

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Developing an ADR prediction system of Chinese herbal injections containing Panax notoginseng saponin: a nested case-control study using machine learning

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061457
Article Type:	Original research
Date Submitted by the Author:	27-Jan-2022
Complete List of Authors:	Wu, Xing-Wei; Sichuan Provincial People's Hospital Zhang, Jia-Ying ; Chengdu First People's Hospital Chang, Huan ; Sichuan Provincial People's Hospital Song, Xue-Wu ; Sichuan Provincial People's Hospital Wen, Ya-Lin ; Sichuan Provincial People's Hospital Long, En-Wu ; Sichuan Provincial People's Hospital Tong, Rong-Sheng; Sichuan Provincial People's Hospital,
Keywords:	Adverse events < THERAPEUTICS, Herbal medicine < THERAPEUTICS, Toxicity < THERAPEUTICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1
2
3
1
-
5
6
/
8
3 4 5 6 7 8 9 10
10
11
12
13
14
15
16
17
14 15 16 17 18
10 10
19 20
20
21
21 22 23 24 25 26 27 28 29 30
23
24
25
26
27
28
20
29
50 21
31
32
33
34
34 35 36
36
37
38
39
40
41
42
42 43
45 44
45
46
47
48
49
50
51
52
53
54
54 55
50
57
58
59

1	Develop an ADR prediction system of Chinese herbal injections
2	containing Panax notoginseng saponin: a nested case-control study
3	using machine learning
4	Xing-Wei Wu ^{1,2} , Jia-Ying Zhang ³ , Huan Chang ¹ , Xue-Wu Song ^{1,2} , Ya-Lin Wen ¹ , En-
5	Wu Long ^{1,2} , Rong-Sheng Tong ^{1,2}
6	¹ Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine,
7	University of Electronic Science and Technology of China, Chengdu 610072, China,
8	² Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan
9	Provincial People's Hospital, Chengdu 610072, China,
10	³ Department of Pharmacy, Chengdu First People's Hospital, Chengdu 610095, China
11	Correspondence to
12	Dr Rong-Sheng Tong, Personalized Drug Therapy Key Laboratory of Sichuan Province,
13	School of Medicine, University of Electronic Science and Technology of China,
14	Chengdu 610072, China. Department of Pharmacy, Sichuan Academy of Medical
15	Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China. E-mail:
16	<u>318004031@qq.com</u>
17	Word count: 2225

BMJ Open

3 4 5	18	Develop an ADR prediction system of Chinese herbal injection
6 7	19	containing Panax notoginseng saponin: a nested case-control study
8 9 10	20	using machine learning
11 12 13	21	ABSTRACT
14 15 16	22	Objective This study aimed to develop an adverse drug reactions (ADR) antecedent
17 18 19	23	prediction system using machine learning algorithms to provide the reference for
20 21 22	24	security usage of Chinese herbal injections containing Panax notoginseng saponin in
23 24	25	clinical practice.
25 26 27	26	Design A nested case-control study.
28 29	27	Setting National Center for ADR Monitoring and the Electronic Medical Record (EMR)
30 31 32	28	system.
33 34	29	Participants All patients were from 5 medical institutions in Sichuan Province from
35 36 37	30	January 2010 to December 2018.
38 39 40	31	Main outcomes/measures Information of patients with ADR who using Chinese
41 42	32	herbal injections containing Panax notoginseng saponin was collected from the
43 44 45	33	National Center for ADR Monitoring. A nested case-control study was used to
46 47	34	randomly match patients without ADR from the EMR system according to 1:4.
48 49 50	35	Eighteen machine learning algorithms were applied for the development of ADR
51 52 53	36	prediction models. Area under curve (AUC), accuracy, precision, recall rate and F1
54 55	37	value were used to evaluate the predictive performance of the model. An ADR
56 57 58	38	prediction system were established by the optimal model selected from the 1080 models.
59 60	39	Results A total of 530 patients from 5 medical institutions were included, and 1080

40	ADR prediction models were developed. Among these models, the AUC of the best
41	capable one was 0.9141 and the accuracy was 0.8947. According to the parameters of
42	the best model, a prediction system for the ADR of Panax notoginseng saponin has been
43	established, which can realize the output of patient ADR risk.
44	Conclusion The prediction system developed based on the machine learning model in
45	this study had good predictive performance and potential clinical application.
46	Key words Adverse drug reactions, Chinese herbal injection, Machine learning,
47	Prediction system, Panax notoginseng saponin
48	Strengths and limitations of this study
49	> We first used machine learning to predict the ADR of Chinese herbal injection
50	containing Panax notoginseng saponin.
51	 Eighteen machine learning algorithms were used to establish 1080 ADR prediction
52	models. An ADR prediction system with Chinese herbal injections containing
53	Panax notoginseng saponin developed by the best model had high accuracy and
54	precision, and had potential value for clinical application.
55	> More than 80 factors including the patient's pathophysiological characteristics,
56	clinical laboratory results, and medication conditions, were incorporated in our
57	study.
58	> More data were needed to further evaluate the model prediction performance.
59	INTRODUCTION
60	Panax notoginseng saponins, as the main ingredients of Panax notoginseng (Buck.)
61	F.H.Chen, has been widely used in the disease therapy of nervous system and cardio-

Page 5 of 45

BMJ Open

62 cerebral vascular system ¹⁻⁴. High frequency of adverse drug reactions (ADR) in 63 Chinese herbal containing Panax notoginseng saponin has received widespread 64 attention. Of all the adverse reactions, about 69.57% were caused by injections, mainly 65 manifested as drug eruption (50.5%), allergic reaction (20.4%) and anaphylactic shock 66 (9.7%), which can be life-threatening in severe cases ⁵.

At present, ADR is mainly monitored by spontaneous reporting system, casecontrol study, cohort study, prescription event monitoring and centralized hospital monitoring system. However, most of these methods have obvious hysteresis. Therefore, there is an increasing need to develop an ADR antecedent prediction system to prevent and avoid the occurrence of ADR in Chinese herbal injections containing Panax notoginseng saponin.

Machine learning, the core technology of artificial intelligence, is commonly used to build prediction models. In recent years, some prediction models for ADR have been established ⁶⁻¹⁰. Based on a clustering method for the postprocessing of association rules, Lai et al. ⁶ developed an application of stepwise association rule mining to identify the associations between vaccine and multiple adverse events. In addition, Imai et al.¹⁰ used artificial neural networks to evaluate vancomycin-induced nephrotoxicity. However, small sample size, incomplete patient information, and unsatisfactory predictive performance restrict the application of ADR prediction models in clinical practice. In view of these challenges, this study collected patients information in the National Center for ADR Monitoring and the Electronic Medical Record (EMR) system by a nested case-control study to establish an ADR prediction model of Chinese herbal

84 injections containing Panax notoginseng saponin, and develop an ADR prediction
85 system based on machine learning algorithms to provide reference for clinical ADR
86 management and prevention.

87 METHODS

88 Data collection

Information of patients with ADR who using Chinese herbal injections containing Panax notoginseng saponin from the National Center for ADR Monitoring was collected. A nested case-control study was used to randomly match patients without ADR who using Chinese herbal injections containing Panax notoginseng saponin from the EMR system according to 1:4. All patients were from 5 medical institutions in Sichuan Province from January 2010 to December 2018. This study was approved by the Ethics Committee of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital.

97 Data cleaning

98 Variable assignment

99 Binary-state variables were directly assigned values of 0 or 1. According to whether in

- 100 the normal range, clinical laboratory variables were assigned values of 1, 2 and 3 (1,
- 101 below the normal range; 2, within the normal range; and 3, above the normal range).

Column deletion

103 Variables with missing data >90%, or a single category >90%, or the coefficient of

104 variation (CV) <0.1 were deleted.

BMJ Open

2
3
4
5
6
-
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

105 Data filling

There are 4 ways to data filling. No filling means to retain the original data directly. Simple filling refers to use the mean fill for continuous variables, the mode for disordered categorical variables, and the median for ordered categorical variables. Random Forest (RF) filling orders the column according to the number of missing data, and then the missing data was predicted and filled by RF model. RF improve filling refers to predict and fill the column with the least missing data, which was used as the input for the prediction and filling of other missing data.

113 Data sampling

No sampling: directly input the original data into the model. Random over sampler:
random replication of data with fewer types to make the sample sizes of different types
consistent, while random under sampler is to randomly delete data with more types.
Synthetic minority oversampling technique (SMOTE) over sampler: synthesize new
data by analyzing a small amount of original data. Borderline SMOTE over sampler:
synthesize new data from borderline data.

120 Variable selection

121 No variable selection or use Lasso or Boruta for variable selection.

122 Model establishment

Through different data filling, data sampling and variable selection, 60 data sets were
obtained. Eighteen machine learning algorithms, including AdaBoost, Bagging,
Bernoulli Naïve Bayes (Bernoulli NB), Decision Tree (DT), Extra Tree (ET), Gaussian
Naïve Bayes (Gaussian NB), Gradient Boosting, K-Nearest Neighbor (KNN), Latent

127 Dirichlet Allocation (LDA), Logistic Regression (LR), Multinomial Naïve Bayes
128 (Multinomial NB), Passive Aggressive, Quadratic Discriminant Analysis (QDA), RF,
129 Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), eXtreme
130 Gradient Boosting (XGBoost), and Ensemble Learning, were used to build models.

The model establishment was as follows. The data was standardized and divided into a training set and a test set according to 8:2. The training set was used to build models, and the test set was used to evaluate the predictive performance of the models. Ten-fold cross-validation on the training set was used for internal validation of the model, and 200 Bootstrapping samples from the test set for the evaluation of the impact of different data processing methods or machine learning algorithms on model predictive performance. Five algorithms with the largest area under curve (AUC) on each data set were used for ensemble learning.

139 Model evaluation

We used the AUC, accuracy, precision, recall rate, and F1 value to evaluate the predictive performance of the model. Five models with the largest AUC were compared, and the model with the best predictive performance was selected to develop an ADR prediction system of Chinese herbal injections containing Panax notoginseng saponin. SHapley Additive exPlanations (SHAP) helped to explain the contribution of variables to the model.

146 Sample size assessment

147 To evaluate the influence of different sample sizes on model predictive performance,

BMJ Open

148	randomly extracted 10%, 20%, 30% to 100% subsets from the training set by
149	Bootstrapping. The 10 subsets were used to establish models, respectively. Repeated
150	the procedure 100 times and the AUC, calculated from the testing set, was used for
151	sample size examination.
152	Patient and public involvement
153	Patients and/or the public were not directly involved in this study.
154	Statistical Analysis
155	Categorical variables were expressed as counts and percentages and continuous
156	variables as mean ± standard deviation. Analysis of variance will be used if the data
157	were normally distributed and the variances were equal, otherwise, Kruskal-Wallis test
158	will be used. p value<0.05 were considered statistically significant. Hypothesis testing
159	and Models building were implemented using the stats and sklearn packages in Python
160	(Version3.8), respectively.
161	RESULTS
162	Research population
163	A total of 530 patients were enrolled in this study, of which 106 patients had ADR.
164	ADR patients included 50 (47.17%) males and 56 (52.83%) females.
165	Data cleaning
166	The assignment of all variables was shown in Supplementary Table 1. After data
167	processing by 4 data filling, 5 data sampling and 3 variable selection methods, we

obtained 60 data sets. The results of variable selection by the Lasso and Boruta wereshown in Supplementary Figure 1.

170 Model establishment

A total of 1080 prediction models were established by 18 machine learning algorithms and the 60 data sets. The results of ten-fold cross-validation were shown in Supplementary Table 2. Using 200 Bootstrapping samples from the test set to evaluate the impact of different data processing methods or machine learning algorithms on model predictive performance. The results showed that differences of model predictive performance exist by different data filling, data sampling, variable selection (Table 1) and machine learning algorithms (Table 2). The ensemble learning model had the best performance with an AUC of 0.793±0.083 (Table 2).

179 Model evaluation

180 The AUC, accuracy, precision, recall rate, and F1 value were used to evaluate the 181 performance of the model. The best 5 prediction models were selected and model 1 had 182 the best performance with an AUC of 0.9141 (Table 3). The receiver operating 183 characteristic (ROC) curve of the 5 best model was shown in Figure 1.

Mode

Model interpretation

185 The importance of each variable to the final prediction model was shown in Figure 2.
186 The result showed that pre-treatment serum levels, renal function, dermatoses, gender
187 and age were the top 5 most important variables contributing to the model. We used the
188 SHAP value to explain the contribution of the variables to the model, and the SHAP

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
13 14
15
16
17
18
19
20
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
59 60
011

value of the top 20 variables was shown in Figure 3. This plot explains how high and
low variables values were in relation to SHAP values. According to the prediction
model, the higher the SHAP value of a variable, the more likely ADR occurs.

192 Sample size assessment

With the continuous increased size of sample data, the AUC values of the testing sets
continued to increase, which shows a sufficient sample size was included in this study
(Figure 4).

196 Develop an ADR prediction system for Panax notoginseng saponin

According to the parameters of the best model, a prediction system for the ADR of Panax notoginseng saponin has been developed and we had obtained the software copyright. The development of ADR prediction system was shown in Figure 5. The operation and output of the system were shown in Figure 6.

1jopen-2022-061457

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	201 Da
21 22 23	D
24 25	Da
26 27	
28 29	
30 31	
32	
33 34	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46	

	AUC				Accuracy		Precision		GRecall rate		F1 value	
		Mean±SD	95%CI	Mean±SD	95%CI	Mean±SD	95%CI	Meane SD	95%CI	Mean±SD	95%CI	
ata filling								2. Dov				
	No filling	0.786±0.101	0.785-0.787	0.770±0.070	0.769-0.771	0.437±0.162	0.435-0.438	0.546±0.208	0.544-0.548	0.460±0.142	0.459-0.46	
	Simple filling	0.687±0.094	0.686-0.688	0.761±0.076	0.760-0.761	0.455±0.180	0.453-0.456	0.491 ± 0.165	0.489-0.492	0.442±0.126	0.441-0.44	
	RF filling	0.677±0.095	0.676-0.678	0.759±0.077	0.758-0.760	0.446±0.181	0.444-0.447	∃ 0.488 ±0 .162	0.487-0.490	0.440±0.129	0.439-0.44	
	RF improve filling	0.678±0.092	0.677-0.678	0.756±0.077	0.755-0.757	0.443±0.179	0.442-0.445	0.485	0.483-0.486	0.435±0.125	0.434-0.43	
	<i>p</i> value	<i>p</i> <0.	0001	<i>p</i> <0.	0001	<i>p</i> <0.	0001	open <i>p</i> <0.	0001	<i>p</i> <0.	0001	
ata sampling								omj.co				
	No sampling	0.738±0.101	0.737-0.739	0.823±0.050	0.822-0.823	0.585±0.229	0.583-0.588	0.390±9.178	0.388-0.391	0.441±0.172	0.439-0.44	
	Random over sampler	0.718±0.109	0.717-0.719	0.765±0.070	0.764-0.765	0.437±0.154	0.435-0.438	0.531 ⊉ .189	0.529-0.533	0.457±0.135	0.456-0.45	
	Random under sampler	0.696±0.106	0.695-0.697	0.710±0.069	0.709-0.711	0.364±0.107	0.363-0.365	0.596 ⊈9 .161	0.594-0.597	0.441±0.109	0.440-0.44	
	SMOTE over sampler	0.683±0.100	0.682-0.684	0.755±0.067	0.754-0.755	0.416±0.137	0.414-0.417	0.490-20.143	0.488-0.491	0.435±0.113	0.434-0.43	
	Borderline SMOTE	0.699±0.104	0.698-0.700	0.755±0.072	0.755-0.756	0.424±0.143	0.422-0.425	0.506 g .143	0.505-0.508	0.446±0.115	0.445-0.44	
	<i>p</i> value	<i>p</i> <0.	0001	<i>p</i> <0.	0001	<i>p</i> <0.	0001	st. ד <i>p</i> <0.	0001	<i>p</i> <0.	0001	
								st. Protected by copyright. tml			11	

Page	13 of 45			BMJ Open			niopen-2		
1 2 3 4 5 6	Variable selection						1iopen-2022-061457 on 8 Sec		
7 8	No selec	ection 0.702±0.109	0.702-0.703 0.758±0.078	8 0.758-0.759 0.4	.440±0.184 0.438-0			0.434±0.137	0.433-0.435
9 10	Lasso se	election 0.713±0.105	0.712-0.713 0.761±0.074	4 0.760-0.761 0.4	.447±0.173 0.445-0	0.448 0.513	0.177 0.512-0.51	4 0.448±0.128	0.447-0.449
11 12	Boruta s	selection 0.706±0.103	0.705-0.707 0.766±0.073	3 0.765-0.766 0. 4	. 449±0.170 0.448-0	0.450 0.501±	හි ආ.166 0.500-0.50	03 0.450±0.127	0.449-0.451
13 14	<i>p</i> value	<i>p</i> <0.0)001 p<(0.0001	<i>p</i> <0.0001		mon p<0.0001	<i>p</i> <0.0)001
 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 	202 AUC, Area under	curve; RF, Random Forest	t; SMOTE, Synthetic 1			יד עש	by		
38 39 40 41 42 43 44 45		For p	eer review only - http://br	mjopen.bmj.com/s	ˈsite/about/guidelin	es.xhtml	quest. Protected by copyright.		12

