

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Multimorbidity patterns and the relation to self-rated health among older Japanese people: a nationwide cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063729
Article Type:	Original research
Date Submitted by the Author:	11-Apr-2022
Complete List of Authors:	Honda, Yuki; Hamamatsu University School of Medicine, Department of Community Health and Preventive Medicine; Seirei Hamamatsu General Hospital, Department of General Internal Medicine Nakamura, Mieko; Hamamatsu University School of Medicine, Department of Community Health and Preventive Medicine Aoki, Takuya; The Jikei University School of Medicine, Division of Clinical Epidemiology, Research Center for Medical Sciences Ojima, Toshiyuki; Hamamatsu University School of Medicine, Department of Community Health and Preventive Medicine
Keywords:	EPIDEMIOLOGY, GENERAL MEDICINE (see Internal Medicine), GERIATRIC MEDICINE, PRIMARY CARE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Multimorbidity patterns and the relation to self-rated health among older Japanese people: a nationwide cross-sectional study

Yuki Honda,^{1, 2} MD, Mieko Nakamura,¹ MD, PhD, Takuya Aoki,³ MD, PhD, MMA, and Toshiyuki Ojima,¹ MD, PhD

¹ Department of Community Health and Preventive Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan

² Department of General Internal Medicine, Seirei Hamamatsu General Hospital, Shizuoka, Japan

³ Division of Clinical Epidemiology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.

Corresponding author: Yuki Honda, MD

Department of Community Health and Preventive Medicine, Hamamatsu University School of

Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.

Tel: +81-53-435-2333. Fax: +81-53-435-2341. E-mail: D20027@hama-med.ac.jp

Word count: 3,674 words

Keywords: multimorbidity, multimorbidity pattern, self-rated health

ABSTRACT

Objectives: Classifying individuals into multimorbidity patterns can be useful to identify the target population with poorer clinical outcomes. Self-rated health (SRH) is one of the core outcomes in multimorbidity patients. Although studies have reported that multimorbidity is associated with poor SRH, whether certain patterns have stronger associations remains unknown. Therefore, this study aimed to identify the prevalence and patterns of multimorbidity and investigate the association between multimorbidity patterns and SRH in an older Japanese population.

Design: Cross-sectional study

Setting: Data were obtained from the 2013 Comprehensive Survey of Living Conditions, a nationally representative survey of the general Japanese population.

Participants: This study examined 23,730 participants aged ≥ 65 years who were not hospitalised or institutionalised.

Primary outcome measure: Poor SRH was defined as choosing 'not very good' or 'bad' from five options: 'excellent', 'fairly good', 'average', 'not very good', and 'bad'.

Results: The prevalence of multimorbidity was 19.5% in participants aged \geq 20 years and 40.9% in those aged \geq 65 years. The prevalence of poor SRH was 23.8% among older participants. Three multimorbidity patterns were identified by exploratory factor analysis: i) degenerative/mental health, ii) malignant/digestive/urologic/haematologic, and iii)

BMJ Open

cardiovascular/metabolic. Multivariable modified Poisson regression analysis revealed that high malignant/digestive/urologic/haematologic, degenerative/mental health, and cardiovascular/metabolic pattern scores, corresponding to the number of affected body systems in each pattern, were significantly associated with poor SRH [adjusted risk ratio (aRR) = 1.68, 95% confidence interval (CI): 1.60-1.76, aRR = 1.63, 95% CI: 1.58-1.69; and aRR = 1.31, 95% CI: 1.26-1.36, respectively]. When including the Kessler 6 score, a screening scale for depression, as a covariate in the analysis, the association between each multimorbidity pattern score and poor SRH decreased.

Conclusions: Malignant/digestive/urologic/haematologic and degenerative/mental health patterns may be associated with a high risk for poor SRH. Further research should focus on interventions to improve SRH in multimorbidity patients.

Strengths and limitations of this study

- This study reports the prevalence and patterns of multimorbidity, which is important in an ageing society, based on nationally representative data randomly selected from the general population in Japan.
- This is the first report to investigate associations between certain multimorbidity patterns and SRH.
- Health care professionals can recognise multimorbidity patients at high risk for poor

SRH and consider possible interventions.

- Because of the study's cross-sectional design, it was impossible to determine whether there was a causal relationship between multimorbidity patterns and poor SRH.
- Because chronic diseases were examined using self-report questionnaires, the prevalence of chronic diseases might be underestimated or conditions might be misclassified.

INTRODUCTION

Multimorbidity is defined as the co-occurrence of two or more chronic conditions within a person and is common in older people, requiring individualised management. In Europe, North America, and Australia, the prevalence of multimorbidity was reported as approximately 10-50% in individuals aged 20-65 years and 70-80% in those aged \geq 65 years.[1] A study from Japan showed similar results, with a prevalence of multimorbidity of 29.9% for those aged \geq 18 years and 62.8% for those aged \geq 65 years.[2] However, the prevalence of multimorbidity varies widely from a few percent to 80% among older people in China[3] and is approximately 20% among adults in South Korea.[4] Multimorbidity is associated with several health care outcomes, including mortality, hospitalisation, functional limitations, and health care utilisation and costs.[5] Furthermore, the management of multimorbidity is difficult because applying a combination of individual clinical practice guidelines for each disease to

 multimorbidity patients may increase the treatment burden and negatively affect the patients.[6] Multimorbidity is highly complex and heterogeneous, with various disease combinations, and the guidelines for multimorbidity recommend individualised management.[7]

Multimorbidity patterns and their association with health care outcomes have been the focus of much attention. A systematic review of 51 studies showed that mental health and cardiometabolic patterns were the two most replicable multimorbidity patterns based on specific combinations of conditions.[8] In a study of 3,256 Japanese general people, five multimorbidity patterns were identified: cardiovascular/renal/metabolic, neuro/psychiatric, skeletal/articular/digestive, respiratory/dermal, and malignant/digestive/urologic.[2] Furthermore, previous studies have reported associations between certain multimorbidity patterns and clinical outcomes, such as mortality,[9] functional ability,[10] and reduced health-related quality of life.[11] In caring for patients with multimorbidity, classifying individuals into multimorbidity patterns can be useful in identifying the target population with poorer clinical outcomes.

Self-rated health (SRH), the subjective perception of an individual's overall health, is a simple and powerful predictor of outcomes, such as mortality[12] and health care expenditure.[13] SRH is also one of the core outcomes in patients with multimorbidity.[14] Although several studies have shown that multimorbidity is associated with poor SRH,[15,[16]

it is unknown whether certain multimorbidity patterns are associated with poor SRH.

Therefore, the present study aimed i) to identify the prevalence of multimorbidity and multimorbidity patterns and ii) to investigate the association between multimorbidity patterns and poor SRH in the older population in Japan using large nationwide data from the 2013 Comprehensive Survey of Living Conditions (CSLC). We focused on the older population in this study because stratifying multimorbidity patterns by age group is recommended to better understand the evolution of multimorbidity over a lifespan.[8]

METHODS

ODS Design, setting, and participants

In this nationwide cross-sectional study, we used data from the CSLC conducted by the Ministry of Health, Labour, and Welfare (MHLW) of the Japanese government in June 2013.[17] The CSLC is a nationwide repeated cross-sectional survey of households and household members. In 2013, the CSLC covered all households and household members in 5,530 districts stratified and randomly selected from the census tracts. Trained investigators visited households to distribute and collect self-administered questionnaires. The survey items included household questionnaire that inquiring about sex, age, educational level, and work status as well as health questionnaire that inquiring about health conditions, difficulties in daily life, and the status of medical check-ups. The MHLW provided anonymised data from the

 CSLC for 97,345 individuals in 2013.

For investigating the prevalence of multimorbidity, we excluded individuals who were aged <20 years or had missing age data and those who were hospitalised, institutionalised, or had missing residence data at the time of the survey because they were not included for the questions on health conditions. In the analysis of multimorbidity patterns, we excluded those aged <65 years because we wanted to investigate multimorbidity patterns in older people. Finally, we excluded individuals with missing SRH data from the analysis of the association between multimorbidity patterns and poor SRH.

Keyle

Measures

Chronic health conditions

In the CSLC survey, participants chose from 42 options about health conditions for which they were attending medical institutions. The options included diabetes mellitus, obesity, dyslipidaemia, thyroid diseases, depression and other mental disorders, dementia, Parkinson's disease, other nervous system diseases, eye diseases, ear diseases, hypertension, stroke, angina pectoris or myocardial infarction, other circulatory system diseases, acute nasopharyngitis, allergic rhinitis, chronic obstructive pulmonary disease, asthma, other respiratory system diseases, stomach and duodenal diseases, liver and gallbladder diseases, other digestive system diseases, dental diseases, atopic dermatitis, other skin diseases, gout, rheumatoid arthritis, Page 9 of 37

1

BMJ Open

8

2	
J ⊿	
5	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
-+U //1	
41	
42	
45	
44 45	
45 46	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

arthropathy, stiff neck, back pain, osteoporosis, kidney diseases, benign prostatic hyperplasia, perimenopausal or postmenopausal disorders, fracture, injury or burn other than fracture, anaemia and other blood diseases, malignancies, pregnancy or puerperium, infertility, others, and unknown. We used 34 conditions after excluding eight conditions: acute nasopharyngitis, dental diseases, fracture, injury or burn other than fracture, pregnancy or puerperium, infertility, others, and unknown, as they were not considered chronic conditions. For individuals aged ≥ 65 years, 33 chronic conditions were included because none of the participants reported perimenopausal or postmenopausal disorders. To investigate multimorbidity patterns, 33 chronic diseases were grouped into 13 body system-dependent clusters based on International Classification of Diseases (ICD)-10 chapters: malignancies, haematologic diseases (anaemia and other blood diseases), endocrine and metabolic diseases (diabetes mellitus, obesity, dyslipidaemia, and thyroid diseases), mental disorders (depression and other mental disorders), nervous system diseases (dementia, Parkinson's disease, and other nervous system diseases), eye diseases, ear diseases, circulatory system diseases (hypertension, stroke, angina pectoris or myocardial infarction, and other circulatory system diseases), respiratory system diseases (allergic rhinitis, chronic obstructive pulmonary disease, asthma, and other respiratory system diseases), digestive system diseases (stomach and duodenal diseases, liver and gallbladder diseases, and other digestive system diseases), skin diseases (atopic dermatitis and other skin diseases), musculoskeletal system diseases (gout, rheumatoid arthritis, arthropathy, stiff neck,

> back pain, and osteoporosis), and urinary system diseases (kidney diseases and benign prostatic hyperplasia). The reason for this grouping was that it was difficult to treat 'other' diseases, such as other neurological diseases, when analysing multimorbidity patterns. Assessment of multimorbidity by grouping conditions based on body systems, such as complex multimorbidity that can identify patients needing complex healthcare interventions rather than conventional multimorbidity, could be useful.[18] In addition, since the multimorbidity patterns in the previous studies were mostly classified by organ systems, [2, 8, 19] we thought that grouping by organ system in advance would not have a significant effect on the pattern composition.

> We defined multimorbidity as the coexistence of ≥ 2 chronic health conditions out of 34 conditions and complex multimorbidity as the presence of ≥ 3 affected body systems out of 13 systems based on the ICD-10 chapters within one person.

Self-rated health

Data on SRH were obtained through the question 'What is your present general health status?' Participants chose from five options: 'excellent', 'fairly good', 'average', 'not very good', and 'bad'. Those who chose 'excellent', 'fairly good', or 'average' were regarded as being in a 'fine SRH' condition, whereas those who chose 'not very good' or 'bad' were regarded as being in a 'poor SRH' condition. The distribution of responses to the five scale

BMJ Open

items differs depending on the country owing to cultural differences. When dividing the five scale items into two values, it is common in Europe and the United States to classify the middle 'average' or 'good' as 'poor SRH',[20] whereas in Japan and Korea, it is common to classify 'average' or 'good' as 'fine SRH'.[21, 22]

Covariates

Previous studies have reported that older age, female sex, and lower educational levels are associated with poor SRH.[23] An incremental association between depressive symptoms and multimorbidity with SRH has also been reported.[20, 24] Therefore, we used age, sex, educational level, and Kessler 6 (K6) score[25, 26] as covariates. Data on age were provided in five-year categories. Data on educational level were divided into three categories: less than high school, high school, and more than high school. The Japanese version of the K6 scale of psychological distress is a validated screening scale for depression and anxiety that consists of six questions answered on a scale of 0-4, with a total score of 0-24.[27] We classified the scores into three categories: 0-4 (normal), 5-12 (psychological distress), and 13-24 (severe mental illness).[28]

Statistical analysis

We applied a two-step procedure to determine the extent to which multimorbidity

patterns are associated with poor SRH.

Identification of multimorbidity patterns: Multimorbidity patterns were determined using exploratory factor analysis based on polychoric correlations. We used 13 body systemdependent clusters grouped into 33 chronic health conditions, which were coded as dichotomous variables. We applied the maximum likelihood method and promax rotation. The number of factors was determined based on a parallel analysis. A factor loading greater than 0.30 is considered meaningful and was used as the criterion for item selection. In addition, multimorbidity patterns were also determined based on clinical plausibility, as assessed by two primary care physicians (YH and TA).

Associations between multimorbidity patterns and poor SRH: For each participant, a multimorbidity pattern score was calculated for each identified pattern. These scores correspond to the number of affected body system-dependent clusters in each pattern.[11] Modified Poisson regression analyses (i.e. Poisson regression with robust error variance)[29] were conducted to investigate the association between each multimorbidity pattern score and poor SRH. The following possible confounding variables were included as covariates in the analyses: age, sex, educational level, and K6 score. Each multimorbidity pattern score was individually included in the model to avoid multicollinearity. We also analysed the association between a simple count of affected body systems, regardless of multimorbidity pattern, and poor SRH. Missing values for covariates were analysed as missing categories. As a sensitivity

 analysis, we also performed modified Poisson regression analyses after handling missing data with multiple imputations using a fully conditional specification. We created and analysed 100 multiple-imputed datasets.

All P-values were two-tailed, and statistical significance was set at P < 0.05. We used IBM SPSS Statistics 28.0 (IBM Japan, Tokyo, Japan) and R 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria) for the analysis.

Ethics

Ethical approval was not required for this study because it involved a secondary analysis of the national surveillance data that did not contain any personally identifiable information. According to Article 36 of Japan's Statistics Act, anonymised data from the CSLC can be used for scientific research after approval by the MHLW of Japan.

