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ABSTRACT

Objective This study aimed to develop an adverse drug
reactions (ADR) antecedent prediction system using
machine learning algorithms to provide the reference for
security usage of Chinese herbal injections containing
Panax notoginseng saponin in clinical practice.

Design A nested case—control study.

Setting National Center for ADR Monitoring and the
Electronic Medical Record (EMR) system.

Participants All patients were from five medical
institutions in Sichuan Province from January 2010 to
December 2018.

Main outcomes/measures Data of patients with ADR
who used Chinese herbal injections containing Panax
notoginseng saponin were collected from the National
Center for ADR Monitoring. A nested case—control study
was used to randomly match patients without ADR from
the EMR system by the ratio of 1:4. Eighteen machine
learning algorithms were applied for the development

of ADR prediction models. Area under curve (AUC),
accuracy, precision, recall rate and F1 value were used
to evaluate the predictive performance of the model. An
ADR prediction system was established by the best model
selected from the 1080 models.

Results A total of 530 patients from five medical
institutions were included, and 1080 ADR prediction
models were developed. Among these models, the AUC of
the best capable one was 0.9141 and the accuracy was
0.8947. According to the best model, a prediction system,
which can provide early identification of patients at risk
for the ADR of Panax notoginseng saponin, has been
established.

Gonclusion The prediction system developed based

on the machine learning model in this study had good
predictive performance and potential clinical application.

INTRODUCTION

Panax notoginseng saponins, as the main
ingredients of Panax notoginseng (Buck.)
F.H.Chen, has been widely used in the disease
therapy of nervous system and cardiocerebral
vascular system.'™ High frequency of adverse

STRENGTHS AND LIMITATIONS OF THIS STUDY

= To the best of our knowledge, this study was the first
to develop an adverse drug reaction (ADR) predic-
tion system for Chinese herbal injection containing
Panax notoginseng saponin using machine learning.

= Data of patients with ADR came from the National
Center for Adverse Drug Reaction Monitoring, which
is highly representative.

= In order to obtain the best model, the data pro-
cessing adopted 4 data filling, 5 data sampling, 3
variable selection methods and 18 machine learning
algorithms were applied for model establishment.

= The area under curve, accuracy, precision, recall
rate and F1 value were used to evaluate the predic-
tive performance of the model.

= As the study population was all from southwest
China, the results may be biased while the prediction
system was applied in other medical institutions.

drug reactions (ADR) in Chinese herbal
containing Panax notoginseng saponin has
received widespread attention. Among these
ADR, about 69.57% were caused by injections,
mainly manifested as drug eruption (50.5%),
allergic reaction (20.4%) and anaphylactic
shock (9.7%), which can be life-threatening
in severe cases.”

At present, ADR is mainly monitored by
spontaneous reporting system, case—control
study, cohort study, prescription event moni-
toring and centralised hospital monitoring
system. However, most of these methods
have obvious hysteresis. Therefore, there
is an increasing need to develop an ADR
antecedent prediction system to prevent the
occurrence of ADR in Chinese herbal injec-
tions containing Panax notoginseng saponin.

Machine learning, the core technology
of artificial intelligence, is commonly used
to build prediction models. In recent years,
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some prediction models for ADR have been estab-
lished.”"” Based on a clustering method for the postpro-
cessing of association rules, Wei and Scott® developed
an application of stepwise association rule mining to
identify the associations between vaccine and multiple
adverse events. In addition, Imai et al’® used artificial
neural networks to evaluate vancomycin-induced nephro-
toxicity. However, small sample size, incomplete patient
information and unsatisfactory predictive performance
restrict the application of ADR prediction models in clin-
ical practice. In view of these challenges, this study aimed
to develop an ADR prediction system of Chinese herbal
injections containing Panax notoginseng saponin based
on machine learning algorithms and provide reference
for clinical ADR management and prevention.

METHODS

Data collection

Patients with ADR who used Chinese herbal injections
containing Panax notoginseng included in this study
were from the National Center for Adverse Drug Reac-
tion Monitoring reported by five hospitals in Sichuan
Province from January 2010 to December 2018. Then, a
nested case—control study was used to randomly match
patients without ADR from the Electronic Medical
Record system of the five medical institutions. The ratio
of patients with ADR to those without ADR was 1:4. For
multiple lab results, in order to facilitate clinical appli-
cation, we selected the last results of patients before the
usage of medication. And for multiple admissions, all
patients were included according to their first admission.