					BMJ Open			njopen-2022-061457 c			
Table 2 The	effect of different n	nachine learn		hms on mod	_	on performa Preci			ll rate	F1 v	alue
		Mean±SD	95%CI	Mean±SD	95%CI	Mean±SD	95%CI	Mean±S	95%CI	Mean±SD	95%CI
machine learni	ng							12. Do			
algorithms								Downloa			
	AdaBoost	0.702±0.104	0.700-0.703	0.761±0.061	0.760-0.762	0.434±0.134	0.432-0.436	0.538±0.4	2 0.535-0.54	0 0.465±0.105	0.463-0.467
	Bagging	0.749±0.083	0.748-0.750	0.776±0.064	0.774-0.777	0.457±0.137	0.454-0.459	0.486±0.	9 0.483-0.48	9 0.452±0.112	0.450-0.454
	Bernoulli NB	0.718±0.099	0.716-0.720	0.771±0.056	0.770-0.772	0.444±0.133	0.442-0.447	0.541±0.	1 0.538-0.54	3 0.475±0.109	0.474-0.477
	DT	0.667±0.085	0.665-0.668	0.738±0.067	0.737-0.739	0.388±0.127	0.386-0.390	0.491±0.	1 0.489-0.494	4 0.417±0.105	0.416-0.419
	Ensemble Learning	0.793±0.083	0.791-0.794	0.810±0.058	0.809-0.811	0.545±0.157	0.543-0.548	0.576±0.16	2 0.573-0.57	9 0.537±0.108	0.535-0.539
	ET	0.596±0.097	0.594-0.598	0.703±0.081	0.701-0.704	0.308±0.149	0.305-0.310	0.393±0. § 8	6 0.390-0.39	5 0.326±0.139	0.324-0.329
	Gaussian NB	0.667±0.106	0.665-0.669	0.720±0.061	0.719-0.721	0.364±0.106	0.362-0.366	0.543±0.83	3 0.541-0.54	5 0.429±0.103	0.427-0.431
	Gradient Boosting	0.718±0.100	0.716-0.720	0.783±0.060	0.782-0.784	0.487±0.161	0.484-0.490	면 0.524±0.딿	4 0.521-0.52	6 0.481±0.105	0.479-0.483
	KNN							, 20		9 0.316±0.166	
	LDA							by		4 0.487±0.110	
	LR							lest		3 0.497±0.110	
		For pe	eer review on	ly - http://bmj	open.bmj.cc	m/site/about	t/quidelines.	otected by copyright. xhtml			13

3 4

6

Page 15 of 45				BMJ Open		njopen-	
1						njopen-2022-061457	
2 3						61457	
4 5		Multinomial NB	0.727±0.099 0.725-0.728	0.753±0.071 0.752-0.754	0.450±0.170 0.447-0.453	ප 0.570±0.675 0.567-0.57	3 0.467±0.111 0.465-0.469
6 7 8		Passive Aggressive	0.686±0.094 0.684-0.688	0.701±0.087 0.699-0.703	0.358±0.119 0.355-0.360	9.558±0. يوقى 0.555-0.56	0 0.421±0.107 0.419-0.423
9 10		QDA	0.660±0.115 0.658-0.662	0.774±0.057 0.773-0.775	0.428±0.178 0.425-0.431	0.436±0.188 0.433-0.44	0 0.411±0.152 0.408-0.413
11 12		RF	0.742±0.088 0.741-0.744	0.792±0.075 0.791-0.793	0.534±0.194 0.531-0.538	0.430±0.5 0.427-0.43	2 0.444±0.119 0.441-0.446
13 14		SGD	0.720±0.099 0.718-0.722	0.762±0.064 0.761-0.764	0.452±0.196 0.448-0.455	0.507±0.513 0.503-0.51	1 0.434±0.141 0.432-0.437
15 16		SVM	0.735±0.090 0.734-0.737	0.792±0.073 0.790-0.793	0.533±0.194 0.529-0.536	0.443±0.5 0.440-0.44	6 0.449±0.115 0.447-0.451
17 18		XGBoost	0.740±0.095 0.738-0.741	0.790±0.074 0.789-0.792	0.515±0.161 0.512-0.518	0.513±0.±5 0.510-0.51	6 0.486±0.112 0.484-0.488
19 20	-	<i>p</i> value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	pg0.0001	<i>p</i> <0.0001
21 22 2 23	204	Bernoulli NB, Bernoulli Naï	ve Bayes; DT, Decision	Tree; ET, Extra Tree;	Gaussian NB, Gaussia	n Naïve Bayes; KNI	N, K-Nearest Neighbor;
24	205	LDA, Latent Dirichlet Allo	cation; LR, Logistic Re	egression; Multinomial	NB, Multinomial Na	aïve Bayes; QDA, (Quadratic Discriminant
26 27	206	Analysis; SGD, Stochastic G	radient Descent; SVM, s	support vector machine.	XGBoost, eXtreme C	SradientBoosting.	
28 29 30		<u> </u>				ober 30,	
30 31 32						0, 2024 by	
33 34							
35 36						guest. P	
37 38						Protected	
39 40						ed by c	
41 42						by copyright.	14
43 44			For peer review on	ly - http://bmjopen.bmj.co	m/site/about/guidelines.x	html 🗄	
45 46							

3	
4	
5	
5 6 7 8 9 10	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
20 21 22 23 24 25	
24	
25	
26 27 28 29	
27	
20 29	
30	
31	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1 2

207

208

	AUC	accuracy	precision	recall rate	F1 value
model 1	0.9141	0.8947	0.75	0.6667	0.7059
model 2	0.9055	0.8105	0.5	0.7778	0.6087
model 3	0.9019	0.8421	0.6154	0.4444	0.5161
model 4	0.8997	0.8632	0.6316	0.6667	0.6486
model 5	0.8968	0.8316	0.5357	0.8333	0.6522

DISCUSSION

209 Traditional Chinese medicine has been used for the prevention and treatment of diseases 210 for centuries ¹¹. In recent years, the application of Chinese herbal containing Panax 211 notoginseng saponin, including injections, in clinical practice has become more and 212 more common, while the ADR often causes concerns. Studies have shown that the 213 Chinese herbal ingredients, traditional Chinese medicine preparation and combination 214 medication are the important factors for the ADR of Chinese herbal injections containing Panax notoginseng saponin. Drug eruption (50.5%), allergic reactions 215 216 (20.4%) and anaphylactic shock (9.7%) are the most common, and some cases are even 217 life-threatening ⁵. However, the ADR monitoring methods, including spontaneous 218 reporting systems, prescription event monitoring and centralized hospital monitoring 219 system, are reported after the event, and may even have data bias, underreporting or 220 repeated reporting. Therefore, the realization of ADR prediction has important 221 significance for prevent and avoid ADR of Chinese herbal injections containing Panax notoginseng saponin in clinical practice. 222

In our study, a nested case-control study was performed for data collection. Sixty

Page 17 of 45

BMJ Open

data sets, which were from data filling, data sampling and variable selection, were combined with 18 machine learning algorithms to establish 1080 ADR prediction models. The AUC, accuracy, precision, recall rate and F1 value were used to evaluate the predictive performance of the models. According to the parameters of the best model, an ADR prediction system for the Chinese herbal injections containing Panax notoginseng saponin was developed. This predictive system had high accuracy and precision, and had potential value for clinical application.

In recent years, some ADR prediction models based on data mining ⁶⁻⁹, machine learning algorithms ^{10, 12-15}, and statistical methods ¹⁶⁻¹⁸, have been developed. Tangiisuran et al. ¹⁶ combined univariate analysis and multivariate binary logistic regression for the identification of clinical risk factors to develop an ADR risk model. The AUC of the model at internal and external validation stage was 0.74 and 0.73, respectively, the sensitivity was 80% and 84%, and the specificity was 55% and 43% ¹⁶. Imai et al. ¹⁰ used artificial neural networks to predict the ADR risk and produced an AUC of 0.83. Compared with these models, the model established in our study had better predictive performance (accuracy was 0.8947, precision was 0.75, recall rate was 0.6667 and AUC was 0.914). As missing data is common in the real-world health system, the methods of data filling used in our study may be advantageous for the deal with imbalanced data in clinical real-world research. More importantly, the model with optimal predictive performance selected from the 1080 models, was used to develop the ADR risk prediction system, which is potentially convenient for clinical practice because of its' simple operation, fast calculation, and high accuracy.

It is worth noting that Hammann et al.¹⁹ established a decision tree model based on the chemical, physical, and structural properties of compounds for the prediction of ADR occurrence and the model had high predictive accuracies (78.9–90.2%). Unfortunately, the model ignored the effect of pathological and physiological conditions and the combination medication on ADR. More than 80 factors including the patient's pathophysiological characteristics, clinical laboratory results, and medication conditions, were performed by 3 variable selection methods in our study. Meanwhile, we using the SHAP value to explain the contribution of the variables to the model.

The importance of the variable indicates that whether the patients have dermatoses will significantly affect the models' predictive performance. Cutaneous ADR is one of the most common adverse reactions of Panax notoginseng, such as erythema multiforme, urticaria, severe erythema multiforme and acute generalized exanthematous pustulosis ^{20, 21}. Therefore, those patients with original dermatoses are more likely to have ADR after using Panax notoginseng. In addition, we found that the age and gender are related to the occurrence of Panax notoginseng-induced ADR, which is consistent with the results reported by Yang et al.²².

However, our data were all from southwest China, and more data were needed to further evaluate the model prediction performance. In addition, a prospective controlled trial is required to demonstrate the accuracy of the ADR prediction system.

Contributors XWW, EWL and RST were involved in the conception and design of

the study. XWW drafted the article. JYZ, HC, XWS and YLW analyzed the data.

BMJ Open

1 2		
2 3 4	268	EWL and RST revised the manuscript. All authors gave final approval of the version
5 6	269	to be published. The corresponding author attests that all listed authors meet
7 8 9	270	authorship criteria and that no others meeting the criteria have been omitted. RST is
9 10 11	271	the guarantor.
12 13 14 15	272	Funding This study was funded by the National Natural Science Foundation of China
16 17	273	(No. 72004020), the Key Research and Development Program of Science and
18 19	274	Technology Department of Sichuan Province (No. 2019YFS0514), the Postgraduate
20 21	275	Research and Teaching Reform Project of the University of Electronic Science and
22 23	276	Technology of China (No. JYJG201919) and the Research Subject of Health
24 25 26	277	Commission of Sichuan Province (No. 19PJ262).
27 28 29 30	278	Competing interests None declared.
31 32 33	279	Patient consent for publication Not required.
33 34 35 36	280	Ethics approval Ethical approval: This study was approved by the Ethics Committee
37 38	281	of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
39 40	282	(2017-11-01).
41 42 43 44 45	283	Provenance and peer review Not commissioned; externally peer reviewed.
46 47	284	Data availability statement Data are available upon reasonable request. Data may be
48 49	285	obtained from a third party and are not publicly available. The first author
50 51 52	286	(7190175@uestc.edu.cn) will share any publicly available data if requested by email.
53 54 55	287	Supplementary material This content has been supplied by the author(s). It has not
56 57	288	been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-
57 58 59 60	289	reviewed. Any opinions or recommendations discussed are solely those of the

3
4
5
6
7
8 9
) 10
11
12
13
13 14
15
16 17
17 18
19
20
21
22
23
24
25
26 27
27
29
30
31
32
33
34 35
35 36
37
38
39
40
41
42
43 44
44 45
46
47
48
49
50
51 52
52 53
55 54
55
56
57
58
59
60

1 2

290	author	r(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility		
291	arising from any reliance placed on the content. Where the content includes any			
292	translated material, BMJ does not warrant the accuracy and reliability of the			
293	transl	ations (including but not limited to local regulations, clinical guidelines,		
294	termin	nology, drug names and drug dosages), and is not responsible for any error		
295	and/or	r omissions arising from translation and adaptation or otherwise.		
296	Open	access This is an open access article distributed in accordance with the Creative		
297	Comm	nons Attribution Non Commercial (CC BY-NC4.0) license, which permits		
298	others	to distribute, remix, adapt, build upon this work non-commercially, and license		
299	their c	derivative works on different terms, provided the original work is properly cited,		
300	appro	priate credit is given, any changes made indicated, and the use is non-		
301	comm	nercial. See: http://creativecommons.org/licenses/by-nc/4.0/.		
302	REFI	ERENCES		
302 303	REFI 1	ERENCES Xie W, Meng X, Zhai Y ,et al. Panax Notoginseng Saponins: A Review of Its		
303		Xie W, Meng X, Zhai Y ,et al. Panax Notoginseng Saponins: A Review of Its		
303 304		Xie W, Meng X, Zhai Y ,et al. Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on		
303 304 305	1	Xie W, Meng X, Zhai Y ,et al. Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology. <i>Molecules</i> 2018; <i>23</i> .		
303304305306	1	Xie W, Meng X, Zhai Y ,et al. Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology. <i>Molecules</i> 2018; <i>23</i> . Kim JH. Pharmacological and medical applications of Panax ginseng and		
 303 304 305 306 307 	1	 Xie W, Meng X, Zhai Y ,et al. Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology. <i>Molecules</i> 2018; 23. Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. <i>J Ginseng Res</i> 2018; 		
 303 304 305 306 307 308 	1	 Xie W, Meng X, Zhai Y ,et al. Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology. <i>Molecules</i> 2018; 23. Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. <i>J Ginseng Res</i> 2018; 42:264-269. 		
 303 304 305 306 307 308 309 	1	 Xie W, Meng X, Zhai Y ,et al. Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology. <i>Molecules</i> 2018; 23. Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. <i>J Ginseng Res</i> 2018; 42:264-269. Yang F, Ma Q, Matsabisa MG ,et al. Panax notoginseng for Cerebral 		

BMJ Open

3			
4 5	313		8:1525.
6 7 8	314	5	Xiang Z, Qiao T, Xiao H ,et al. The anaphylactoid constituents in Xue-Sai-
8 9 10	315		Tong injection. Planta Med 2013; 79:1043-1050.
11 12 13	316	6	Wei L, Scott J. Association rule mining in the US Vaccine Adverse Event
14 15	317		Reporting System (VAERS). Pharmacoepidemiol Drug Saf 2015; 24:922-933.
16 17 18	318	7	Harpaz R, DuMouchel W, Shah NH ,et al. Novel data-mining methodologies
19 20	319		for adverse drug event discovery and analysis. Clin Pharmacol Ther 2012;
21 22 23	320		<i>91</i> :1010-1021.
24 25 26	321	8	Sakaeda T, Tamon A, Kadoyama K ,et al. Data mining of the public version of
27 28	322		the FDA Adverse Event Reporting System. Int J Med Sci 2013; 10:796-803.
29 30 31	323	9	Kadoyama K, Kuwahara A, Yamamori M ,et al. Hypersensitivity reactions to
32 33	324		anticancer agents: data mining of the public version of the FDA adverse event
34 35 36	325		reporting system, AERS. J Exp Clin Cancer Res 2011; 30:93.
37 38 39	326	10	Imai S, Takekuma Y, Kashiwagi H, et al. Validation of the usefulness of
40 41	327		artificial neural networks for risk prediction of adverse drug reactions used for
42 43 44	328		individual patients in clinical practice. PLoS One 2020; 15:e0236789.
45 46	329	11	Liu SH, Chuang WC, Lam W ,et al. Safety surveillance of traditional Chinese
47 48 49	330		medicine: current and future. Drug Saf 2015; 38:117-128.
50 51 52	331	12	Choudhury O, Park Y, Salonidis T ,et al. Predicting Adverse Drug Reactions
53 54	332		on Distributed Health Data using Federated Learning. AMIA Annu Symp Proc
55 56 57	333		2019; <i>2019</i> :313-322.
58 59	334	13	Liu X, Chen H. A research framework for pharmacovigilance in health social
60			

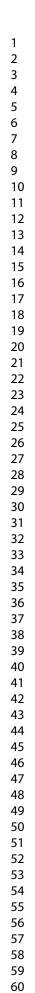
Page 22 of 45

BMJ Open

1 2

3 4 5	335		media: Identification and evaluation of patient adverse drug event reports. J
6 7	336		Biomed Inform 2015; 58:268-279.
8 9 10	337	14	Davis J, Costa VS, Peissig P, et al. Demand-Driven Clustering in Relational
11 12	338		Domains for Predicting Adverse Drug Events. Proc Int Conf Mach Learn
13 14 15	339		2012; <i>2012</i> :1287-1294.
16 17 18	340	15	Lee CY, Chen YP. Prediction of drug adverse events using deep learning in
19 20	341		pharmaceutical discovery. Brief Bioinform 2021; 22:1884-1901.
21 22 23	342	16	Tangiisuran B, Scutt G, Stevenson J ,et al. Development and validation of a
24 25 26	343		risk model for predicting adverse drug reactions in older people during
27 28	344		hospital stay: Brighton Adverse Drug Reactions Risk (BADRI) model. PLoS
29 30 31	345		One 2014; 9:e111254.
32 33	346	17	Clothier HJ, Lawrie J, Lewis G ,et al. SAEFVIC: Surveillance of adverse
34 35 36	347		events following immunisation (AEFI) in Victoria, Australia, 2018. Commun
37 38 39	348		Dis Intell (2018) 2020; 44.
40 41	349	18	Alvarez Y, Hidalgo A, Maignen F ,et al. Validation of statistical signal
42 43 44	350		detection procedures in eudravigilance post-authorization data: a retrospective
45 46 47	351		evaluation of the potential for earlier signalling. Drug Saf 2010; 33:475-487.
48 49	352	19	Hammann F, Gutmann H, Vogt N ,et al. Prediction of adverse drug reactions
50 51 52	353		using decision tree modeling. Clin Pharmacol Ther 2010; 88:52-59.
53 54	354	20	Yan S, Xiong H, Shao F ,et al. HLA-C*12:02 is strongly associated with
55 56 57	355		Xuesaitong-induced cutaneous adverse drug reactions. Pharmacogenomics J
58 59 60	356		2019; 19:277-285.