Patient and public involvement

No patients or public were involved.

RESULTS

Figure shows a flowchart of the participants. The descriptive statistics of multimorbidity included 77,120 participants, factor analysis to identify multimorbidity patterns

included 23,730 participants, and analyses to investigate the association between multimorbidity patterns and poor SRH included 23,340 participants.

The prevalence of multimorbidity was 20% in participants aged \geq 20 years, 41% in those aged \geq 65 years, and 48% in those aged \geq 75 years. The prevalence of complex multimorbidity was 6.5% in participants aged \geq 20 years, 16% in those aged \geq 65 years, and 20% in those aged \geq 75 years.

We conducted a parallel analysis to examine the maximum number of factors for exploratory factor analysis to identify multimorbidity patterns and a seven-factor solution was suggested. After factor analyses using two- to seven-factor solutions, a four-factor solution was adopted because the multimorbidity pattern was the most clinically plausible and consistent with previous reports. Table 1 shows the factor loadings for the four-factor solution following an exploratory factor analysis in older participants who were not hospitalised or institutionalised in care facilities (N = 23,730).

Table 1. Factor loadings for the four-factor solution following an exploratory factor analysis in older participants (N = 23,730)

Chronic conditions (ICD-10 chapter no)	No. of affected	Factor 1	Factor 2	Factor 3	Factor 4	
	participants (%)	Factor 1	Factor 2	Factor 5		
Malignancies (2)	364 (1.5)	-0.15	0.66	-0.04	-0.15	
Haematologic diseases (3)	260 (1.1)	0.00	0.41	0.11	0.13	
Endocrine and metabolic diseases (4)	5,062 (21.3)	0.19	-0.05	-0.02	0.31	
Mental disorders (5)	329 (1.4)	0.37	-0.05	0.16	-0.14	
Nervous system diseases (6)	880 (3.7)	-0.03	0.01	0.99	0.13	
Eye diseases (7)	3,474 (14.6)	0.56	-0.02	-0.08	0.16	

Ear diseases (8)	608 (2.6)	0.69	-0.07	-0.01	-0.06
Circulatory system diseases (9)	9,213 (38.8)	-0.11	-0.07	0.06	0.71
Respiratory system diseases (10)	1,421 (6.0)	0.27	0.20	0.00	0.00
Digestive system diseases (11)	1,866 (7.9)	0.17	0.46	-0.07	-0.13
Skin diseases (12)	705 (3.0)	0.17	0.24	0.02	0.08
Musculoskeletal system diseases (13)	4,959 (20.9)	0.36	0.02	-0.06	0.15
Urinary system diseases (14)	1,437 (6.1)	-0.06	0.42	0.04	0.16

ICD, International Statistical Classification of Diseases and Related Health Problems

Maximum likelihood method and promax rotation are applied.

Loadings are bolded if they exceed 0.30.

Three multimorbidity patterns were identified and labelled as follows: i) degenerative/mental health (Factor 1), ii) malignant/digestive/urologic/haematologic (Factor 2), and iii) cardiovascular/metabolic pattern (Factor 4). Factor 3 included only nervous system diseases, which was not considered a multimorbidity pattern. The respiratory system and skin diseases were not classified into any factor. Two primary care clinicians (YH and TA) agreed that the three multimorbidity patterns were clinically plausible.

Table 2 presents the characteristics of older participants with SRH data who were not hospitalised or institutionalised in care facilities (N = 23,340). Poor SRH was found in 5,554 participants (23.8%).

Table 2. Characteristics of older participants with SRH data who were not hospitalised or institutionalised				
Chanastanistia	All participants	Fine SRH	Poor SRH	
Characteristic	(N = 23,340)	(N = 17,786)	(N = 5,554)	
Age (years)				
65-69	6,818	5,704 (83.6)	1,114 (16.4)	
70-74	6,029	4,816 (79.9)	1,213 (20.1)	

2
2
5
4
5
6
7
/
8
9
10
11
11
12
13
14
15
10
10
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
22
22
33
34
35
36
20
37
38
39
10
41
42
43
44
Λ <u>Γ</u>
45
46
47
48
10
47
50
51
52
52
54
55
56
57
57
58
59

60

1

75-79	4,910	3,625 (73.8)	1,285 (26.2)
80-84	3,149	2,111 (67.0)	1,038 (33.0)
85-89	1,686	1,056 (62.6)	630 (37.4)
≥90	748	474 (63.4)	274 (36.6)
Sex			
Male	10,266	7,956 (77.5)	2,310 (22.5)
Female	13,074	9,830 (75.2)	3,244 (24.8)
Educational level			
Less than high school	7,660	5,544 (72.4)	2,116 (27.6)
High school	8,810	6,841 (77.7)	1,969 (22.3)
More than high school	3,460	2,777 (80.3)	683 (19.7)
Data missing	3,410	2,624 (77.0)	786 (23.0)
K6 score			
0-4 (normal)	15,721	13,425 (85.4)	2,296 (14.6)
5-12 (psychological distress)	4,830	2,848 (59.0)	1,982 (41.0)
13-24 (severe mental illness)	696	171 (24.6)	525 (75.4)
Data missing	2,093	1,342 (64.1)	751 (35.9)
No. of morbidities			
0	7,308	6,546 (89.6)	762 (10.4)
1	6,458	5,145 (79.7)	1,313 (20.3)
2	4,648	3,383 (72.8)	1,265 (27.2)
3	2,560	1,585 (61.9)	975 (38.1)
4	1,245	700 (56.2)	545 (43.8)
≥5	1,121	427 (38.1)	694 (61.9)
Multimorbidity*			
Yes	9,574	6,095 (63.7)	3,479 (36.3)
No	13,766	11,691 (84.9)	2,075 (15.1)
Complex multimorbidity†			
Yes	3,637	1,933 (53.1)	1,704 (46.9)
No	19,703	15,853 (80.5)	3,850 (19.5)

Data were presented as the number (percentage) of participants.

SRH, self-rated health; K6, Kessler 6

*Multimorbidity was defined as the coexistence of ≥ 2 chronic health conditions.

†Complex multimorbidity was defined as the presence of \geq 3 affected body systems.

The association between multimorbidity pattern scores and poor SRH adjusted for age,

BMJ Open

sex, and educational level as covariates is summarised in Table 3 and that adjusted for age, sex, educational level, and K6 is shown in Table 4. Multimorbidity pattern scores corresponded to the number of affected body system-dependent clusters in each pattern (e.g. the malignant/digestive/urologic/haematologic pattern score for a person with malignancy and anaemia was two). In the model with age, sex, and educational level as covariates, high malignant/digestive/urologic/haematologic, degenerative/mental health, and cardiovascular/metabolic pattern scores were significantly associated with poor SRH (adjusted risk ratio [aRR] = 1.68, 95% confidence interval [CI]: 1.60-1.76, aRR = 1.63, 95% CI: 1.58-1.69, and aRR = 1.31, 95% CI: 1.26-1.36, respectively) (Table 3). In the model with age, sex, educational level, and K6 as covariates, high malignant/digestive/urologic/haematologic, degenerative/mental health, and cardiovascular/metabolic pattern scores were significantly associated with poor SRH (aRR = 1.47, 95% CI: 1.40-1.54, aRR = 1.44, 95% CI: 1.39-1.49, and aRR = 1.24, 95% CI: 1.19-1.28, respectively) (Table 4). The association between multimorbidity pattern scores and poor SRH was reduced when K6 was added to the model as for malignant/digestive/urologic/haematologic covariate. particularly the and а degenerative/mental health patterns. Although the simple count of affected body systems, regardless of multimorbidity pattern, was also significantly associated with poor SRH when adjusted for age, sex, and educational level with and without K6 as covariates (aRR = 1.35, 95% CI: 1.34-1.37 and aRR = 1.27, 95% CI: 1.25-1.29, respectively), the association was

smaller than the malignant/digestive/urologic/haematologic and degenerative/mental health

pattern scores and equivalent to cardiovascular/metabolic pattern scores.

	Malignant/digestive/urologic /haematologic pattern		Degenerative /mental health pattern*		Cardiovascular/metabolic		
					pattern		
	Poor SRH	Desta	Poor SRH	D	Poor SRH	Derslard	
	(aRR (95% CI))	P value	(aRR (95% CI))	P value	(aRR (95% CI))	r value	
Multimorbidity pattern score†	1.68 (1.60-1.76)	< 0.001	1.63 (1.58-1.69)	< 0.001	1.31 (1.26-1.36)	< 0.001	
Age (years)							
65-69	ref		ref		ref		
70-74	1.19 (1.10-1.30)	< 0.001	1.14 (1.06-1.24)	< 0.001	1.22 (1.13-1.33)	< 0.001	
75-79	1.52 (1.40-1.65)	<0.001	1.38 (1.28-1.50)	0.001	1.58 (1.46-1.72)	< 0.001	
80-84	1.87 (1.72-2.04)	< 0.001	1.69 (1.55-1.85)	< 0.001	1.99 (1.82-2.17)	< 0.001	
85-89	2.11 (1.91-2.34)	<0.001	1.92 (1.74-2.12)	< 0.001	2.24 (2.03-2.48)	< 0.001	
≥90	2.06 (1.80-2.36)	< 0.001	1.94 (1.70-2.23)	< 0.001	2.19 (1.92-2.51)	< 0.001	
Female sex	1.14 (1.08-1.21)	<0.001	0.97 (0.92-1.03) 0.34		1.03 (0.98-1.09)	0.27	
Educational level							
Less than high school	ref		ref		ref		
High school	0.91 (0.85-0.97)	0.003	0.91 (0.86-0.97)	0.005	0.91 (0.86-0.97)	0.004	
More than high school	0.83 (0.76-0.91)	< 0.001	0.84 (0.77-0.92)	< 0.001	0.83 (0.76-0.91)	< 0.001	
Data missing	0.92 (0.84-1.00)	0.038	0.93 (0.86-1.02)	0.13	0.93 (0.86-1.01)	0.091	

SRH, self-rated health; K6, Kessler 6; aRR, adjusted risk ratio; CI, confidence interval

Adjusted for age, sex, and educational level.

*Degenerative/mental health pattern consisted of ear, eye, and musculoskeletal system diseases and mental disorders.

†Multimorbidity pattern scores corresponded to the number of affected body system-dependent clusters in each pattern.

Each pattern score was individually included in the model, adjusted for age, sex, and educational level.

	Malignant/digestiv	e/urologic	Degenerati	ve	Cardiovascular/1	netabolic	
	/haematologic	pattern	/mental health p	/mental health pattern*		pattern	
	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	
Multimorbidity pattern score†	1.47 (1.40-1.54)	< 0.001	1.44 (1.39-1.49)	< 0.001	1.24 (1.19-1.28)	< 0.001	
Age (years)							
65-69	ref		ref		ref		
70-74	1.15 (1.06-1.25)	< 0.001	1.12 (1.03-1.22)	0.007	1.15 (1.06-1.25)	< 0.001	
75-79	1.41 (1.30-1.53)	< 0.001	1.32 (1.22-1.44)	< 0.001	1.43 (1.31-1.55)	< 0.001	
80-84	1.64 (1.50-1.79)	< 0.001	1.55 (1.42-1.69)	< 0.001	1.68 (1.54-1.83)	< 0.001	
85-89	1.78 (1.61-1.96)	< 0.001	1.70 (1.54-1.88)	< 0.001	1.82 (1.64-2.01)	< 0.001	
≥90	1.67 (1.46-1.92)	< 0.001	1.65 (1.45-1.90)	< 0.001	1.71 (1.50-1.96)	< 0.001	
Female sex	1.05 (0.99-1.11)	0.10	0.93 (0.88-0.98)	0.006	0.97 (0.92-1.03)	0.29	
Educational level							
Less than high school	ref		ref		ref		
High school	0.95 (0.89-1.01)	0.081	0.95 (0.89-1.01)	0.089	0.95 (0.89-1.02)	0.14	
More than high school	0.90 (0.82-0.98)	0.020	0.92 (0.84-1.00)	0.054	0.91 (0.84-1.00)	0.051	
Data missing	0.88 (0.80-0.95)	0.002	0.89 (0.82-0.97)	0.007	0.89 (0.82-0.97)	0.006	
K6 score							
0-4 (normal)	ref		ref		ref		
5-12 (psychological distress)	2.66 (2.51-2.83)	< 0.001	2.51 (2.36-2.67)	< 0.001	2.74 (2.57-2.91)	< 0.001	
13-24 (severe mental illness)	4.31 (3.91-4.75)	< 0.001	3.94 (3.57-4.34)	< 0.001	4.60 (4.18-5.07)	< 0.001	
Data missing	2.35 (2.16-2.56)	< 0.001	2.25 (2.07-2.45)	< 0.001	2.39 (2.20-2.60)	< 0.001	

SRH, self-rated health; K6, Kessler 6; aRR, adjusted risk ratio; CI, confidence interval

Adjusted for age, sex, educational level, and K6.

*Degenerative/mental health pattern consisted of ear, eye, and musculoskeletal system diseases and mental disorders.

¹³/₄₆ [†]Multimorbidity pattern scores corresponded to the number of affected body system-dependent clusters in each pattern.

Each pattern score was individually included in the model, adjusted for age, sex, educational level, and K6 score.

 For sensitivity analyses, we performed modified Poisson regression analyses after handling missing data with multiple imputations (Supplemental Tables 1 and 2). The proportion of missing values was 14.6% for educational level and 9.0% for K6. In total, 4,806

of the 23,340 records (20.6%) were incomplete. The association of each multimorbidity pattern score and covariate with poor SRH did not differ considerably between the analyses using multiple imputations and the analyses on the subset of complete cases.

DISCUSSION

In the present study of nationally representative data from 77,120 participants in Japan who were not hospitalised or institutionalised, we found a prevalence of multimorbidity. Analysis using data from 23,730 older participants aged ≥ 65 years revealed three multimorbidity patterns: i) degenerative/mental health, ii) malignant/digestive/urologic/haematologic, and iii) cardiovascular/metabolic. To the best of our knowledge, this is the first study to investigate the association between certain multimorbidity patterns and SRH. We found a positive association between each multimorbidity pattern score and poor SRH. This association was stringer for degenerative/mental health and malignant/digestive/urologic/haematologic patterns than for cardiovascular/metabolic patterns. Health care professionals can use the results to recognise multimorbidity in patients at high risk for poor SRH and consider possible interventions.

