall incidence with increasing age. An explanation for this could be that, especially in the older age group, relatively more healthy patients participated in our study, resulting in a lower fall incidence in older age group. Another explanation could be that patients aged 50-65 years are more physically active, and therefore fall more often.

1201Compared to our results, previously published FLS studies reported lower (34,35),2202similar (28,37,38), and higher (39,40) subsequent fracture rates. Differences can be2203explained by differences in patient selection. Studies that included older patients (39)2204and patients with more severe fractures (40) reported higher subsequent fracture rates,

Page 15 of 34

1 2

BMJ Open

2 3	205	whereas studies that excluded hand and foot index and subsequent fractures (35) or
4 5	206	frail patients reported lower rates (36).
6 7	207	In 2010, the Dutch population consisted of approximately 6,000,000 people aged 50+
8 9 10	208	years, of whom 119,419 sustained a fracture that year (41), corresponding to a
10 11 12	209	calculated annual fracture incidence of 2.0% in the general Dutch 50+ population.
13 14	210	Compared to the general Dutch 50+ population, the fracture incidence was more than 2
15 16 17	211	times higher in our study, even in the 3rd year of follow-up. In our study, fracture
18 19	212	incidence remained high despite treatment according to the current osteoporosis
20 21	213	guideline, raising the question of what more can be done to prevent subsequent
22 23 24	214	fractures. Even though conflicting results have been published about the effect of fall
25 26	215	prevention strategies on subsequent fracture (42), we hypothesize that fall
27 28	216	interventions could be effective in patients at highest risk, namely those with a recent
29 30 31	217	fracture at risk of falling. Furthermore, according to literature, recurrent fallers have an
32 33	218	almost fourfold increased odds of sustaining a fall-related fracture compared to
34 35 26	219	individuals with a single fall (43). However, we found that the majority of subsequent
30 37 38	220	fall-related fractures occur at the first fall after the index fracture, with a median time to
39 40	221	the first fall of 34 weeks. Interestingly, fall incidence was higher in the first year of
41 42 43	222	follow-up compared to the second and third year. This may indicate an imminent fall
43 44 45	223	risk, which may attribute to the imminent subsequent fracture risk after an index
46 47	224	fracture (1-6). This implies that the FLS patients with a high fall risk should be identified
48 49 50	225	immediately, because there is a small window of opportunity to prevent falls and fall-
50 51 52	226	related subsequent fractures.
53 54 55	227	Remarkably, in contrast to previous studies indicating that imminent fracture

Remarkably, in contrast to previous studies indicating that imminent fracture
 risk that was highest in the first year after an index fracture (44,45), there was a linear
 subsequent fracture incidence during 3-year follow-up in this study. An explanation for
 the linear subsequent fracture incidence may be the relatively healthy patients who

agreed to participate in our study. Compared to non-attenders, they were younger, and a lower proportion had a major baseline fracture, a prevalent vertebral fracture, and osteoporosis, and if indicated, were more likely to receive AOM. Importantly, in addition to falls, moderate to severe prevalent vertebral fractures at baseline were associated with subsequent fractures, even though anti-osteoporosis medication had been prescribed to these patients according to the current Dutch osteoporosis guideline. This study has several limitations. Although, this is one of the largest prospective studies in a FLS population focusing on the incidence of falls after an index fracture, the number of patients is modest, and the number of subsequent fractures relatively low. Therefore, the association between falls and fall-related, and non-fall-related subsequent fractures could not be analyzed separately. A fall 'not-resulting-in-a-subsequent-fracture' might indicate frailty of patients, and might be different from those falls that directly resulted in a subsequent fracture. Future studies are needed to investigate this difference. Finally, because of small numbers, subgroup analyses should not be performed. Furthermore, data on falls were collected prospectively using fall diaries that had to be returned at 3 and 6 months, and 1, 2, and 3 year. However, no procedures were in place to validate self-reported falls, and it is possible that recall bias, could have led to underregistration of falls. Moreover, no information was available on falls between the index fracture and enrollment in the study. Finally, relatively healthy patients participated in the study. Compared to non-attenders, they were younger, a lower proportion had a major baseline fracture, a prevalent vertebral fracture, and osteoporosis. The proportion of patients with a fall and subsequent fractures could be expected to be even higher in the total FLS population. In conclusion, in this 3-year prospective observational cohort study in FLS patients, subsequent fracture incidence was high despite being prescribed anti-

⁶⁰ 256 osteoporosis medications according to the current Dutch osteoporosis guideline.

BMJ Open

Subsequent fracture risk was nine-fold higher in fallers than in non-fallers, and the majority of fall-related subsequent fractures occurred at the first fall at a median time of 34 weeks. These findings emphasize that immediate attention for fall risk reduction could be beneficial in FLS care. Various risk factors, including comorbidities, medication use, polypharmacy and alcohol use among others, contribute to patient's fall risk and further research is needed to determine predictors for falls to identify patients at alling. highest risk of falling.

Figures and tables

Table 1. Baseline characteristics of 488 participants stratified by incident fall and subsequent fracture status.							
	Total population (n=488)	Non-fallers (n=192)	Fallers (n=296)	P-value	No subsequent fracture (n=435)	Subsequent fracture (n=53)	P-value
Age (years)	64.6 ± 8.6	64.4 ± 8.0	64.8 ± 9.0	0.608	64.5 ± 8.8	65.3 ± 7.1	0.488
Female gender	351 (71.9)	130 (67.7)	221 (74.7)	0.095	308 (70.8)	43 (81.1)	0.114
Baseline fracture							
- Finger or toe	55 (11.3)	30 (15.6)	25 (8.4)	0.060	49 (11.3)	6 (11.3)	0.460
- Minor	303 (62.1)	109 (56.8)	194 (65.5)		270 (62.1)	33 (62.3)	
- Major	104 (21.3)	44 (22.9)	60 (20.3)		95 (21.8)	9 (17.0)	
- Hip	26 (5.3)	9 (4.7)	17 (5.7)		21 (4.8)	5 (9.4)	
- Fall-related *	422 (86.5)	164 (85.4)	258 (87.2)	0.582	378 (86.9)	44 (83.0)	0.436
Fall previous year §							
- 0	349 (71.5)	155 (80.7)	194 (65.5)	< 0.001	315 (72.4)	34 (64.2)	0.208
 - ≥1 	139 (28.5)	37 (19.3)	102 (34.5)		120 (27.6)	19 (35.8)	
BMI (kg/m²)	27.7 ± 4.4	27.7 ± 4.4	27.7 ± 4.4	0.961	27.8 ± 4.4	26.9 ± 4.8	0.154
BMD							
- Normal BMD	132 (27.1)	54 (28.1)	78 (26.4)	0.906	123 (28.3)	9 (17.0)	0.081
- Osteopenia	249 (51.0)	97 (50.5)	152 (51.4)		222 (51.0)	27 (50.9)	
- Osteoporosis	107 (21.9)	41 (21.4)	66 (22.3)		90 (20.7)	17 (32.1)	
Prevalent vertebral fracture #\$							
- None	356 (73.0)	139 (72.4)	217 (73.3)	0.572	328 (75.4)	28 (52.8)	< 0.001
- Grade 1	62 (12.7)	22 (11.5)	40 (13.5)		54 (12.4)	8 (15.1)	
- Grade 2-3	70 (14.3)	31 (16.1)	39 (13.2)		53 (12.2)	17 (32.1)	
Anti-osteoporosis treatment	167 (34.2)	70 (36.5)	97 (32.8)	0.402	142 (32.6)	25 (47.2)	0.035

Continuous variables are shown in mean ± SD (standard deviation), categorical variables are shown as number of patients (%). * Signifying that fracture was caused by a fall. § Fall resulting in baseline fracture not included. # According to Genant et al. \$ According to most severe prevalent vertebral fracture. Abbreviations: BMD, bone mineral density.

1	
I	
2	
2	
3	
4	
5	
2	
6	
7	
, ,	
8	
9	
10	
10	
11	
12	
12	
13	
14	
15	
13	
16	
17	
10	
18	
19	
20	
20	
21	
22	
~~	
23	
24	
25	
25	
26	
27	
20	
20	
29	
30	
21	
31	
32	
22	
55	
34	
35	
26	
50	
37	
38	
20	
39	
40	
л <u>-</u>	
41	
42	
43	
44	
45	
46	
40	
47	
48	
40	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	

Gender Women vs men 1.39 (0.68 - 2.83) 0.362 Age +5 years 0.97 (0.82 - 1.13) 0.662 Index fracture Major or hip vs all other 0.68 (0.35 - 1.33) 0.263 BMD -0.12 g/cm ² 1.30 (0.95 - 1.78) 0.101 Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001 Fall Yes vs no 8.58 (3.09 - 23.8) <0.0001	Gender Women vs men 1.3 Age +5 years 0.5 Index fracture Major or hip vs all other 0.6 BMD -0.12 g/cm ² 1.3 Prevalent vertebral fracture Yes vs no 3.6 Fall Yes vs no 8.5	interval	
Age +5 years 0.97 (0.82 · 1.13) 0.662 Index fracture Major or hip vs all other 0.68 (0.35 · 1.33) 0.263 BMD -0.12 g/cm² 1.30 (0.95 · 1.78) 0.101 Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001	Age +5 years 0.9 Index fracture Major or hip vs all other 0.6 BMD -0.12 g/cm² 1.3 Prevalent vertebral fracture Yes vs no 3.6 Fall Yes vs no 8.5	9 (0.68 - 2.83)	0.362
ndex fracture Major or hip vs all other 0.68 (0.35 · 1.33) 0.263 3MD -0.12 g/cm ² 1.30 (0.95 · 1.78) 0.101 Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001 3all Yes vs no 8.58 (3.09 · 23.8) <0.0001	ndex fracture Major or hip vs all other 0.6 3MD -0.12 g/cm ² 1.5 Prevalent vertebral fracture Yes vs no 3.6 3all Yes vs no 8.5	7 (0.82 - 1.13)	0.662
BMD -0.12 g/cm ² 1.30 (0.95 - 1.78) 0.101 Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001	MD -0.12 g/cm² 1.3 Prevalent vertebral fracture Yes vs no 3.6 Sall Yes vs no 8.3	8 (0.35 - 1.33)	0.263
Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001 sal Yes vs no 8.58 (3.09 - 23.8) <0.0001	Prevalent vertebral fracture Yes vs no 3.6 Fail Yes vs no 8.5	0 (0.95 - 1.78)	0.101
rall Yes vs no 8.58 (3.09 - 23.8) <0.0001	rall Yes vs no 8.5	8 (2.07 – 7.27)	< 0.0001
to or		8 (3.09 - 23.8)	< 0.0001

Figure legends

- Figure 1. Cumulative incidence of falls stratified by gender.
- Figure 2. Cumulative incidence of subsequent fractures stratified by gender.
- Figure 3. Cumulative incidence of subsequent fractures stratified by fall status.