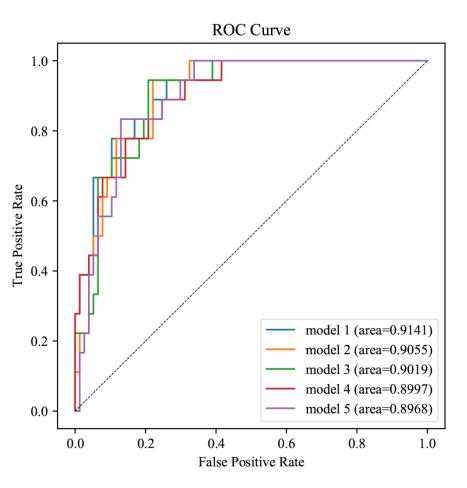
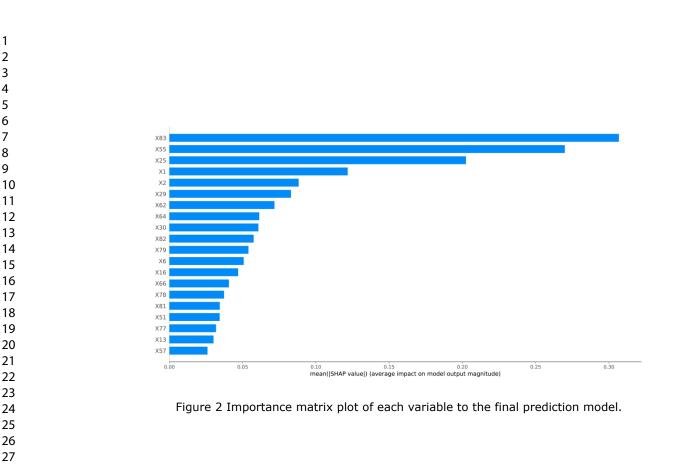
BMJ Open

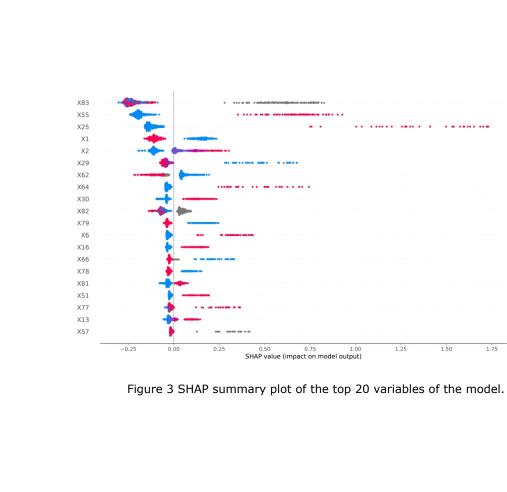

2		
3 4 5	357	21 Chen WJ, Kuang YY, Li JT. Analysis on 13 Cases of Adverse Drug Reaction
6 7 8	358	by Xuesaitong Injection. Journal of North Pharmacy 2013; 10:16-17.
8 9 10	359	22 Yang P, Qian N, Yao D ,et al. 62 Cases of Adverse Reactions in Xuesaitong
11 12 13	360	Oral Preparations. Chinese Medicine Modern Distance Education of China
14 15	361	2021; <i>19</i> :34-36.
16 17 18	362	
19 20 21	363	Figure 1 ROC curve of the 5 best models.
22 23	364	Figure 2 Importance matrix plot of each variable to the final prediction model.
24 25 26	365	Variable names were shown in Supplementary Table 1. X83, pre-treatment serum
27 28	366	levels; X55, renal function; X25, dermatoses; X1, gender; X2, age; X29, dose; X62,
29 30 31	367	low-density lipoprotein; X64, hypoproteinemia; X30, anti-infective agents; X82, pre-
32 33 34	368	treatment indicators of carcinoma; X79, hemoglobin; X6, history of allergy; X16,
35 36	369	respiratory diseases; X66, albumin/globulin; X78, red blood cell; X81, hypersensitive
37 38 39	370	C-reactive protein; X51, dermatology medication; X77, eosinophils; X13, Charlson
40 41	371	comorbidity index (Score); X57, serum potassium.
42 43 44	372	Figure 3 SHAP summary plot of the top 20 variables of the model. Red represents
45 46 47	373	higher variable values, and blue represents lower variable values. Variable names
48 49	374	were shown in Supplementary Table 1. X83, pre-treatment serum levels; X55, renal
50 51 52	375	function; X25, dermatoses; X1, gender; X2, age; X29, dose; X62, low-density
53 54	376	lipoprotein; X64, hypoproteinemia; X30, anti-infective agents; X82, pre-treatment
55 56 57	377	indicators of carcinoma; X79, hemoglobin; X6, history of allergy; X16, respiratory
58 59 60	378	diseases; X66, albumin/globulin; X78, red blood cell; X81, hypersensitive C-reactive

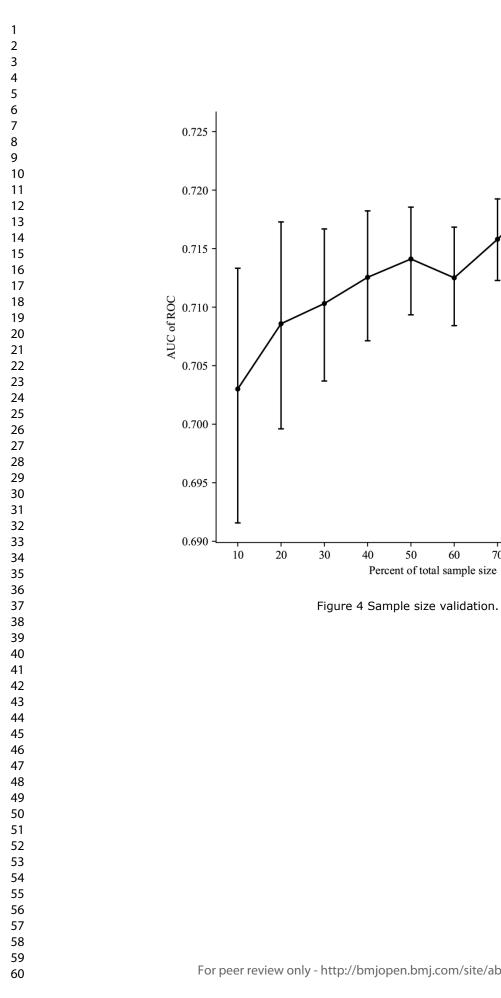
- 379 protein; X51, dermatology medication; X77, eosinophils; X13, Charlson comorbidity
- 380 index (Score); X57, serum potassium.
- 381 Figure 4 Sample size validation. The vertical bars represent the 95% confidence
- 382 interval (CI) of AUC of ROC.

- **Figure 5** The development of ADR prediction system.
- 384 Figure 6 The operation (A) and output (B) of the ADR prediction system.

BMJ Open: first published as 10.1136/bmjopen-2022-061457 on 8 September 2022. Downloaded from http://bmjopen.bmj.com/ on October 30, 2024 by guest. Protected by copyright.

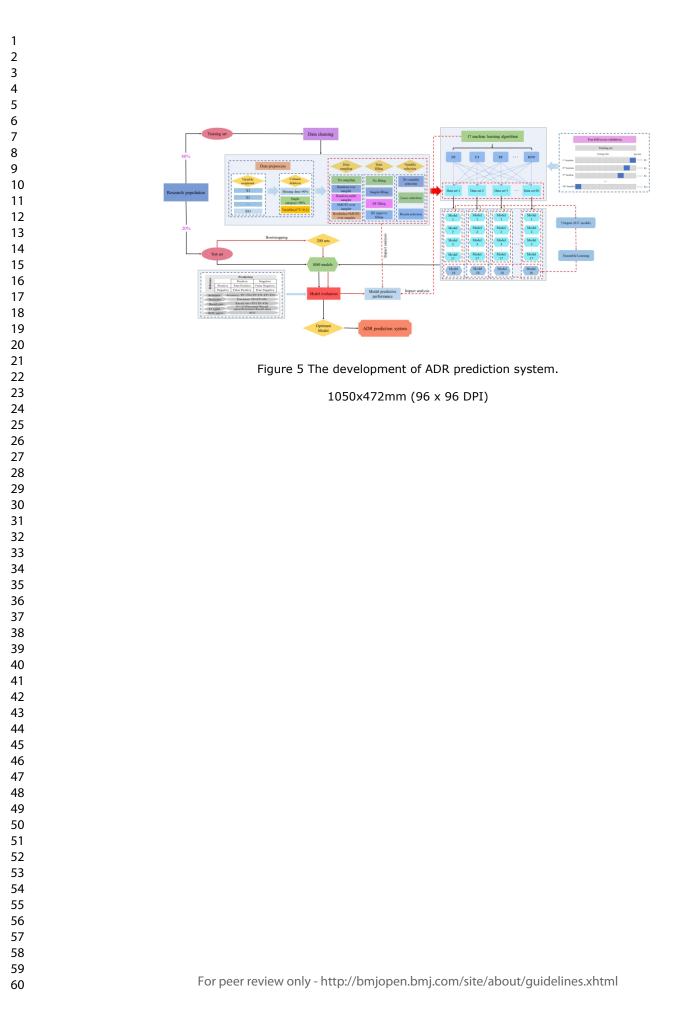

Figure 1 ROC curve of the 5 best models.


High

Feature value

1.75

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



60

70

80

90

1		
2 3		
4		
5		
6	ADR prediction system-Chinese herbal injections containing Panax notoginseng saponin	ADR prediction system-Chinese herbal injections containing Panax notoginseng saponin
7	Predictor Gender Male Age (years) 60-74	
8	Genetic family history Yes Blood pressure Grade II Grade II Charlson comerbidity index (score) 3-4 Respiratory diseases Yes Grade II	
9 10	Nervon diseases Yes Digstive diseases Yes Digstive diseases Yes Dises (reg) 1.6 Othopedic diseases Yes Dese (reg) 1.6 Yes Ye	Predicting outcome
11	Respiratory medicines Yes v Medicines for hematoputhy Yes v Medicines for digestive system Yes v Dermatology medication Yes v	The risk of ADR is 98%.
12	Renal function CKDJ Sterum creatining Normal Abuninis/globulin (AG) Normal Abuninis High Abuninis/globulin (AG) Normal Abuninis/globulin (AG) Normal Abuninis/globulin (AG) Normal Abuninis/globulin (AG) Normal	The prediction result can only be used for clinical reference.
13	Lymphocyte percentage Normal v Neurophil granulocyte High v Red blood cell Normal v Eesinophils High v	Delete Continue
14 15	Other radiisaud Chese modicines Yes Hemoglobin High of Chese patent molicines Of the second s	
16	The scientific research achievement from the project named "Data mining of adverse maction and the development of ADR prediction system based on neutral matched-pair study designs in multiple information systems", which was funded by the Research Subject of Health Commission of Sichtam Province and the Personalized Doug Therapy Key	·
17	Laborary of Eshain Polisis. Laborary of Eshain Polisis. Techning company Lik Techning company Lik	(b)
18		
19	Figure 6 The operation (A) and output ((B) of the ADR prediction system.
20	1899x688mm (9	6 x 96 DPI)
21 22		
23		
24		
25		
26		
27 28		
29		
30		
31		
32		
33 34		
35		
36		
37		
38		
39 40		
41		
42		
43		
44		
45 46		
47		
48		
49		
50 51		
52		
53		
54		
55		
56		
57 58		
59		
60	For peer review only - http://bmjopen.br	nj.com/site/about/guidelines.xhtml

		Nopen BMJ Open 2022-061457 on 8
		22-0614
		57 On 8
	1 Variable assignment	
Number	Variable	Assignment Performance Provide Assignment Performance Performa
	Adverse drug reaction	1, Yes; 0, No
X1	Gender	
X2	Age (years)	$1, \le 44; 2, 45 \le \text{Age} \le 59; 3, 60 \le \text{Age} \le 74; 4, \ge 75$
X3	Body mass index (BMI, kg/m ²)	$1, < 18.5; 2, 18.5 \le BMI \le 23.9; 3, \ge 24$
X4	Asians	1, Yes; 0, No
X5	Genetic family history	1, Yes; 0, No
X6	History of allergy	1, Yes; 0, No
X7	Smoking	1, Yes; 0, No
X8	Alcohol	1, Yes; 0, No
X9	Temperature (°C)	$1, \le 44; 2, 45 \le Age \le 59; 3, 60 \le Age \le 74; 4, \ge 75$ $1, < 18.5; 2, 18.5 \le BMI \le 23.9; 3, \ge 24$ $1, Yes; 0, No$ $1, < 36.1; 2, 36.1 \le Temperature \le 37.2; 3, > 37.3$ $1, < 60; 2, 60 \le Pulse \le 100, 3, > 100$ $1, < 12; 2, 12 \le Breathe \le 20; 3, > 20$
X10	Pulse (beats/min)	$1, < 60; 2, 60 \le Pulse \le 100, 3, > 100$
X11	Breathe (times/min)	$1, < 12; 2, 12 \le Breathe \le 20; 3, > 20$
X12	Blood pressure	0, Normal (systolic pressure ≤ 139 mmHg or diasto $\frac{2}{3}$ c pressure ≤ 89 mmHg); 1,
		Grade I (140 mmHg \leq systolic pressure \leq 159 mmHg or 90 mmHg \leq diastolic
		pressure \leq 99 mmHg); 2, Grade II (160 mmHg \leq systolic pressure \leq 179 mmHg or
		100 mmHg \leq diastolic pressure \leq 109 mmHg); 3, G ade III (systolic pressure \geq 180
X13	Charlson comorbidity index (Score)	1, 0; 2, 1 or 2; 3, 3 or 4; 4, \geq 5
X14	Cardiovascular disease	1, Yes; 0, No
		cop V
		mmHg or diastolic pressure $\geq 110 \text{ mmHg}$)for the pressure $\geq 110 \text{ mmHg}$)1, 0; 2, 1 or 2; 3, 3 or 4; 4, ≥ 5 1, Yes; 0, No1, Yes; 0, No1
	For peer review on	ly - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ge 33 of 45			BMJ Open Image: BMJ Open 1, Yes; 0, No 1, Yes; 0, No	
			022-0	
			61457	
	X15	Endocrine diseases	1, Yes; 0, No 800	
	X16	Respiratory diseases	1, Yes; 0, No	
	X17	Nervous diseases	1, Yes; 0, No	
	X18	Digestive diseases	1, Yes; 0, No	
	X19	Neoplastic diseases	1, Yes; 0, No	
	X20	Orthopedic diseases	1, Yes; 0, No	
	X21	Genito-urinary diseases	1, Yes; 0, No	
	X22	Hematopathy	1, Yes; 0, No	
	X23	Oculopathy	1, Yes; 0, No	
	X24	Ear-nose-throat diseases	1, Yes; 0, No	
	X25	Dermatoses	1, Yes; 0, No	
	X26	Immune rheumatism	1, Yes; 0, No	
	X27	Other diseases	1, Yes; 0, No	
	X28	Solvent	1, 0.9% sodium chloride injection; 2, 5% glucose injection; 3, Other solvents	
	X29	Dose (mg)		
	X30	Anti-infective agents	1, < 1.6; 2, =1.6; 3, > 1.6 1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No	
	X31	Cardiovascular medicines	1, Yes; 0, No	
	X32	Medicines for digestive system	1, Yes; 0, No g	
	X33	Respiratory medicines		
	X34	Nervous system medicines	1, Yes; 0, No Ţ	
	X35	Medication in mental disorders	1, Yes; 0, No	
			1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No entry (http://http:/	
			Yri. I'gh	
		For peer review	only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 🧮	

1 2	
3 4	
4 5	
6	
7	
8 9	
10	
11	
11 12 13 14 15 16 17 18 19 20	
14	
15	
16 17	
18	
19	
21 22	
23	
24	
24 25 26	
20	
28	
29	
30 31	
32	
33	
33 34 35 36	
36	
37	
38 39	
39 40	
41	
42 43	
43 44	
45	

46

			457 c
X36	Non-steroidal anti-inflammatory	1, Yes; 0, No	457 on 8 September 2022. Downloaded from http://bmjopen.bmj.com/ on October 30, 2024 by guest. Protected by
	drugs		septer
X37	Antiallergic agent	1, Yes; 0, No	nber
X38	Genito-urinary system medicines	1, Yes; 0, No	2022
X39	Medicines for hematopathy	1, Yes; 0, No	: Do
X40	Endocrine agents or hormone drugs	1, Yes; 0, No	wnloa
X41	Antineoplastic drugs	1, Yes; 0, No	aded
X42	Amino acids, vitamins, minerals or	1, Yes; 0, No	from
	other nutrition preparations		http:
X43	Regulating water, electrolyte or	1, Yes; 0, No	//bmj
	acid-base balance drugs		open
X44	Adjuvant agents to anesthesia or	1, Yes; 0, No	.bmj.
	anesthetics	1, Yes; 0, No 1, Yes; 0, No	com/
X45	Diagnostic agents	1, Yes; 0, No	on C
X46	Biological agents	1, Yes; 0, No	ctob
X47	Obstetrical-gynecological drugs	1, Yes; 0, No	er 30
X48	Stomatological preparations	1, Yes; 0, No	, 202
X49	Ophthalmic medication	1, Yes; 0, No	4 by
X50	Ear-nose-throat medication	1, Yes; 0, No	gues
X51	Dermatology medication	1, Yes; 0, No	t. Pro
X52	Other traditional Chinese medicines	1, Yes; 0, No	otecte
			ją p

2	
3	
4	
5	
6	
6 7 8 9 10	
, 8	
9	
10	
11	
11 12	
12	
13	
14	
15	
10	
1/	
12 13 14 15 16 17 18 19	
19	
20 21 22 23 24 25 26 27 28 29	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
31	
31 32	
33	
34	
35	
36 37	
3/	
38	
39	
40	
41	
42	
43	
44	
45	

X53	Urea
X54	Serum creatinine
X55	Renal function
X56	Blood glucose
X57	Serum potassium
X58	Serum sodium
X59	Total cholesterol
X60	Triglyceride
X61	High-density lipoprotein
X62	Low-density lipoprotein
X63	Albumin
X64	Hypoproteinemia
X65	Globulin
X66	Albumin/globulin (A/G)
X67	Aspartate aminotransferase
X68	Alanine aminotransferase

or Chinese patent medicines

1, Below the normal range; 2, Within the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Glomerular filtration rate $\geq 90 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$; \bigotimes , $60 \text{ ml/(min} \cdot 1.73 \text{ m}^2) \leq$ Glomerular filtration rate $\leq 89 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$; 3, \bigotimes $0 \text{ ml/(min} \cdot 1.73 \text{ m}^2) \leq$ Glomerular filtration rate $\leq 59 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$; 4, \bigotimes $5 \text{ ml/(min} \cdot 1.73 \text{ m}^2) \leq$ Glomerular filtration rate $\leq 29 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$; 5, \bigotimes followerular filtration rate $< 15 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$

ijopen-2022-061457 on 8

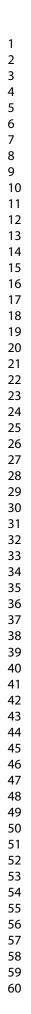
1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Yes; 0, No

1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range

d by copyright.