Although the prevalence of multimorbidity in the present study was relatively lower than that reported in previous studies from Europe, North America, Australia, and Japan,[1, 2] it would considerably reflect the prevalence in the free-living general population in Japan. The

BMJ Open

 prevalence of multimorbidity could have been lower in our study because the survey excluded hospitalised or institutionalised people who were expected to have more chronic conditions. The results reflect the state of the community residents who visit medical institutions and are subject to health care policies. In addition, differences in the method of ascertainment of chronic conditions could contribute to differences in the prevalence. Various methods have been used in previous studies, including self-reporting, administrative health records, and clinical assessments.[1] Moreover, within self-reports, questions about chronic conditions varied among surveys. Although the participants in this study were asked about the health conditions for which they were attending medical institutions at the time of the survey, participants in another study were asked about chronic conditions that had been reported by healthcare professionals.[2] As this study did not cover inactive conditions that were not being attended to in medical institutions at the time, it could reflect only the conditions that were currently burdening participants.

Because the multimorbidity patterns in this study were plausible based on previous reports and clinical perspectives, they can be widely generalised to older people in developed countries. Mental health pattern and cardiometabolic pattern were reported as the two most replicable multimorbidity patterns in a systematic review in 2019,[8] whereas another systematic review in Asia reported the following five patterns: cardiovascular/metabolic, mental health, degenerative, pulmonary, and cancer.[19] The systematic review in Asia

contained one study from Japan that reported five patterns: cardiovascular/renal/metabolic, skeletal/articular/digestive, neuropsychiatric, respiratory/dermal, and malignant/digestive/urologic.[2] We found that the cardiovascular/metabolic pattern was consistent with that reported in previous studies. The degenerative/mental health pattern in this study was close to the falls/fractures/vision disorders/cognitive impairment and falls/vision impairment/cognitive impairment/urinary incontinence/hearing impairment reported in the systematic review in 2019, and mental patterns and degenerative patterns in the systematic review in Asia. As a mechanism for the construction of this pattern, we speculate that communication disability, social isolation, functional disability, limited mobility, and poorly treated pain due to vision and hearing impairment[30] or musculoskeletal diseases led to mental disorders such as depression. The malignant/digestive/urologic/haematologic pattern in this study was similar to the pattern reported in the previous study in Japan. As a mechanism for the construction of this pattern, we speculate that digestive and urologic organs are relatively frequent as sites of primary lesions in cancer survivors.[31] Furthermore, anaemia is one of the common complications of malignancy and its treatment and can also be associated with chronic kidney disease or bleeding from gastrointestinal diseases. The multimorbidity patterns revealed by the data limited to the older population in this study may differ from those reported in previous studies involving younger generations. We believe it is valuable to report multimorbidity patterns in the older in Japan, where the population is ageing ahead of the rest

of the world.

The association between multimorbidity pattern scores and poor SRH was greater for malignant/digestive/urologic/haematologic and degenerative/mental health patterns than for cardiovascular/metabolic patterns. The strong association between malignant/digestive/urologic/haematologic patterns and poor SRH in the present study is consistent with the findings of a previous study that reported poorer SRH in older cancer survivors than in people without cancer.[32] Symptoms of digestive or urological conditions can affect eating and elimination, which may exacerbate SRH. The strong association between degenerative/mental health patterns and poor SRH in this study is consistent with the findings of previous studies. Rheumatic and musculoskeletal diseases have been reported to have the strongest association with poor SRH among the chronic conditions.[33] SRH in older people with multimorbidity is exacerbated by vision impairment, hearing impairment, depression, and anxiety.[34] Mental disorders and/or musculoskeletal diseases have been reported as combinations of chronic conditions associated with poor SRH.[35] Communication disability, social isolation, functional disability, limited mobility, and poorly treated pain due to vision and hearing impairment or musculoskeletal diseases can worsen SRH. In contrast, the association between cardiovascular/metabolic patterns and poor SRH was weaker than that between other patterns and poor SRH. We suspect that this is because stable conditions of cardiovascular/metabolic diseases, such as diabetes or ischaemic heart disease, may not have

BMJ Open

 severe symptoms and may not affect daily life significantly. However, one previous study reported that cardiometabolic diseases contribute the most to the worsening of SRH in the general population aged 30-79 years in China.[36] Differences in participants' ages across studies may affect multimorbidity patterns and the association between these patterns and SRH.

The K6, a screening scale for depression and anxiety, partially mediated the association between multimorbidity pattern scores and poor SRH. Comparing the models of multivariate regression analysis that included K6 as a covariate and those that did not include it as a covariate revealed that the association between multimorbidity pattern scores and poor SRH was weaker in the model that included K6 for all three patterns. We speculate that the growing patient burden due to the increasing number of chronic conditions may have partially caused mood disorders, resulting in the worsening of SRH.

The results of this study will help clinicians recognise patients with multimorbidity patterns, which are highly associated with poor SRH, and consider possible interventions. Because the multimorbidity pattern score we used was simple and easy to apply in clinical practice, clinicians could calculate the score for each patient and assess the risk of poor SRH. Given that a previous study reported that the association between multimorbidity and poor SRH could be reduced by increasing physical activity,[37] clinicians may improve SRH by prescribing exercise to patients with multimorbidity at risk for poor SRH. Further research is warranted to confirm whether such interventions can improve SRH in patients with

multimorbidity.

Our study has several limitations. First, because of the cross-sectional design, it was impossible to determine whether there was a causal relationship between multimorbidity patterns and SRH. Additional research using a longitudinal design is needed to confirm the association between multimorbidity patterns and SRH. Second, because chronic diseases were measured using self-report questionnaires, it is possible that the prevalence of chronic diseases was underestimated or that the conditions were misclassified. However, previous studies have demonstrated that assessment of morbidity using self-reported data can predict clinical outcomes, including SRH, compared with measures based on administrative data.[38] Finally, it is unclear whether the results of this study can be applied to older adults who require hospitalisation or institutionalisation, such as those with severe chronic diseases or functional decline, because the survey did not include such patients.

CONCLUSIONS

We found differences in the association between multimorbidity patterns and poor SRH. Malignant/digestive/urologic/haematologic and degenerative/mental health patterns may be associated with a high risk for poor SRH. Further research should focus on interventions to improve SRH in patients with multimorbidity.

Statements

Author contributions: All authors (YH, MN, TA, and TO) contributed to the conception or design of the study, reviewed and edited the manuscript, contributed to the interpretation of the data and the analyses, performed critical review of the manuscript, and gave the final approval of the manuscript before submission. YH performed the statistical analyses and drafted the manuscript. MN, TA, and TO supervised the work.

Competing interest: TA received a grant from Pfizer Health Research Foundation, Japan for another research project related to multimorbidity (Grant No. 21-E-01).

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Data availability: These data were derived from the CSLC in June 2013, which was conducted by the MHLW of Japan. You can use the anonymous data if you apply for and receive permission from the ministry. [https://www.mhlw.go.jp/toukei/itaku/tokumei.html]

Participant consent: Not applicable.

Ethical approval: Ethical approval was not required for this study because it involved a secondary analysis of the national surveillance data that did not contain any personally identifiable information. According to Article 36 of Japan's Statistics Act, anonymised data from the CSLC can be used for scientific research after approval by the MHLW of Japan.

References

1	Violan C, Foguet-Boreu Q, Flores-Mateo G, et al. Prevalence, determinants and
	patterns of multimorbidity in primary care: A systematic review of observational
	studies. PLoS One 2014;9:3-11. doi:10.1371/journal.pone.0102149
2	Aoki T, Yamamoto Y, Ikenoue T, et al. Multimorbidity patterns in relation to
	polypharmacy and dosage frequency: A nationwide, cross-sectional study in a
	Japanese population. Sci Rep 2018;8:4–11. doi:10.1038/s41598-018-21917-6
3	Hu X, Huang J, Lv Y, et al. Status of prevalence study on multimorbidity of chronic
	disease in China: Systematic review. Geriatr Gerontol Int 2015;15:1-10.
	doi:10.1111/ggi.12340
4	Kim J, Keshavjee S, Atun R. Trends, patterns and health consequences of
	multimorbidity among South Korea adults: Analysis of nationally representative
	survey data 2007-2016. J Glob Health 2020;10:020426–020426.
	doi:10.7189/JOGH.10.020426
5	France EF, Wyke S, Gunn JM, et al. Multimorbidity in primary care: a systematic
	review of prospective cohort studies. Br J Gen Pract 2012;62:e297-307.
	doi:10.3399/bjgp12X636146
6	Wallace E, Salisbury C, Guthrie B, et al. Managing patients with multimorbidity in
	primary care. BMJ 2015; 350 :6–11. doi:10.1136/bmj.h176

7	Muth C, Blom JW, Smith SM, et al. Evidence supporting the best clinical management
	of patients with multimorbidity and polypharmacy: a systematic guideline review and
	expert consensus. J Intern Med 2019;285:272-88. doi:10.1111/joim.12842
8	Busija L, Lim K, Szoeke C, et al. Do replicable profiles of multimorbidity exist?
	Systematic review and synthesis. <i>Eur J Epidemiol</i> 2019; 34 :1025–53.
	doi:10.1007/s10654-019-00568-5
9	Gimeno-Miguel A, Gracia Gutiérrez A, Poblador-Plou B, et al. Multimorbidity
	patterns in patients with heart failure: An observational Spanish study based on
	electronic health records. BMJ Open 2019;9. doi:10.1136/bmjopen-2019-033174
10	Jackson CA, Jones M, Tooth L, et al. Multimorbidity patterns are differentially
	associated with functional ability and decline in a longitudinal cohort of older women.
	Age Ageing 2015;44:810-6. doi:10.1093/ageing/afv095
11	Aoki T, Fukuhara S, Fujinuma Y, et al. Effect of multimorbidity patterns on the
	decline in health-related quality of life: A nationwide prospective cohort study in
	Japan. BMJ Open 2021;11:1-8. doi:10.1136/bmjopen-2020-047812
12	DeSalvo KB, Bloser N, Reynolds K, et al. Mortality prediction with a single general
	self-rated health question. A meta-analysis. J Gen Intern Med 2006;21:267–75.
	doi:10.1111/j.1525-1497.2005.00291.x
13	DeSalvo KB, Jones M, Peabody J, et al. Health care expenditure prediction with a

 BMJ Open

	single item, self-rated health measure. Med Care 2009;47:440-7.
	doi:10.1097/MLR.0b013e318190b716
14	Smith SM, Wallace E, Salisbury C, et al. A core outcome set for multimorbidity
	research (COSmm). Ann Fam Med 2018;16:132-8. doi:10.1370/afm.2178
15	Mavaddat N, Valderas JM, Van Der Linde R, et al. Association of self-rated health
	with multimorbidity, chronic disease and psychosocial factors in a large middle-aged
	and older cohort from general practice: A cross-sectional study. BMC Fam Pract
	2014; 15 :1–11. doi:10.1186/s12875-014-0185-6
16	Ishizaki T, Kobayashi E, Fukaya T, et al. Association of physical performance and
	self-rated health with multimorbidity among older adults: Results from a nationwide
	survey in Japan. Arch Gerontol Geriatr 2019;84:103904.
	doi:10.1016/j.archger.2019.103904
17	Ministry of Health, Labour and Welfare [Internet]. "Tokumei deta no teikyou ni tsuite"
	(accessed Apr 2022). Available from:
	https://www.mhlw.go.jp/toukei/itaku/tokumei.html
18	Harrison C, Britt H, Miller G, et al. Examining different measures of multimorbidity,
	using a large prospective cross-sectional study in Australian general practice. BMJ
	Open 2014;4:1-9. doi:10.1136/bmjopen-2013-004694
19	Rajoo SS, Wee ZJ, Lee PSS, et al. A Systematic Review of the Patterns of Associative

BMJ Open

	Multimorbidity in Asia. Biomed Res Int 2021;2021. doi:10.1155/2021/6621785
20	Camargo-Casas S, Suarez-Monsalve S, Zepeda MUP, et al. Multimorbidity, depressive
	symptoms, and self-reported health in older adults: A secondary analysis of the Sabe
	bogota study. Rev Investig Clin 2018;70:192-7. doi:10.24875/RIC.18002478
21	Sugisawa H, Harada K, Sugihara Y, et al. Socioeconomic status and self-rated health
	of Japanese people, based on age, cohort, and period. Popul Health Metr 2016;14:1-
	11. doi:10.1186/s12963-016-0095-z
22	Ota A, Yatsuya H, Nishi N, et al. Relationships among Socioeconomic Factors and
	Self-rated Health in Japanese Adults: NIPPON DATA2010. J Epidemiol 2018;28
	Suppl 3:S66–72. doi:10.2188/jea.JE20170246
23	Perruccio A V., Katz JN, Losina E. Health burden in chronic disease: Multimorbidity
	is associated with self-rated health more than medical comorbidity alone. J Clin
	<i>Epidemiol</i> 2012; 65 :100–6. doi:10.1016/j.jclinepi.2011.04.013
24	Moussavi S, Chatterji S, Verdes E, et al. Depression, chronic diseases, and decrements
	in health: results from the World Health Surveys. Lancet (London, England)
	2007; 370 :851–8. doi:10.1016/S0140-6736(07)61415-9
25	Kessler RC, Andrews G, Colpe LJ, et al. Short screening scales to monitor population
	prevalences and trends in non-specific psychological distress. Psychol Med
	2002; 32 :959–76. doi:10.1017/S0033291702006074

Page 31 of 37

1	Δ
- 4	()
2	υ

26	Kessler RC, Barker PR, Colpe LJ, et al. Screening for serious mental illness in the
	general population. Arch Gen Psychiatry 2003;60:184–9.
	doi:10.1001/archpsyc.60.2.184
27	Furukawa TA, Kawakami N, Saitoh M, et al. The performance of the Japanese version
	of the K6 and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr
	<i>Res</i> 2008; 17 :152–8. doi:10.1002/mpr.257
28	Sakurai K, Nishi A, Kondo K, et al. Screening performance of K6/K10 and other
	screening instruments for mood and anxiety disorders in Japan. Psychiatry Clin
	<i>Neurosci</i> 2011; 65 :434–41. doi:10.1111/j.1440-1819.2011.02236.x
29	Zou G. A Modified Poisson Regression Approach to Prospective Studies with Binary
	Data. Am J Epidemiol 2004;159:702-6. doi:10.1093/aje/kwh090
30	Mudie LI, Varadaraj V, Gajwani P, et al. Dual sensory impairment: The association
	between glaucomatous vision loss and hearing impairment and function. PLoS One
	2018; 13 :1–12. doi:10.1371/journal.pone.0199889
31	American Cancer Society. Cancer Treatment and Survivorship Facts and Figures
	2019-2021. Am Cancer Soc 2019;:1–48.https://www.cancer.org/research/cancer-facts-
	statistics/survivor-facts-figures.html
32	Grov EK, Fosså SD, Dahl AA. A controlled study of the influence of comorbidity on
	activities of daily living in elderly cancer survivors (the HUNT-3 survey). J Geriatr