<text>

Contributors

LV collected data, carried out data analysis and drafted the manuscript. CW and JB developed the study design and wrote the research protocol, collected data, and critically reviewed the manuscript. PG developed the study design and wrote the research protocol, and critically reviewed the manuscript. RV collected data and critically reviewed the manuscript. TN and TT assisted with data analysis and critically reviewed the manuscript. HJ, SK, JD, JA, JC and DB critically reviewed the manuscript. All authors approved the final version of the manuscript.

Competing interest

Dr. Vranken, Dr. Wyers, Dr. Van der Velden, Dr. Janzing, Dr. Kaarsemakers, Dr. Driessen, Dr. Eisman, Dr. Tran, and Dr. Bliuc have nothing to disclose.

Dr. Center reports honoraria for educational talks from Amgen, part support for educational meetings from Amgen, and advisory board participation for Amgen and Bayer, outside the submitted work.

Dr. Nguyen reports honoraria for lectures sponsored from Merck, and participation as executive member Asia Pacific Consortium on Osteoporosis, outside the submitted work.

Dr. Geusens reports grants from Amgen, Pfizer, MSD, UCB, Abbott, Lilly, BMS, Novartis, Roche, and Will Pharma, and honoraria for lectures from Amgen and Lilly, outside the submitted work. Dr. van den Bergh reports grants for lectures from UCB, and Amgen, outside the submitted work.

Funding

This work was supported by the Weijerhorst Foundation, grand number not applicable. The Weijerhorst Foundation was not involved in conducting the study, analyzing the data or writing the manuscript.

Patient consent for publication

Patient consent for publication was not required.

approval study (protocol ID number . iw Board Nijmegen (IRBN) Data availability statement No additional data available This study (protocol ID number NL45707.072.13) has been approved by the Independent

References

- Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jonsson B. Fracture risk following an osteoporotic fracture. Osteoporos Int. 2003 Dec 23;15(3):175–9.
- Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A. A meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004 Aug;35(2):375–82.
 - van Helden S, Cals J, Kessels F, Brink P, Dinant G-J, Geusens P. Risk of new clinical fractures within 2 years following a fracture. Osteoporosis International. 2006;17(3):348–54.
- 4. Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of Subsequent Fracture After Low-Trauma Fracture in Men and Women. JAMA. American Medical Association; 2007 Jan 24;297(4):387–94.
- 5. Briggs AM, Sun W, Miller LJ, Geelhoed E, Huska A, Inderjeeth CA. Hospitalisations, admission costs and re-fracture risk related to osteoporosis in Western Australia are substantial: a 10-year review. Aust N Z J Public Health. 2015 Dec;39(6):557–62.
- Balasubramanian A, Zhang J, Chen L, Wenkert D, Daigle SG, Grauer A, Curtis JR. Risk of subsequent fracture after prior fracture among older women. Osteoporos Int. 2019 Jan;30(1):79–92.
- McKee KJ, Orbell S, Austin CA, Bettridge R, Liddle BJ, Morgan K, Radley K. Fear of falling, falls efficacy, and health outcomes in older people following hip fracture. Disabil Rehabil. 2002 Apr 15;24(6):327–33.

Shumway-Cook A, Ciol MA, Gruber W, Robinson C. Incidence of and risk factors for
falls following hip fracture in community-dwelling older adults. Phys Ther. 2005
Jul;85(7):648–55.
Kristensen MT, Foss NB, Kehlet H. Timed "up & go" test as a predictor of falls
within 6 months after hip fracture surgery. Phys Ther. 2007 Jan;87(1):24–30.
Berggren M, Stenvall M, Olofsson B, Gustafson Y. Evaluation of a fall-prevention
program in older people after femoral neck fracture: a one-year follow-up.
Osteoporosis International. 2008 Jun;19(6):801–9.
Lloyd BD, Williamson DA, Singh NA, Hansen RD, Diamond TH, Finnegan TP, Allen
BJ, Grady JN, Stavrinos TM, Smith EUR, Diwan AD, Fiatarone Singh MA. Recurrent
and injurious falls in the year following hip fracture: a prospective study of
incidence and risk factors from the Sarcopenia and Hip Fracture study. J. Gerontol.
A Biol. Sci. Med. Sci. 2009 May;64(5):599–609.
Masud T, Morris RO. Epidemiology of falls. Age and Ageing. 2001 Nov;30 Suppl
4(suppl 4):3–7.
Morrison A, Fan T, Sen SS, Weisenfluh L. Epidemiology of falls and osteoporotic
fractures: a systematic review. Clinicoecon Outcomes Res. Dove Press; 2013;5:9–
18.
Geusens P, Autier P, Boonen S, Vanhoof J, Declerck K, Raus J. The relationship
among history of falls, osteoporosis, and fractures in postmenopausal women.
Arch Phys Med Rehabil. 2002 Jul;83(7):903–6.
Kaptoge S, Benevolenskaya LI, Bhalla AK, Cannata JB, Boonen S, Falch JA,
Felsenberg D, Finn JD, Nuti R, Hoszowski K, Lorenc R, Miazgowski T, Jajic I, Lyritis
G, Masaryk P, Naves-Diaz M, Poor G, Reid DM, Scheidt-Nave C, Stepan JJ, Todd CJ,
Weber K, Woolf AD, Roy DK, Lunt M, Pye SR, O'neill TW, Silman AJ, Reeve J. Low

BMJ Open

	BMD is less predictive than reported falls for future limb fractures in women
	across Europe: results from the European Prospective Osteoporosis Study. Bone.
	2005 Mar;36(3):387–98.
16.	Harvey NC, Odén A, Orwoll E, Lapidus J, Kwok T, Karlsson MK, Rosengren BE,
	Ljunggren O, Cooper C, McCloskey E, Kanis JA, Ohlsson C, Mellström D, Johansson
	H. Falls Predict Fractures Independently of FRAX Probability: A Meta-Analysis of
	the Osteoporotic Fractures in Men (MrOS) Study. Journal of Bone and Mineral
	Research. John Wiley & Sons, Ltd; 2017 Dec 8;33(3):510–6.
17.	Leslie WD, Morin SN, Lix LM, Martineau P, Bryanton M, McCloskey EV, Johansson
	H, Harvey NC, Kanis JA. Fracture prediction from self-reported falls in routine
	clinical practice: a registry-based cohort study. Osteoporos Int. Springer London;
	2019 Nov;30(11):2195–203.
18.	Eisman JA, Bogoch ER, Dell R, Harrington JT, McKinney RE Jr., McLellan A, Mitchell
	PJ, Silverman S, Singleton R, Siris E, for the ASBMR Task Force on Secondary
	Fracture Prevention. Making the first fracture the last fracture: ASBMR task force
	report on secondary fracture prevention. Journal of Bone and Mineral Research.
	Wiley Subscription Services, Inc., A Wiley Company; 2012 Jul 26;27(10):2039–46.
19.	Lems WF, Dreinhöfer KE, Bischoff-Ferrari H, Blauth M, Czerwinski E, da Silva J,
	Herrera A, Hoffmeyer P, Kvien T, Maalouf G, Marsh D, Puget J, Puhl W, Poor G,
	Rasch L, Roux C, Schüler S, Seriolo B, Tarantino U, van Geel T, Woolf A, Wyers C,
	Geusens P. EULAR/EFORT recommendations for management of patients older
	than 50 years with a fragility fracture and prevention of subsequent fractures. Ann
	Rheum Dis. 2016 Dec 22;:annrheumdis–2016–210289–10.
20.	IOF Fracture Working Group, Åkesson K, Marsh D, Mitchell PJ, McLellan AR,
	Stenmark J, Pierroz DD, Kyer C, Cooper C. Capture the Fracture: a Best Practice

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Framework and global campaign to break the fragility fracture cycle. Osteoporos Int. Springer London; 2013 Apr 16;24(8):2135–52.

- 21. Dreinhöfer KE, Mitchell PJ, Bégué T, Cooper C, Costa ML, Falaschi P, Hertz K, Marsh D, Maggi S, Nana A, Palm H, Speerin R, Magaziner J, on behalf of: the Fragility Fracture Network (FFN), European Geriatric Medicine Society (EuGMS), European Federation of National Associations of Orthopaedics and Traumatology (EFORT), International Collaboration of Orthopaedic Nursing (ICON), International Geriatric Fracture Society (IGFS), International Osteoporosis Foundation (IOF). A global call to action to improve the care of people with fragility fractures. Injury. 2018 Aug;49(8):1393–7.
- 22. Javaid MK, Sami A, Lems W, Mitchell P, Thomas T, Singer A, Speerin R, Fujita M, Pierroz DD, Åkesson K, Halbout P, Ferrari S, Cooper C. A patient-level key performance indicator set to measure the effectiveness of fracture liaison services and guide quality improvement: a position paper of the IOF Capture the Fracture Working Group, National Osteoporosis Foundation and Fragility Fracture Network. Osteoporos Int. 2020 Apr 8;4(5):e001806.
- 23. Werkgroep CBO, Richtlijn Osteoporose en Fractuurpreventie, derde herziening[Dutch]. (CBO, Utrecht, 2011).
- 24. Richtlijn Preventie van valincidenten bij ouderen (2017) [Dutch].
 (https://richtlijnendatabase.nl/richtlijn/preventie_van_valincidenten_bij_ouderen /startpagina_-_preventie_van_valincidenten.html).
- 25. Bours SPG, van Geel TACM, Geusens PPMM, Janssen MJW, Janzing HMJ, Hoffland GA, Willems PC, van den Bergh JPW. Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. The Journal of Clinical Endocrinology & Metabolism. 2011 May;96(5):1360–7.