Page 36 of 45

1 2	
3	
4 5	
6	
7 8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
21	
21 22 23	
24	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
36 37	
37 38	
39	
40 41	
42	
43 44	
45	
46	


		BMJ Open 2022-061457 on
		n-200
		22-06
		51457
X69	Liver function	1, Less than 3 times upper limit of normal range of ver function tests (ULN of
		LFTs); 2, 3~5 times ULN of LFTs; 3, More than 5 times ULN of LFTs
X70	Total bilirubin	1, Below the normal range; 2, Within the normal range; 3, Above the normal range \aleph
X71	Lactic dehydrogenase	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X72	Creatine kinase	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X73	White blood cell	1, Below the normal range; 2, Within the normal ragge; 3, Above the normal range
X74	Neutrophil granulocyte	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X75	Lymphocyte percentage	1, Below the normal range; 2, Within the normal rage; 3, Above the normal range
X76	Monocyte percentage	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X77	Eosinophils	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X78	Red blood cell	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X79	Hemoglobin	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X80	Platelet count	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X81	Hypersensitive C-reactive protein	0, Within the normal range; 1, Above the normal range
X82	Pre-treatment indicators of	0, Within the normal range; 1, Above the normal ragge
	carcinoma	er 30
X83	Pre-treatment serum levels	0, Within the normal range; 1, Above the normal range
		gues
		otec
		τe d b
		4 by guest. Protected by copyright.
	For peer review o	nly - http://bmiopen.bmi.com/site/about/guidelines.xhtml

of 45			BMJ Open		open-202	
Table 2	The effect of differen	it data processing met	hods and machine learni	ng algorithms on mode	njoppen-2022-061 2022-061 457 on el prediction performat	nce (Ten-fold cross-
validatio					ept er	(
		AUC	Accuracy	Precision	[©] Recall rate	F1 value
		Mean±SD 95%CI	Mean±SD 95%CI	Mean±SD 95%CI	Mean±SD 95%CI	Mean±SD 95%C
Data filling					Downl	
	No filling	0.868±0.099 0.864-0.8	72 0.820±0.093 0.816-0.82	3 0.772±0.190 0.765-0.77	9 0.720 80.254 0.710-0.73	30 0.729±0.217 0.721-0.
	Simple filling	0.881±0.097 0.877-0.8	85 0.828±0.100 0.824-0.832	2 0.793±0.165 0.787-0.79	9 0.746 0.243 0.737-0.75	56 0.751±0.197 0.744-0.
	RF filling	0.885±0.095 0.881-0.8	88 0.831±0.095 0.827-0.83	5 0.802±0.157 0.796-0.80	8 0.749 0.237 0.740-0.75	59 0.757±0.189 0.750-0.7
	RF improve filling	0.887±0.094 0.883-0.8	90 0.832±0.096 0.828-0.83	5 0.799±0.158 0.793-0.80	6 0.751 0.240 0.742-0.76	50 0.757±0.191 0.749-0.
	<i>p</i> value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001
Data sampling					.bmj.c	
	No sampling	0.824±0.088 0.820-0.8	28 0.832±0.050 0.830-0.83	5 0.641±0.271 0.629-0.65	3 0.399≝0.197 0.391-0.40	08 0.464±0.193 0.455-0.4
	Random over sampler	0.923±0.063 0.920-0.9	25 0.858±0.085 0.854-0.86	1 0.849±0.079 0.845-0.85	$2\ 0.872 \stackrel{9}{\neq} 0.118\ 0.867-0.87$	7 0.857±0.089 0.854-0.3
	Random under sampler	0.815±0.107 0.810-0.8	19 0.732±0.104 0.728-0.73	7 0.783±0.145 0.776-0.78	90.678 = 0.1880.670-0.68	36 0.707±0.132 0.701-0.7
	SMOTE over sampler	0.920±0.072 0.917-0.9	23 0.857±0.081 0.853-0.86	$0.0.844 \pm 0.071 \ 0.841 - 0.84$	8 0.875 ∰0.125 0.869-0.88	30 0.856±0.089 0.852-0.3
	Borderline SMOTE	0.919±0.077 0.916-0.9	23 0.859±0.085 0.855-0.862	2 0.841±0.074 0.837-0.84	•	00 0.859±0.093 0.855-0.8
	<i>p</i> value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	^{by} و <i>p</i> <0.0001	<i>p</i> <0.0001
Variable					est. F	
selection					v guest. Protected by copyright.	6

			BMJ Open		1jopen-20	Page 3
					2022-06145	
					457 o	
	No selection	0.870±0.105 0.867-0.874	↓0.820±0.104 0.817-0.824	0.780±0.178 0.774-0.786 ().733 8 0.254 0.725-0.742	2 0.737±0.208 0.730-0.744
	Lasso selection	0.889±0.089 0.886-0.892	2 0.835±0.090 0.832-0.838	0.801±0.165 0.796-0.807 ().751∰0.240 0.743-0.759	0.758±0.196 0.752-0.765
	Boruta selection	0.881±0.094 0.878-0.884	t 0.827±0.093 0.824-0.830	0.794±0.162 0.788-0.799 0).741≇0.236 0.733-0.749	0.750±0.191 0.744-0.757
	p value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	0022 <i>p</i> <0.0001	<i>p</i> <0.0001
machine					Dowr	
learning					hload	
algorithms					ed fro	
	AdaBoost	0.871±0.092 0.864-0.879	0.813±0.093 0.806-0.820	0.784±0.136 0.773-0.795 0	$0.731 \pm 0.202 \ 0.715 - 0.747$	0.745±0.160 0.733-0.758
	Bagging	0.907±0.102 0.898-0.915	5 0.854±0.101 0.846-0.863	0.805±0.158 0.793-0.818 0	0.791 0.245 0.771-0.810	0.785±0.196 0.769-0.801
	Bernoulli NB	0.866±0.082 0.860-0.873	3 0.802±0.085 0.795-0.809	0.771±0.144 0.759-0.783 (0.719	0.736±0.148 0.724-0.748
	DT	0.815±0.110 0.806-0.824	4 0.805±0.089 0.797-0.812	0.773±0.158 0.760-0.786 0	$0.715 = 0.237 \ 0.696 - 0.734$	0.724±0.184 0.709-0.739
	ET	0.829±0.110 0.821-0.838	3 0.809±0.092 0.801-0.816	0.767±0.164 0.754-0.780 0	$0.714 \frac{1}{2} 0.255 \ 0.694 - 0.735$	5 0.720±0.207 0.704-0.737
	Gaussian NB	0.845±0.089 0.838-0.852	2 0.786±0.085 0.779-0.793	0.734±0.155 0.722-0.747 0	0.743 20.164 0.730-0.756	50.730±0.1430.719-0.742
	Gradient Boosting	0.891±0.102 0.883-0.899	0.841±0.099 0.833-0.849	0.822±0.149 0.810-0.834 0	0.746 20.252 0.725-0.766	50.762±0.1940.747-0.778
	KNN	0.896±0.084 0.890-0.903	3 0.830±0.098 0.822-0.838	0.747±0.296 0.724-0.771 0	0.687 ^w 0.381 0.656-0.717	0.674±0.326 0.648-0.700
	LDA	0.897±0.073 0.891-0.903	8 0.835±0.081 0.829-0.842	0.805±0.117 0.796-0.815 (0.768 0.191 0.753-0.783	0.777±0.144 0.765-0.788
	LR	0.893±0.076 0.886-0.899	9 0.834±0.082 0.827-0.840	0.815±0.119 0.805-0.824 0).754 0.216 0.737-0.772	2 0.767±0.157 0.755-0.780
	Multinomial NB			0.753±0.161 0.740-0.766 0		
	Passive Aggressive	0.836±0.098 0.828-0.844	↓0.780±0.091 0.772-0.787	0.723±0.161 0.711-0.736 0	0.720	5 0.712±0.172 0.698-0.725
					cted I	
					ру сор	
					ted by copyright.	7
		For peer review or	nly - http://bmjopen.bmj.cor	n/site/about/guidelines.xhtm	nl 📅	

 Page 38 of 45

Page 39 of 45			BMJ Open		njopen-20	
1 2					2022-0614	
3					57 c	
5	QDA	0.915±0.081 0.909-0.922	0.860±0.089 0.853-0.868	0.827±0.152 0.814-0.839 0.79	5 3∰0.184 0.783-0.812 0	.805±0.156 0.792-0.817
6 7	RF	0.919±0.097 0.911-0.926	0.871±0.100 0.863-0.879	0.843±0.154 0.831-0.856 0.77	9⊈0.268 0.753-0.796 0	.788±0.214 0.771-0.805
8 9	SGD	0.895±0.075 0.889-0.901	0.832±0.082 0.825-0.839	0.803±0.197 0.787-0.819 0.71	₽ 0≇0.287 0.687-0.733 0	.726±0.238 0.707-0.745
10 11	SVM	0.926±0.086 0.919-0.933	0.875±0.096 0.867-0.883	0.858±0.144 0.847-0.870 0.77	8 5 80.271 0.754-0.797 0	.791±0.217 0.773-0.808
12	XGBoost	0.922±0.092 0.914-0.929	0.869±0.100 0.861-0.877	0.825±0.153 0.812-0.837 0.81	0 ≩0.229 0.792-0.828 0	.808±0.185 0.793-0.822
13 14	<i>p</i> value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	nload <i>p</i> <0.0001	<i>p</i> <0.0001
15	AUC. Area under curv	ve; RF, Random Forest; SMOTE	Synthetic minority ov	versampling technique: Bern	ع آتان NB. Bernoulli N	Jaïve Bayes: DT.
17 18			, synthetic initionity of	ersampning teeninque, bern		urve Duyes, D1,
19	Decision Tree; ET, Ext	tra Tree; Gaussian NB, Gaussian	Naïve Bayes; KNN, K	-Nearest Neighbor; LDA, La	ent Dirichlet Allocat	ion; LR, Logistic
20 21 22 23	Regression; Multinom	nial NB, Multinomial Naïve Ba	yes; QDA, Quadratic I	Discriminant Analysis; SGD	Stochastic Gradien	t Descent; SVM,
23 24 25	support vector machin	e. XGBoost, eXtreme Gradient	Boosting.		nj.com/	
26 27 28					on October 30, 2024	
28 29 30					ober 30	
31					0, 202	
32 33					24 by	
34					guest.	
35 36					st. P	
37					Protected	
38					ctec	
39 40					d by	
41					сор	Q
42					by copyright.	8
43 44		For peer review only	y - http://bmjopen.bmj.coi	n/site/about/guidelines.xhtml	ht.	
44 45						
46						

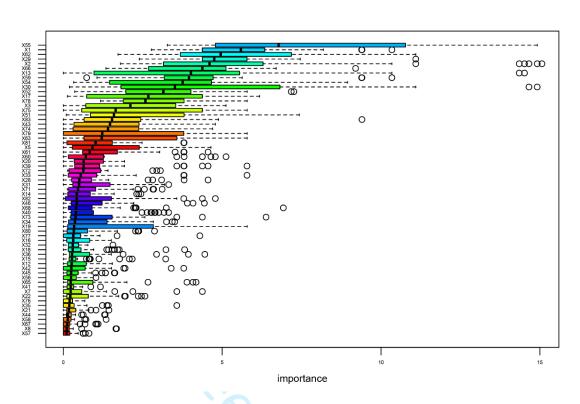


Figure 1 Variable selection by Lasso and Boruta. Variable names were shown in Table reven ony

S1.

Reporting checklist for prediction model development/validation.

Based on the TRIPOD guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the TRIPODreporting guidelines, and cite them as:

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement.

 Page

 Reporting Item
 Number

 Title
 #1
 Identify the study as developing and / or validating a
 1

 multivariable prediction model, the target population, and the outcome to be predicted.
 1

 Abstract
 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-061457 on 8 September 2022. Downloaded from http://bmjopen.bmj.com/ on October 30, 2024 by guest. Protected by copyright.

1 2		<u>#2</u>	Provide a summary of objectives, study design, setting,	2
3 4			participants, sample size, predictors, outcome, statistical	
5 6 7			analysis, results, and conclusions.	
7 8 9	Introduction			
10 11	Introduction			
12 13		<u>#3a</u>	Explain the medical context (including whether diagnostic or	3
14 15			prognostic) and rationale for developing or validating the	
16 17			multivariable prediction model, including references to	
18 19			existing models.	
20 21				
22 23		<u>#3b</u>	Specify the objectives, including whether the study describes	4
24 25			the development or validation of the model or both.	
26 27	Methods			
28 29				
30 31	Source of data	<u>#4a</u>	Describe the study design or source of data (e.g.,	5
32 33 34			randomized trial, cohort, or registry data), separately for the	
35 36			development and validation data sets, if applicable.	
37 38 39	Source of data	<u>#4b</u>	Specify the key study dates, including start of accrual; end of	5
40 41			accrual; and, if applicable, end of follow-up.	
42 43 44	Participants	<u>#5a</u>	Specify key elements of the study setting (e.g., primary care,	5
45 46			secondary care, general population) including number and	
47 48			location of centres.	
49 50				
51 52	Participants	<u>#5b</u>	Describe eligibility criteria for participants.	5
53 54 55	Participants	<u>#5c</u>	Give details of treatments received, if relevant	5
56 57				
58 59				
60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4	Outcome	<u>#6a</u>	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	7
5 6 7 8 9 10 11	Outcome	<u>#6b</u>	Report any actions to blind assessment of the outcome to be predicted.	7
	Predictors	<u>#7a</u>	Clearly define all predictors used in developing or validating	6
14 15 16 17 18			the multivariable prediction model, including how and when they were measured	
19 20	Predictors	<u>#7b</u>	Report any actions to blind assessment of predictors for the	6
21 22 23			outcome and other predictors.	
24 25 26	Sample size	<u>#8</u>	Explain how the study size was arrived at.	5
27 28 29	Missing data	<u>#9</u>	Describe how missing data were handled (e.g., complete-	6
30 31			case analysis, single imputation, multiple imputation) with	
32 33			details of any imputation method.	
34 35 36 27	Statistical	<u>#10a</u>	If you are developing a prediction model describe how	6
37 38 39	analysis methods		predictors were handled in the analyses.	
40 41 42	Statistical	<u>#10b</u>	If you are developing a prediction model, specify type of	7
43 44	analysis methods		model, all model-building procedures (including any	
45 46 47			predictor selection), and method for internal validation.	
47 48 49 50	Statistical	<u>#10c</u>	If you are validating a prediction model, describe how the	7
51 52	analysis methods		predictions were calculated.	
53 54 55	Statistical	<u>#10d</u>	Specify all measures used to assess model performance	7
56 57 58	analysis methods		and, if relevant, to compare multiple models.	
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5 6 7	Statistical analysis methods	<u>#10e</u>	If you are updating done
8 9 10	Risk groups	<u>#11</u>	Provide d
11 12 13	Development vs.	<u>#12</u>	For valida
14 15	validation		data in se
16 17 18 19	Results		
20 21	Participants	<u>#13a</u>	Describe
22 23 24			the numb
24 25 26			and, if ap
27 28			diagram r
29 30 31 32	Participants	<u>#13b</u>	Describe
32 33 34			demograp
35 36			including
37 38			predictors
39 40 41	Participants	<u>#13c</u>	For valida
42 43 44			data of th
44 45 46			predictors
47 48 49	Model	<u>#14a</u>	lf develop
50 51	development		and outco
52 53 54	Model	<u>#14b</u>	lf develop
55 56	development		calculated
57 58 59 60		For pee	r review only -

stical	<u>#10e</u>	If you are validating a prediction model, describe any model	7
ysis methods		updating (e.g., recalibration) arising from the validation, if	
		done	
groups	<u>#11</u>	Provide details on how risk groups were created, if done.	7
elopment vs.	<u>#12</u>	For validation, identify any differences from the development	7
ation		data in setting, eligibility criteria, outcome, and predictors.	
ults			
cipants	<u>#13a</u>	Describe the flow of participants through the study, including	8
		the number of participants with and without the outcome	
		and, if applicable, a summary of the follow-up time. A	
		diagram may be helpful.	
cipants	<u>#13b</u>	Describe the characteristics of the participants (basic	8
		demographics, clinical features, available predictors),	
		including the number of participants with missing data for	
		predictors and outcome.	
cipants	<u>#13c</u>	For validation, show a comparison with the development	8
		data of the distribution of important variables (demographics,	
		predictors and outcome).	
el	#14a	If developing a model, specify the number of participants	9
	<u>#14a</u>		9
elopment		and outcome events in each analysis.	
el	<u>#14b</u>	If developing a model, report the unadjusted association, if	9
elopment		calculated between each candidate predictor and outcome.	
	For peer	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Model	<u>#15a</u>	If developing a model, present the full prediction model to	9
3 4	specification		allow predictions for individuals (i.e., all regression	
5 6			coefficients, and model intercept or baseline survival at a	
7 8 9			given time point).	
) 10 11				_
12 13	Model	<u>#15b</u>	If developing a prediction model, explain how to the use it.	9
14 15	specification			
16 17	Model	<u>#16</u>	Report performance measures (with CIs) for the prediction	9
18 19	performance		model.	
20 21				
22 23	Model-updating	<u>#17</u>	If validating a model, report the results from any model	9
24 25			updating, if done (i.e., model specification, model	
26 27			performance).	
28 29	Discussion			
30 31 32	Discussion			
32 33 34	Limitations	<u>#18</u>	Discuss any limitations of the study (such as	17
35 36			nonrepresentative sample, few events per predictor, missing	
37 38			data).	
39 40	Interpretation	#100	For validation, discuss the results with reference to	15
41 42	Interpretation	<u>#19a</u>	For validation, discuss the results with reference to	15
43 44			performance in the development data, and any other	
45 46			validation data	
47 48	Interpretation	<u>#19b</u>	Give an overall interpretation of the results, considering	15
49 50			objectives, limitations, results from similar studies, and other	
51 52 53			relevant evidence.	
54 55				
56	Implications	<u>#20</u>	Discuss the potential clinical use of the model and	16
57				
57 58 59			implications for future research	

1 2 3	Other information			
4 5	Supplementary	<u>#21</u>	Provide information about the availability of supplementary	18
6 7	information		resources, such as study protocol, Web calculator, and data	
8 9 10 11			sets.	
11 12 13	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	18
14 15			present study.	
16 17 18	None The TRIPOD) checklis	st is distributed under the terms of the Creative Commons Attrib	ution
19 20	License CC-BY. TI	nis checł	klist can be completed online using https://www.goodreports.org	<u>/</u> , a tool
21 22 23	made by the EQU	ATOR Ne	etwork in collaboration with Penelope.ai	
24 25				
26 27 28				
20 29 30				
31 32				
33 34				
35 36 27				
37 38 39				
40 41				
42 43				
44 45				
46 47				
48 49				
50 51				
52 53				
54 55				
56 57				
58 59				
60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Develop an ADR prediction system of Chinese herbal injections containing Panax notoginseng saponin: a nested case-control study using machine learning