BMJ Open

Oncol 2017;8:328-35. doi:10.1016/j.jgo.2017.05.007

- Simões D, Araújo FA, Monjardino T, *et al.* The population impact of rheumatic and musculoskeletal diseases in relation to other non-communicable disorders: comparing two estimation approaches. *Rheumatol Int* 2018;**38**:905–15. doi:10.1007/s00296-018-3990-8
- Cañón-Esquivel A, González-Vélez AE, Forjaz MJ. Factors associated with self-rated health status of older people with multimorbidity in Colombia: A cross-sectional study.
 Rev Esp Geriatr Gerontol 2021;56:326–33. doi:10.1016/J.REGG.2021.07.005
- 35 Vos HMM, Bor HH, Rangelrooij-Minkels MJAV, *et al.* Multimorbidity in older women: The negative impact of specific combinations of chronic conditions on selfrated health. *Eur J Gen Pract* 2013;**19**:117–22. doi:10.3109/13814788.2012.755511
- 36 Song X, Wu J, Yu C, *et al.* Association between multiple comorbidities and self-rated health status in middle-aged and elderly Chinese: the China Kadoorie Biobank study. *BMC Public Health* 2018;**18**:744. doi:10.1186/s12889-018-5632-1
- Marques A, Peralta M, Gouveia ÉR, *et al.* Physical activity buffers the negative relationship between multimorbidity, self-rated health and life satisfaction. *J Public Health (Oxf)* 2018;40:e328–35. doi:10.1093/pubmed/fdy012
- 38 Bayliss EA, Ellis JL, Shoup JA, *et al.* Association of patient-centered outcomes with patient-reported and ICD-9-based morbidity measures. *Ann Fam Med*;**10**:126–33.

doi:10.1370/afm.1364

Figure legend

Figure. Participant flow chart

CSLC, the Comprehensive Survey of Living Conditions; SRH, self-rated health

to beet eview only

BMJ Open

					BMJ Open				ven-2022-			
Supplemental Table 1. Association	ons between multim	orbidity p	pattern scores and po	or SRH. N	Aodified Poisson re	gression an	alyses without K6.		06372			
	Malignant/dige	stive/urol	ogic/haematologic	pattern	Degener	ative/men	tal health pattern*		© Cardio	vascular/	metabolic pattern	
	Complete case a (N = 19,93	nalysis 0)	Multiple impu (N = 23,34	Aultiple imputationComplete case analysis(N = 23,340)(N = 19,930)		Multiple imputation (N = 23,340)		\vec{e} omplete case analysis \vec{o} (N = 19,930)		Multiple imputatio (N = 23,340)		
	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	⊕ ♀ age (95% CI))	P value	Poor SRH (aRR (95% CI))	,
Multimorbidity pattern score [†]	1.68 (1.62-1.75)	< 0.001	1.69 (1.63-1.75)	< 0.001	1.65 (1.60-1.69)	< 0.001	1.65 (1.61-1.69)	< 0.001	1.60 (1.25-1.34)	< 0.001	1.29 (1.26-1.34)	
Age (years)	· · · · ·		· · · · · ·		· · · · ·		· · · · ·		r 2			
65-69	ref		ref		ref		ref		N ref		ref	
70-74	1.18 (1.09-1.28)	< 0.001	1.19 (1.10-1.28)	< 0.001	1.14 (1.06-1.24)	0.001	1.15 (1.07-1.23)	< 0.001	1.19 (1.10-1.29)	< 0.001	1.19 (1.11-1.28)	
75-79	1.53 (1.41-1.65)	< 0.001	1.49 (1.39-1.60)	< 0.001	1.41 (1.30-1.52)	< 0.001	1.38 (1.29-1.49)	< 0.001	1.\$5 (1.43-1.67)	< 0.001	1.51 (1.41-1.63)	
80-84	1.83 (1.69-1.98)	< 0.001	1.82 (1.69-1.96)	< 0.001	1.69 (1.56-1.83)	< 0.001	1.69 (1.57-1.82)	< 0.001	1.20 (1.75-2.06)	< 0.001	1.89 (1.75-2.04)	
85-89	2.05 (1.87-2.24)	< 0.001	2.06 (1.90-2.24)	< 0.001	1.90 (1.74-2.08)	< 0.001	1.92 (1.77-2.09)	< 0.001	2.83 (1.95-2.33)	< 0.001	2.13 (1.96-2.32)	
≥90	2.08 (1.85-2.33)	< 0.001	2.00 (1.79-2.24)	< 0.001	2.01 (1.79-2.26)	< 0.001	1.95 (1.74-2.17)	< 0.001	2.46 (1.92-2.42)	< 0.001	2.08 (1.87-2.33)	
Female sex	1.13 (1.08-1.19)	< 0.001	1.13 (1.08-1.19)	< 0.001	0.96 (0.92-1.01)	0.15	0.96 (0.92-1.01)	0.12	1.83 (0.98-1.09)	0.21	1.03 (0.98-1.08)	
Educational level					. ,				B í			
Less than high school	ref		ref		ref		ref		ref		ref	
High school	0.91 (0.86-0.96)	< 0.001	0.91 (0.86-0.96)	< 0.001	0.91 (0.87-0.96)	< 0.001	0.91 (0.87-0.96)	< 0.001	0.94 (0.87-0.96)	< 0.001	0.91 (0.87-0.96)	
More than high school	0.83 (0.77-0.89)	< 0.001	0.83 (0.77-0.90)	< 0.001	0.85 (0.78-0.91)	< 0.001	0.85 (0.79-0.92)	< 0.001	0.84 (0.78-0.91)	< 0.001	0.85 (0.79-0.92)	
Adjusted for age, sex, and educat *Degenerative/mental health patter *Multimorbidity pattern scores of	tional level. ern consisted of ear	, eye, and	musculoskeletal sys	tem diseas	ses and mental disor	ders.			n.bmj.c			
Adjusted for age, sex, and educat *Degenerative/mental health patter †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the lly included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste justed for age, sex, a	tem diseas m-depend nd educat	ses and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September			
Adjusted for age, sex, and educat *Degenerative/mental health patt †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the illy included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste fusted for age, sex, a	tem diseas m-depend nd educat	ses and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21,			
Adjusted for age, sex, and educat *Degenerative/mental health patt †Multimorbidity pattern scores ca Each pattern score was individua	tional level. ern consisted of ear orresponded to the illy included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste fusted for age, sex, a	tem diseas m-depend nd educat:	ses and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 20			
Adjusted for age, sex, and educat *Degenerative/mental health patte †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the illy included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste fusted for age, sex, a	tem diseas m-depend nd educat:	ses and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023			
Adjusted for age, sex, and educat *Degenerative/mental health patter †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the lly included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste justed for age, sex, a	tem diseas m-depend nd educat:	ses and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by			
Adjusted for age, sex, and educat *Degenerative/mental health patte †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the illy included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste justed for age, sex, a	tem diseas m-depend nd educat	ees and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by gu			
Adjusted for age, sex, and educat *Degenerative/mental health patt †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the lly included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste justed for age, sex, a	tem diseas m-depend nd educat	ees and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by guest			
Adjusted for age, sex, and educat *Degenerative/mental health patte †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the lly included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste justed for age, sex, a	tem diseas m-depend nd educat	ses and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by guest. P			
Adjusted for age, sex, and educat *Degenerative/mental health patte †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the lly included in the	r, eye, and number of model, adj	musculoskeletal sys affected body syste fusted for age, sex, a	tem diseas m-depend nd educat	ses and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by guest. Prot			
Adjusted for age, sex, and educat *Degenerative/mental health patte †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the illy included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste fusted for age, sex, a	tem diseas m-depend nd educat:	ses and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by guest. Protect			
Adjusted for age, sex, and educat *Degenerative/mental health patte †Multimorbidity pattern scores ca Each pattern score was individua	tional level. ern consisted of ear orresponded to the illy included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste fusted for age, sex, a	tem diseas m-depend nd educat:	ses and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by guest. Protected			
Adjusted for age, sex, and educat *Degenerative/mental health patte †Multimorbidity pattern scores ca Each pattern score was individua	tional level. ern consisted of ear orresponded to the illy included in the	, eye, and number of model, adj	musculoskeletal sys affected body syste justed for age, sex, a	tem diseas m-depend nd educat	ees and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by guest. Protected by			
Adjusted for age, sex, and educat *Degenerative/mental health patt †Multimorbidity pattern scores ca Each pattern score was individua	tional level. ern consisted of ear orresponded to the : Ily included in the i	, eye, and number of model, adj	musculoskeletal sys affected body syste justed for age, sex, a	tem diseas m-depend nd educat	ees and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by guest. Protected by co			
Adjusted for age, sex, and educat *Degenerative/mental health patt †Multimorbidity pattern scores co Each pattern score was individua	tional level. ern consisted of ear orresponded to the : Ily included in the i	, eye, and number of model, adj	musculoskeletal sys affected body syste justed for age, sex, a	tem diseas m-depend nd educat	ees and mental disor ent clusters in each ional level.	ders. pattern.			n.bmj.com/ on September 21, 2023 by guest. Protected by copyri			

open-2022-0

	Malignant/dig	estive/urol	ogic/haematologic p	attern	Degene	erative/men	ital health pattern*		👸 Cardi	ovascular/	metabolic pattern	
	Complete case analysis (N = 18,534)		Multiple impu (N = 23,34	tation 0)	Complete case a (N = 18,53	analysis 34)	Multiple impu (N = 23,34	Multiple imputation (N = 23,340) $\stackrel{\bigcirc}{\longrightarrow}$ (N =		analysis 4)	Multiple impu (N = 23,34	itation 10)
	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Boor SRH (aR (95% CI))	P value	Poor SRH (aRR (95% CI))	P valu
Multimorbidity pattern score†	1.49 (1.44-1.56)	< 0.001	1.49 (1.44-1.54)	< 0.001	1.47 (1.43-1.51)	< 0.001	1.46 (1.42-1.50)	< 0.001	1.2 (1.20-1.29)	< 0.001	1.24 (1.20-1.28)	< 0.00
Age (years)									Ū,			
65-69	ref		ref		ref		ref		8 ref		ref	
70-74	1.15 (1.06-1.25)	< 0.001	1.17 (1.09-1.25)	< 0.001	1.12 (1.04-1.21)	0.005	1.14 (1.06-1.22)	< 0.001	1.1.0 (1.07-1.25)	< 0.001	1.17 (1.09-1.25)	< 0.00
75-79	1.51 (1.40-1.63)	< 0.001	1.46 (1.37-1.57)	< 0.001	1.41 (1.31-1.53)	< 0.001	1.38 (1.29-1.48)	< 0.001	1.52(1.40-1.64)	< 0.001	1.48 (1.38-1.58)	< 0.00
80-84	1.75 (1.61-1.90)	< 0.001	1.71 (1.59-1.84)	< 0.001	1.64 (1.51-1.78)	< 0.001	1.61 (1.50-1.73)	< 0.001	1.78 (1.64-1.93)	< 0.001	1.74 (1.63-1.87)	< 0.00
85-89	1.86 (1.69-2.04)	< 0.001	1.85 (1.71-2.01)	< 0.001	1.76 (1.61-1.93)	< 0.001	1.77 (1.63-1.92)	< 0.001	1.89 (1.73-2.07)	< 0.001	1.89 (1.74-2.05)	< 0.00
≥90	1.82 (1.62-2.05)	< 0.001	1.73 (1.56-1.92)	< 0.001	1.81 (1.61-2.04)	< 0.001	1.72 (1.54-1.91)	< 0.001	1.89 (1.66-2.10)	< 0.001	1.76 (1.59-1.96)	< 0.00
Female sex	1.06 (1.01-1.12)	0.031	1.05 (1.00-1.10)	0.039	0.93 (0.88-0.98)	0.005	0.92 (0.88-0.97)	< 0.001	0.99(0.93-1.03)	0.45	0.97 (0.93-1.02)	0.25
Educational level)				((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		fr		((),((),((),((),((),((),((),((),	
Less than high school	ref		ref		ref		ref		ă _{ref}		ref	
High school	0.93 (0.88-0.98)	0.009	0.94 (0.89-0.98)	0.009	0.93 (0.88-0.99)	0.012	0.94 (0.89-0.99)	0.011	$0.9\frac{1}{4}(0.89-0.99)$	0.018	0.94 (0.90-0.99)	0.023
More than high school	0.89 (0.83-0.97)	0.004	0.89 (0.83-0.96)	0.002	0.91 (0.84-0.98)	0.012	0.91 (0.85-0.98)	0.009	0.91(0.84-0.98)	0.014	0.91 (0.85-0.98)	0.012
K6 score	0.05 (0.05 0.57)	0.001	0.05 (0.05 0.50)	0.002	0.51 (0.01 0.50)	0.010	0.51 (0.05 0.50)	0.007		0.011	0.51 (0.05 0.50)	0.012
0-4 (normal)	ref		ref		ref		ref		⊇. o ref		ref	
5-12 (psychological distress)	2 57 (2 44-2 71)	<0.001	2.61(2.48-2.74)	<0.001	2 47 (2 34-2 61)	< 0.001	2 50 (2 38-2 63)	<0.001	2 6 (2 50 - 2 78)	<0.001	2 66 (2 53-2 79)	<0.00
13-24 (severe mental illness)	4 31 (4 04-4 60)	<0.001	4 29 (4 05-4 55)	<0.001	3.98(3.71-4.26)	< 0.001	3.97(3.72-4.23)	<0.001	4.57(4.29-4.86)	<0.001	4 56 (4 31-4 83)	<0.00
Each pattern score was individua	illy included in the m	nodel, adjus	ted for age, sex, educ	ational leve	l, and K6 score.				n September 21,			
									2023 by guest. Protected by c			
			For peer review	only - htt	:p://bmjopen.bm	nj.com/sit	te/about/quidelir	nes.xhtm	opyright			