26.	Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a
	semiquantitative technique. Journal of Bone and Mineral Research. John Wiley and
	Sons and The American Society for Bone and Mineral Research (ASBMR); 1993
	Sep;8(9):1137–48.
27.	The prevention of falls in later life. A report of the Kellogg International Work
	Group on the Prevention of Falls by the Elderly. Dan Med Bull. 1987 Apr;34 Suppl
	4:1-24.
28.	van Helden S, Wyers CE, Dagnelie PC, van Dongen MC, Willems G, Brink PR,
	Geusens PP. Risk of falling in patients with a recent fracture. BMC Musculoskeletal
	Disorders. BioMed Central; 2007 Jun 28;8(1):348.
29.	Matsumoto H, Makabe T, Morita T, Ikuhara K, Kajigase A, Okamoto Y, Ashikawa E,
	Kobayashi E, Hagino H. Accelerometry-based gait analysis predicts falls among
	patients with a recent fracture who are ambulatory: a 1-year prospective study. Int
	J Rehabil Res. 2015 Jun;38(2):131–6.
30.	Yeh H-F, Shao J-H, Li C-L, Wu C-C, Shyu Y-IL. Predictors of postoperative falls in the
	first and second postoperative years among older hip fracture patients. J Clin Nurs.
	3rd ed. 2017 Nov;26(21-22):3710–23.
31.	Prudham D, Evans JG. Factors associated with falls in the elderly: a community
	study. Age and Ageing. 1981 Aug;10(3):141–6.
32.	Campbell AJ, Reinken J, Allan BC, Martinez GS. Falls in old age: a study of frequency
	and related clinical factors. Age and Ageing. 1981 Nov;10(4):264–70.
33.	Blake AJ, Morgan K, Bendall MJ, Dallosso H, Ebrahim SB, Arie TH, Fentem PH,
	Bassey EJ. Falls by elderly people at home: prevalence and associated factors. Age
	and Ageing. 1988 Nov;17(6):365–72.

Δ	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
20	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
59	
60	

- World Health Organization WHO. WHO Global Report on Falls Prevention in Older Age. 2017 Jan 6;:1–53.
- 35. Eekman DA, van Helden SH, Huisman AM, Verhaar HJJ, Bultink IEM, Geusens PP, Lips P, Lems WF. Optimizing fracture prevention: the fracture liaison service, an observational study. Osteoporos Int. Springer London; 2013 Sep 13;25(2):701–9.
- 36. Lih A, Nandapalan H, Kim M, Yap C, Lee P, Ganda K, Seibel MJ. Targeted intervention reduces refracture rates in patients with incident non-vertebral osteoporotic fractures: a 4-year prospective controlled study. Osteoporos Int. Springer-Verlag; 2011 Mar;22(3):849–58.
- 37. Van der Kallen J, Giles M, Cooper K, Gill K, Parker V, Tembo A, Major G, Ross L, Carter J. A fracture prevention service reduces further fractures two years after incident minimal trauma fracture. Int J Rheum Dis. John Wiley & Sons, Ltd (10.1111); 2014 Feb;17(2):195–203.
- 38. Huntjens KM, van Geel TA, van Helden S, van den Bergh J, Willems P, Winkens B, Geusens PP, Brink PR. The role of the combination of bone and fall related risk factors on short-term subsequent fracture risk and mortality. BMC Musculoskeletal Disorders. BioMed Central; 2013 Apr 4;14(1):721.
- 39. Sanli I, van Helden SH, Broeke Ten RHM, Geusens P, van den Bergh JPW, Brink PRG, Poeze M. The role of the Fracture Liaison Service (FLS) in subsequent fracture prevention in the extreme elderly. Aging Clin Exp Res. 2018 Oct 11;31(8):1105–11.
- Deloumeau A, Moltó A, Roux C, Briot K. Determinants of short term fracture risk in patients with a recent history of low-trauma non-vertebral fracture. Bone. 2017 Dec;105:287–91.
- 41. Lötters FJB, van den Bergh JP, de Vries F, Rutten-van Mölken MPMH. Current and Future Incidence and Costs of Osteoporosis-Related Fractures in The Netherlands:

1 2 3 4	
5 6 7 8 9 10 11 12	42.
13 14 15 16 17 18 19 20 21 21 22	43.
23 24 25 26 27 28 29 30 31	44.
32 33 34 35 36 37 38 39 40 41 42 43	45.
43 44 45 46 47 48 49 50 51 52 53 54	
55 56 57 58 59 60	

Combining Claims Data with BMD Measurements. Calcified Tissue International. Springer US; 2016 Mar;98(3):235–43.

- Wang Q, Jiang X, Shen Y, Yao P, Chen J, Zhou Y, Gu Y, Qian Z, Cao X. Effectiveness of exercise intervention on fall-related fractures in older adults: a systematic review and meta-analysis of randomized controlled trials. BMC Geriatr. BioMed Central; 2020 Sep 4;20(1):322–11.
- Pluijm SMF, Smit JH, Tromp EAM, Stel VS, Deeg DJH, Bouter LM, Lips P. A risk profile for identifying community-dwelling elderly with a high risk of recurrent falling: results of a 3-year prospective study. Osteoporosis International. 2006;17(3):417–25.
- van Geel TACM, Huntjens KMB, van den Bergh JPW, Dinant G-J, Geusens PP. Timing of Subsequent Fractures after an Initial Fracture. Curr Osteoporos Rep. 2010 Jun 18;8(3):118–22.
- van Geel TACM, van Helden S, Geusens PP, Winkens B, Dinant G-J. Clinical subsequent fractures cluster in time after first fractures. Ann Rheum Dis. 2008 Jul 29;68(1):99–102.

Figure 1. Cumulative incidence of falls stratified by gender.

Figure 3. Cumulative incidence of subsequent fractures stratified by fall status.

Supplementary Figure 1. Patient selection. Abbreviations: HET, high-energy trauma fractures; Fx, fracture.

Supplementary table 1. Characteristics of 1011 FLS patients that participated and not-participated in this study.				
	Participants	Non-participants	P-value	
	(n=500)	(n=511)		
Age in years	64.6 ± 8.6	68.3 ± 9.8	<.001	
Female sex	357 (71.4)	396 (77.5)	.026	
Baseline fracture				
- Finger or toe	58 (11.6)	53 (10.4)	<.001	
- Minor	311 (62.2)	259 (50.7)		
- Major	105 (21.0)	157 (30.7)		
- Hip	26 (5.2)	42 (8.2)		
- Fall-related *	431 (86.2)	441 (86.3)	.963	
Fall previous year §	h			
- 0	356 (71.2)	359 (70.3)	.741	
 - ≥1 	144 (28.8)	152 (29.7)		
- ≥ 2	72 (14.4)	87 (17.0)	.252	
BMD				
- Normal BMD	135 (27.0)	90 (17.6)	<.001	
- Osteopenia	255 (51.0)	258 (50.5)		
- Osteoporosis	110 (22.0)	163 (31.9)		
Prevalent vertebral fracture				
- None	366 (73.2)	349 (68.3)	.010	
- Grade 1	63 (12.6)	53 (10.4)		
- Grade 2-3	71 (14.2)	109 (21.3)		
At least one fall past year	143 (29.3)	152 (29.9)	.704	

Continues variables are presented as mean ± SD, categorical variables are presented as number of patients (%). § Fall resulting in baseline fracture not included. # According to Genant et al. § According to most severe prevalent vertebral fracture. Abbreviations: BMD, bone mineral density

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1,3
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	3,4
		was done and what was found	
Introduction			L
Background/rationale	2	Explain the scientific background and rationale for the investigation	5
8	_	being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			I
Study design	4	Present key elements of study design early in the paper	5,6
Setting	5	Describe the setting locations and relevant dates including periods of	5,6
Setting	5	recruitment exposure follow-up and data collection	,
Particinants	6	(a) Give the eligibility criteria and the sources and methods of selection	5,6
i unicipanto	Ū	of participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed	
		and unexposed	
Variables	7	Clearly define all outcomes exposures predictors potential	6,7
v unuoros	,	confounders and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest give sources of data and details of methods	6,7
measurement	0	of assessment (measurement) Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	5,6
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7,8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7,8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	8
		(d) If applicable, explain how loss to follow-up was addressed	8
		(e) Describe any sensitivity analyses	8
Doculto			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	8
i ui tioipunto	15	notentially eligible examined for eligibility confirmed eligible included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	8
		(c) Consider use of a flow diagram	20
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic clinical	15
p uum	- '	social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	NA
		interest	
		(c) Summarise follow-up time (eg. average and total amount)	9
0	15*	Depart numbers of outcome quants or summers measures over time	9 10 16 17

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
40	
-+/ ⊿Ջ	
40 70	
79 50	
50	
51	
52 52	
22	
54	
22	
50 57	
5/	
20	
59	