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061457.R1
Article Type:	Original research
Date Submitted by the Author:	19-Jul-2022
Complete List of Authors:	Wu, Xing-Wei; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Pharmacy; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital Zhang, Jia-Ying ; Chengdu First People's Hospital, Pharmacy Chang, Huan ; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Pharmacy Song, Xue-Wu ; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Pharmacy; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital Wen, Ya-Lin ; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Pharmacy Long, En-Wu ; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Pharmacy Long, En-Wu ; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Pharmacy; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital Tong, Rong-Sheng; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Pharmacy; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital Tong, Rong-Sheng; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Pharmacy; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital
Primary Subject Heading :	Medical management
Secondary Subject Heading:	Medical management
Keywords:	Adverse events < THERAPEUTICS, Herbal medicine < THERAPEUTICS, Toxicity < THERAPEUTICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1
2
2
2
4
3 4 5 6 7 8 9 10 11
6
7
8
9
10
10
12
13
14
15
16
17
14 15 16 17 18
10
19 20
20
21
20 21 22 23 24 25 26 27 28
23
24
25
26
20
27
28
29 30
30
31
32
33
25
34 35 36
36 37
57
38
39
40
41
42
42 43
43 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
59 60
00

1	Develop an ADR prediction system of Chinese herbal injections
2	containing Panax notoginseng saponin: a nested case-control study
3	using machine learning
4	Xing-Wei Wu ^{1,2} , Jia-Ying Zhang ³ , Huan Chang ¹ , Xue-Wu Song ^{1,2} , Ya-Lin Wen ¹ , En-
5	Wu Long ^{1,2} , Rong-Sheng Tong ^{1,2}
6	¹ Department of Pharmacy, Sichuan Provincial People's Hospital, University of
7	Electronic Science and Technology of China, Chengdu, China,
8	² Chinese Academy of Sciences Sichuan Translational Medicine Research
9	Hospital, Chengdu 610072, China,
10	³ Department of Pharmacy, Chengdu First People's Hospital, Chengdu 610095, China
11	Correspondence to
12	Dr Rong-Sheng Tong, Department of Pharmacy, Sichuan Provincial People's Hospital,
13	University of Electronic Science and Technology of China, Chengdu, China. Chinese
14	Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu
15	610072, China. E-mail: <u>318004031@qq.com</u>
16	Word count: 2349

BMJ Open

3 4 5	17	Develop an ADR prediction system of Chinese herbal injection
6 7 8	18	containing Panax notoginseng saponin: a nested case-control study
9 10	19	using machine learning
11 12 13 14	20	ABSTRACT
15 16	21	Objective This study aimed to develop an adverse drug reactions (ADR) antecedent
17 18 19	22	prediction system using machine learning algorithms to provide the reference for
20 21 22	23	security usage of Chinese herbal injections containing Panax notoginseng saponin in
23 24	24	clinical practice.
25 26 27	25	Design A nested case-control study.
28 29	26	Setting National Center for ADR Monitoring and the Electronic Medical Record (EMR)
30 31 32	27	system.
33 34 25	28	Participants All patients were from 5 medical institutions in Sichuan Province from
35 36 37	29	January 2010 to December 2018.
38 39 40	30	Main outcomes/measures Data of patients with ADR who used Chinese herbal
41 42	31	injections containing Panax notoginseng saponin was collected from the National
43 44 45	32	Center for ADR Monitoring. A nested case-control study was used to randomly match
46 47	33	patients without ADR from the EMR system by the ratio of 1:4. Eighteen machine
48 49 50	34	learning algorithms were applied for the development of ADR prediction models. Area
51 52 53	35	under curve (AUC), accuracy, precision, recall rate and F1 value were used to evaluate
54 55	36	the predictive performance of the model. An ADR prediction system was established
56 57 58	37	by the best model selected from the 1080 models.
59 60	38	Results A total of 530 patients from 5 medical institutions were included, and 1080

1 2		
- 3 4 5	39	ADR prediction models were developed. Among these models, the AUC of the best
6 7	40	capable one was 0.9141 and the accuracy was 0.8947. According to the best model, a
8 9 10	41	prediction system, which can provide early identification of patients at risk for the ADR
11 12 13	42	of Panax notoginseng saponin, has been established.
14 15	43	Conclusion The prediction system developed based on the machine learning model in
16 17 18	44	this study had good predictive performance and potential clinical application.
19 20	45	Key words Adverse drug reactions, Chinese herbal injection, Machine learning,
21 22 23	46	Prediction system, Panax notoginseng saponin
24 25 26	47	Strengths and limitations of this study
27 28	48	> To the best of our knowledge, this study was the first to develop an ADR prediction
29 30 31	49	system for Chinese herbal injection containing Panax notoginseng saponin using
32 33	50	machine learning.
34 35 36	51	> Data of ADR patients came from the National Center for Adverse Drug Reaction
37 38 39	52	Monitoring, which is highly representative.
40 41	53	> In order to obtain the best model, the data processing adopted 4 data filling, 5 data
42 43 44	54	sampling, 3 variable selection methods, and 18 machine learning algorithms were
45 46	55	applied for model establishment.
47 48 49	56	> The area under curve, accuracy, precision, recall rate, and F1 value were used to
50 51 52	57	evaluate the predictive performance of the model.
53 54	58	➢ As the study population was all from southwest China, the results may be biased
55 56 57	59	while the prediction system was applied in other medical institutions.
58 59		
60		3

BMJ Open

60 INTRODUCTION

Panax notoginseng saponins, as the main ingredients of Panax notoginseng (Buck.)
F.H.Chen, has been widely used in the disease therapy of nervous system and cardiocerebral vascular system ¹⁻⁴. High frequency of adverse drug reactions (ADR) in
Chinese herbal containing Panax notoginseng saponin has received widespread
attention. Among these ADR, about 69.57% were caused by injections, mainly
manifested as drug eruption (50.5%), allergic reaction (20.4%) and anaphylactic shock
(9.7%), which can be life-threatening in severe cases ⁵.

At present, ADR is mainly monitored by spontaneous reporting system, casecontrol study, cohort study, prescription event monitoring and centralized hospital monitoring system. However, most of these methods have obvious hysteresis. Therefore, there is an increasing need to develop an ADR antecedent prediction system to prevent and avoid the occurrence of ADR in Chinese herbal injections containing Panax notoginseng saponin.

Machine learning, the core technology of artificial intelligence, is commonly used to build prediction models. In recent years, some prediction models for ADR have been established ⁶⁻¹⁰. Based on a clustering method for the postprocessing of association rules, Lai et al.⁶ developed an application of stepwise association rule mining to identify the associations between vaccine and multiple adverse events. In addition, Imai et al.¹⁰ used artificial neural networks to evaluate vancomycin-induced nephrotoxicity. However, small sample size, incomplete patient information, and unsatisfactory predictive performance restrict the application of ADR prediction models in clinical

practice. In view of these challenges, this study aimed to develop an ADR prediction system of Chinese herbal injections containing Panax notoginseng saponin based on machine learning algorithms and provide reference for clinical ADR management and prevention.

86 METHODS

 87 Data collection

ADR patients who used Chinese herbal injections containing Panax notoginseng included in this study were from the National Center for Adverse Drug Reaction Monitoring reported by 5 hospitals in Sichuan Province from January 2010 to December 2018. Then, a nested case-control study was used to randomly match patients without ADR from the Electronic Medical Record (EMR) system of the 5 medical institutions. The ratio of patients with ADR to those without ADR was 1:4. For multiple lab results, in order to facilitate clinical application, we selected the last results of patients before the usage of medication. And for multiple admissions, all patients were included according to their first admission.

97 This study was approved by the Ethics Committee of Sichuan Academy of Medical 98 Sciences and Sichuan Provincial People's Hospital. Due to the retrospective nature of 99 the study, informed consent was waived. And we hid the patients' personal information 100 during the study.

101 Data cleaning

102 Variable assignment

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5 0	
50 51	
53	
54	
55	
56	
57	
58	
59	
60	

Binary-state variables were directly assigned values of 0 or 1. According to whether in
the normal range, clinical laboratory variables were assigned values of 1, 2 and 3 (1,
below the normal range; 2, within the normal range; and 3, above the normal range). *Column deletion*Variables with missing data >90%, or a single category >90%, or the coefficient of

108 variation (CV) <0.1 were deleted.

109 Data filling

There are 4 ways to data filling. No filling: retained the original data. Simple filling: missing data of continuous variables replaced by the mean or median, and categorical variables by the mode. Random Forest (RF) filling: used the RF model to predict and replace the missing data directly. RF improve filling: ordered variables based on the number of missing data that were replaced by RF filling next.

115 Data sampling

No sampling: built models from the original data. Random over sampler: randomly replicated the data of fewer categories to match the sample size to that of more categories. Random under sampler: deleted the data of more categories to match the sample size to that of fewer categories. Synthetic minority oversampling technique (SMOTE) over sampler: synthesize new data from a small amount of original data.
Borderline SMOTE over sampler: synthesize new data from borderline data.

122 Variable selection

123 No variable selection or use Lasso or Boruta for variable selection.

124 Model establishment

Through different data filling, data sampling and variable selection, 60 data sets were obtained. Eighteen machine learning algorithms, including AdaBoost, Bagging, Bernoulli Naïve Bayes (Bernoulli NB), Decision Tree (DT), Extra Tree (ET), Gaussian Naïve Bayes (Gaussian NB), Gradient Boosting, K-Nearest Neighbor (KNN), Latent Dirichlet Allocation (LDA), Logistic Regression (LR), Multinomial Naïve Bayes (Multinomial NB), Passive Aggressive, Quadratic Discriminant Analysis (QDA), RF, Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost), and Ensemble Learning, were used to build models. The model establishment was as follows. The data were randomly divided into a training set and a test set by the ratio of 8:2. The training set was used to build models, and the test set was used to evaluate the predictive performance of the models. Ten-fold cross-validation on the training set was applied for internal validation of the model, and 200 Bootstrapping samples from the test set for the evaluation of the impact of different data processing methods or machine learning algorithms on model predictive performance. Ensemble learning models were developed by 5 machine learning algorithms with the largest area under curve (AUC) on each data set.

141 Model evaluation

We used the AUC, accuracy, precision, recall rate, and F1 value to evaluate the predictive performance of the model. Five models with the largest AUC were compared, and the best model was selected to develop an ADR prediction system of Chinese herbal injections containing Panax notoginseng saponin. SHapley Additive exPlanations (SHAP) helped to explain the contribution of variables to the model.

3	
4 7	
5	
6 7	
/	
8	
9	
10	
11	
12	
13	
14	
14 15	
10	
16 17	
1/	
18	
19	
20	
21 22	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30 31 32 33	
31	
32	
33	
34	
35	
36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

147 Sample size assessment

To evaluate the influence of different sample sizes on model predictive performance, randomly extracted 10%, 20%, 30% to 100% subsets from the training set by Bootstrapping. The 10 subsets were used to establish models, respectively. Repeated the procedure 100 times and the AUC, calculated from the testing set, was used for sample size examination.

153 **Patient and public involvement**

154 Patients and/or the public were not directly involved in this study.

155 Statistical Analysis

156 Categorical variables were expressed as counts and percentages and continuous 157 variables as mean \pm standard deviation. Analysis of variance will be used if the data 158 were normally distributed and the variances were equal, otherwise, Kruskal-Wallis test 159 will be used. *p* value<0.05 were considered statistically significant. Hypothesis testing 160 and models building were implemented using the stats and sklearn packages in Python 161 (Version3.8), respectively.

162 **RESULTS**

163 **Research population**

A total of 530 patients were enrolled in this study, of which 106 patients had ADR. The
patients included 250 (47.17%) males and 280 (52.83%) females. The demographic and
clinical characteristics of the patients were shown in Supplementary Table 1.

167 Data cleaning

The results of 83 variables assignment were shown in Supplementary Table 2. After the column deletion, 63 variables were included in the following study (Supplementary Table 3). Then, 4 data filling methods were used for replacing the 1,290 (3.86%) missing data. We used Lasso or Boruta for variable selection, and the results were shown in Supplementary Table 3. Using 4 data filling, 5 data sampling and 3 variable selection methods for data processing respectively, 60 data sets were obtained.

174 Model establishment

A total of 1080 prediction models were established by 18 machine learning algorithms and 60 data sets. The results of ten-fold cross-validation were shown in Supplementary Table 4. Using 200 Bootstrapping samples from the test set to evaluate the impact of different data processing methods or machine learning algorithms on model predictive performance. The results showed that differences of model predictive performance exist by different data filling, data sampling, variable selection (Table 1) and machine learning algorithms (Table 2). The ensemble learning model had the best performance with an AUC of 0.793±0.083 (Table 2).

183 Model evaluation

The AUC, accuracy, precision, recall rate, and F1 value were used to evaluate the performance of the model. The best 5 models were selected and model 1 had the best performance with an AUC of 0.9141 (Table 3). The receiver operating characteristic (ROC) curve of the 5 best models were shown in Figure 1.

188 Model interpretation

BMJ Open

The importance of each variable to the final prediction model was shown in Figure 2.
The result showed that pre-treatment serum levels, renal function, dermatoses, gender
and age were the top 5 most important variables for the model. We used the SHAP
value to explain the contribution of the variables to the model, and the SHAP value of
the top 20 was shown in Figure 3. This plot explains how high and low variables values
were in relation to SHAP values. For the prediction model, the higher the SHAP value
of a variable, the more likely ADR occurs.

196 Sample size assessment

With the continuously increased size of sample data, the AUC values of the testing sets
continued to increase, which shows a sufficient sample size included in this study
(Figure 4).

200 Develop an ADR prediction system for Panax notoginseng saponin

According to the best model, a prediction system for the ADR of Panax notoginseng saponin has been developed and we had obtained the software copyright. The development of the ADR prediction system was shown in Figure 5. The operation and output of the system were shown in Figure 6.

1jopen-2022-061457

1 2	
3 4 5	
5 6 7	
, 8 9	
10 11	
12 13	
12 13 14 15 16 17	
16 17	
18	
20 21	
19 20 21 22 23	
24 25	
26 27	
27 28 29	
30 31	
32 33 34	
35	
36 37 38	
39 40	
41 42	
43 44	
45 46	

		AU	JC	Accu	iracy	Prec	ision	E Reca	ll rate	F1 v	alue
		Mean±SD	95%CI	Mean±SD	95%CI	Mean±SD	95%CI	Mean <mark>y</mark> SD	95%CI	Mean±SD	95%CI
Data filling								2. Dov			
	No filling	0.786±0.101	0.785-0.787	0.770±0.070	0.769-0.771	0.437±0.162	0.435-0.438	0.546-fg.208	0.544-0.548	0.460±0.142	0.459-0.4
	Simple filling	0.687±0.094	0.686-0.688	0.761±0.076	0.760-0.761	0.455±0.180	0.453-0.456	0.491∰.165	0.489-0.492	0.442±0.126	0.441-0.4
	RF filling	0.677±0.095	0.676-0.678	0.759±0.077	0.758-0.760	0.446±0.181	0.444-0.447	∃ 0.488 - .162	0.487-0.490	0.440±0.129	0.439-0.4
	RF improve filling	0.678±0.092	0.677-0.678	0.756±0.077	0.755-0.757	0.443±0.179	0.442-0.445	0.485	0.483-0.486	0.435±0.125	0.434-0.4
	<i>p</i> value	<i>p</i> <0.	0001	<i>p</i> <0.	0001	<i>p</i> <0.	0001	- 1	0001	<i>p</i> <0.	0001
Data sampling								bmj.cor			
	No sampling	0.738±0.101	0.737-0.739	0.823±0.050	0.822-0.823	0.585±0.229	0.583-0.588	0.390±g.178	0.388-0.391	0.441±0.172	0.439-0.4
	Random over sampler	0.718±0.109	0.717-0.719	0.765±0.070	0.764-0.765	0.437±0.154	0.435-0.438	0.531±20.189	0.529-0.533	0.457±0.135	0.456-0.4
	Random under sampler	0.696±0.106	0.695-0.697	0.710±0.069	0.709-0.711	0.364±0.107	0.363-0.365	0.596 4 .161	0.594-0.597	0.441±0.109	0.440-0.4
	SMOTE over sampler	0.683±0.100	0.682-0.684	0.755±0.067	0.754-0.755	0.416±0.137	0.414-0.417	0.490-20.143	0.488-0.491	0.435±0.113	0.434-0.4
	Borderline SMOTE	0.699±0.104	0.698-0.700	0.755±0.072	0.755-0.756	0.424±0.143	0.422-0.425	0.506 ⊊ 0.143	0.505-0.508	0.446±0.115	0.445-0.4
	<i>p</i> value	<i>p</i> <0.	0001	<i>p</i> <0.	0001	<i>p</i> <0.	0001	st. pro	0001	<i>p</i> <0.0	0001
								rotected by copyright.			11

Page	13 of 45			BMJ Open			1jopen-2			
1 2 3 4 5 6	Variable selection						ıjopen-2022-061457 on 8 Sep			
7 8	No select	tion 0.702±0.109	0.702-0.703 0.758±0	.078 0.758-0.759	0.440±0.184	0.438-0.441		.187 0.492-0.494	4 0.434±0.137	0.433-0.435
9 10	Lasso sel	lection 0.713±0.105	0.712-0.713 0.761±0	.074 0.760-0.761	0.447±0.173	0.445-0.448	0.513±0	.177 0.512-0.514	4 0.448±0.128	0.447-0.449
11 12	Boruta se	election 0.706±0.103	0.705-0.707 0.766±0	. 073 0.765-0.766	0.449±0.170	0.448-0.450	0.501±	.166 0.500-0.503	3 0.450±0.127	0.449-0.451
13 14	<i>p</i> value	<i>p</i> <0.0	0001	<i>p</i> <0.0001	<i>p</i> <0.	0001	wnload	<i>p</i> <0.0001	<i>p</i> <0.	0001
 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 	206 AUC, Area under c	curve; RF, Random Fores	st; SMOTE, Synthet	ic minority ove	rsampling te	echnique.	<u>9</u> 4 by			
38 39 40 41 42 43 44 45		For p	peer review only - http:	//bmjopen.bmj.cc	om/site/about/	'guidelines.xh	guest. Protected by copyright. tml			12