Page 37 of 37

 BMJ Open

open-2022-063

Section/Topic	ltem #	Recommendation Separate Separa	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract $\frac{3}{6}$	Title page
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	2-3
Introduction		22.[
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods		ed fr	
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6-7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	6-7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-10
Bias	9	Describe any efforts to address potential sources of bias	7-12
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	10-12
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	11-12
		(d) If applicable, describe analytical methods taking account of sampling strategy 요구	6
		(e) Describe any sensitivity analyses	11-12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 38 of 37

		BMJ Open	Page
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	12-13 and Figure
		(b) Give reasons for non-participation at each stage	12-13
		(c) Consider use of a flow diagram	Figure
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on apposures and potential confounders	14 and Table 2
		(b) Indicate number of participants with missing data for each variable of interest	Table 2
Outcome data	15*	Report numbers of outcome events or summary measures	14 and Table 2
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included $\frac{2}{2}$	15-17 and Tables 3 and 4
		(b) Report category boundaries when continuous variables were categorized	Table 4
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	18-19 and Supplemental Tables 1 and 2
Discussion			
Key results	18	Summarise key results with reference to study objectives	19
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	24
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	23-24
Generalisability	21	Discuss the generalisability (external validity) of the study results	19-21
Other information		21,	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	25

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published exan ples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine 🖧 rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Multimorbidity patterns and the relation to self-rated health among older Japanese people: a nationwide cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063729.R1
Article Type:	Original research
Date Submitted by the Author:	06-Jul-2022
Complete List of Authors:	Honda, Yuki; Hamamatsu University School of Medicine, Department of Community Health and Preventive Medicine; Seirei Hamamatsu General Hospital, Department of General Internal Medicine Nakamura, Mieko; Hamamatsu University School of Medicine, Department of Community Health and Preventive Medicine Aoki, Takuya; The Jikei University School of Medicine, Division of Clinical Epidemiology, Research Center for Medical Sciences Ojima, Toshiyuki; Hamamatsu University School of Medicine, Department of Community Health and Preventive Medicine
Primary Subject Heading :	General practice / Family practice
Secondary Subject Heading:	Epidemiology, Geriatric medicine
Keywords:	EPIDEMIOLOGY, GENERAL MEDICINE (see Internal Medicine), GERIATRIC MEDICINE, PRIMARY CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1	Multimorbidity patterns and the relation to self-rated health among older Japanese
2	people: a nationwide cross-sectional study
3	
4	Yuki Honda, ^{1, 2} MD, Mieko Nakamura, ¹ MD, PhD, Takuya Aoki, ³ MD, PhD, MMA, and
5	Toshiyuki Ojima, ¹ MD, PhD
6	¹ Department of Community Health and Preventive Medicine, Hamamatsu University School
7	of Medicine, Shizuoka, Japan
8	² Department of General Internal Medicine, Seirei Hamamatsu General Hospital, Shizuoka,
9	Japan
10	³ Division of Clinical Epidemiology, Research Center for Medical Sciences, The Jikei
11	University School of Medicine, Tokyo, Japan
12	
13	Corresponding author: Yuki Honda, MD
14	Department of Community Health and Preventive Medicine, Hamamatsu University School of
15	Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
16	Telephone: +81-53-435-2333; Fax: +81-53-435-2341; E-mail: D20027@hama-med.ac.jp
17	
18	Word count: 3991 words
19	Keywords: multimorbidity, multimorbidity pattern, self-rated health

2

2		
3 4 5 6	20	ABSTRACT
7 8 9	21	Objectives : Classifying individuals into multimorbidity patterns can be useful to identify the
10 11 12	22	target population with poorer clinical outcomes. Self-rated health (SRH) is one of the core
12 13 14 15	23	outcomes in multimorbidity patients. Although studies have reported that multimorbidity is
16 17 18	24	associated with poor SRH, whether certain patterns have stronger associations remains
19 20 21	25	unknown. Therefore, this study aimed to identify the prevalence and patterns of multimorbidity
22 23 24	26	and investigate the association between multimorbidity patterns and SRH in an older Japanese
24 25 26 27	27	population.
27 28 29 30	28	Design: Cross-sectional study
30 31 32	29	Setting: Data were obtained from the 2013 Comprehensive Survey of Living Conditions, a
34 35 36	30	nationally representative survey of the general Japanese population.
37 38 30	31	Participants : This study mainly examined 23,730 participants aged ≥ 65 years who were not
40 41 42	32	hospitalised or institutionalised.
42 43 44	33	Primary outcome measure: Poor SRH was defined as choosing 'not very good' or 'bad' from
45 46 47	34	five options: 'excellent', 'fairly good', 'average', 'not very good', and 'bad'.
40 49 50	35	Results : The prevalence of multimorbidity was 40.9% and that of poor SRH was 23.8%. Three
51 52 53	36	multimorbidity patterns were identified by exploratory factor analysis: i) degenerative/mental
54 55 56	37	health, ii) malignant/digestive/urologic/haematologic, and iii) cardiovascular/metabolic.
57 58 59 60	38	Multivariable modified Poisson regression analysis revealed that high

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
0 7	
, 8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
25 74	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
3/	
30	
40	
41	
42	
43	
44	
45	
47	
48	
49	
50	
51 51	
52 53	
54	
55	
56	
57	
58	
59 60	
00	

39	malignant/digestive/urologic/haematologic, degenerative/mental health, and
40	cardiovascular/metabolic pattern scores, corresponding to the number of affected body systems
41	in each pattern, were significantly associated with poor SRH [adjusted risk ratio (aRR) = 1.68,
42	95% confidence interval (CI): 1.60-1.76, aRR = 1.63, 95% CI: 1.58-1.69; and aRR = 1.31, 95%
43	CI: 1.26-1.36, respectively]. When including the Kessler 6 score, a screening scale for
44	psychological distress, in the analysis, the association between each multimorbidity pattern
45	score and poor SRH decreased.
46	Conclusions: Malignant/digestive/urologic/haematologic and degenerative/mental health
47	patterns may be associated with a high risk for poor SRH. Further research should focus on
48	interventions to improve SRH in multimorbidity patients.
49	
50	Strengths and limitations of this study
51	• Randomly selected nationally representative data from the general population in Japan
52	were used to determine the prevalence and patterns of multimorbidity in older people.
53	• The modified Poisson regression model allowed for an appropriate estimate of the risk
54	ratio of poor SRH to multimorbidity patterns because the incidence of the outcome was
55	common.
56	• The multimorbidity pattern score, which is the sum of affected conditions in each

1 ว	
2 3	
4	58
5 6	
7	50
8	29
9 10	
11	60
12	
13 14	61
15	
16	62
17 18	
19	62
20	63
21 22	
23	64
24	
25 26	65
20	
28	66
29 30	00
31	6 7
32	67
33 34	
35	68
36	
37	69
30 39	
40	70
41 42	70
42 43	
44	/1
45 46	
40 47	72
48	
49 50	73
50 51	
52	74
53	74
54 55	
56	75
57	
58 59	76
60	

58	setting.
59	• The cross-sectional design of the study limited the causality between multimorbidity
50	patterns and poor SRH.
51	• Self-reporting of affected conditions could cause underestimation or misclassification,
52	but the influence would not differ between participants with and without poor SRH.
53	
54	INTRODUCTION
55	Multimorbidity is defined as the co-occurrence of two or more chronic conditions
56	within a person and is common in older people, requiring individualised management. In
57	Europe, North America, and Australia, the prevalence of multimorbidity was reported as
58	approximately 10-50% in individuals aged 20-65 years and 70-80% in those aged \geq 65 years.[1]
59	A study from Japan showed similar results, with a prevalence of multimorbidity of 29.9% for
70	those aged ≥ 18 years and 62.8% for those aged ≥ 65 years.[2] However, the prevalence of
71	multimorbidity varies widely from a few percent to 80% among older people in China[3] and
72	is approximately 20% among adults in South Korea.[4] Multimorbidity is associated with
73	several health care outcomes, including mortality, hospitalisation, functional limitations, and
74	health care utilisation and costs.[5] Furthermore, the management of multimorbidity is difficult
75	because applying a combination of individual clinical practice guidelines for each disease to
76	multimorbidity patients may increase the treatment burden and negatively affect the

patients.[6] Multimorbidity is highly complex and heterogeneous, with various disease combinations, and the guidelines for multimorbidity recommend individualised management.[7]

Multimorbidity patterns and their association with health care outcomes have been the focus of much attention. A systematic review of 51 studies showed that mental health and cardiometabolic patterns were the two most replicable multimorbidity patterns based on specific combinations of conditions.[8] In a study of 3,256 Japanese general people, five multimorbidity patterns were identified: cardiovascular/renal/metabolic, neuro/psychiatric, skeletal/articular/digestive, respiratory/dermal, and malignant/digestive/urologic.[2] Furthermore, previous studies have reported associations between certain multimorbidity patterns and clinical outcomes, such as mortality, [9] functional ability, [10] and reduced healthrelated quality of life.[11] In caring for patients with multimorbidity, classifying individuals into multimorbidity patterns can be useful in identifying the target population with poorer clinical outcomes.

Self-rated health (SRH), the subjective perception of an individual's overall health, is
a simple and powerful predictor of outcomes, such as mortality[12] and health care
expenditure.[13] SRH is also one of the core outcomes in patients with multimorbidity.[14]
Although several studies have shown that multimorbidity is associated with poor SRH,[15,16]
it is unknown whether certain multimorbidity patterns are associated with poor SRH.

BMJ Open

4 5 6	96	Therefore, the present study aimed i) to identify the prevalence of multimorbidity and
7 8 9	97	multimorbidity patterns and ii) to investigate the association between multimorbidity patterns
10 11 12	98	and poor SRH in the older population in Japan using large nationwide data from the 2013
13 14 15	99	Comprehensive Survey of Living Conditions (CSLC). We focused on the older population in
16 17 18	100	this study because stratifying multimorbidity patterns by age group is recommended to better
19 20 21	101	understand the evolution of multimorbidity over a lifespan.[8]
22 23 24	102	
25 26 27	103	METHODS
28 29 30	104	Design, setting, and participants
31 32 33	105	In this nationwide cross-sectional study, we used data from the CSLC conducted by
34 35 36	106	the Ministry of Health, Labour, and Welfare (MHLW) of the Japanese government in June
37 38 20	107	2013.[17] The CSLC is a nationwide repeated cross-sectional survey of households and
40 41 42	108	household members. In 2013, the CSLC covered all households and household members in
42 43 44 45	109	5,530 districts stratified and randomly selected from the census tracts. Trained investigators
45 46 47	110	visited households to distribute and collect self-administered questionnaires. The survey items
40 49 50	111	included a household-related questionnaire that inquired about sex, age, educational level, and
51 52 53	112	work status and a health-related questionnaire that inquired about health conditions, difficulties
54 55 56	113	in daily life, and status of medical check-ups. The MHLW provided anonymised data from the
57 58 59 60	114	CSLC for 97,345 individuals in 2013.

For investigating the prevalence of multimorbidity, we excluded individuals who were aged <20 years or had missing age data and those who were hospitalised, institutionalised, or had missing residence data at the time of the survey because they were not included for the questions on health conditions. In the analysis of multimorbidity patterns, we excluded those aged <65 years because we wanted to investigate multimorbidity patterns in older people. Finally, we excluded individuals with missing SRH data from the analysis of the association between multimorbidity patterns and poor SRH. Measures Chronic health conditions In the CSLC survey, participants chose from 42 options about health conditions for which they were attending medical institutions. The options included diabetes mellitus, obesity, dyslipidaemia, thyroid diseases, depression and other mental disorders, dementia, Parkinson's disease, other nervous system diseases, eye diseases, ear diseases, hypertension, stroke, angina pectoris or myocardial infarction, other circulatory system diseases, acute nasopharyngitis, allergic rhinitis, chronic obstructive pulmonary disease, asthma, other respiratory system diseases, stomach and duodenal diseases, liver and gallbladder diseases, other digestive system diseases, dental diseases, atopic dermatitis, other skin diseases, gout, rheumatoid arthritis, arthropathy, stiff neck, back pain, osteoporosis, kidney diseases, benign prostatic hyperplasia,

Page 9 of 41

1 2

BMJ Open

3 4 5 6	134	perimenopausal or postmenopausal disorders, fracture, injury or burn other than fracture,
7 8 9	135	anaemia and other blood diseases, malignancies, pregnancy or puerperium, infertility, others,
10 11 12	136	and unknown. We included 35 conditions after excluding the following seven conditions.
13 14 15	137	Acute nasopharyngitis, fracture, injury or burn other than fracture, pregnancy or puerperium,
16 17 18	138	others, and unknown were excluded because they were acute conditions or conditions whose
19 20 21	139	acute or chronic state was difficult to determine. Although there are some previous studies on
22 23 24	140	multimorbidity treated dental diseases as one of the chronic conditions,[18,19] most studies
25 26 27	141	did not contain dental diseases in the list of chronic conditions.[1,8,20] Therefore, we excluded
28 29 30	142	dental diseases. For individuals aged \geq 65 years, 33 chronic conditions were included because
31 32 33	143	none of the participants reported perimenopausal or postmenopausal disorders and infertility.
34 35 36	144	To investigate multimorbidity patterns, 33 chronic diseases were grouped into 13 body system-
37 38 39	145	dependent clusters based on the International Classification of Diseases (ICD)-10 chapters
40 41 42	146	(Table 1). The reason for this grouping was that treatment of 'other' diseases, such as other
43 44 45	147	neurological diseases, was difficult when analysing multimorbidity patterns. Assessment of
46 47 48	148	multimorbidity by grouping conditions based on body systems, such as complex
49 50 51	149	multimorbidity that can identify patients needing complex healthcare interventions rather than
52 53 54	150	conventional multimorbidity, could be useful.[21] Moreover, since the multimorbidity patterns
55 56 57	151	in the previous studies were mostly classified by organ systems, [2,8,19] we thought that
58 59 60	152	grouping by organ system in advance would not have a significant effect on the pattern

153 composition.