Data cleaning

Variable assignment

Binary-state variables were directly assigned values of 0
or 1. According to whether in the normal range, clinical
laboratory variables were assigned values of 1, 2 and 3 (1,
below the normal range; 2, within the normal range and
3, above the normal range).

Column deletion
Variables with missing data >90%, or a single category
>90%, or the coefficient of variation <0.1 were deleted.

Data filling

There are four ways to data filling. No filling: retained the
original data. Simple filling: missing data of continuous
variables replaced by the mean or median and categor-
ical variables by the mode. Random Forest (RF) filling:
used the RF model to predict and replace the missing
data directly. RF improve filling: ordered variables based
on the number of missing data that were replaced by RF
filling next.

Data sampling

No sampling: built models from the original data.
Random over sampler: randomly replicated the data of
fewer categories to match the sample size to that of more

categories. Random under sampler: deleted the data
of more categories to match the sample size to that of
fewer categories. Synthetic minority oversampling tech-
nique (SMOTE) over sampler: synthesise new data from
a small amount of original data. Borderline SMOTE over
sampler: synthesise new data from borderline data.

Variable selection
No variable selection or use Lasso or Boruta for variable
selection.

Model establishment

Through different data filling, data sampling and vari-
able selection, 60 data sets were obtained. Eighteen
machine learning algorithms, including AdaBoost,
Bagging, Bernoulli Naive Bayes, Decision Tree, Extra
Tree, Gaussian Naive Bayes, Gradient Boosting, K-Nearest
Neighbour, Latent Dirichlet Allocation, Logistic Regres-
sion, Multinomial Naive Bayes, Passive Aggressive,
Quadratic Discriminant Analysis, RF, Stochastic Gradient
Descent, Support Vector Machine, eXtreme Gradient
Boosting and Ensemble Learning, were used to build
models.

The model establishment was as follows. The data
were randomly divided into a training set and a test set
by the ratio of 8:2. The training set was used to build
models, and the test set was used to evaluate the predic-
tive performance of the models. Ten-fold cross-validation
on the training set was applied for internal validation
of the model, and 200 Bootstrapping samples from the
test set for the evaluation of the impact of different data
processing methods or machine learning algorithms
on model predictive performance. Ensemble learning
models were developed by five machine learning algo-
rithms with the largest area under curve (AUC) on each
data set.

Model evaluation

We used the AUC, accuracy, precision, recall rate and
FI value to evaluate the predictive performance of the
model. Five models with the largest AUC were compared,
and the best model was selected to develop an ADR
prediction system of Chinese herbal injections containing
Panax notoginseng saponin. SHapley Additive exPlana-
tions (SHAP) helped to explain the contribution of vari-
ables to the model.

Sample size assessment

To evaluate the influence of different sample sizes on
model predictive performance, randomly extracted 10%,
20%, 30% to 100% subsets from the training set by Boot-
strapping. The 10 subsets were used to establish models,
respectively. Repeated the procedure 100 times and the
AUC, calculated from the testing set, was used for sample
size examination.

Patient and public involvement
Patients and/or the public were not directly involved in
this study.
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Table 3 Predictive performance indicators of the five best models

AUC Accuracy Precision Recall rate F1 value
Model 1 0.9141 0.8947 0.75 0.6667 0.7059
Model 2 0.9055 0.8105 0.5 0.7778 0.6087
Model 3 0.9019 0.8421 0.6154 0.4444 0.5161
Model 4 0.8997 0.8632 0.6316 0.6667 0.6486
Model 5 0.8968 0.8316 0.5357 0.8333 0.6522

AUC, area under curve.

Statistical analysis

Categorical variables were expressed as counts and
percentages and continuous variables as mean+SD. Anal-
ysis of variance will be used if the data were normally
distributed and the variances were equal, otherwise,
Kruskal-Wallis test will be used. p value <0.05 was consid-
ered statistically significant. Hypothesis testing and
models building were implemented using the stats and
sklearn packages in Python (V.3.8), respectively.