3 4

6

Table 2 The	effect of different n	nachine lear	ning algorit		BMJ Open	on perform	ance (Boot	njopen-2022-061457 on 86 pine stranning			
		AU		Accu		Preci			ll rate	F1 v	alue
		Mean±SD	95%CI	Mean±SD	95%CI	Mean±SD	95%CI	Mean±S	95%CI	Mean±SD	95%CI
machine learni	ng							12. Do			
algorithms								wnload			
	AdaBoost	0.702±0.104	0.700-0.703	0.761±0.061	0.760-0.762	0.434±0.134	0.432-0.436	0.538±0.4	2 0.535-0.540	0 0.465±0.105	0.463-0.467
	Bagging	0.749±0.083	0.748-0.750	0.776±0.064	0.774-0.777	0.457±0.137	0.454-0.459	0.486±0.₽5	9 0.483-0.489	9 0.452±0.112	0.450-0.454
	Bernoulli NB	0.718±0.099	0.716-0.720	0.771±0.056	0.770-0.772	0.444±0.133	0.442-0.447	0.541±0.	1 0.538-0.543	3 0.475±0.109	0.474-0.477
	DT	0.667±0.085	0.665-0.668	0.738±0.067	0.737-0.739	0.388±0.127	0.386-0.390	0.491±0.	1 0.489-0.494	4 0.417±0.105	0.416-0.419
	Ensemble Learning	0.793±0.083	0.791-0.794	0.810±0.058	0.809-0.811	0.545±0.157	0.543-0.548	0.576±0.56	2 0.573-0.579	9 0.537±0.108	0.535-0.539
	ET	0.596±0.097	0.594-0.598	0.703±0.081	0.701-0.704	0.308±0.149	0.305-0.310	0.393±0. <u></u> 90.393±0.	6 0.390-0.390	6 0.326±0.139	0.324-0.329
	Gaussian NB	0.667±0.106	0.665-0.669	0.720±0.061	0.719-0.721	0.364±0.106	0.362-0.366	0.543±0.	3 0.541-0.54	5 0.429±0.103	0.427-0.431
	Gradient Boosting	0.718±0.100	0.716-0.720	0.783±0.060	0.782-0.784	0.487±0.161	0.484-0.490	ୁ 0.524±0.%	4 0.521-0.520	6 0.481±0.105	0.479-0.483
	KNN	0.655±0.101	0.654-0.657	0.741±0.086	0.740-0.743	0.394±0.262	0.389-0.399	0.355±0.¥	7 0.351-0.359	9 0.316±0.166	0.313-0.319
	LDA	0.724±0.097	0.722-0.725	0.770±0.065	0.769-0.772	0.457±0.149	0.454-0.459	ष्ट्र 0.561±0.9्24	1 0.558-0.564	4 0.487±0.110	0.485-0.489
	LR	0.728±0.094	0.727-0.730	0.770±0.070	0.769-0.771	0.465±0.155	0.462-0.467	ō	3 0.577-0.58.	3 0.497±0.110	0.495-0.499
		For :-		ly - http://bmj		m (cito (chore	t/auidalias	tected by copyright.			13

Page 15 of 45				BMJ Open		njopen-	
1						njopen-2022-061457	
2 3						61457	
4 5		Multinomial NB	0.727±0.099 0.725-0.728	0.753±0.071 0.752-0.754	0.450±0.170 0.447-0.453	ទ 0.570±0.ជ្ជី75 0.567-0.57	3 0.467±0.111 0.465-0.469
6 7 8		Passive Aggressive	0.686±0.094 0.684-0.688	0.701±0.087 0.699-0.703	0.358±0.119 0.355-0.360 (0.558±0.556 0.555-0.56	0 0.421±0.107 0.419-0.423
9 10		QDA	0.660±0.115 0.658-0.662	0.774±0.057 0.773-0.775	0.428±0.178 0.425-0.431	0.436±0.188 0.433-0.44	0 0.411±0.152 0.408-0.413
11 12		RF	0.742±0.088 0.741-0.744	0.792±0.075 0.791-0.793	0.534±0.194 0.531-0.538	0.430±0.5 0.427-0.43	2 0.444±0.119 0.441-0.446
13 14		SGD	0.720±0.099 0.718-0.722	0.762±0.064 0.761-0.764	0.452±0.196 0.448-0.455 ($0.507 \pm 0.503 + 0.50$	1 0.434±0.141 0.432-0.437
15 16		SVM	0.735±0.090 0.734-0.737	0.792±0.073 0.790-0.793	0.533±0.194 0.529-0.536 (0.443±0. ² 65 0.440-0.44	6 0.449±0.115 0.447-0.451
17 18 10		XGBoost	0.740±0.095 0.738-0.741	0.790±0.074 0.789-0.792	0.515±0.161 0.512-0.518	0.513±0.565 0.510-0.51	6 0.486±0.112 0.484-0.488
19 20	-	<i>p</i> value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	pg0.0001	<i>p</i> <0.0001
21 22 23	208	Bernoulli NB, Bernoulli Naï	ve Bayes; DT, Decision	Tree; ET, Extra Tree; (Gaussian NB, Gaussia	n Naïve Bayes; KN	N, K-Nearest Neighbor;
24 25	209	LDA, Latent Dirichlet Allo	cation; LR, Logistic Re	egression; Multinomial	NB, Multinomial Na	uïve Bayes; QDA, (Quadratic Discriminant
26 27	210	Analysis; SGD, Stochastic G	radient Descent; SVM, s	support vector machine.	XGBoost, eXtreme G	9 Bradient Boosting.	
28 29 30		<u> </u>	, ,			ober 30,	
30 31 32), 2024 by	
33 34							
35 36						guest. P	
37 38						Protected	
39 40						ed by c	
41 42						by copyright.	14
43 44			For peer review on	ly - http://bmjopen.bmj.cor	m/site/about/guidelines.x	html 👯	
45 46							

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25 26	
20 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
56	
57	
58	
59	

1 2

211

	AUC	accuracy	precision	recall rate	F1 value
model 1	0.9141	0.8947	0.75	0.6667	0.7059
model 2	0.9055	0.8105	0.5	0.7778	0.6087
model 3	0.9019	0.8421	0.6154	0.4444	0.5161
model 4	0.8997	0.8632	0.6316	0.6667	0.6486
model 5	0.8968	0.8316	0.5357	0.8333	0.6522

 Table 3 Predictive performance indicators of the 5 best models

212 **DISCUSSION**

213 Traditional Chinese medicine has been used for the prevention and treatment of diseases 214 for centuries ¹¹. In recent years, the application of Chinese herbal injections containing 215 Panax notoginseng saponin has become more and more common in clinical practice, while ADR often causes concerns. Studies have shown that the Chinese herbal 216 217 ingredients, traditional Chinese medicine preparation and combination medication are 218 the important factors for the ADR of Chinese herbal injections containing Panax notoginseng saponin. Drug eruption (50.5%), allergic reactions (20.4%) and 219 220 anaphylactic shock (9.7%) were the most common, and some cases were even life-221 threatening ⁵. However, the ADR monitoring methods, including spontaneous reporting 222 systems, prescription event monitoring and centralized hospital monitoring system, 223 were all reported after the event, and may even have data bias, underreporting or repeated reporting. Therefore, the realization of ADR prediction has important 224 225 significance for preventing ADR of Chinese herbal injections containing Panax 226 notoginseng saponin in clinical practice.

Page 17 of 45

BMJ Open

In our study, a nested case-control study was performed for data collection. In order to obtain the best model, we used 4 data filling, 5 data sampling and 3 variable selection methods for data processing, and combined 18 machine learning algorithms to establish 1080 ADR prediction models. By comparing the AUC, accuracy, precision, recall rate and F1 value of these models, the best one was selected to develop an ADR prediction system for the Chinese herbal injections containing Panax notoginseng saponin.

In recent years, some ADR prediction models have been developed based on data mining ⁶⁻⁹, machine learning algorithms ^{10, 12-15}, and statistical methods ¹⁶⁻¹⁸. Tangiisuran et al.¹⁶ combined univariate analysis and multivariate binary logistic regression for the identification of clinical risk factors to develop an ADR risk model. The AUC of the model at the internal and external validation stage was 0.74 and 0.73, respectively, the sensitivity was 80% and 84%, and the specificity was 55% and 43% ¹⁶. Imai et al. ¹⁰ used artificial neural networks to predict the ADR risk and made an AUC of 0.83. Compared with other studies, the model established in our study had better predictive performance (accuracy was 0.8947, precision was 0.75, the recall rate was 0.6667 and AUC was 0.914). As missing data is common in clinical practice, the methods of data filling used in our study may be advantageous for the deal with imbalanced data in clinical real-world research. More importantly, the system developed by the best model was potentially convenient for clinical application because of its' simple operation, fast calculation, and high accuracy.

1 2	
∠ २	
4	
5	
6	
7	
8	
9 10	
10	
11	
11 12 13	
14	
12 13 14 15 16 17	
16	
17	
18	
19	
20	
20 21 22 23 24 25 26 27 28 29	
22	
23	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
34 35 36 37	
36	
37 38	
38 39	
40	
41	
42	
43	
44 45	
45 46	
47	
48	
49	
50	
51	
52 53	
55 54	
55	
56	
57	
58	
59 60	
00	

1

248	It is worth noting that Hammann et al. ¹⁹ established a decision tree model based
249	on the chemical, physical, and structural properties of compounds for the prediction of
250	ADR occurrence and the model had high predictive accuracy (78.9–90.2%). However,
251	the model was difficult to interpret as it ignored the effect of pathological and
252	physiological conditions and the combination medication on ADR. This made the
253	model unlikely to be accepted by clinicians. In our study, we collected more than 80
254	factors including the patient's pathophysiological characteristics, clinical laboratory
255	results, and medication conditions. Meanwhile, the critical predictors associated with
256	the ADR were identified by the SHAP values. Although using the SHAP values as a
257	generalized approach to identify the important clinical determinants of ADR caused by
258	Chinese herbal injections containing Panax notoginseng saponin is not possible, it may
259	help generate clinical hypotheses for some specific clinical events.
260	The results of SHAP indicated that whether the patients have dermatoses will
261	significantly affect the models' predictive performance. Cutaneous ADR is one of the
262	most common adverse reactions of Panax notoginseng, such as erythema multiforme,
263	urticaria, severe erythema multiforme and acute generalized exanthematous pustulosis
264	^{20, 21} . Therefore, those patients with original dermatoses are more likely to have ADR
265	after using Panax notoginseng. In addition, we found that age and gender are related to

the occurrence of Panax notoginseng-induced ADR, which is consistent with the results
 reported by Yang et al. ²².

268 This study had some limitations. First, the small sample size of this study might

Page 19 of 45

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11 12	
•	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
42 43	
43 44	
45	
45 46	
40 47	
48	
49	
49 50	
50 51	
51	
52 53	
54 55	
55 56	
56	
57	
58 50	
59	
60	

affect the model prediction performance. Second, as the study population was all from southwest China, the results may be biased while the prediction system was applied in other medical institutions. Finally, a prospective controlled trial is required to demonstrate the accuracy of the ADR prediction system.

273 Contributors XWW, EWL and RST were involved in the conception and design of

the study. XWW drafted the article. JYZ, HC, XWS and YLW analyzed the data.

275 EWL and RST revised the manuscript. All authors gave final approval of the version

to be published. The corresponding author attests that all listed authors meet

authorship criteria and that no others meeting the criteria have been omitted. RST isthe guarantor.

Funding This study was funded by the National Natural Science Foundation of China

280 (No. 72004020), the Key Research and Development Program of Science and

281 Technology Department of Sichuan Province (No. 2019YFS0514), the Postgraduate

282 Research and Teaching Reform Project of the University of Electronic Science and

283 Technology of China (No. JYJG201919) and the Research Subject of Health

284 Commission of Sichuan Province (No. 19PJ262).

285 **Competing interests** None declared.

286 **Patient consent for publication** Not required.

287 Ethics approval Ethical approval: This study was approved by the Ethics Committee
288 of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
289 (2017-11-01).

290 **Provenance and peer review** Not commissioned; externally peer reviewed.

Page 20 of 45

BMJ Open

1	
2 3	
3 4	
5	
6	
7	
8	
9	
10 11	
12	
13	
14	
15	
16	
17 18	
18 19	
20	
21	
22	
23	
24 25	
25 26	
27	
28	
29	
30	
31 32	
32 33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

1

291	Data availability statement Data are available upon reasonable request. Data may be
292	obtained from a third party and are not publicly available. The first author
293	(7190175@uestc.edu.cn) will share any publicly available data if requested by email.
294	Supplementary material This content has been supplied by the author(s). It has not
295	been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-
296	reviewed. Any opinions or recommendations discussed are solely those of the
297	author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility
298	arising from any reliance placed on the content. Where the content includes any
299	translated material, BMJ does not warrant the accuracy and reliability of the
300	translations (including but not limited to local regulations, clinical guidelines,
301	terminology, drug names and drug dosages), and is not responsible for any error
302	and/or omissions arising from translation and adaptation or otherwise.
303	Open access This is an open access article distributed in accordance with the Creative
304	Commons Attribution Non Commercial (CC BY-NC4.0) license, which permits
305	others to distribute, remix, adapt, build upon this work non-commercially, and license
306	their derivative works on different terms, provided the original work is properly cited,
307	appropriate credit is given, any changes made indicated, and the use is non-
308	commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
309	REFERENCES
310	1 Xie W, Meng X, Zhai Y, et al. Panax Notoginseng Saponins: A Review of Its
311	Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on
312	Phytochemistry and Pharmacology. Molecules 2018; 23.

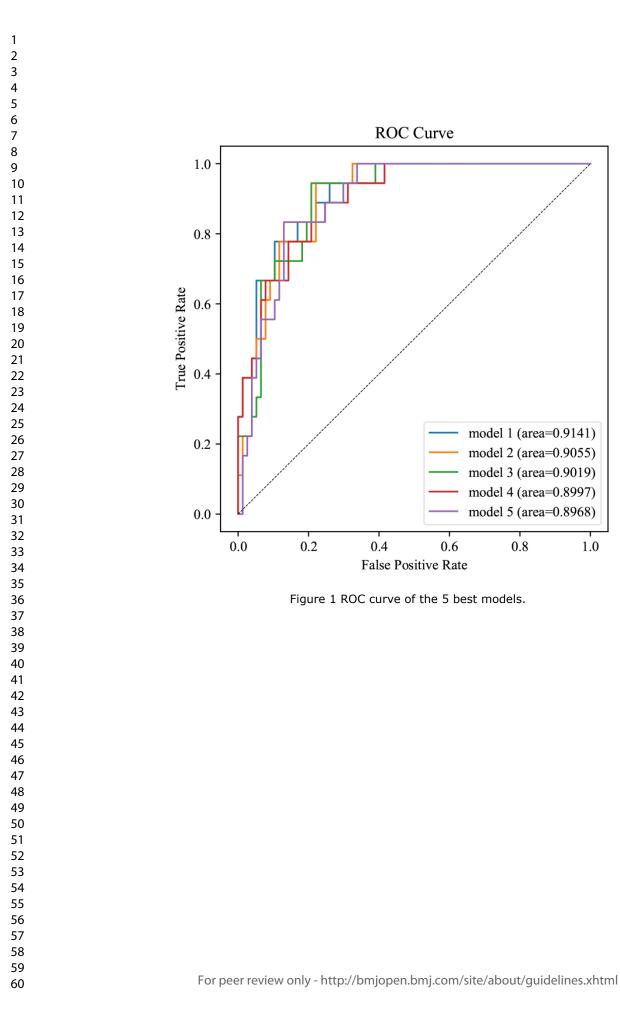
313 2 Kim JH. Pharmacological and medical applications of Panax ginseng and

BMJ Open

3 4 5	314		ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;
6 7 8	315		42:264-269.
9 10	316	3	Yang F, Ma Q, Matsabisa MG ,et al. Panax notoginseng for Cerebral
11 12 13	317		Ischemia: A Systematic Review. Am J Chin Med 2020; 48:1331-1351.
14 15 16	318	4	Qu J, Xu N, Zhang J ,et al. Panax notoginseng saponins and their applications
17 18 19	319		in nervous system disorders: a narrative review. Ann Transl Med 2020;
20 21	320		8:1525.
22 23 24	321	5	Xiang Z, Qiao T, Xiao H, et al. The anaphylactoid constituents in Xue-Sai-
25 26 27	322		Tong injection. <i>Planta Med</i> 2013; 79:1043-1050.
28 29 30	323	6	Wei L, Scott J. Association rule mining in the US Vaccine Adverse Event
31 32	324		Reporting System (VAERS). <i>Pharmacoepidemiol Drug Saf</i> 2015; 24:922-933.
33 34 35	325	7	Harpaz R, DuMouchel W, Shah NH, et al. Novel data-mining methodologies
36 37 38	326		for adverse drug event discovery and analysis. Clin Pharmacol Ther 2012;
39 40	327		91:1010-1021.
41 42 43	328	8	Sakaeda T, Tamon A, Kadoyama K, et al. Data mining of the public version of
44 45 46	329		the FDA Adverse Event Reporting System. Int J Med Sci 2013; 10:796-803.
47 48 49	330	9	Kadoyama K, Kuwahara A, Yamamori M ,et al. Hypersensitivity reactions to
50 51	331		anticancer agents: data mining of the public version of the FDA adverse event
52 53 54	332		reporting system, AERS. J Exp Clin Cancer Res 2011; 30:93.
55 56 57	333	10	Imai S, Takekuma Y, Kashiwagi H ,et al. Validation of the usefulness of
58 59 60	334		artificial neural networks for risk prediction of adverse drug reactions used for