Table 1. Grouping and prevalence of chronic conditions in older participants (N = 23,730)

13 body system-dependent clusters	33 chronic conditions included in the	No. of affected
(ICD-10 chapter no.)	analyses	participants (%)
Malignancies (2)	Malignancies	364 (1.5)
Haematologic diseases (3)	Anaemia and other blood diseases	260 (1.1)
Endocrine and metabolic diseases (4)	Diabetes mellitus	2,578 (10.9)
	Obesity	256 (1.1)
	Dyslipidaemia	2,456 (10.3)
	Thyroid diseases	454 (1.9)
Mental disorders (5)	Depression and other mental disorders	329 (1.4)
Nervous system diseases (6)	Dementia	489 (2.1)
	Parkinson's disease	137 (0.6)
	Other nervous system diseases	296 (1.2)
Eye diseases (7)	Eye diseases	3,474 (14.6)
Ear diseases (8)	Ear diseases	608 (2.6)
Circulatory system diseases (9)	Hypertension	7,353 (31.0)
	Stroke	854 (3.6)
	Angina pectoris or myocardial infarction	1,359 (5.7)
	Other circulatory system diseases	1,085 (4.6)
Respiratory system diseases (10)	Allergic rhinitis	557 (2.3)
	Chronic obstructive pulmonary disease	90 (0.4)
	Asthma	419 (1.8)
	Other respiratory system diseases	467 (2.0)
Digestive system diseases (11)	Stomach and duodenal diseases	907 (3.8)
	Liver and gallbladder diseases	525 (2.2)
	Other digestive system diseases	553 (2.3)
Skin diseases (12)	Atopic dermatitis	98 (0.4)
	Other skin diseases	614 (2.6)
Musculoskeletal system diseases (13)	Gout	375 (1.6)
	Rheumatoid arthritis	374 (1.6)
	Arthropathy	1,382 (5.8)
	Stiff neck	1,344 (5.7)
	Back pain	2,921 (12.3)
	Osteoporosis	1,304 (5.5)

2 3				
4 5		Urinary system diseases (14)	Kidney diseases	534 (2.3)
6		ICD International Statistical Class	Benign prostatic hyperplasia	949 (4.0)
/ 8		ICD, International Statistical Classi	incation of Diseases and Related Health Pic	otients
9 10	155			
11 12 13	156	We defined multimorb	idity as the coexistence of ≥ 2 chronic	health conditions out of 35
14 15 16 17	157	conditions and complex multir	norbidity as the presence of ≥ 3 affect	eted body systems out of 13
17 18 19	158	systems based on the ICD-10 of	chapters within one person.	
20 21 22	159			
23 24 25	160	Self-rated health		
26 27 28	161	Data on SRH were ob	tained through the question 'What is	your present general health
29 30 31	162	status?' Participants chose fro	m five options: 'excellent', 'fairly	good', 'average', 'not very
32 33 34 35	163	good', and 'bad'. Those who	chose 'excellent', 'fairly good', or	'average' were regarded as
35 36 37	164	being in a 'fine SRH' condit	ion, whereas those who chose 'not	very good' or 'bad' were
38 39 40	165	regarded as being in a 'poor S	SRH' condition. The distribution of	responses to the five scale
41 42 43	166	items differs depending on the	e country owing to cultural difference	ees. When dividing the five
44 45 46	167	scale items into two values, it i	s common in Europe and the United	States to classify the middle
47 48 49	168	'average' or 'good' as 'poor S	RH',[22] whereas in Japan and Koro	ea, it is common to classify
50 51 52	169	'average' or 'good' as 'fine SF	RH'.[23,24]	
53 54 55	170			
56 57 58	171	Covariates		
59 60	172	Previous studies have	reported that older age, female sex, a	nd lower educational levels

are associated with multimorbidity and poor SRH;[24-26] therefore, we used age, sex, and educational level as covariates. Data on age were provided in 5-year categories. Data regarding educational level were divided into three categories: less than high school, high school, and more than high school. The risk of psychological distress is reportedly higher in people with multimorbidity,[27] and psychological distress is an independent predictor of change in SRH;[28] therefore, we hypothesised that psychological distress serves as a mediator between multimorbidity and SRH and evaluated the impact of psychological distress on the relationship between multimorbidity and SRH using the Kessler 6 (K6) score, a screening scale for psychological distress. [29,30] The Japanese version of the K6 scale is a validated scale that comprises six questions answered on a scale of 0-4, with a total score of 0-24.[31] We classified the scores into three categories: 0-4 (normal), 5-12 (psychological distress), and 13-24 (severe mental illness).[32] **Statistical analysis** We applied a two-step procedure to determine the extent to which multimorbidity patterns are associated with poor SRH. Identification of multimorbidity patterns (exploratory factor analysis)

192	Multimorbidity patterns were determined using exploratory factor analysis based on
193	polychoric correlations. We used 13 body system-dependent clusters grouped into 33 chronic
194	health conditions, which were coded as dichotomous variables. We applied the maximum
195	likelihood method and promax rotation. The number of factors was determined based on a
196	parallel analysis. A factor loading greater than 0.30 is considered meaningful and was used as
197	the criterion for item selection. Moreover, multimorbidity patterns were also determined based
198	on clinical plausibility, as assessed by two primary care physicians (YH and TA).
199	
200	Investigation of the associations between multimorbidity patterns and poor SRH
201	(multivariable modified Poisson regression analyses)
202	For each participant, a multimorbidity pattern score was calculated for each identified
203	pattern. These scores correspond to the number of affected body system-dependent clusters in
204	each pattern.[11] Modified Poisson regression analyses (i.e. Poisson regression with robust
205	error variance)[33] were conducted to investigate the association between each multimorbidity
206	pattern score and poor SRH. We estimated the risk ratio directly using modified Poisson
207	regression because the odds ratio derived from the logistic regression can no longer
208	approximate the risk ratio due to the high prevalence of >10% of poor SRH.[34] The possible
209	confounding variables-age, sex, and educational level-were included as covariates in the
210	analyses. Each multimorbidity pattern score was individually included in the model to avoid
	192 193 194 195 196 197 198 199 200 201 200 201 202 203 204 203 204 205 204 205 206 207 206 207 208

Page 14 of 41

multicollinearity. To evaluate the impact of the K6 score as a mediator on the relationship between multimorbidity and SRH, we compared the results of two multivariable models with and without the K6 score. We analysed the association between a simple count of affected body systems, regardless of multimorbidity pattern, and poor SRH. Missing values for covariates were analysed as missing categories. As sensitivity analyses, we performed modified Poisson regression analyses with complete cases and after handling missing data with multiple imputations using a fully conditional specification. We created and analysed 100 multipleimputed datasets. Because unmeasured confounding factors, such as income, [24–26] could be present, we calculated the E-value, which estimates how strong unmeasured confounders would need to be to overturn the association between each multimorbidity pattern score and poor SRH.[35,36] All P-values were two-tailed, and statistical significance was set at P < 0.05. We used IBM SPSS Statistics 28.0 (IBM Japan, Tokyo, Japan) and R 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria) for the analysis. **Ethics** Ethical approval was not required for this study because it involved a secondary analysis of the national surveillance data that did not contain any personally identifiable

1 2		14
3		
4 5 6	230	information. According to Article 36 of Japan's Statistics Act, anonymised data from the CSLC
7 8 9	231	can be used for scientific research after approval by the MHLW of Japan.
10 11 12	232	
13 14 15	233	Patient and public involvement
16 17 18	234	No patients or public were involved.
19 20	235	
22 23 24	236	RESULTS
25 26 27	237	Supplemental Figure 1 shows a flowchart of the participants. The descriptive statistics
28 29 30	238	of multimorbidity included 77,120 participants, factor analysis to identify multimorbidity
31 32 33	239	patterns included 23,730 participants, and analyses to investigate the association between
34 35 36	240	multimorbidity patterns and poor SRH included 23,340 participants.
37 38 39	241	The prevalence of multimorbidity was 20% in participants aged \geq 20 years, 41% in those
40 41 42	242	aged \geq 65 years, and 48% in those aged \geq 75 years. The prevalence of complex multimorbidity
43 44 45	243	was 6.5% in participants aged \geq 20 years, 16% in those aged \geq 65 years, and 20% in those aged
46 47 48	244	≥75 years.
49 50 51	245	Table 1 shows the grouping and prevalence of chronic conditions in older participants.
52 53 54	246	We conducted a parallel analysis to examine the maximum number of factors for exploratory
55 56 57	247	factor analysis to identify multimorbidity patterns and a seven-factor solution was suggested.
58 59 60	248	After factor analyses using two- to seven-factor solutions, a four-factor solution was adopted

because the multimorbidity pattern was the most clinically plausible and consistent with previous reports. Table 2 shows the factor loadings for the four-factor solution following an exploratory factor analysis in older participants who were not hospitalised or institutionalised in care facilities (N = 23,730).

Table 2. Factor loadings for the four-factor solution following an exploratory factor analysis in older participants (N = 23,730)

Characteristic (ICD 10 shorts)	No. of affected	E 4 1	E	Fastar ?	Factor 4	
Chronic conditions (ICD-10 chapter ho.)	participants (%)	Factor 1	Factor 2	Factor 3	ractor 4	
Malignancies (2)	364 (1.5)	-0.15	0.66	-0.04	-0.15	
Haematologic diseases (3)	260 (1.1)	0.00	0.41	0.11	0.13	
Endocrine and metabolic diseases (4)	5,062 (21.3)	0.19	-0.05	-0.02	0.31	
Mental disorders (5)	329 (1.4)	0.37	-0.05	0.16	-0.14	
Nervous system diseases (6)	880 (3.7)	-0.03	0.01	0.99	0.13	
Eye diseases (7)	3,474 (14.6)	0.56	-0.02	-0.08	0.16	
Ear diseases (8)	608 (2.6)	0.69	-0.07	-0.01	-0.06	
Circulatory system diseases (9)	9,213 (38.8)	-0.11	-0.07	0.06	0.71	
Respiratory system diseases (10)	1,421 (6.0)	0.27	0.20	0.00	0.00	
Digestive system diseases (11)	1,866 (7.9)	0.17	0.46	-0.07	-0.13	
Skin diseases (12)	705 (3.0)	0.17	0.24	0.02	0.08	
Musculoskeletal system diseases (13)	4,959 (20.9)	0.36	0.02	-0.06	0.15	
Urinary system diseases (14)	1,437 (6.1)	-0.06	0.42	0.04	0.16	

ICD, International Statistical Classification of Diseases and Related Health Problems

Maximum likelihood method and promax rotation are applied.

Loadings are bolded if they exceed 0.30.

Three multimorbidity patterns were identified and labelled as follows: i) degenerative/mental health (Factor 1), ii) malignant/digestive/urologic/haematologic (Factor 2), and iii) cardiovascular/metabolic pattern (Factor 4). Factor 3 included only nervous system

		2
3 disease	258	3 4 5 6
ə particip	259	7 8
) Therefo	260	9 10 11
L system	261	12 13 14
2 and TA	262	15 16 17
3	263	18 19 20
4 hospita	264	21 22 23
5 particip	265	24 25 26
5	266	27 28 29
Table 3		30 31
Charac		32 33 34
Age (ye		35 36
65-69		37
70-74		38 30
75-79		40
80-84		41 42
85-89		43
≥90		44 45
Sex		46
Male		47 48
Femal		49
Educat		50 51
Less the		52
High s		53 54
More		55
Data n		56 57
K6 sco		58
0-4 (n		59 60
		~~

. There were very few participants with nervous system multimorbidity: only 37 ants (0.16% of the total older participants) had two or more nervous system diseases. re, we have not considered this factor as a multimorbidity pattern. The respiratory and skin diseases were not classified into any factor. Two primary care clinicians (YH agreed that the three multimorbidity patterns were clinically plausible. Table 3 presents the characteristics of older participants with SRH data who were not ised or institutionalised in care facilities (N = 23,340). Poor SRH was found in 5,554

ants (23.8%).

Characteristics of older participants with SRH data who were not hospitalised or institutionalised

1	·		
Chausataristia	All participants	Fine SRH	Poor SRH
Characteristic Age (years) 65-69 70-74 75-79 80-84 85-89 ≥90 Sex Male Female Educational level Less than high school High school More than high school Data missing X6 score 0-4 (normal)	(N = 23,340)	(N = 17,786)	(N = 5,554)
Age (years)			
65-69	6,818	5,704 (83.6)	1,114 (16.4)
70-74	6,029	4,816 (79.9)	1,213 (20.1)
75-79	4,910	3,625 (73.8)	1,285 (26.2)
80-84	3,149	2,111 (67.0)	1,038 (33.0)
85-89	1,686	1,056 (62.6)	630 (37.4)
≥90	748	474 (63.4)	274 (36.6)
Sex			
Male	10,266	7,956 (77.5)	2,310 (22.5)
Female	13,074	9,830 (75.2)	3,244 (24.8)
Educational level			
Less than high school	7,660	5,544 (72.4)	2,116 (27.6)
High school	8,810	6,841 (77.7)	1,969 (22.3)
More than high school	3,460	2,777 (80.3)	683 (19.7)
Data missing	3,410	2,624 (77.0)	786 (23.0)
K6 score			
0-4 (normal)	15,721	13,425 (85.4)	2,296 (14.6)

	5-12 (psychological distress)	4,830	2,848 (59.0)	1,982 (41.0)
	13-24 (severe mental illness)	696	171 (24.6)	525 (75.4)
	Data missing	2,093	1,342 (64.1)	751 (35.9)
	No. of morbidities			
	0	7,308	6,546 (89.6)	762 (10.4)
	1	6,458	5,145 (79.7)	1,313 (20.3)
	2	4,648	3,383 (72.8)	1,265 (27.2)
	3	2,560	1,585 (61.9)	975 (38.1)
	4	1,245	700 (56.2)	545 (43.8)
	≥5	1,121	427 (38.1)	694 (61.9)
	Multimorbidity*			
	Yes	9,574	6,095 (63.7)	3,479 (36.3)
	No	13,766	11,691 (84.9)	2,075 (15.1)
	Complex multimorbidity†			
	Yes	3,637	1,933 (53.1)	1,704 (46.9)
	No	19,703	15,853 (80.5)	3,850 (19.5)
267	[†] Complex multimorbidity was defined	d as the presence of	≥3 affected body systems.	
267				
268	The association between	multimorbidity pa	attern scores and poor Sl	RH adjusted for age,
269	sex, and educational level as cova	ariates is summar	ised in Table 4 and that a	idjusted for age, sex,
270		·		1 1 4
270	educational level, and K6 is show	wn in Table 5. Mi	ultimorbidity pattern sco	bres corresponded to
271	the number of affected body	y system-depend	dent clusters in each	pattern (e.g. the
272	malignant/digestive/urologic/hae	matologic patter	n score for a person w	ith malignancy and
273	anaemia was two). In the mode	el with age, sex,	, and educational level	as covariates, high
274	malignant/digestive/urologic/hae	matologic,	degenerative/mental	health, and