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	9,10,11
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted	
		for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	9,10
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	11
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	13
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	12,13,14
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Association between incident falls and subsequent fractures in patients attending the Fracture Liaison Service after an index fracture: a 3-year prospective observational cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058983.R2
Article Type:	Original research
Date Submitted by the Author:	23-Jun-2022
Complete List of Authors:	Vranken, Lisanne; VieCuri Medical Centre, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine, Research School NUTRIM Wyers, Caroline; VieCuri Medical Centre, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine, Research School NUTRIM Van der Velde, R.Y.; VieCuri Medical Centre, Department of Internal Medicine, Research School NUTRIM Janzing, Heinrich M. J.; VieCuri Medical Centre+, Department of Surgery Kaarsemakers, S.; VieCuri Medical Centre, Department of Surgery Kaarsemakers, S.; VieCuri Medical Centre, Department of Orthopedic Surgery Driessen, Johanna; Maastricht University Medical Centre+, Department of Clinical Pharmacy and Toxicology; Maastricht University, Department of Clinical Pharmacy and Toxicology Eisman, John; Garvan Institute of Medical Research, Osteoporosis and bone biology; The University of Notre Dame Australia, School of Medicine Sydney Center, Jacqueline; Garvan Institute of Medical Research, Osteoporosis and bone biology; UNSW, School of Population Health Nguyen, T.V.; Garvan Institute of Medical Research, Bone Biology Division Bliuc, Dana; Garvan Institute of Medical Research, Bone Biology Division Bliuc, Dana; Garvan Institute of Medical Research, Bone Biology Division Bliuc, Dana; Garvan Institute of Medical Research, Bone and Mineral Research Program Geusens, Piet; Maastricht Universitair Medisch Centrum+, Department of Internal Medicine, Subdivision Reumatology; Maastricht University, CAPHRI School for Public Health and Primary Care van den Bergh, Joop; VieCuri Medical Centre, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine; Maastricht University Medical Centre+, Department of Internal Medicine, Research School NUTRIM
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Rheumatology, Geriatric medicine, General practice / Family practice
Keywords:	INTERNAL MEDICINE, Orthopaedic & trauma surgery < SURGERY,

2	
3 4	GENERAL MEDICINE (see Internal Medicine)
5	
6	
7 8	
9	SCHOLARONE [™]
10	Manuscripts
11	
12	
14	
5	
6 7	
18	
9	
20	
22	
23	
24	
25 26	
27	
28	
19	
50 51	
2	
3	
4 5	
6	
7	
8 0	
0	
1	
2	
3 4	
5	
6	
2 8	
.9	
0	
1	
53	
54	
55	
56 57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

RELEX ONL

Association between incident falls and subsequent fractures in patients attending the Fracture Liaison Service after an index fracture: a 3-year prospective observational cohort study.

L. Vranken ^{1,2,3}, C.E. Wyers ^{1,2,3}, R.Y. Van der Velde ^{1,2,3}, H.M.J. Janzing ⁴, S. Kaarsemakers ⁵, J.H.M. Driessen ^{6,7}, J.A. Eisman ^{8,9,10}, J.R. Center ^{8,10}, T.V. Nguyen ^{8,10,11}, T. Tran ⁸, D. Bliuc ⁸, P.P.M.M. Geusens ^{12,13,14}, J.P. Van den Bergh ^{1,2,3,*}

- 1. Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center +, Maastricht, The Netherlands
- 3. NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- 4. Department of Surgery, VieCuri Medical Center, Venlo, The Netherlands
- 5. Department of Orthopedic Surgery, VieCuri Medical Center, Venlo, The Netherlands
- Department of Clinical Pharmacy and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, CARIM School for Cardiovascular Disease, Maastricht University Medical Center +, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- 7. Department of Clinical Pharmacy and Toxicology, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
- 8. Osteoporosis and Bone Biology, Garvan Institute of Medical Research, Sydney, Australia
- 9. School of Medicine Sydney, University of Notre Dame Australia, Sydney, Australia
- 10. School of Population Health, Faculty of Medicine, UNSW Sydney, Sydney, Australia

- 11. School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- 12. CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
- 13. Department of Internal Medicine, Subdivision Rheumatology, Maastricht University Medical Center +, Maastricht, The Netherlands
- 14. Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Corresponding author

Corresponding author

Name: J.P. van den Bergh

Postal address: Tegelseweg 210, 5912 BL Venlo Revenues on the second

E-mail: jvdbergh@viecuri.nl

Telephone: 0031-773205555

Fax numbers: 0031-773206279

Abstract

Objectives: To evaluate the risk of subsequent fractures in patients who attended the Fracture Liaison Service (FLS), with and without incident falls after the index fracture.

Design: A 3-year prospective observational cohort study.

Setting: An outpatient FLS in The Netherlands.

Participants: Patients aged 50+ years with a recent clinical fracture.

Outcome measures: Incident falls and subsequent fractures.

Results: The study included 488 patients (71.9% women, mean age 64.6 ± 8.6 years). During the 3-year follow-up, 959 falls had been ascertained in 296 (60.7%) patients (*i.e.,* fallers), and 60 subsequent fractures were ascertained in 53 (10.9%) patients. Of the fractures, 47 (78.3%) were fall-related, of which 25 (53.2%) were sustained at the first fall incident at a median of 34 weeks. An incident fall was associated with an approximately 9-fold (hazard ratio 8.6, 95% confidence interval 3.1 to 23.8) increase in the risk of subsequent fractures.

Conclusion: These data suggest that subsequent fractures among patients on treatment prescribed in a FLS setting are common, and that an incident fall is a strong predictor of subsequent fracture risk. Immediate attention for fall risk could be beneficial in an FLS model of care.

Trial registration: Registration number NL45707.072.13

Strengths and limitations

 Although this is one of the largest prospective studies in a FLS population focusing on the incidence of falls after an index fracture, the number of patients is modest, and the number of subsequent fractures relatively small. - Data on falls were collected prospectively using fall diaries, but no procedures were in place to validate self-reported falls.

- No information was available on falls between the index fracture and enrollment in the study.
- Relatively healthy patients participated in the study, which may have resulted in an underestimation of incident falls and subsequent fractures.

to per terien ont

BMJ Open

3	
1	
-	
2	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
18	
10	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	
UU	

1 Introduction

Patients with a recent fracture have a high imminent risk of subsequent fractures
as shown after most fractures (1-6), and a high risk of subsequent falls, as shown after a
recent hip fracture (7-11). The Fracture Liaison Service (FLS) is considered the most
effective organizational approach for secondary fracture prevention in patients after the
age of 50 years with a recent fracture.

7 Most fractures are caused by a fall, but most falls do not result in a fracture 8 (12,13). Falls are a major contributing factor to the occurrence of fractures, independent 9 and additive to the risk attributable to age and bone mineral density (BMD) (14-17). 10 Guidelines on the FLS therefore recommend fall prevention and prescription of anti-11 osteoporosis medication (AOM) in high risk patients (18-22). However, it is not well 12 known to what extent the imminent risk of subsequent fractures after an index fracture 13 can be attributed to incident falls. We hypothesized that the risk of subsequent fractures 14 would be substantially higher in patients with falls after a recent fracture than in those 15 without falls. The aim of this study was therefore to evaluate the incidence of falls and 16 subsequent fractures, and the risk of subsequent fractures in those with and without 17 falls after a recent index fracture in patients who attend the FLS.

19 Methods

18

20 Study population and design

A 3-year prospective observational cohort study was conducted including 500
consecutive patients aged between 50 and 90 years with a recent, radiologically
confirmed clinical vertebral or non-vertebral low-trauma fracture, and who were willing
and able to participate. Patients were recruited at the FLS in VieCuri Medical Center,
Venlo, The Netherlands.

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
20
29
20
31
32
33
34
35
36
37
38
39
40
Δ1
41
42
43
44
45
46
47
48
49
50
51
52
52
55
54 55
55
56
57
58
59
60

1

Low-trauma fractures were defined as fractures that resulted from a fall from standing
height or less. Excluded were non-Caucasian patients, patients with bone metastasis,
failure of prosthesis or osteomyelitis, and patients with cognitive impairment.

29 According to standard care, a nurse specialized in osteoporosis invited all 30 patients aged 50 year and older, who visited the emergency department because of a 31 recent clinical vertebral or non-vertebral fracture, to the FLS. All patients who 32 responded and agreed to be evaluated were scheduled an appointment for fracture risk 33 evaluation. Fracture risk evaluation included a detailed questionnaire for evaluation of 34 risk factors for fractures and falls, including medical history and medication use. This 35 questionnaire was based on the Dutch guidelines on osteoporosis and fracture 36 prevention, and prevention of falls in the elderly (23,24). Also, height and weight were 37 measured, a bone mineral density (BMD) measurement with dual-energy X-ray 38 absorptiometry (DXA) of the lumbar spine, total hip, and femoral neck, with vertebral 39 fracture assessment (VFA) was performed, and a blood sample was collected to detect 40 contributors to secondary osteoporosis and metabolic bone disease (25). According to 41 the Dutch osteoporosis guideline (23), AOM was started in patients with osteoporosis or 42 having at least one moderate to severe prevalent vertebral fracture according to Genant 43 et al. (26). Bisphosphonates and denosumab were first-choice treatments. Teriparatide 44 was restricted to patients already on another AOM with at least 3 fractures, of which 2 45 were vertebral fractures.

46 The study protocol (registration number NL45707.072.13) was approved by an
47 independent Medical Ethics Committee and complied with the Declaration of Helsinki.
48 All patients gave written informed consent prior to participation.