1

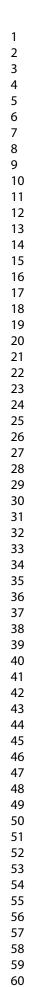
1 2			
3 4 5	335		individual patients in clinical practice. PLoS One 2020; 15:e0236789.
6 7 8	336	11	Liu SH, Chuang WC, Lam W ,et al. Safety surveillance of traditional Chinese
9 10	337		medicine: current and future. Drug Saf 2015; 38:117-128.
11 12 13	338	12	Choudhury O, Park Y, Salonidis T ,et al. Predicting Adverse Drug Reactions
14 15 16	339		on Distributed Health Data using Federated Learning. AMIA Annu Symp Proc
17 18	340		2019; <i>2019</i> :313-322.
19 20 21	341	13	Liu X, Chen H. A research framework for pharmacovigilance in health social
22 23 24	342		media: Identification and evaluation of patient adverse drug event reports. J
25 26 27	343		Biomed Inform 2015; 58:268-279.
28 29	344	14	Davis J, Costa VS, Peissig P, et al. Demand-Driven Clustering in Relational
30 31 32	345		Domains for Predicting Adverse Drug Events. Proc Int Conf Mach Learn
33 34 35	346		2012; <i>2012</i> :1287-1294.
36 37	347	15	Lee CY, Chen YP. Prediction of drug adverse events using deep learning in
38 39 40	348		pharmaceutical discovery. Brief Bioinform 2021; 22:1884-1901.
41 42 43	349	16	Tangiisuran B, Scutt G, Stevenson J, et al. Development and validation of a
44 45 46	350		risk model for predicting adverse drug reactions in older people during
47 48	351		hospital stay: Brighton Adverse Drug Reactions Risk (BADRI) model. PLoS
49 50 51	352		<i>One</i> 2014; <i>9</i> :e111254.
52 53 54	353	17	Clothier HJ, Lawrie J, Lewis G ,et al. SAEFVIC: Surveillance of adverse
55 56	354		events following immunisation (AEFI) in Victoria, Australia, 2018. Commun
57 58 59	355		Dis Intell (2018) 2020; 44.
60			

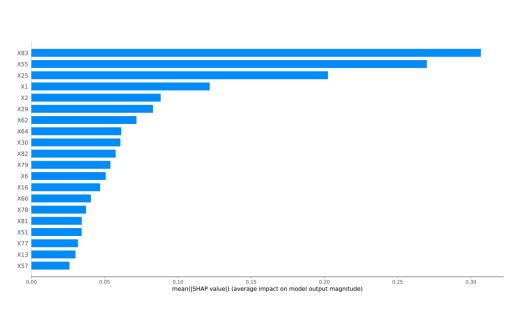

BMJ Open

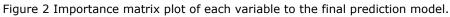
1 2			
3 4 5	356	18	Alvarez Y, Hidalgo A, Maignen F, et al. Validation of statistical signal
6 7 8	357		detection procedures in eudravigilance post-authorization data: a retrospective
9 10	358		evaluation of the potential for earlier signalling. Drug Saf 2010; 33:475-487.
11 12 13	359	19	Hammann F, Gutmann H, Vogt N ,et al. Prediction of adverse drug reactions
14 15 16	360		using decision tree modeling. Clin Pharmacol Ther 2010; 88:52-59.
17 18 19	361	20	Yan S, Xiong H, Shao F, et al. HLA-C*12:02 is strongly associated with
20 21	362		Xuesaitong-induced cutaneous adverse drug reactions. Pharmacogenomics J
22 23 24	363		2019; 19:277-285.
25 26 27	364	21	Chen WJ, Kuang YY, Li JT. Analysis on 13 Cases of Adverse Drug Reaction
28 29	365		by Xuesaitong Injection. Journal of North Pharmacy 2013; 10:16-17.
30 31 32	366	22	Yang P, Qian N, Yao D, et al. 62 Cases of Adverse Reactions in Xuesaitong
33 34 35	367		Oral Preparations. Chinese Medicine Modern Distance Education of China
36 37 38	368		2021; 19:34-36.
39 40	369		
41 42 43	370	Figur	•e 1 ROC curve of the 5 best models.
44 45 46	371	Figur	•e 2 Importance matrix plot of each variable to the final prediction model.
47 48	372	Varia	ble names were shown in Supplementary Table 2. X83, pre-treatment serum
49 50 51	373	levels	; X55, renal function; X25, dermatoses; X1, gender; X2, age; X29, dose; X62,
52 53 54	374	low-d	ensity lipoprotein; X64, hypoproteinemia; X30, anti-infective agents; X82, pre-
55 56	375	treatn	nent indicators of carcinoma; X79, hemoglobin; X6, history of allergy; X16,
57 58 59 60	376	respir	atory diseases; X66, albumin/globulin; X78, red blood cell; X81, hypersensitive

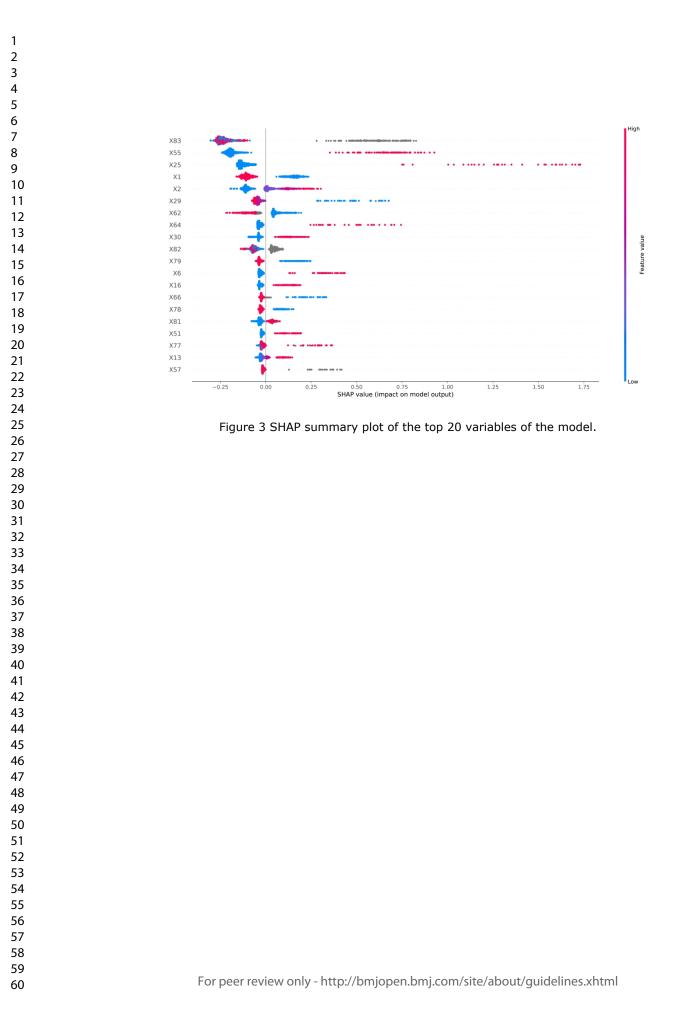
Page 24 of 45

BMJ Open

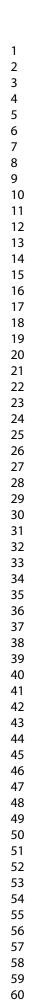

377	C-reactive protein; X51, dermatology medication; X77, eosinophils; X13, Charlson
378	comorbidity index (Score); X57, serum potassium.
379	Figure 3 SHAP summary plot of the top 20 variables of the model. Red represents
380	higher variable values, and blue represents lower variable values. Variable names
381	were shown in Supplementary Table 2. X83, pre-treatment serum levels; X55, renal
382	function; X25, dermatoses; X1, gender; X2, age; X29, dose; X62, low-density
383	lipoprotein; X64, hypoproteinemia; X30, anti-infective agents; X82, pre-treatment
384	indicators of carcinoma; X79, hemoglobin; X6, history of allergy; X16, respiratory
385	diseases; X66, albumin/globulin; X78, red blood cell; X81, hypersensitive C-reactive
386	protein; X51, dermatology medication; X77, eosinophils; X13, Charlson comorbidity
387	index (Score); X57, serum potassium.
388	Figure 4 Sample size validation. The vertical bars represent the 95% confidence
389	interval (CI) of AUC of ROC.
390	Figure 5 The development of ADR prediction system.
391	Figure 6 The operation (A) and output (B) of the ADR prediction system.




1.0


0.8

Page 26 of 45



BMJ Open: first published as 10.1136/bmjopen-2022-061457 on 8 September 2022. Downloaded from http://bmjopen.bmj.com/ on October 30, 2024 by guest. Protected by copyright.

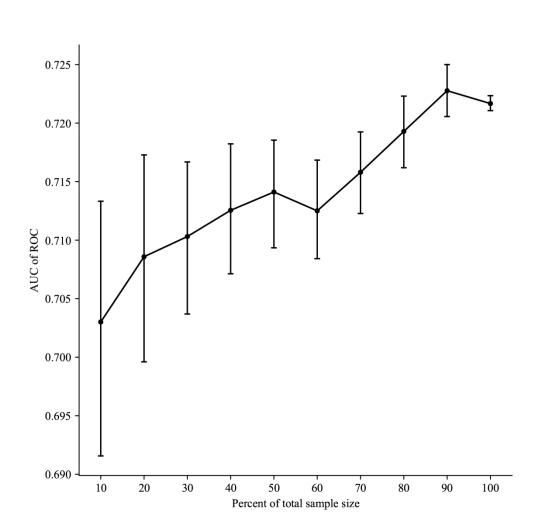


Figure 4 Sample size validation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	<image/> <complex-block><text></text></complex-block>
46 47 48 49 50	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-061457 on 8 September 2022. Downloaded from http://bmjopen.bmj.com/ on October 30, 2024 by guest. Protected by copyright.

			·		
1 2 3					
4 5					
6 7	ADR prediction system-Chinese herbal inje	ctions containing Panax notoginseng saponir	ADR prediction syste	n-Chinese herbal injections containing Panax notogins	
8 9 10 11 12 13 14	iender Made verstein in der Steiner in der Steiner in der Steiner Steiner in der Steiner Stein	Age (years) 60-7; Blod pressure Grade Ropinitory diseases Yes Digentive diseases Yes Dase (org.) 1.6 Cardiosseschar medicines Yes Domatodog medication Yes Domatodog medication Yes Domatodog medication Yes Domatodog medication Yes Asparate aminoransferane Noren Naturophil granukcyte High Eosinophils High	п 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Predicting outcome The risk of ADR is 98%. liction result can only be used for clinical reference. Delete: Continue	
15 Comm		Begin	· · · · · · · · · · · · · · · · · · ·		
17		(a)		(b)	
18 19	Figure 6 The o	peration (A) and	output (B) of the	ADR prediction syster	n.
20 21		1899x688	mm (96 x 96 DP))	
22					
23 24					
25 26					
27					
28 29					
30 31					
32					
33 34					
35 36					
37					
38 39					
40 41					
42					
43 44					
45 46					
47					
48 49					
50					
51 52					
53 54					
55					
56 57					
58 59					
60	For peer review	only - http://bmjc	pen.bmj.com/site	/about/guidelines.xht	ml

1	
2	
3	
3 4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

250(47.17) 280(52.83) 121(22.83) 193(36.42) 132(24.91)
280(52.83) 121(22.83) 193(36.42)
121(22.83) 193(36.42)
193(36.42)
193(36.42)
132(24.91)
84 (15.85)
48(9.06)
275(51.89)
175(33.02)
)
104(19.62)
190(35.85)
123(23.21)
113(21.32)
4

		njopen BMJ Open BMJ Open 2022-061457
		122-061
		457 on 8
	2 Variable assignment	0
Number	Variable	Assignment
	Adverse drug reaction	1, Yes; 0, NoImage: Constraint of the second se
X1	Gender	1, Male; 0, Female
X2	Age (years)	$1, \le 44; 2, 45 \le \text{Age} \le 59; 3, 60 \le \text{Age} \le 74; 4, \ge 75$
X3	Body mass index (BMI, kg/m ²)	$1, < 18.5; 2, 18.5 \le BMI \le 23.9; 3, \ge 24$
X4	Asians	1, Yes; 0, No
X5	Genetic family history	1, Yes; 0, No
X6	History of allergy	1, Yes; 0, No
X7	Smoking	1, Yes; 0, No
X8	Alcohol	1, Yes; 0, No
X9	Temperature (°C)	1, ≤ 44 ; 2, $45 \leq Age \leq 59$; 3, $60 \leq Age \leq 74$; 4, $\geq 75000000000000000000000000000000000000$
X10	Pulse (beats/min)	$1, < 60; 2, 60 \le Pulse \le 100, 3, > 100$
X11	Breathe (times/min)	$1, < 12; 2, 12 \le Breathe \le 20; 3, > 20$
X12	Blood pressure	0, Normal (systolic pressure ≤ 139 mmHg or diasto $\frac{3}{9}$ c pressure ≤ 89 mmHg); 1,
		Grade I (140 mmHg \leq systolic pressure \leq 159 mmHg \leq or 90 mmHg \leq diastolic
		pressure \leq 99 mmHg); 2, Grade II (160 mmHg \leq systolic pressure \leq 179 mmHg or
		100 mmHg \leq diastolic pressure \leq 109 mmHg); 3, Gade III (systolic pressure \geq 180
		mmHg or diastolic pressure ≥110 mmHg)
X13	Charlson comorbidity index (Score)	1, 0; 2, 1 or 2; 3, 3 or 4; 4, \geq 5
X14	Cardiovascular disease	1, Yes; 0, No
		ල් ය. ප් ප්
		mmHg or diastolic pressure $\geq 110 \text{ mmHg}$)for the formula of the for
		ývrigł
	For peer review on	ly - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ge 33 of 45			BMJ Open Description 1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No
			2022-0
			06145 45
			57 ON
	X15	Endocrine diseases	1, Yes; 0, No ϕ_{0}^{∞}
	X16	Respiratory diseases	1, Yes; 0, No
	X17	Nervous diseases	1, Yes; 0, No
	X18	Digestive diseases	1, Yes; 0, No
	X19	Neoplastic diseases	1, Yes; 0, No
	X20	Orthopedic diseases	1, Yes; 0, No
	X21	Genito-urinary diseases	1, Yes; 0, No
	X22	Hematopathy	1, Yes; 0, No
	X23	Oculopathy	1, Yes; 0, No
	X24	Ear-nose-throat diseases	1, Yes; 0, No
	X25	Dermatoses	1, Yes; 0, No
	X26	Immune rheumatism	1, Yes; 0, No
	X27	Other diseases	1, Yes; 0, No
	X28	Solvent	1, 0.9% sodium chloride injection; 2, 5% glucose injection; 3, Other solvents
	X29	Dose (mg)	
	X30	Anti-infective agents	1, < 1.6; 2, =1.6; 3, > 1.6 1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No
	X31	Cardiovascular medicines	1, Yes; 0, No
	X32	Medicines for digestive system	1, Yes; 0, No g
	X33	Respiratory medicines	
	X34	Nervous system medicines	1, Yes; 0, No 1, Yes; 0, No 1, Yes; 0, No ank, http://bmiapon.hmi.com/site/about/guidelings.yhtml
	X35	Medication in mental disorders	1, Yes; 0, No
			ି ପ୍ର ପ୍ର
			C C C C C C C C C C C C C C C C C C C
			vyri gł
		For peer review	only - http://bmjopen.bmj.com/site/about/guidelines.xhtml . 큐

1 2 3	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 21 22 23 24 25 26 27 28 20 20 20 20 20 20 20 20 20 20	
6 7	
8 9 10	
10	
12	
14 15 16	
17 18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
32 33	
29 30 31 32 33 34 35 36 37	
36 37	
38 39	
40 41	
42 43	
44 45	

			457 c
X36	Non-steroidal anti-inflammatory	1, Yes; 0, No	00 CC
	drugs		epter
X37	Antiallergic agent	1, Yes; 0, No	nber
X38	Genito-urinary system medicines	1, Yes; 0, No	2022
X39	Medicines for hematopathy	1, Yes; 0, No	Do
X40	Endocrine agents or hormone drugs	1, Yes; 0, No	wnloa
X41	Antineoplastic drugs	1, Yes; 0, No	aded
X42	Amino acids, vitamins, minerals or	1, Yes; 0, No	from
	other nutrition preparations		http:
X43	Regulating water, electrolyte or	1, Yes; 0, No	//bmj
	acid-base balance drugs	1, Yes; 0, No 1, Yes; 0, No	open
X44	Adjuvant agents to anesthesia or	1, Yes; 0, No	.bmj.
	anesthetics		com/
X45	Diagnostic agents	1, Yes; 0, No	on C
X46	Biological agents	1, Yes; 0, No	Octob
X47	Obstetrical-gynecological drugs	1, Yes; 0, No	er 30
X48	Stomatological preparations	1, Yes; 0, No	, 202
X49	Ophthalmic medication	1, Yes; 0, No	4 by
X50	Ear-nose-throat medication	1, Yes; 0, No	gues
X51	Dermatology medication	1, Yes; 0, No	t. Pro
X52	Other traditional Chinese medicines	1, Yes; 0, No	457 on 8 September 2022. Downloaded from http://bmjopen.bmj.com/ on October 30, 2024 by guest. Protected by

2	
3	
4	
5	
6	
6 7 8 9 10	
, 8	
9	
10	
11	
11 12	
12	
13	
14	
15	
10	
1/	
12 13 14 15 16 17 18 19	
19	
20 21 22 23 24 25 26 27 28 29	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
31	
31 32	
33	
34	
35	
36 37	
3/	
38	
39	
40	
41	
42	
43	
44	
45	

X53	Urea
X54	Serum creatinine
X55	Renal function
X56	Blood glucose
X57	Serum potassium
X58	Serum sodium
X59	Total cholesterol
X60	Triglyceride
X61	High-density lipoprotein
X62	Low-density lipoprotein
X63	Albumin
X64	Hypoproteinemia
X65	Globulin
X66	Albumin/globulin (A/G)
X67	Aspartate aminotransferase
X68	Alanine aminotransferase

or Chinese patent medicines

1, Below the normal range; 2, Within the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Glomerular filtration rate $\geq 90 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$; \bigotimes , $60 \text{ ml/(min} \cdot 1.73 \text{ m}^2) \leq$ Glomerular filtration rate $\leq 89 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$; 3, \bigotimes $0 \text{ ml/(min} \cdot 1.73 \text{ m}^2) \leq$ Glomerular filtration rate $\leq 59 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$; 4, \bigotimes $5 \text{ ml/(min} \cdot 1.73 \text{ m}^2) \leq$ Glomerular filtration rate $\leq 29 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$; 5, \bigotimes followerular filtration rate $< 15 \text{ ml/(min} \cdot 1.73 \text{ m}^2)$

ijopen-2022-061457 on 8

1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Yes; 0, No

1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range 1, Below the normal range; 2, Within the normal range; 3, Above the normal range

d by copyright.