⁵⁸₅₉ 275 cardiovascular/metabolic pattern scores were significantly associated with poor SRH (adjusted

BMJ Open

2 3		
4 5 6	276	risk ratio [aRR] = 1.68, 95% confidence interval [CI]: 1.60-1.76, aRR = 1.63, 95% CI: 1.58-
7 8 9	277	1.69, and aRR = 1.31, 95% CI: 1.26-1.36, respectively) (Table 4). The E-value for the
10 11 12	278	association between each multimorbidity pattern score and poor SRH was 2.75 (lower limit of
13 14 15	279	95% CI: 2.58) for malignant/digestive/urologic/haematologic pattern, 2.64 (lower limit of 95%
16 17 18	280	CI: 2.54) for degenerative/mental health pattern, and 1.95 (lower limit of 95% CI: 1.83) for
19 20 21	281	cardiovascular/metabolic pattern. In the model with age, sex, educational level, and K6 as
22 23 24	282	covariates, high malignant/digestive/urologic/haematologic, degenerative/mental health, and
25 26 27	283	cardiovascular/metabolic pattern scores were significantly associated with poor SRH (aRR =
28 29 30	284	1.47, 95% CI: 1.40-1.54, aRR = 1.44, 95% CI: 1.39-1.49, and aRR = 1.24, 95% CI: 1.19-1.28,
31 32 33	285	respectively) (Table 5). The E-value for the association between each multimorbidity pattern
34 35 36	286	score and poor SRH was 2.30 (lower limit of 95% CI: 2.15) for
37 38 39	287	malignant/digestive/urologic/haematologic pattern, 2.24 (lower limit of 95% CI: 2.13) for
40 41 42	288	degenerative/mental health pattern, and 1.79 (lower limit of 95% CI: 1.67) for
43 44 45	289	cardiovascular/metabolic pattern. The association between multimorbidity pattern scores and
46 47 48	290	poor SRH was reduced when K6 was added to the model as a covariate, particularly for the
49 50 51	291	malignant/digestive/urologic/haematologic and degenerative/mental health patterns. Although
52 53 54	292	the simple count of affected body systems, regardless of multimorbidity pattern, was also
55 56 57	293	significantly associated with poor SRH when adjusted for age, sex, and educational level with
58 59 60	294	and without K6 as covariates (aRR = 1.35, 95% CI: 1.34-1.37 and aRR = 1.27, 95% CI: 1.25-

association

malignant/digestive/urologic/haematologic and degenerative/mental health pattern scores and

was

smaller

the

than

1.29,

respectively),

the

able 4. Associations between multimorbidity pattern scores and poor SRH. Modified Poisson regression analyses without K6.									
	Malignant/digestiv	e/urologic	Degenerative		Cardiovascular/metabolic				
	/haematologic j	oattern	/mental health pattern*		pattern				
	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P valu			
Multimorbidity pattern score†	1.68 (1.60-1.76)	< 0.001	1.63 (1.58-1.69)	< 0.001	1.31 (1.26-1.36)	< 0.00			
Age (years)									
65-69	ref		ref		ref				
70-74	1.19 (1.10-1.30)	< 0.001	1.14 (1.06-1.24)	< 0.001	1.22 (1.13-1.33)	< 0.00			
75-79	1.52 (1.40-1.65)	<0.001	1.38 (1.28-1.50)	0.001	1.58 (1.46-1.72)	< 0.00			
80-84	1.87 (1.72-2.04)	< 0.001	1.69 (1.55-1.85)	< 0.001	1.99 (1.82-2.17)	< 0.00			
85-89	2.11 (1.91-2.34)	< 0.001	1.92 (1.74-2.12)	< 0.001	2.24 (2.03-2.48)	< 0.001			
≥90	2.06 (1.80-2.36)	< 0.001	1.94 (1.70-2.23)	< 0.001	2.19 (1.92-2.51)	< 0.001			
Female sex	1.14 (1.08-1.21)	< 0.001	0.97 (0.92-1.03)	0.34	1.03 (0.98-1.09)	0.27			
Educational level									
Less than high school	ref		ref		ref				
High school	0.91 (0.85-0.97)	0.003	0.91 (0.86-0.97)	0.005	0.91 (0.86-0.97)	0.004			
More than high school	0.83 (0.76-0.91)	< 0.001	0.84 (0.77-0.92)	< 0.001	0.83 (0.76-0.91)	< 0.001			
Data missing	0.92 (0.84-1.00)	0.038	0.93 (0.86-1.02)	0.13	0.93 (0.86-1.01)	0.091			

SRH, self-rated health; K6, Kessler 6; aRR, adjusted risk ratio; CI, confidence interval

Adjusted for age, sex, and educational level.

*Degenerative/mental health pattern consisted of ear, eye, and musculoskeletal system diseases and mental disorders.

†Multimorbidity pattern scores corresponded to the number of affected body system-dependent clusters in each pattern.

Each pattern score was individually included in the model, adjusted for age, sex, and educational level.

	Malignant/digestiv	e/urologic	Degenerati	ve	Cardiovascular/r	netabolic
	/haematologic p	oattern	/mental health p	attern*	pattern	
	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value
Multimorbidity pattern score†	1.47 (1.40-1.54)	< 0.001	1.44 (1.39-1.49)	< 0.001	1.24 (1.19-1.28)	< 0.001
Age (years)						
65-69	ref		ref		ref	
70-74	1.15 (1.06-1.25)	< 0.001	1.12 (1.03-1.22)	0.007	1.15 (1.06-1.25)	< 0.001
75-79	1.41 (1.30-1.53)	< 0.001	1.32 (1.22-1.44)	< 0.001	1.43 (1.31-1.55)	< 0.001
80-84	1.64 (1.50-1.79)	< 0.001	1.55 (1.42-1.69)	< 0.001	1.68 (1.54-1.83)	< 0.001
85-89	1.78 (1.61-1.96)	< 0.001	1.70 (1.54-1.88)	< 0.001	1.82 (1.64-2.01)	< 0.001
≥90	1.67 (1.46-1.92)	< 0.001	1.65 (1.45-1.90)	< 0.001	1.71 (1.50-1.96)	< 0.001
Female sex	1.05 (0.99-1.11)	0.10	0.93 (0.88-0.98)	0.006	0.97 (0.92-1.03)	0.29
Educational level						
Less than high school	ref		ref		ref	
High school	0.95 (0.89-1.01)	0.081	0.95 (0.89-1.01)	0.089	0.95 (0.89-1.02)	0.14
More than high school	0.90 (0.82-0.98)	0.020	0.92 (0.84-1.00)	0.054	0.91 (0.84-1.00)	0.051
Data missing	0.88 (0.80-0.95)	0.002	0.89 (0.82-0.97)	0.007	0.89 (0.82-0.97)	0.006
K6 score						
0-4 (normal)	ref		ref		ref	
5-12 (psychological distress)	2.66 (2.51-2.83)	< 0.001	2.51 (2.36-2.67)	< 0.001	2.74 (2.57-2.91)	< 0.001
13-24 (severe mental illness)	4.31 (3.91-4.75)	< 0.001	3.94 (3.57-4.34)	< 0.001	4.60 (4.18-5.07)	< 0.001
Data missing	2.35 (2.16-2.56)	< 0.001	2.25 (2.07-2.45)	< 0.001	2.39 (2.20-2.60)	< 0.001

SRH, self-rated health; K6, Kessler 6; aRR, adjusted risk ratio; CI, confidence interval

Adjusted for age, sex, educational level, and K6.

*Degenerative/mental health pattern consisted of ear, eye, and musculoskeletal system diseases and mental disorders.

[†]Multimorbidity pattern scores corresponded to the number of affected body system-dependent clusters in each pattern.

Each pattern score was individually included in the model, adjusted for age, sex, educational level, and K6 score.

2	
כ ⊿	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
37	
25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52 52	
22	
אכ בר	
55	
56	
57	
58	
59	
60	

1

301 For sensitivity analyses, we performed modified Poisson regression analyses with complete cases and after handling missing data with multiple imputations (Supplemental 302 303 Tables 1 and 2). The proportion of missing values was 14.6% for educational level and 9.0% 304 for K6. In total, 4,806 of the 23,340 records (20.6%) were incomplete. The association of each multimorbidity pattern score and covariate with poor SRH did not differ considerably between 305 the analyses using multiple imputations and the analyses on the subset of complete cases. 306 307 308 **DISCUSSION** In the present study of nationally representative data from 77,120 participants in Japan 309 who were not hospitalised or institutionalised, we found a prevalence of multimorbidity. 310 Analysis using data from 23,730 older participants aged ≥ 65 years revealed three 311 312 multimorbidity i) degenerative/mental health, patterns: ii) malignant/digestive/urologic/haematologic, and iii) cardiovascular/metabolic. To the best of 313 our knowledge, this is the first study to investigate the association between certain 314 315 multimorbidity patterns and SRH. We found a positive association between each 316 multimorbidity pattern score and poor SRH. This association was stronger for degenerative/mental health and malignant/digestive/urologic/haematologic patterns than for 317 318 cardiovascular/metabolic patterns. Health care professionals can use the results to recognise 319 multimorbidity in patients at high risk for poor SRH and consider possible interventions.

Page 23 of 41

BMJ Open

Although the prevalence of multimorbidity in the present study was relatively lower than that reported in previous studies from Europe, North America, Australia, and Japan, [1,2] it would considerably reflect the prevalence in the free-living general population in Japan. The prevalence of multimorbidity could have been lower in our study because the survey excluded hospitalised or institutionalised people who were expected to have more chronic conditions. The results reflect the state of the community residents who visit medical institutions and are subject to health care policies. In addition, differences in the method of ascertainment of chronic conditions could contribute to differences in the prevalence. Various methods have been used in previous studies, including self-reporting, administrative health records, and clinical assessments.[1] Moreover, within self-reports, questions about chronic conditions varied among surveys. Although the participants in this study were asked about the health conditions for which they were attending medical institutions at the time of the survey, participants in another study were asked about chronic conditions that had been reported by healthcare professionals.[2] As this study did not cover inactive conditions that were not being attended to in medical institutions at the time, it could reflect only the conditions that were currently burdening participants. Because the multimorbidity patterns in this study were plausible based on previous

countries. Mental health pattern and cardiometabolic pattern were reported as the two most

reports and clinical perspectives, they can be widely generalised to older people in developed

Page 24 of 41

replicable multimorbidity patterns in a systematic review in 2019,[8] whereas another systematic review in Asia reported the following five patterns: cardiovascular/metabolic, mental health, degenerative, pulmonary, and cancer.[20] The systematic review in Asia contained one study from Japan that reported five patterns: cardiovascular/renal/metabolic, neuropsychiatric, skeletal/articular/digestive, respiratory/dermal, and malignant/digestive/urologic.[2] We found that the cardiovascular/metabolic pattern was consistent with that reported in previous studies. The degenerative/mental health pattern in this study was close to the falls/fractures/vision disorders/cognitive impairment and falls/vision impairment/cognitive impairment/urinary incontinence/hearing impairment reported in the systematic review in 2019, and mental patterns and degenerative patterns in the systematic review in Asia. As a mechanism for the construction of this pattern, we speculate that communication disability, social isolation, functional disability, limited mobility, and poorly treated pain due to vision and hearing impairment[37] or musculoskeletal diseases led to mental disorders such as depression. Moreover, patients with musculoskeletal diseases have a high risk of depression and anxiety, and those with both musculoskeletal diseases and anxiety or depression show increased pain.[38] explaining the interrelationship between musculoskeletal diseases and mental health disorders in degenerative/mental health patterns. The malignant/digestive/urologic/haematologic pattern in this study was similar to the pattern reported in the previous study in Japan. As a mechanism for the construction of this pattern,

we speculate that digestive and urologic organs are relatively frequent as sites of primary lesions in cancer survivors.[39] Furthermore, anaemia is a common complication of malignancy and its treatment[40,41] and can also be associated with chronic kidney disease[42] or bleeding due to gastrointestinal diseases. The multimorbidity patterns revealed by the data limited to the older population in this study may differ from those reported in previous studies involving younger generations. We believe it is valuable to report multimorbidity patterns in the older in Japan, where the population is ageing ahead of the rest of the world. The association between multimorbidity pattern scores and poor SRH was greater for malignant/digestive/urologic/haematologic and degenerative/mental health patterns than for cardiovascular/metabolic The association patterns. strong between malignant/digestive/urologic/haematologic patterns and poor SRH in the present study is consistent with the findings of a previous study that reported poorer SRH in older cancer survivors than in people without cancer.[43] Symptoms of digestive or urological conditions can affect eating and elimination, which may exacerbate SRH. The strong association between degenerative/mental health patterns and poor SRH in this study is consistent with the findings of previous studies. Rheumatic and musculoskeletal diseases have been reported to have the strongest association with poor SRH among the chronic conditions.[44] SRH in older people with multimorbidity is exacerbated by vision impairment, hearing impairment, depression, and anxiety.[45] Mental disorders and/or musculoskeletal diseases have been reported as

1
2
3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
32
34
35
36
30 27
5/ 20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

377	combinations of chronic conditions associated with poor SRH.[46] Communication disability,
378	social isolation, functional disability, limited mobility, and poorly treated pain due to vision
379	and hearing impairment or musculoskeletal diseases can worsen SRH. Reportedly,
380	multimorbidity, depressive symptoms, and disability synergistically exacerbate SRH.[47] The
381	combined involvement of these factors in degenerative/mental health patterns could explain
382	the strong association with poor SRH. In contrast, the association between
383	cardiovascular/metabolic patterns and poor SRH was weaker than that between other patterns
384	and poor SRH. We suspect that this is because stable conditions of cardiovascular/metabolic
385	diseases, such as diabetes or ischaemic heart disease, may not have severe symptoms and may
386	not affect daily life significantly. However, one previous study reported that cardiometabolic
387	diseases contribute the most to the worsening of SRH in the general population aged 30-79
388	years in China.[48] Differences in participants' ages across studies may affect multimorbidity
389	patterns and the association between these patterns and SRH.
390	The K6, a screening scale for psychological distress, partially mediated the association
391	between multimorbidity pattern scores and poor SRH. Comparing the models of multivariable
392	regression analysis that included K6 and those that did not include it revealed that the
393	association between multimorbidity pattern scores and poor SRH was weaker in the model that
394	included K6 for all three patterns. We speculate that the growing patient burden due to the

395 increasing number of chronic conditions may have partially caused psychological distress,

BMJ Open

26

2	
5 4 5 6	396
7 8 9	397
10 11 12	398
12 13 14	399
16 17	400
19 20	401
21 22 23	402
24 25 26	403
27 28 29	404
30 31 32	405
33 34 35	406
36 37 38	407
39 40 41	408
42 43 44	409
45 46 47	410
48 49 50	411
51 52 53	412
54 55 56	413
57 58 59	414
60	

resulting in the worsening of SRH.[27,28] There might be a correlation between the degenerative/mental health pattern score and K6 conceptually. However, because the Pearson correlation coefficient between the degenerative/mental health pattern score and K6 was 0.053 and the variance inflation factor of the degenerative/mental health pattern score and K6 was 1.025 and 1.035 in the multivariable model, respectively, no significant multicollinearity was noted of concern in statistical analysis. The results of this study will help clinicians recognise patients with multimorbidity patterns, which are highly associated with poor SRH, and consider possible interventions.