49

50 Falls and subsequent fractures

Page 9 of 34

1

56 57 58

59 60

BMJ Open

2	51	During the 3-year follow-up, patients were requested to record falls weekly in a
4 5	52	fall diary. Fall registration started at the beginning of the study, mean 3.5 \pm 1.0 months
6 7	53	after the index fracture. A fall was defined as an unintentional change in position
8 9 10	54	resulting in coming to rest on the ground or other lower level (27). Patients were asked
11 12	55	to return their fall diaries by mail at 3 and 6 months, and during the study visit at 1, 2 $$
13 14 15	56	and 3 year of follow-up. They were contacted by telephone if the fall diary was not
15 16 17	57	received or incomplete. Patients were categorized as those with at least one incident fall
18 19	58	(<i>i.e.,</i> faller) or without an incident fall (<i>i.e.,</i> non-faller) during follow-up.
20 21 22	59	When patients recorded a fall in their diary, they were also asked to record
22 23 24	60	whether or not they sustained a subsequent clinical fracture as a direct result of the fall.
25 26	61	Additionally, at 1-, 2-, and 3-year follow-up, patients had to complete a detailed
27 28 29	62	questionnaire, including a question on whether they sustained a fracture due to another
30 31	63	trauma than a fall or without an overt trauma. All subsequent fractures were
32 33	64	radiologically confirmed according to radiology reports in the electronic patient records.
34 35 36	65	Since no imaging of the spine was performed at the end of the study, all reported
37 38	66	vertebral fractures were symptomatic, clinical vertebral fractures. A distinction was
39 40	67	made between subsequent fractures that were directly caused by a fall (<i>i.e.,</i> fall-related
41 42 43	68	fractures), and those that occurred without an overt trauma or were the result of
44 45	69	another trauma than a fall (<i>i.e.,</i> non-fall-related fractures).
46 47	70	
48 49 50	71	Data analysis
51 52	72	Baseline characteristics were compared between fallers and non-fallers, and between
53 54 55	73	patients with and without subsequent fractures using the Student's t test or Wilcoxon

etween fallers and non-fallers, and between tures using the Student's t test or Wilcoxon test for continuous variables, and Chi-squared or Fisher's exact test for categorical 74 75 variables where appropriate. The incidence rate of falls and subsequent fractures per 76 100 person-years was estimated at 3 and 6 months and 1, 2 and 3 year follow-up,

77	assuming a Poisson distribution. Kaplan Meier curves were made for incident falls and
78	subsequent fractures, in which patients were included once, and only the first incident
79	fall or subsequent fracture was included. Cox proportional hazards regression was used
80	to determine the association between incident falls and subsequent fractures, yielding
81	hazard ratios (HR) and 95% confidence intervals (CI). Proportional hazard assumptions
82	were not violated. Follow-up time was determined by the first subsequent fracture, lost-
83	to-follow-up or the end of the study, whatever occurred first. All analyses were adjusted
84	for the predefined covariates, including age, gender, index fracture type (major or hip
85	versus any other fracture), BMD (lowest measured at lumbar spine, total hip, femoral
86	neck), prevalent vertebral fractures (moderate or severe versus mild or no prevalent
87	vertebral fractures). A p-value < 0.05 was considered statistically significant.
88	Two sensitivity analyses were planned; (i) excluding patients with index and
89	subsequent finger or toe fractures, and (ii) by classifying patients with a non-fall-related
90	subsequent fracture as non-faller, even if they fell at another time during follow-up.
91	
92	Patient and public involvement
93	Patients or members of the public were not involved in the design, or conduct, or
94	reporting, or dissemination plans of the research.
95	
96	Results
97	Study population
98	Among 1220 patients approached from the FLS, 1011 patients met the study
99	criteria. Of the 1011 patients, 511 were not willing or able to participate in the study,
100	and after excluding 12 patients with missing fall data, ultimately 488 patients were
101	available for analysis (Supplementary Figure 1) of whom 34 (7.0%) patients had

1 2 3	102	incomplete follow-up data on incident falls (5 patients died, 8 withdrew consent, 21 had
3 4 5	103	incomplete fall registration).
6 7	104	The mean time between the index fracture and FLS visit at which patients were
8 9 10	105	included for this study was 3.9 \pm 1.1 months for patients with a hip fracture and 3.5 \pm 1.0
11 12	106	months for patients with other fractures. Baseline characteristics of the 488 study
13 14 15	107	participants are presented in Table 1 . Mean age was 64.6 ± 8.6 year and 71.9% of the
15 16 17	108	patients were women. In 86.5% of patients, the index fracture was caused by a fall, and
18 19	109	28.5% of patients had at least one other fall in the year before the start of the study. At
20 21 22	110	baseline, 21.9% of patients were diagnosed with osteoporosis, 51.1% with osteopenia,
22 23 24	111	and 27.1% had a normal BMD. Lowest BMD was measured at the femoral neck in 470
25 26	112	participants, at the total hip in 3 participants, and at the lumber spine in 15 participants.
27 28 29	113	Moderate to severe (i.e., grade 2-3) prevalent vertebral fractures were present in 14.3%
30 31	114	of patients. AOM was prescribed in 34.2% of patients (8 (1.6%) were already using AOM,
32 33	115	and 159 (32.6%) started using AOM at baseline visit).
34 35 36	116	Compared to eligible FLS attenders, who were not willing or able to participate in
37 38	117	our study, patients included in our study were younger, had fewer major or hip
39 40	118	fractures, had a higher BMD, and a lower proportion had prevalent vertebral fractures
41 42 43	119	(see Supplementary Table 1).
44 45	120	
46 47 48	121	Falls
48 49 50 51 52 53 54	122	During a median follow-up of 3 years (range 0.1 to 3.0), 296 (60.7%) patients
	123	recorded 959 falls, corresponding to 68.6 falls per 100 person-years. The cumulative fall
	124	incidences and incidence rates per 100 person-years at 3 and 6 months, and at 1, 2 and 3
55 56 57	125	year follow-up are presented in Figure 1 . Of the 296 patients with at least one fall, 115
58 59	126	(38.9%) had one fall and 181 (61.1%) had two or more falls (up to 39 falls in one
60	127	patient).

A first fall was recorded by 189/488 (38.7%) patients during the first year of follow-up, by 56/299 (18.7%) during the second, and by 51/243 (21.0%) during the third year of follow-up. The median time to the first fall was 34 (range 1-156) weeks. Of the 959 falls, 47 (4.9%) resulted in a subsequent fall-related fracture.

There were no significant differences in baseline characteristics between patients with and without a fall during the 3-year follow-up, except for that a higher proportion of patients with incident falls reported at least one fall in the year before the start of the study (34.5% vs. 19.3%, p < 0.001) (see **Table 1**). There were no significant differences in baseline characteristics between patients with one fall and those with multiple falls (data not shown).

139 Subsequent fractures

In total, 53 (10.9%) patients recorded 60 subsequent fractures, corresponding to 4.29 subsequent fractures per 100 person-years. The cumulative subsequent fracture incidences and incidence rates (per 100-person years) at 3 and 6 months, and at 1, 2 and 3 year follow-up are presented in **Figure 2**. Of all subsequent fractures, 47 (78.3%) were fall-related, and 13 (21.7%) were non-fall-related. Fall-related subsequent fracture sites were: radius and ulna (n=9), tibia and fibula (n=8), proximal femur (n=4), metatarsal (n=4), hand phalanx (n=4), symptomatic vertebra (n=3), proximal humerus (n=3), clavicula (n=3), costal bones (n=2), scapula (n=2), pelvic bone (n=1), metacarpal (n=1), tarsal (n=1), patella (n=1), and foot phalanx (n=1), whereas subsequent non-fall-related fractures sites were: symptomatic vertebral (n=5), metatarsal (n=2), foot phalanx (n=5), and hand phalanx (n=1). Half (53.2%) of all fall-related subsequent fractures were sustained at the first fall. Baseline characteristics for patients with and without subsequent fractures are

153 presented in **Table 1**.

BMJ Open

1 2 3	154	Of the 296 patients with at least one fall, 41 (13.9%) had 46 fall-related subsequent
4 5 6 7 8 9 10 11 12	155	fractures, 7 (2.4%) had 7 non-fall-related subsequent fractures, and 1 (0.3%) had 1 fall-
	156	and 1 non-fall-related subsequent fracture. Of the 192 patients without a fall, 4 (2.1%)
	157	had 5 non-fall-related subsequent fractures. Of note, the risk of subsequent fractures was
	158	higher in patients with at least one fall than in those without a fall (adjusted HR (95% CI):
13 14 15	159	8.6 (3.1-23.8); cumulative incidence: 16.6%% versus 2.1%) (Figure 3 and Table 2).
16 17	160	Results were similar when femoral neck BMD instead of the lowest BMD was used for
18 19 20	161	adjustments (adjusted HR (95% CI): 8.3 (3.0-23.0)). Additionally, subsequent fracture
20 21 22	162	risk was higher in patients with moderate or severe prevalent vertebral fractures than in
23 24	163	those with no or mild prevalent vertebral fractures (adjusted HR (95% CI): 3.9 (2.1-7.3);
25 26 27	164	cumulative incidence: 24.3% versus 8.6%) (Table 2).
28 29	165	The association between falls and subsequent fractures remained significant in
30 31 32	166	sensitivity analyses (i) excluding patients with index and subsequent finger and toe
33 34	167	fractures (adjusted HR (95% CI): 8.2 (2.5-26.6)), and (ii) by classifying patients with a
35 36	168	non-fall-related subsequent fracture as non-faller (adjusted HR (95% CI): 2.9 (1.5-5.6)).
37 38 20	169	
40 41	170	Discussion
42 43	171	In this 3-year prospective observational cohort study in patients aged 50+ years
44 45 46	172	with a recent clinical fracture, treated according to current Dutch osteoporosis
40 47 48	173	guidelines at a FLS, 60.7% of patients had at least one fall, and 10.9% had at least one
49 50 51 52 53 54 55	174	subsequent fracture. The majority (78.3%) of subsequent fractures was caused by a fall,
	175	and of all fall-related subsequent fractures, 53.2% occurred at the first fall. Subsequent
	176	fracture risk was nine-fold higher in fallers than in non-fallers.
56 57	177	Literature reporting fall incidence in fracture patients is limited. Comparable to
58 59	178	our results, Van Helden et al. (28) reported a 3-month fall incidence of 15% in patients
00	179	with a recent fracture at a FLS, and Matsumoto et al. (29) reported a 1-year fall

incidence of 40% in ambulatory patients with a recent fracture. Various other studies included older, hip fracture patients and reported higher one year fall incidences up to 55% (7-11), except for the study from Yeh et al. that reported a lower 1-year fall incidence (31%) (30). Higher fall incidences in hip fracture studies can partially be explained by the older study population. Unfortunately, other fall risk factors cannot be compared. An explanation for the lower fall incidence in the study by Yeh et al. may be that information on the occurrence of falls was provided by patients and family caregivers, which may have resulted in under registration of falls.