RESULTS

Research population

A total of 530 patients were enrolled in this study, of
which 106 patients had ADR. The patients included 250
(47.17%) men and 280 (52.83%) women. The demo-
graphic and clinical characteristics of the patients are
shown in online supplemental table 1.

Data cleaning
The results of 83 variables assignment are shown in
online supplemental table 2. After the column deletion,

ROC Curve
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Figure 1 ROC curve of the five best models. ROC, receiver

operating characteristic.

63 variables were included in the following study (online
supplemental table 3). Then, four data filling methods
were used for replacing the 1290 (3.86%) missing data.
We used Lasso or Boruta for variable selection, and the
results are shown in online supplemental table 3. Using
four data filling, five data sampling and three variable
selection methods for data processing, respectively, 60
data sets were obtained.

Model establishment

A total of 1080 prediction models were established by
18 machine learning algorithms and 60 data sets. The
results of 10-fold cross-validation are shown in online
supplemental table 4. Using 200 Bootstrapping samples
from the test set to evaluate the impact of different data
processing methods or machine learning algorithms on
model predictive performance. The results showed that
differences of model predictive performance exist by
different data filling, data sampling, variable selection
(table 1) and machine learning algorithms (table 2). The
ensemble learning model had the best performance with
an AUC of 0.793+0.083 (table 2).

Figure 2 Importance matrix plot of each variable to the
final prediction model. Variable names are shown in online
supplemental table 2). X83, pre-treatment serum levels; X55,
renal function; X25, dermatoses; X1, gender; X2, age; X29,
dose; X62, low-density lipoprotein; X64, hypoproteinemia;
X30, anti-infective agents; X82, pre-treatment indicators of
carcinoma; X79, haemoglobin; X6, history of allergy; X16,
respiratory diseases; X66, alboumin/globulin; X78, red blood
cell; X81, hypersensitive C reactive protein; X51, dermatology
medication; X77, eosinophils; X13, Charlson comorbidity
index (Score); X57, serum potassium.
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Figure 3 SHAP summary plot of the top 20 variables

of the model. Red represents higher variable values, and
blue represents lower variable values. Variable names are
shown in online supplemental table 2). X83, pre-treatment
serum levels; X55, renal function; X25, dermatoses; X1,
gender; X2, age; X29, dose; X62, low-density lipoprotein;
X64, hypoproteinemia; X30, anti-infective agents; X82, pre-
treatment indicators of carcinoma; X79, haemoglobin; X6,
history of allergy; X16, respiratory diseases; X66, albumin/
globulin; X78, red blood cell; X81, hypersensitive C reactive
protein; X51, dermatology medication; X77, eosinophils; X13,
Charlson comorbidity index (Score); X57, serum potassium.
SHAP, SHapley Additive exPlanations.

Model evaluation

The AUC, accuracy, precision, recall rate and F1 value
were used to evaluate the performance of the model.
The best five models were selected and model 1 had the
best performance with an AUC of 0.9141 (table 3). The
receiver operating characteristic curve of the five best
models is shown in figure 1.
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Figure 4 Sample size validation. The vertical bars represent

the 95% CI of AUC of ROC. AUC, area under curve; ROC,

receiver operating characteristic.

Model interpretation

The importance of each variable to the final predic-
tion model is shown in figure 2. The result showed that
pretreatment serum levels, renal function, dermatoses,
gender and age were the top five most important vari-
ables for the model. We used the SHAP value to explain
the contribution of the variables to the model, and the
SHAP value of the top 20 is shown in figure 3. This plot
explains how high and low variable values were in relation
to SHAP values. For the prediction model, the higher the
SHAP value of a variable, the more likely ADR occurs.

Sample size assessment

With the continuously increased size of sample data, the
AUC values of the testing sets continued to increase,
which shows a sufficient sample size included in this study
(figure 4).

Develop an ADR prediction system for Panax notoginseng
saponin

According to the best model, a prediction system for the
ADR of Panax notoginseng saponin has been developed
and we had obtained the software copyright. The develop-
ment of the ADR prediction system is shown in figure 5.
The operation and output of the system are shown in
figure 6.