Page 36 of 45

1	
2 3	
4	
5	
6 7	
8	
9	
10 11	
12	
12 13 14 15	
15	
16	
17 18	
19	
20	
21 22	
23	
24 25	
26	
27	
28 29	
30	
31 32	
33	
34	
35 36	
37	
38 39	
39 40	
41	
42 43	
43 44	
45	
46	

		BMJ Open BMJ Open 2022-061457 on
		n-200
		22-06
		51455
X69	Liver function	1, Less than 3 times upper limit of normal range of giver function tests (ULN of
		LFTs); 2, $3\sim5$ times ULN of LFTs; 3, More than 5 \mathbf{F} mes ULN of LFTs
X70	Total bilirubin	1, Below the normal range; 2, Within the normal range; 3, Above the normal range N
X71	Lactic dehydrogenase	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X72	Creatine kinase	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X73	White blood cell	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X74	Neutrophil granulocyte	1, Below the normal range; 2, Within the normal range \overline{B}_{ge} ; 3, Above the normal range
X75	Lymphocyte percentage	1, Below the normal range; 2, Within the normal rage; 3, Above the normal range
X76	Monocyte percentage	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X77	Eosinophils	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X78	Red blood cell	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X79	Hemoglobin	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X80	Platelet count	1, Below the normal range; 2, Within the normal range; 3, Above the normal range
X81	Hypersensitive C-reactive protein	0, Within the normal range; 1, Above the normal range
X82	Pre-treatment indicators of	0, Within the normal range; 1, Above the normal ragge
	carcinoma	er 30
X83	Pre-treatment serum levels	0, Within the normal range; 1, Above the normal range
		C gue
		ti T
		rotec
		4 by guest. Protected by copyright.
	For peer review o	nly - http://bmiopen.bmi.com/site/about/guidelines.xhtml

Table 3	Results of different variable preprocessing methods
Method	Included variables
	X1, X2, X3, X5, X7, X8, X12, X13, X14, X15, X16, X17,
	X18, X19, X20, X21, X22, X28, X29, X30, X31, X32, X33,
	X34, X35, X36, X39, X40, X41, X42, X43, X44, X45, X46,
Column deletion	X51, X52, X54, X55, X56, X57, X58, X59, X60, X61, X62,
	X63, X65, X66, X67, X68, X71, X72, X73, X74, X75, X76,
	X77, X78, X79, X80, X81, X82, X83
Lasso	X1, X2, X18, X29, X30, X31, X33, X51, X52, X54, X55,
	X65, X66, X68, X78
	X1, X2, X5, X12, X13, X16, X17, X18, X20, X29, X30,
Boruta	X31, X33, X39, X40, X51, X52, X54, X55, X63, X66, X67,
	X68, X74, X75, X77, X78, X79
T 7 ' 1 1	

Variable names were shown in Supplementary Table 2.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			BMJ Open		njopen-202	Paç
Table 4 validati		t data processing meth	ods and machine learni	ng algorithms on mode	2022-061457 on 1 prediction performan	nce (Ten-fold cross-
		AUC	Accuracy	Precision	Recall rate	F1 value
		Mean±SD 95%CI	Mean±SD 95%CI	Mean±SD 95%CI	Mean±SD 95%CI	Mean±SD 95%CI
Data filling					Downlc	
	No filling	0.868±0.099 0.864-0.87	72 0.820±0.093 0.816-0.82	3 0.772±0.190 0.765-0.779	0.720 0.720 0.254 $0.710-0.73$	0 0.729±0.217 0.721-0.73
	Simple filling	0.881±0.097 0.877-0.88	35 0.828±0.100 0.824-0.83	2 0.793±0.165 0.787-0.799	0.746	6 0.751±0.197 0.744-0.75
	RF filling	0.885±0.095 0.881-0.88	38 0.831±0.095 0.827-0.83	5 0.802±0.157 0.796-0.808	3 0.749	9 0.757±0.189 0.750-0.76
	RF improve filling	0.887±0.094 0.883-0.89	00 0.832±0.096 0.828-0.83	5 0.799±0.158 0.793-0.806	5 0.751 0.240 0.742-0.76	0 0.757±0.191 0.749-0.76
	<i>p</i> value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001 و	<i>p</i> <0.0001
Data sampling	ŗ				bmj.c	
	No sampling	0.824±0.088 0.820-0.82	28 0.832±0.050 0.830-0.83	5 0.641±0.271 0.629-0.653	3 0.399€0.197 0.391-0.40	08 0.464±0.193 0.455-0.47
	Random over sampler	0.923±0.063 0.920-0.92	25 0.858±0.085 0.854-0.86	1 0.849±0.079 0.845-0.852	2 0.872 = 0.118 0.867 - 0.87	7 0.857±0.089 0.854-0.86
	Random under sampler	0.815±0.107 0.810-0.81	9 0.732±0.104 0.728-0.73	7 0.783±0.145 0.776-0.789	$0.678 \frac{3}{2} 0.188 0.670 - 0.68$	6 0.707±0.132 0.701-0.71
	SMOTE over sampler	0.920±0.072 0.917-0.92	23 0.857±0.081 0.853-0.86	0 0.844±0.071 0.841-0.848	3 0.875≝0.125 0.869-0.88	0 0.856±0.089 0.852-0.86
	Borderline SMOTE	0.919±0.077 0.916-0.92	23 0.859±0.085 0.855-0.86	2 0.841±0.074 0.837-0.844	•	0 0.859±0.093 0.855-0.86
	<i>p</i> value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	by guest.	<i>p</i> <0.0001
Variable						
selection					Protected by c	
		For peer review of	only - http://bmjopen.bmj.cc	om/site/about/guidelines.xh	by copyright.	8

ige 39 of 45			BMJ Open		njopen-,	
					-2022-061	
					61457	
	No selection	0.870±0.105 0.867-0.8	74 0.820±0.104 0.817-0.824	0.780±0.178 0.774-0.78	9 36 0.733∰0.254 0.725-0.742	0.737±0.208 0.730-0.744
	Lasso selection	0.889±0.089 0.886-0.8	92 0.835±0.090 0.832-0.838	0.801±0.165 0.796-0.80)7 0.751 g0.240 0.743-0.759	0.758±0.196 0.752-0.765
	Boruta selection	0.881±0.094 0.878-0.8	84 0.827±0.093 0.824-0.830	0.794±0.162 0.788-0.79	09 0.741 0.236 0.733-0.749	0.750±0.191 0.744-0.757
)	<i>p</i> value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	20 22 <i>p</i> <0.0001	<i>p</i> <0.0001
machine					Dowr	
learning					nload	
algorithms					ed fro	
3	AdaBoost	0.871±0.092 0.864-0.8	79 0.813±0.093 0.806-0.820	0.784±0.136 0.773-0.79	95 0.731 <u>≢</u> 0.202 0.715-0.747	0.745±0.160 0.733-0.758
)	Bagging	0.907±0.102 0.898-0.9	15 0.854±0.101 0.846-0.863	0.805±0.158 0.793-0.81	8 0.791 0.245 0.771-0.810	0.785±0.196 0.769-0.801
)	Bernoulli NB	0.866±0.082 0.860-0.8	73 0.802±0.085 0.795-0.809	0.771±0.144 0.759-0.78	33 0.719 0.178 0.705-0.733	0.736±0.148 0.724-0.748
2	DT	0.815±0.110 0.806-0.82	24 0.805±0.089 0.797-0.812	0.773±0.158 0.760-0.78	36 0.715 0.237 0.696-0.734	0.724±0.184 0.709-0.739
5	ET	0.829±0.110 0.821-0.8	38 0.809±0.092 0.801-0.816	0.767±0.164 0.754-0.78	80 0.714 0.255 0.694-0.735	0.720±0.207 0.704-0.737
5	Gaussian NB	0.845±0.089 0.838-0.8	52 0.786±0.085 0.779-0.793	0.734±0.155 0.722-0.74	k7 0.743≩0.164 0.730-0.756	0.730±0.143 0.719-0.742
3	Gradient Boosting	0.891±0.102 0.883-0.8	99 0.841±0.099 0.833-0.849	0.822±0.149 0.810-0.83	34 0.746 0.252 0.725-0.766	0.762±0.194 0.747-0.778
)	KNN	0.896±0.084 0.890-0.9	03 0.830±0.098 0.822-0.838	0.747±0.296 0.724-0.77	71 0.687 30.381 0.656-0.717	0.674±0.326 0.648-0.700
2	LDA	0.897±0.073 0.891-0.9	03 0.835±0.081 0.829-0.842	0.805±0.117 0.796-0.81	5 0.768 0.191 0.753-0.783	0.777±0.144 0.765-0.788
3	LR	0.893±0.076 0.886-0.8	99 0.834±0.082 0.827-0.840	0.815±0.119 0.805-0.82	24 0.754 0.216 0.737-0.772	0.767±0.157 0.755-0.780
	Multinomial NB		45 0.773±0.078 0.766-0.779		Le C	
5 7 3 9	Passive Aggressive	0.836±0.098 0.828-0.84	44 0.780±0.091 0.772-0.787	0.723±0.161 0.711-0.73	ected	0.712±0.172 0.698-0.725
, ,					by copyrigh	9

Page 39 of 45

		BMJ Open		njopen-2022-061457 on	Page 4
				22-0614	
				457 or	
QDA	0.915±0.081 0.909-0.922	0.860±0.089 0.853-0.86	8 0.827±0.152 0.814-0.839	_	2 0.805±0.156 0.792-0.817
RF	0.919±0.097 0.911-0.926	0.871±0.100 0.863-0.87	9 0.843±0.154 0.831-0.850	5 0.775 g 0.268 0.753-0.79	6 0.788±0.214 0.771-0.805
SGD	0.895±0.075 0.889-0.901	0.832±0.082 0.825-0.83	9 0.803±0.197 0.787-0.819	0.710 0.287 0.687 0.733	3 0.726±0.238 0.707-0.745
SVM	0.926±0.086 0.919-0.933	0.875±0.096 0.867-0.88	3 0.858±0.144 0.847-0.870	0.776,0.271 0.754-0.79	7 0.791±0.217 0.773-0.808
XGBoost	0.922±0.092 0.914-0.929	0.869±0.100 0.861-0.87	7 0.825±0.153 0.812-0.837	7 0.810 0.229 0.792-0.823	8 0.808±0.185 0.793-0.822
<i>p</i> value	<i>p</i> <0.0001	<i>p</i> <0.0001	<i>p</i> <0.0001	ond <i>p</i> <0.0001	<i>p</i> <0.0001
-	ial NB, Multinomial Naïve Ba e. XGBoost, eXtreme Gradient		Discriminant Anarysis,	50D, a locidastic Oradi	ent Descent, 5 v w,
				024 b	
				y guest. Protected by copyright.	10

Reporting checklist for prediction model development/validation.

Based on the TRIPOD guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the TRIPODreporting guidelines, and cite them as:

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement.

 Page

 Reporting Item
 Number

 Title
 #1
 Identify the study as developing and / or validating a
 1

 multivariable prediction model, the target population, and the outcome to be predicted.
 1

 Abstract
 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		<u>#2</u>	Provide a summary of objectives, study design, setting,	2
3 4			participants, sample size, predictors, outcome, statistical	
5 6			analysis, results, and conclusions.	
7 8				
9 10	Introduction			
11 12 13		<u>#3a</u>	Explain the medical context (including whether diagnostic or	3
14 15			prognostic) and rationale for developing or validating the	
16 17			multivariable prediction model, including references to	
18 19			existing models.	
20 21				
22 23		<u>#3b</u>	Specify the objectives, including whether the study describes	4
24 25			the development or validation of the model or both.	
26 27	Mathada			
28 29	Methods			
30 31	Source of data	<u>#4a</u>	Describe the study design or source of data (e.g.,	5
32 33			randomized trial, cohort, or registry data), separately for the	
34 35			development and validation data sets, if applicable.	
36 37				_
38 39	Source of data	<u>#4b</u>	Specify the key study dates, including start of accrual; end of	5
40 41 42			accrual; and, if applicable, end of follow-up.	
42 43 44	Participants	<u>#5a</u>	Specify key elements of the study setting (e.g., primary care,	5
45 46			secondary care, general population) including number and	
47 48			location of centres.	
49 50				
51 52	Participants	<u>#5b</u>	Describe eligibility criteria for participants.	5
53 54	Participants	<u>#5c</u>	Give details of treatments received, if relevant	5
55 56		<u></u>		-
57 58				
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4	Outcome	<u>#6a</u>	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	7
5 6 7 8 9 10 11 12 13 14 15 16 17 18	Outcome	<u>#6b</u>	Report any actions to blind assessment of the outcome to be predicted.	7
	Predictors	<u>#7a</u>	Clearly define all predictors used in developing or validating	6
			the multivariable prediction model, including how and when they were measured	
19 20 21	Predictors	<u>#7b</u>	Report any actions to blind assessment of predictors for the	6
22 23			outcome and other predictors.	
24 25 26 27 28 29 30 31 32 33 34	Sample size	<u>#8</u>	Explain how the study size was arrived at.	5
	Missing data	<u>#9</u>	Describe how missing data were handled (e.g., complete-	6
			case analysis, single imputation, multiple imputation) with	
			details of any imputation method.	
35 36 37	Statistical	<u>#10a</u>	If you are developing a prediction model describe how	6
38 39	analysis methods		predictors were handled in the analyses.	
40 41 42	Statistical	<u>#10b</u>	If you are developing a prediction model, specify type of	7
42 43 44	analysis methods		model, all model-building procedures (including any	
45 46 47			predictor selection), and method for internal validation.	
48 49	Statistical	<u>#10c</u>	If you are validating a prediction model, describe how the	7
50 51 52	analysis methods		predictions were calculated.	
53 54 55	Statistical	<u>#10d</u>	Specify all measures used to assess model performance	7
56 57	analysis methods		and, if relevant, to compare multiple models.	
58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

1 2 3 4 5 6 7	Statistical analysis methods	<u>#10e</u>	If you are validating a prediction model, describe any model updating (e.g., recalibration) arising from the validation, if done
8 9 10 11	Risk groups	<u>#11</u>	Provide details on how risk groups were created, if done.
12 13	Development vs.	<u>#12</u>	For validation, identify any differences from the development
14 15 16	validation		data in setting, eligibility criteria, outcome, and predictors.
17 18 19	Results		
20 21	Participants	<u>#13a</u>	Describe the flow of participants through the study, including
22 23 24			the number of participants with and without the outcome
25 26			and, if applicable, a summary of the follow-up time. A
27 28			diagram may be helpful.
29 30 31	Participants	<u>#13b</u>	Describe the characteristics of the participants (basic
32 33			demographics, clinical features, available predictors),
34 35 36			including the number of participants with missing data for
37 38 39			predictors and outcome.
40 41	Participants	<u>#13c</u>	For validation, show a comparison with the development
42 43			data of the distribution of important variables (demographics,
44 45 46			predictors and outcome).
47 48 49	Model	<u>#14a</u>	If developing a model, specify the number of participants
50 51 52	development		and outcome events in each analysis.
53 54	Model	<u>#14b</u>	If developing a model, report the unadjusted association, if
55 56 57	development		calculated between each candidate predictor and outcome.
58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ods		updating (e.g., recalibration) arising from the validation, if	
		done	
	<u>#11</u>	Provide details on how risk groups were created, if done.	7
VS.	<u>#12</u>	For validation, identify any differences from the development	7
		data in setting, eligibility criteria, outcome, and predictors.	
	<u>#13a</u>	Describe the flow of participants through the study, including	8
		the number of participants with and without the outcome	
		and, if applicable, a summary of the follow-up time. A	
		diagram may be helpful.	
	<u>#13b</u>	Describe the characteristics of the participants (basic	8
		demographics, clinical features, available predictors),	
		including the number of participants with missing data for	
		predictors and outcome.	
	<u>#13c</u>	For validation, show a comparison with the development	8
		data of the distribution of important variables (demographics,	
		predictors and outcome).	
	<u>#14a</u>	If developing a model, specify the number of participants	9
		and outcome events in each analysis.	
	<u>#14b</u>	If developing a model, report the unadjusted association, if	9
		calculated between each candidate predictor and outcome.	
	_		
	For peer	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Model	<u>#15a</u>	If developing a model, present the full prediction model to	9
3 4	specification		allow predictions for individuals (i.e., all regression	
5 6			coefficients, and model intercept or baseline survival at a	
7 8 9			given time point).	
) 10 11				_
12 13	Model	<u>#15b</u>	If developing a prediction model, explain how to the use it.	9
14 15	specification			
16 17	Model	<u>#16</u>	Report performance measures (with CIs) for the prediction	9
18 19	performance		model.	
20 21				
22 23	Model-updating	<u>#17</u>	If validating a model, report the results from any model	9
24 25			updating, if done (i.e., model specification, model	
26 27			performance).	
28 29	Discussion			
30 31	Discussion			
32 33 34	Limitations	<u>#18</u>	Discuss any limitations of the study (such as	17
35 36			nonrepresentative sample, few events per predictor, missing	
37 38			data).	
39 40	Interpretation	#100	For validation, discuss the results with reference to	15
41 42	Interpretation	<u>#19a</u>	For validation, discuss the results with reference to	15
43 44			performance in the development data, and any other	
45 46			validation data	
47 48	Interpretation	<u>#19b</u>	Give an overall interpretation of the results, considering	15
49 50			objectives, limitations, results from similar studies, and other	
51 52 53			relevant evidence.	
54 55				
56	Implications	<u>#20</u>	Discuss the potential clinical use of the model and	16
57				
57 58 59			implications for future research	

1 2 3	Other information			
4 5 6 7	Supplementary	<u>#21</u>	Provide information about the availability of supplementary	18
	information		resources, such as study protocol, Web calculator, and data	
8 9 10 11			sets.	
11 12 13	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	18
14 15			present study.	
16 17 18	None The TRIPOD) checklis	st is distributed under the terms of the Creative Commons Attrib	ution
19 20	License CC-BY. TI	nis checł	klist can be completed online using https://www.goodreports.org	<u>/</u> , a tool
21 22 23	made by the EQU	ATOR Ne	etwork in collaboration with Penelope.ai	
24 25				
26 27 28				
20 29 30				
31 32				
33 34				
35 36 27				
37 38 39				
40 41				
42 43				
44 45				
46 47				
48 49				
50 51				
52 53				
54 55				
56 57				
58 59				
60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	