A comparison between the fall incidence in our study and that in the general population is difficult to make, because population-based studies were conducted in a 65+ aged, community-dwelling population, whereas approximately 50% of our study population was <65 years old. The proportion of community-dwelling people aged 65+ years sustaining at least one fall over a 1-year period ranged from 28 to 35% (31-33), with an increasing incidence with increasing age (34). The 1-year fall incidence reported is our study is comparable to that in an older (65+ aged) population, and therefore relatively high. However, in contrast to what has been reported in literature, we found no higher 3-year fall incidence with increasing age. An explanation for this could be that, especially in the older age group, relatively more healthy patients participated in our study, resulting in a lower fall incidence in older age group. Another explanation could be that patients aged 50-65 years are more physically active, and therefore fall more often.

201 Compared to our results, previously published FLS studies reported lower 202 (35,36), similar (28,37,38), and higher (39,40) subsequent fracture rates. Differences 203 can be explained by differences in patient selection. Studies that included older patients 204 (39) and patients with more severe fractures (40) reported higher subsequent fracture

Page 15 of 34

1 2

BMJ Open

3	205
4 5	206
6 7	207
8 9	208
10 11 12	209
13 14	210
15 16	211
17 18	212
19 20	212
21 22	213
23 24	214
25 26	215
27 28	216
29 30	217
31 32 33	218
34 35	219
36 37	220
38	220
39 40	221
41 42 43	222
44 45	223
46 47	224
48 ⊿0	225
50	223
51 52	226
53 54	227
55 56	228
57	220
58 59	229
60	220

205 rates, whereas studies that excluded hand and foot index and subsequent fractures (35) or frail patients reported lower rates (36).

In 2010, the Dutch population consisted of approximately 6,000,000 people aged 50+ vears, of whom 119,419 sustained a fracture that year (41), corresponding to a calculated annual fracture incidence of 2.0% in the general Dutch 50+ population. Compared to the general Dutch 50+ population, the fracture incidence was more than 2 times higher in our study, even in the 3rd year of follow-up. In our study, fracture incidence remained high despite treatment according to the current osteoporosis guideline, raising the question of what more can be done to prevent subsequent fractures. Even though conflicting results have been published about the effect of fall prevention strategies on subsequent fracture (42), we hypothesize that fall interventions could be effective in patients at highest risk, namely those with a recent fracture at risk of falling. Furthermore, according to literature, recurrent fallers have an almost fourfold increased odds of sustaining a fall-related fracture compared to individuals with a single fall (43). However, we found that the majority of subsequent fall-related fractures occur at the first fall after the index fracture, with a median time to the first fall of 34 weeks. Interestingly, fall incidence was higher in the first year of follow-up compared to the second and third year. This may indicate an imminent fall risk, which may attribute to the imminent subsequent fracture risk after an index fracture (1-6). This implies that the FLS patients with a high fall risk should be identified immediately, because there is a small window of opportunity to prevent falls and fallrelated subsequent fractures.

Remarkably, in contrast to previous studies indicating that imminent fracture risk that was highest in the first year after an index fracture (44,45), there was a linear subsequent fracture incidence during 3-year follow-up in this study. An explanation for the linear subsequent fracture incidence may be the relatively healthy patients who 230

agreed to participate in our study. Compared to non-attenders, they were younger, and a lower proportion had a major baseline fracture, a prevalent vertebral fracture, and osteoporosis, and if indicated, were more likely to receive AOM. Importantly, in addition to falls, moderate to severe prevalent vertebral fractures at baseline were associated with subsequent fractures, even though anti-osteoporosis medication had been prescribed to these patients according to the current Dutch osteoporosis guideline. This study has several limitations. Although, this is one of the largest prospective studies in a FLS population focusing on the incidence of falls after an index fracture, the number of patients is modest, and the number of subsequent fractures relatively low. Therefore, the association between falls and fall-related, and non-fall-related subsequent fractures could not be analyzed separately. A fall 'not-resulting-in-a-subsequent-fracture' might indicate frailty of patients, and might be different from those falls that directly resulted in a subsequent fracture. Future studies are needed to investigate this difference. Finally, because of small numbers, subgroup analyses should not be performed. Furthermore, data on falls were collected prospectively using fall diaries that had to be returned at 3 and 6 months, and 1, 2, and 3 year. However, no procedures were in place to validate self-reported falls, and it is possible that recall bias, could have led to underregistration of falls. Moreover, no information was available on falls between the index fracture and enrollment in the study. Finally, relatively healthy patients participated in the study. Compared to non-attenders, they were younger, a lower proportion had a major baseline fracture, a prevalent vertebral fracture, and osteoporosis. The proportion of patients with a fall and subsequent fractures could be expected to be even higher in the total FLS population. In conclusion, in this 3-year prospective observational cohort study in FLS patients, subsequent fracture incidence was high despite being prescribed anti-

⁶⁰ 256 osteoporosis medications according to the current Dutch osteoporosis guideline.

BMJ Open

Subsequent fracture risk was nine-fold higher in fallers than in non-fallers, and the majority of fall-related subsequent fractures occurred at the first fall at a median time of 34 weeks. These findings emphasize that immediate attention for fall risk reduction could be beneficial in FLS care. Various risk factors, including comorbidities, medication use, polypharmacy and alcohol use among others, contribute to patient's fall risk and further research is needed to determine predictors for falls to identify patients at alling. highest risk of falling.

Figures and tables

Table 1. Baseline characteristics of 488 participants stratified by incident fall and subsequent fracture status.							
	Total population (n=488)	Non-fallers (n=192)	Fallers (n=296)	P-value	No subsequent fracture (n=435)	Subsequent fracture (n=53)	P-value
Age (years)	64.6 ± 8.6	64.4 ± 8.0	64.8 ± 9.0	0.608	64.5 ± 8.8	65.3 ± 7.1	0.488
Female gender	351 (71.9)	130 (67.7)	221 (74.7)	0.095	308 (70.8)	43 (81.1)	0.114
Baseline fracture							
- Finger or toe	55 (11.3)	30 (15.6)	25 (8.4)	0.060	49 (11.3)	6 (11.3)	0.460
- Minor	303 (62.1)	109 (56.8)	194 (65.5)		270 (62.1)	33 (62.3)	
- Major	104 (21.3)	44 (22.9)	60 (20.3)		95 (21.8)	9 (17.0)	
- Hip	26 (5.3)	9 (4.7)	17 (5.7)		21 (4.8)	5 (9.4)	
- Fall-related *	422 (86.5)	164 (85.4)	258 (87.2)	0.582	378 (86.9)	44 (83.0)	0.436
Fall previous year §							
- 0	349 (71.5)	155 (80.7)	194 (65.5)	< 0.001	315 (72.4)	34 (64.2)	0.208
- ≥1	139 (28.5)	37 (19.3)	102 (34.5)		120 (27.6)	19 (35.8)	
BMI (kg/m²)	27.7 ± 4.4	27.7 ± 4.4	27.7 ± 4.4	0.961	27.8 ± 4.4	26.9 ± 4.8	0.154
BMD							
- Normal BMD	132 (27.1)	54 (28.1)	78 (26.4)	0.906	123 (28.3)	9 (17.0)	0.081
- Osteopenia	249 (51.0)	97 (50.5)	152 (51.4)		222 (51.0)	27 (50.9)	
- Osteoporosis	107 (21.9)	41 (21.4)	66 (22.3)		90 (20.7)	17 (32.1)	
Prevalent vertebral fracture #\$							
- None	356 (73.0)	139 (72.4)	217 (73.3)	0.572	328 (75.4)	28 (52.8)	< 0.001
- Grade 1	62 (12.7)	22 (11.5)	40 (13.5)		54 (12.4)	8 (15.1)	
- Grade 2-3	70 (14.3)	31 (16.1)	39 (13.2)		53 (12.2)	17 (32.1)	
Anti-osteoporosis treatment	167 (34.2)	70 (36.5)	97 (32.8)	0.402	142 (32.6)	25 (47.2)	0.035

Continuous variables are shown in mean ± SD (standard deviation), categorical variables are shown as number of patients (%). * Signifying that fracture was caused by a fall. § Fall resulting in baseline fracture not included. # According to Genant et al. \$ According to most severe prevalent vertebral fracture. Abbreviations: BMD, bone mineral density.

1	
I	
2	
2	
3	
4	
5	
2	
6	
7	
, ,	
8	
9	
10	
10	
11	
12	
12	
13	
14	
15	
13	
16	
17	
10	
18	
19	
20	
20	
21	
22	
~~	
23	
24	
25	
25	
26	
27	
20	
20	
29	
30	
21	
31	
32	
22	
55	
34	
35	
26	
50	
37	
38	
20	
39	
40	
- 1	
41	
42	
43	
44	
45	
46	
40	
47	
48	
40	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	

Gender Women vs men 1.39 (0.68 - 2.83) 0.362 Age +5 years 0.97 (0.82 - 1.13) 0.662 Index fracture Major or hip vs all other 0.68 (0.35 - 1.33) 0.263 BMD -0.12 g/cm ² 1.30 (0.95 - 1.78) 0.101 Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001 Fall Yes vs no 8.58 (3.09 - 23.8) <0.0001	Gender Women vs men 1.3 Age +5 years 0.5 Index fracture Major or hip vs all other 0.6 BMD -0.12 g/cm ² 1.3 Prevalent vertebral fracture Yes vs no 3.6 Fall Yes vs no 8.5	interval	
Age +5 years 0.97 (0.82 · 1.13) 0.662 Index fracture Major or hip vs all other 0.68 (0.35 · 1.33) 0.263 BMD -0.12 g/cm² 1.30 (0.95 · 1.78) 0.101 Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001	Age +5 years 0.9 Index fracture Major or hip vs all other 0.6 BMD -0.12 g/cm² 1.3 Prevalent vertebral fracture Yes vs no 3.6 Fall Yes vs no 8.5	9 (0.68 - 2.83)	0.362
ndex fracture Major or hip vs all other 0.68 (0.35 · 1.33) 0.263 3MD -0.12 g/cm ² 1.30 (0.95 · 1.78) 0.101 Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001 3all Yes vs no 8.58 (3.09 · 23.8) <0.0001	ndex fracture Major or hip vs all other 0.6 3MD -0.12 g/cm ² 1.5 Prevalent vertebral fracture Yes vs no 3.6 3all Yes vs no 8.5	7 (0.82 - 1.13)	0.662
BMD -0.12 g/cm ² 1.30 (0.95 - 1.78) 0.101 Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001	MD -0.12 g/cm² 1.3 Prevalent vertebral fracture Yes vs no 3.6 Sall Yes vs no 8.3	8 (0.35 - 1.33)	0.263
Prevalent vertebral fracture Yes vs no 3.88 (2.07 - 7.27) <0.0001 sal Yes vs no 8.58 (3.09 - 23.8) <0.0001	Prevalent vertebral fracture Yes vs no 3.6 Fail Yes vs no 8.5	0 (0.95 - 1.78)	0.101
rall Yes vs no 8.58 (3.09 - 23.8) <0.0001	rall Yes vs no 8.5	8 (2.07 – 7.27)	< 0.0001
to or		8 (3.09 - 23.8)	< 0.0001

Figure legends

- Figure 1. Cumulative incidence of falls stratified by gender.
- Figure 2. Cumulative incidence of subsequent fractures stratified by gender.
- Figure 3. Cumulative incidence of subsequent fractures stratified by fall status.