DISCUSSION

Traditional Chinese medicine has been used for the
prevention and treatment of diseases for centuries.'
In recent years, the application of Chinese herbal
injections containing Panax notoginseng saponin has
become more and more common in clinical practice,
while ADR often causes concerns. Studies have shown
that the Chinese herbal ingredients, traditional Chinese
medicine preparation and combination medication are
the important factors for the ADR of Chinese herbal
injections containing Panax notoginseng saponin. Drug
eruption (50.5%), allergic reactions (20.4%) and anaphy-
lactic shock (9.7%) were the most common, and some
cases were even life threatening.5 However, the ADR
monitoring methods, including spontaneous reporting
systems, prescription event monitoring and centralised
hospital monitoring system, were all reported after the
event and may even have data bias, underreporting or
repeated reporting. Therefore, the realisation of ADR
prediction has important significance for preventing
ADR of Chinese herbal injections containing Panax noto-
ginseng saponin in clinical practice.

In our study, a nested case—control study was performed
for data collection. In order to obtain the best model, we
used four data filling, five data sampling and three vari-
able selection methods for data processing and combined
18 machine learning algorithms to establish 1080 ADR
prediction models. By comparing the AUC, accuracy,
precision, recall rate and F1 value of these models, the
best one was selected to develop an ADR prediction system
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e —— ADR prediction system

Figure 5 The development of ADR prediction system. ADR, adverse drug reaction; AUC, area under curve; DT, Decision Tree;
ET, Extra Tree; FN. false negative; FP, false positive; KNN, K-Nearest Neighbour; RF, Random Forest; TP, true positive; TN, true,

negative.

for the Chinese herbal injections containing Panax noto-
ginseng saponin.

In recentyears, some ADR prediction models have been
developed based on data mining,”” machine learning
algorithms'’'*'® and statistical methods.'*™"® Tangiisuran
et al'® combined univariate analysis and multivariate
binary logistic regression for the identification of clinical
risk factors to develop an ADR risk model. The AUC of
the model at the internal and external validation stage
was 0.74 and 0.73, respectively, the sensitivity was 80% and
84%, and the specificity was 55% and 43%.'° Imai et al'
used artificial neural networks to predict the ADR risk
and made an AUC of 0.83. Compared with other studies,
the model established in our study had better predictive
performance (accuracy was 0.8947, precision was 0.75,
the recall rate was 0.6667 and AUC was 0.914). As missing
data are common in clinical practice, the methods of data
filling used in our study may be advantageous for the deal
with imbalanced data in clinical real-world research. More
importantly, the system developed by the best model was
potentially convenient for clinical application because of
its’ simple operation, fast calculation and high accuracy.

It is worth noting that Hammann et al'” established a
decision tree model based on the chemical, physical and
structural properties of compounds for the prediction of
ADR occurrence and the model had high predictive accu-
racy (78.9-90.2%). However, the model was difficult to
interpret as it ignored the effect of pathological and phys-
iological conditions and the combination medication on
ADR. This made the model unlikely to be accepted by

)

Figure 6 The operation (A) and output (B) of the ADR
prediction system. ADR, adverse drug reaction.

clinicians. In our study, we collected more than 80 factors
including the patient’s pathophysiological characteris-
tics, clinical laboratory results and medication condi-
tions. Meanwhile, the critical predictors associated with
the ADR were identified by the SHAP values. Although
using the SHAP values as a generalised approach to iden-
tify the important clinical determinants of ADR caused
by Chinese herbal injections containing Panax notogin-
seng saponin is not possible, it may help generate clinical
hypotheses for some specific clinical events.

The results of SHAP indicated that whether the
patients have dermatoses will significantly affect the
models’ predictive performance. Cutaneous ADR is one
of the most common adverse reactions of Panax noto-
ginseng, such as erythema multiforme, urticaria, severe
erythema multiforme and acute generalised exanthem-
atous pustulosis.20 2 Therefore, those patients with
original dermatoses are more likely to have ADR after
using Panax notoginseng. In addition, we found that
age and gender are related to the occurrence of Panax
notoginseng-induced ADR, which is consistent with the
results reported by Yang et al®

This study had some limitations. First, the small sample
size of this study might affect the model prediction
performance. Second, as the study population was all
from southwest China, the results may be biased while the
prediction system was applied in other medical institu-
tions. Finally, a prospective controlled trial is required to
demonstrate the accuracy of the ADR prediction system.
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