<text>

Contributors

LV collected data, carried out data analysis and drafted the manuscript. CW and JB developed the study design and wrote the research protocol, collected data, and critically reviewed the manuscript. PG developed the study design and wrote the research protocol, and critically reviewed the manuscript. RV collected data and critically reviewed the manuscript. TN and TT assisted with data analysis and critically reviewed the manuscript. HJ, SK, JD, JA, JC and DB critically reviewed the manuscript. All authors approved the final version of the manuscript.

Competing interest

Dr. Vranken, Dr. Wyers, Dr. Van der Velden, Dr. Janzing, Dr. Kaarsemakers, Dr. Driessen, Dr. Eisman, Dr. Tran, and Dr. Bliuc have nothing to disclose.

Dr. Center reports honoraria for educational talks from Amgen, part support for educational meetings from Amgen, and advisory board participation for Amgen and Bayer, outside the submitted work.

Dr. Nguyen reports honoraria for lectures sponsored from Merck, and participation as executive member Asia Pacific Consortium on Osteoporosis, outside the submitted work.

Dr. Geusens reports grants from Amgen, Pfizer, MSD, UCB, Abbott, Lilly, BMS, Novartis, Roche, and Will Pharma, and honoraria for lectures from Amgen and Lilly, outside the submitted work. Dr. van den Bergh reports grants for lectures from UCB, and Amgen, outside the submitted work.

Funding

This work was supported by the Weijerhorst Foundation, grand number not applicable. The Weijerhorst Foundation was not involved in conducting the study, analyzing the data or writing the manuscript.

Patient consent for publication

Patient consent for publication was not required.

Ethics approval

This study (protocol ID number NL45707.072.13) has been approved by the Independent

in the terms of the second Review Board Nijmegen (IRBN).

Data availability statement

No additional data available.

References

- Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jonsson B. Fracture risk following an osteoporotic fracture. Osteoporos Int. 2003 Dec 23;15(3):175–9.
- Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A. A meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004 Aug;35(2):375–82.
 - van Helden S, Cals J, Kessels F, Brink P, Dinant G-J, Geusens P. Risk of new clinical fractures within 2 years following a fracture. Osteoporosis International. 2006;17(3):348–54.
- 4. Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of Subsequent Fracture After Low-Trauma Fracture in Men and Women. JAMA. American Medical Association; 2007 Jan 24;297(4):387–94.
- 5. Briggs AM, Sun W, Miller LJ, Geelhoed E, Huska A, Inderjeeth CA. Hospitalisations, admission costs and re-fracture risk related to osteoporosis in Western Australia are substantial: a 10-year review. Aust N Z J Public Health. 2015 Dec;39(6):557–62.
- Balasubramanian A, Zhang J, Chen L, Wenkert D, Daigle SG, Grauer A, Curtis JR. Risk of subsequent fracture after prior fracture among older women. Osteoporos Int. 2019 Jan;30(1):79–92.
- McKee KJ, Orbell S, Austin CA, Bettridge R, Liddle BJ, Morgan K, Radley K. Fear of falling, falls efficacy, and health outcomes in older people following hip fracture. Disabil Rehabil. 2002 Apr 15;24(6):327–33.

Shumway-Cook A, Ciol MA, Gruber W, Robinson C. Incidence of and risk factors for
falls following hip fracture in community-dwelling older adults. Phys Ther. 2005
Jul;85(7):648–55.
Kristensen MT, Foss NB, Kehlet H. Timed "up & go" test as a predictor of falls
within 6 months after hip fracture surgery. Phys Ther. 2007 Jan;87(1):24–30.
Berggren M, Stenvall M, Olofsson B, Gustafson Y. Evaluation of a fall-prevention
program in older people after femoral neck fracture: a one-year follow-up.
Osteoporosis International. 2008 Jun;19(6):801–9.
Lloyd BD, Williamson DA, Singh NA, Hansen RD, Diamond TH, Finnegan TP, Allen
BJ, Grady JN, Stavrinos TM, Smith EUR, Diwan AD, Fiatarone Singh MA. Recurrent
and injurious falls in the year following hip fracture: a prospective study of
incidence and risk factors from the Sarcopenia and Hip Fracture study. J. Gerontol.
A Biol. Sci. Med. Sci. 2009 May;64(5):599–609.
Masud T, Morris RO. Epidemiology of falls. Age and Ageing. 2001 Nov;30 Suppl
4(suppl 4):3–7.
Morrison A, Fan T, Sen SS, Weisenfluh L. Epidemiology of falls and osteoporotic
fractures: a systematic review. Clinicoecon Outcomes Res. Dove Press; 2013;5:9–
18.
Geusens P, Autier P, Boonen S, Vanhoof J, Declerck K, Raus J. The relationship
among history of falls, osteoporosis, and fractures in postmenopausal women.
Arch Phys Med Rehabil. 2002 Jul;83(7):903–6.
Kaptoge S, Benevolenskaya LI, Bhalla AK, Cannata JB, Boonen S, Falch JA,
Felsenberg D, Finn JD, Nuti R, Hoszowski K, Lorenc R, Miazgowski T, Jajic I, Lyritis
G, Masaryk P, Naves-Diaz M, Poor G, Reid DM, Scheidt-Nave C, Stepan JJ, Todd CJ,
Weber K, Woolf AD, Roy DK, Lunt M, Pye SR, O'neill TW, Silman AJ, Reeve J. Low

BMJ Open

	BMD is less predictive than reported falls for future limb fractures in women
	across Europe: results from the European Prospective Osteoporosis Study. Bone.
	2005 Mar;36(3):387-98.
16.	Harvey NC, Odén A, Orwoll E, Lapidus J, Kwok T, Karlsson MK, Rosengren BE,
	Ljunggren O, Cooper C, McCloskey E, Kanis JA, Ohlsson C, Mellström D, Johansson
	H. Falls Predict Fractures Independently of FRAX Probability: A Meta-Analysis of
	the Osteoporotic Fractures in Men (MrOS) Study. Journal of Bone and Mineral
	Research. John Wiley & Sons, Ltd; 2017 Dec 8;33(3):510–6.
17.	Leslie WD, Morin SN, Lix LM, Martineau P, Bryanton M, McCloskey EV, Johansson
	H, Harvey NC, Kanis JA. Fracture prediction from self-reported falls in routine
	clinical practice: a registry-based cohort study. Osteoporos Int. Springer London;
	2019 Nov;30(11):2195–203.
18.	Eisman JA, Bogoch ER, Dell R, Harrington JT, McKinney RE Jr., McLellan A, Mitchell
	PJ, Silverman S, Singleton R, Siris E, for the ASBMR Task Force on Secondary
	Fracture Prevention. Making the first fracture the last fracture: ASBMR task force
	report on secondary fracture prevention. Journal of Bone and Mineral Research.
	Wiley Subscription Services, Inc., A Wiley Company; 2012 Jul 26;27(10):2039–46.
19.	Lems WF, Dreinhöfer KE, Bischoff-Ferrari H, Blauth M, Czerwinski E, da Silva J,
	Herrera A, Hoffmeyer P, Kvien T, Maalouf G, Marsh D, Puget J, Puhl W, Poor G,
	Rasch L, Roux C, Schüler S, Seriolo B, Tarantino U, van Geel T, Woolf A, Wyers C,
	Geusens P. EULAR/EFORT recommendations for management of patients older
	than 50 years with a fragility fracture and prevention of subsequent fractures. Ann
	Rheum Dis. 2016 Dec 22;:annrheumdis–2016–210289–10.
20.	IOF Fracture Working Group, Åkesson K, Marsh D, Mitchell PJ, McLellan AR,
	Stenmark J, Pierroz DD, Kyer C, Cooper C. Capture the Fracture: a Best Practice

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Framework and global campaign to break the fragility fracture cycle. Osteoporos Int. Springer London; 2013 Apr 16;24(8):2135–52.

- 21. Dreinhöfer KE, Mitchell PJ, Bégué T, Cooper C, Costa ML, Falaschi P, Hertz K, Marsh D, Maggi S, Nana A, Palm H, Speerin R, Magaziner J, on behalf of: the Fragility Fracture Network (FFN), European Geriatric Medicine Society (EuGMS), European Federation of National Associations of Orthopaedics and Traumatology (EFORT), International Collaboration of Orthopaedic Nursing (ICON), International Geriatric Fracture Society (IGFS), International Osteoporosis Foundation (IOF). A global call to action to improve the care of people with fragility fractures. Injury. 2018 Aug;49(8):1393–7.
- 22. Javaid MK, Sami A, Lems W, Mitchell P, Thomas T, Singer A, Speerin R, Fujita M, Pierroz DD, Åkesson K, Halbout P, Ferrari S, Cooper C. A patient-level key performance indicator set to measure the effectiveness of fracture liaison services and guide quality improvement: a position paper of the IOF Capture the Fracture Working Group, National Osteoporosis Foundation and Fragility Fracture Network. Osteoporos Int. 2020 Apr 8;4(5):e001806.
- 23. Werkgroep CBO, Richtlijn Osteoporose en Fractuurpreventie, derde herziening[Dutch]. (CBO, Utrecht, 2011).
- 24. Richtlijn Preventie van valincidenten bij ouderen (2017) [Dutch].
 (https://richtlijnendatabase.nl/richtlijn/preventie_van_valincidenten_bij_ouderen /startpagina_-_preventie_van_valincidenten.html).
- 25. Bours SPG, van Geel TACM, Geusens PPMM, Janssen MJW, Janzing HMJ, Hoffland GA, Willems PC, van den Bergh JPW. Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. The Journal of Clinical Endocrinology & Metabolism. 2011 May;96(5):1360–7.

26.	Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a
	semiquantitative technique. Journal of Bone and Mineral Research. John Wiley and
	Sons and The American Society for Bone and Mineral Research (ASBMR); 1993
	Sep;8(9):1137–48.
27.	The prevention of falls in later life. A report of the Kellogg International Work
	Group on the Prevention of Falls by the Elderly. Dan Med Bull. 1987 Apr;34 Suppl
	4:1-24.
28.	van Helden S, Wyers CE, Dagnelie PC, van Dongen MC, Willems G, Brink PR,
	Geusens PP. Risk of falling in patients with a recent fracture. BMC Musculoskeletal
	Disorders. BioMed Central; 2007 Jun 28;8(1):348.
29.	Matsumoto H, Makabe T, Morita T, Ikuhara K, Kajigase A, Okamoto Y, Ashikawa E,
	Kobayashi E, Hagino H. Accelerometry-based gait analysis predicts falls among
	patients with a recent fracture who are ambulatory: a 1-year prospective study. Int
	J Rehabil Res. 2015 Jun;38(2):131–6.
30.	Yeh H-F, Shao J-H, Li C-L, Wu C-C, Shyu Y-IL. Predictors of postoperative falls in the
	first and second postoperative years among older hip fracture patients. J Clin Nurs.
	3rd ed. 2017 Nov;26(21-22):3710–23.
31.	Prudham D, Evans JG. Factors associated with falls in the elderly: a community
	study. Age and Ageing. 1981 Aug;10(3):141–6.
32.	Campbell AJ, Reinken J, Allan BC, Martinez GS. Falls in old age: a study of frequency
	and related clinical factors. Age and Ageing. 1981 Nov;10(4):264–70.
33.	Blake AJ, Morgan K, Bendall MJ, Dallosso H, Ebrahim SB, Arie TH, Fentem PH,
	Bassey EJ. Falls by elderly people at home: prevalence and associated factors. Age
	and Ageing. 1988 Nov;17(6):365–72.

4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
20	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
75	
-+0 //7	
4/	
48	
49	
50	
51	
52	
53	
57	
54	
22	
56	
57	
58	
59	
60	

- World Health Organization WHO. WHO Global Report on Falls Prevention in Older Age. 2017 Jan 6;:1–53.
- 35. Eekman DA, van Helden SH, Huisman AM, Verhaar HJJ, Bultink IEM, Geusens PP, Lips P, Lems WF. Optimizing fracture prevention: the fracture liaison service, an observational study. Osteoporos Int. Springer London; 2013 Sep 13;25(2):701–9.
- 36. Lih A, Nandapalan H, Kim M, Yap C, Lee P, Ganda K, Seibel MJ. Targeted intervention reduces refracture rates in patients with incident non-vertebral osteoporotic fractures: a 4-year prospective controlled study. Osteoporos Int. Springer-Verlag; 2011 Mar;22(3):849–58.
- 37. Van der Kallen J, Giles M, Cooper K, Gill K, Parker V, Tembo A, Major G, Ross L, Carter J. A fracture prevention service reduces further fractures two years after incident minimal trauma fracture. Int J Rheum Dis. John Wiley & Sons, Ltd (10.1111); 2014 Feb;17(2):195–203.
- 38. Huntjens KM, van Geel TA, van Helden S, van den Bergh J, Willems P, Winkens B, Geusens PP, Brink PR. The role of the combination of bone and fall related risk factors on short-term subsequent fracture risk and mortality. BMC Musculoskeletal Disorders. BioMed Central; 2013 Apr 4;14(1):721.
- 39. Sanli I, van Helden SH, Broeke Ten RHM, Geusens P, van den Bergh JPW, Brink PRG, Poeze M. The role of the Fracture Liaison Service (FLS) in subsequent fracture prevention in the extreme elderly. Aging Clin Exp Res. 2018 Oct 11;31(8):1105–11.
- Deloumeau A, Moltó A, Roux C, Briot K. Determinants of short term fracture risk in patients with a recent history of low-trauma non-vertebral fracture. Bone. 2017 Dec;105:287–91.
- 41. Lötters FJB, van den Bergh JP, de Vries F, Rutten-van Mölken MPMH. Current and Future Incidence and Costs of Osteoporosis-Related Fractures in The Netherlands:

1 2 3 4	
5 6 7 8 9 10 11 12	42.
13 14 15 16 17 18 19 20 21 21 22	43.
23 24 25 26 27 28 29 30 31	44.
32 33 34 35 36 37 38 39 40 41 42 43	45.
43 44 45 46 47 48 49 50 51 52 53 54	
55 56 57 58 59 60	

Combining Claims Data with BMD Measurements. Calcified Tissue International. Springer US; 2016 Mar;98(3):235–43.

- Wang Q, Jiang X, Shen Y, Yao P, Chen J, Zhou Y, Gu Y, Qian Z, Cao X. Effectiveness of exercise intervention on fall-related fractures in older adults: a systematic review and meta-analysis of randomized controlled trials. BMC Geriatr. BioMed Central; 2020 Sep 4;20(1):322–11.
- Pluijm SMF, Smit JH, Tromp EAM, Stel VS, Deeg DJH, Bouter LM, Lips P. A risk profile for identifying community-dwelling elderly with a high risk of recurrent falling: results of a 3-year prospective study. Osteoporosis International. 2006;17(3):417–25.
- van Geel TACM, Huntjens KMB, van den Bergh JPW, Dinant G-J, Geusens PP. Timing of Subsequent Fractures after an Initial Fracture. Curr Osteoporos Rep. 2010 Jun 18;8(3):118–22.
- van Geel TACM, van Helden S, Geusens PP, Winkens B, Dinant G-J. Clinical subsequent fractures cluster in time after first fractures. Ann Rheum Dis. 2008 Jul 29;68(1):99–102.

Figure 1. Cumulative incidence of falls stratified by gender.

Figure 3. Cumulative incidence of subsequent fractures stratified by fall status.

Supplementary Figure 1. Patient selection. Abbreviations: HET, high-energy trauma fractures; Fx, fracture.
Supplementary table 1. Characteristics of 1011 FLS patients that participated and not-participated in this study.					
	Participants	Non-participants	P-value		
	(n=500)	(n=511)			
Age in years	64.6 ± 8.6	68.3 ± 9.8	<.001		
Female sex	357 (71.4)	396 (77.5)	.026		
Baseline fracture					
- Finger or toe	58 (11.6)	53 (10.4)	<.001		
- Minor	311 (62.2)	259 (50.7)			
- Major	105 (21.0)	157 (30.7)			
- Hip	26 (5.2)	42 (8.2)			
- Fall-related *	431 (86.2)	441 (86.3)	.963		
Fall previous year §	h				
- 0	356 (71.2)	359 (70.3)	.741		
 - ≥1 	144 (28.8)	152 (29.7)			
- ≥ 2	72 (14.4)	87 (17.0)	.252		
BMD					
- Normal BMD	135 (27.0)	90 (17.6)	<.001		
- Osteopenia	255 (51.0)	258 (50.5)			
- Osteoporosis	110 (22.0)	163 (31.9)			
Prevalent vertebral fracture					
- None	366 (73.2)	349 (68.3)	.010		
- Grade 1	63 (12.6)	53 (10.4)			
- Grade 2-3	71 (14.2)	109 (21.3)			
At least one fall past year	143 (29.3)	152 (29.9)	.704		

Continues variables are presented as mean ± SD, categorical variables are presented as number of patients (%). § Fall resulting in baseline fracture not included. # According to Genant et al. § According to most severe prevalent vertebral fracture. Abbreviations: BMD, bone mineral density

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1,3
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	3,4
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	5
8	_	being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5,6
Setting	5	Describe the setting locations and relevant dates including periods of	5,6
Setting		recruitment exposure follow-up and data collection	,
Particinants	6	(a) Give the eligibility criteria and the sources and methods of selection	5,6
i unicipanto	Ū	of participants. Describe methods of follow-up	*
		(b) For matched studies, give matching criteria and number of exposed	
		and unexposed	
Variables	7	Clearly define all outcomes exposures predictors potential	6,7
v unuoros	,	confounders and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest give sources of data and details of methods	6,7
measurement	0	of assessment (measurement) Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	5,6
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7,8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7,8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	8
		(d) If applicable, explain how loss to follow-up was addressed	8
		(e) Describe any sensitivity analyses	8
Rosults			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	8
i ui tioipunto	15	notentially eligible examined for eligibility confirmed eligible included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	8
		(c) Consider use of a flow diagram	20
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic clinical	15
p uum	- '	social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	NA
		interest	
		(c) Summarise follow-up time (eg. average and total amount)	9
Outcome data	15*	Report numbers of outcome events or summary measures over time	9,10.16.17

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
3Z	
33 24	
24 25	
22	
27	
20	
20	
<u>4</u> 0	
<u>4</u> 1	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	9,10,11	
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted		
		for and why they were included		
		(b) Report category boundaries when continuous variables were categorized		
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	9,10	
		meaningful time period		
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	11	
		analyses		
Discussion				
Key results	18	Summarise key results with reference to study objectives	11	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	13	
		imprecision. Discuss both direction and magnitude of any potential bias		
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	12,13,14	
		multiplicity of analyses, results from similar studies, and other relevant evidence		
Generalisability	21	Discuss the generalisability (external validity) of the study results	14	
Other information				
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1	
		applicable, for the original study on which the present article is based		

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.