Because the multimorbidity pattern score we used was simple and easy to apply in clinical practice, clinicians could calculate the score for each patient and assess the risk of poor SRH. Given that a previous study reported that the association between multimorbidity and poor SRH could be reduced by increasing physical activity,[49] clinicians may improve SRH by prescribing exercise to patients with multimorbidity at risk for poor SRH. Further research is warranted to confirm whether such interventions can improve SRH in patients with multimorbidity.

411 Our study has several limitations. First, because of the cross-sectional design, it was 412 impossible to determine whether there was a causal relationship between multimorbidity 413 patterns and SRH. Additional research using a longitudinal design is needed to confirm the 414 association between multimorbidity patterns and SRH. Second, because chronic diseases were

Page 28 of 41

BMJ Open

measured using self-report questionnaires, it is possible that the prevalence of chronic diseases was underestimated or that the conditions were misclassified. However, previous studies have demonstrated that assessment of morbidity using self-reported data can predict clinical outcomes, including SRH, compared with measures based on administrative data.[50] Third, there might be unmeasured confounding factors, such as income.[24-26] However, the E-values for the association between each multimorbidity pattern score and poor SRH were reasonably high, making it unlikely that unmeasured confounders would overturn the observed association between each multimorbidity pattern score and poor SRH. Fourth, we could not show the magnitude of mediation by the psychological distress of the relationship between multimorbidity and SRH, as it is beyond the study scope. This should be examined in future studies using causal mediation analysis. Finally, it is unclear whether the results of this study can be applied to older adults who require hospitalisation or institutionalisation, such as those with severe chronic diseases or functional decline, because the survey did not include such patients. **CONCLUSIONS** We found differences in the association between multimorbidity patterns and poor SRH. Malignant/digestive/urologic/haematologic and degenerative/mental health patterns may be associated with a high risk for poor SRH. Further research should focus on interventions to

	28
434	improve SRH in patients with multimorbidity.
435	
436	Statements
437	Author contributions: All authors (YH, MN, TA, and TO) contributed to the conception or
438	design of the study, reviewed and edited the manuscript, contributed to the interpretation of the
439	data and the analyses, performed critical review of the manuscript, and gave the final approval
440	of the manuscript before submission. YH performed the statistical analyses and drafted the
441	manuscript. MN, TA, and TO supervised the work.
442	Competing interest: TA received a grant from Pfizer Health Research Foundation, Japan for
443	another research project related to multimorbidity (Grant No. 21-E-01).
444	Funding: This research received no specific grant from any funding agency in the public,
445	commercial or not-for-profit sectors.
446	Data availability: These data were derived from the CSLC in June 2013, which was conducted
447	by the MHLW of Japan. You can use the anonymous data if you apply for and receive
448	permission from the ministry. [https://www.mhlw.go.jp/toukei/itaku/tokumei.html]
449	Participant consent: Not applicable.
450	Ethical approval: Ethical approval was not required for this study because it involved a
451	secondary analysis of the national surveillance data that did not contain any personally
452	identifiable information. According to Article 36 of Japan's Statistics Act, anonymised data

Page 30 of 41

2 3 4	153	from	the CSLC can be used for scientific research after approval by the MHLW of Japan	
5 6	433	110111	the CSEC can be used for scientific research after approval by the write w of Japan.	
7 8 9	454			
10 11 12 13 14 15	455	References		
	456	1	Violan C, Foguet-Boreu Q, Flores-Mateo G, et al. Prevalence, determinants and	
16 17 18	457		patterns of multimorbidity in primary care: A systematic review of observational	
19 20 21	458		studies. PLoS One 2014;9:3-11. doi:10.1371/journal.pone.0102149	
22 23 24	459	2	Aoki T, Yamamoto Y, Ikenoue T, et al. Multimorbidity patterns in relation to	
25 26 27 28 29 30	460		polypharmacy and dosage frequency: A nationwide, cross-sectional study in a	
	461		Japanese population. Sci Rep 2018;8:4–11. doi:10.1038/s41598-018-21917-6	
31 32 33	462	3	Hu X, Huang J, Lv Y, et al. Status of prevalence study on multimorbidity of chronic	
34 35 36	463		disease in China: Systematic review. Geriatr Gerontol Int 2015;15:1–10.	
37 38 39	464		doi:10.1111/ggi.12340	
40 41 42	465	4	Kim J, Keshavjee S, Atun R. Trends, patterns and health consequences of	
43 44 45	466		multimorbidity among South Korea adults: Analysis of nationally representative	
46 47 48	467		survey data 2007-2016. <i>J Glob Health</i> 2020; 10 :020426–020426.	
49 50 51	468		doi:10.7189/JOGH.10.020426	
52 53 54	469	5	France EF, Wyke S, Gunn JM, et al. Multimorbidity in primary care: a systematic	
55 56 57	470		review of prospective cohort studies. Br J Gen Pract 2012;62:e297-307.	
58 59 60	471		doi:10.3399/bjgp12X636146	

1 2			30
3 4 5	472	6	Wallace E, Salisbury C, Guthrie B, et al. Managing patients with multimorbidity in
6 7 8 9	473		primary care. BMJ 2015; 350 :6–11. doi:10.1136/bmj.h176
9 10 11 12	474	7	Muth C, Blom JW, Smith SM, et al. Evidence supporting the best clinical management
13 14 15	475		of patients with multimorbidity and polypharmacy: a systematic guideline review and
16 17 18	476		expert consensus. J Intern Med 2019;285:272-88. doi:10.1111/joim.12842
19 20 21	477	8	Busija L, Lim K, Szoeke C, et al. Do replicable profiles of multimorbidity exist?
22 23 24	478		Systematic review and synthesis. <i>Eur J Epidemiol</i> 2019; 34 :1025–53.
25 26 27	479		doi:10.1007/s10654-019-00568-5
28 29 30	480	9	Gimeno-Miguel A, Gracia Gutiérrez A, Poblador-Plou B, et al. Multimorbidity
31 32 33	481		patterns in patients with heart failure: An observational Spanish study based on
34 35 36	482		electronic health records. BMJ Open 2019;9. doi:10.1136/bmjopen-2019-033174
37 38 39	483	10	Jackson CA, Jones M, Tooth L, et al. Multimorbidity patterns are differentially
40 41 42	484		associated with functional ability and decline in a longitudinal cohort of older women.
43 44 45	485		Age Ageing 2015;44:810–6. doi:10.1093/ageing/afv095
46 47 48	486	11	Aoki T, Fukuhara S, Fujinuma Y, et al. Effect of multimorbidity patterns on the
49 50 51	487		decline in health-related quality of life: A nationwide prospective cohort study in
52 53 54	488		Japan. BMJ Open 2021;11:1-8. doi:10.1136/bmjopen-2020-047812
55 56 57	489	12	DeSalvo KB, Bloser N, Reynolds K, et al. Mortality prediction with a single general
58 59 60	490		self-rated health question. A meta-analysis. J Gen Intern Med 2006;21:267–75.
Page 32 of 41

1 2				31
3 4 5 6	491		doi:10.1111/j.1525-1497.2005.00291.x	
7 8	492	13	DeSalvo KB, Jones M, Peabody J, et al. Health care expenditure prediction with a	
9 10 11 12	493		single item, self-rated health measure. Med Care 2009;47:440-7.	
12 13 14	494		doi:10.1097/MLR.0b013e318190b716	
15 16 17	495	14	Smith SM, Wallace E, Salisbury C, et al. A core outcome set for multimorbidity	
19 20	496		research (COSmm). Ann Fam Med 2018;16:132–8. doi:10.1370/afm.2178	
21 22 23	497	15	Mavaddat N, Valderas JM, Van Der Linde R, et al. Association of self-rated health	
24 25 26	498		with multimorbidity, chronic disease and psychosocial factors in a large middle-aged	d
27 28 29 30	499		and older cohort from general practice: A cross-sectional study. BMC Fam Pract	
31 32 33	500		2014; 15 :1–11. doi:10.1186/s12875-014-0185-6	
34 35 36	501	16	Ishizaki T, Kobayashi E, Fukaya T, et al. Association of physical performance and	
37 38 39	502		self-rated health with multimorbidity among older adults: Results from a nationwide	<u>,</u>
40 41 42	503		survey in Japan. Arch Gerontol Geriatr 2019;84:103904.	
43 44 45	504		doi:10.1016/j.archger.2019.103904	
46 47 48	505	17	Ministry of Health, Labour and Welfare [Internet]. "Tokumei deta no teikyou ni tsui	te"
49 50 51	506		(accessed Apr 2022). Available from:	
52 53 54	507		https://www.mhlw.go.jp/toukei/itaku/tokumei.html	
55 56 57	508	18	Luo Y, Huang Z, Liu H, et al. Development and Validation of a Multimorbidity Inde	ex
58 59 60	509		Predicting Mortality Among Older Chinese Adults. Front Aging Neurosci 2022;14:1	l—

1 2 2			3
3 4 5	510		9. doi:10.3389/fnagi.2022.767240
6 7 8	511	19	Yao SS, Xu HW, Han L, et al. Multimorbidity measures differentially predicted
9 10 11	512		mortality among older Chinese adults. <i>J Clin Epidemiol</i> 2022; 146 :97–105.
12 13 14	513		doi:10.1016/j.jclinepi.2022.03.002
15 16 17	514	20	Rajoo SS, Wee ZJ, Lee PSS, et al. A Systematic Review of the Patterns of Associative
18 19 20	515		Multimorbidity in Asia. Biomed Res Int 2021;2021. doi:10.1155/2021/6621785
21 22 23	516	21	Harrison C, Britt H, Miller G, et al. Examining different measures of multimorbidity,
24 25 26	517		using a large prospective cross-sectional study in Australian general practice. BMJ
27 28 29	518		<i>Open</i> 2014; 4 :1–9. doi:10.1136/bmjopen-2013-004694
30 31 32	519	22	Camargo-Casas S, Suarez-Monsalve S, Zepeda MUP, et al. Multimorbidity, depressiv
33 34 35	520		symptoms, and self-reported health in older adults: A secondary analysis of the Sabe
36 37 38	521		bogota study. Rev Investig Clin 2018;70:192-7. doi:10.24875/RIC.18002478
39 40 41	522	23	Sugisawa H, Harada K, Sugihara Y, et al. Socioeconomic status and self-rated health
42 43 44	523		of Japanese people, based on age, cohort, and period. <i>Popul Health Metr</i> 2016;14:1-
45 46 47	524		11. doi:10.1186/s12963-016-0095-z
48 49 50	525	24	Ota A, Yatsuya H, Nishi N, et al. Relationships among Socioeconomic Factors and
51 52 53	526		Self-rated Health in Japanese Adults: NIPPON DATA2010. J Epidemiol 2018;28
54 55 56	527		Suppl 3:S66–72. doi:10.2188/jea.JE20170246
58 59	528	25	Perruccio A V., Katz JN, Losina E. Health burden in chronic disease: Multimorbidity
00			

2 3			
4 5 6	529		is associated with self-rated health more than medical comorbidity alone. J Clin
7 8 9	530		<i>Epidemiol</i> 2012; 65 :100–6. doi:10.1016/j.jclinepi.2011.04.013
10 11 12	531	26	Pathirana TI, Jackson CA. Socioeconomic status and multimorbidity: a systematic
13 14 15	532		review and meta-analysis. Aust NZJ Public Health 2018;42:186–94.
16 17 18	533		doi:10.1111/1753-6405.12762
19 20 21	534	27	Read JR, Sharpe L, Modini M, et al. Multimorbidity and depression: A systematic
22 23 24	535		review and meta-analysis. J Affect Disord 2017;221:36–46.
25 26 27	536		doi:10.1016/j.jad.2017.06.009
28 29 30	537	28	Liu S, Qiao Y, Wu Y, et al. The longitudinal relation between depressive symptoms
31 32 33	538		and change in self-rated health: A nationwide cohort study. J Psychiatr Res
34 35 36	539		2021; 136 :217–23. doi:10.1016/j.jpsychires.2021.02.039
37 38 30	540	29	Kessler RC, Andrews G, Colpe LJ, et al. Short screening scales to monitor population
40 41 42	541		prevalences and trends in non-specific psychological distress. Psychol Med
42 43 44 45	542		2002; 32 :959–76. doi:10.1017/S0033291702006074
45 46 47	543	30	Kessler RC, Barker PR, Colpe LJ, et al. Screening for serious mental illness in the
49 50	544		general population. Arch Gen Psychiatry 2003;60:184–9.
52 53	545		doi:10.1001/archpsyc.60.2.184
54 55 56	546	31	Furukawa TA, Kawakami N, Saitoh M, et al. The performance of the Japanese version
57 58 59 60	547		of the K6 and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr

\mathbf{a}	
	4
2	

1 2			34
3 4 5	548		Res 2008;17:152-8. doi:10.1002/mpr.257
6 7 8	549	32	Sakurai K, Nishi A, Kondo K, et al. Screening performance of K6/K10 and other
9 10 11 12	550		screening instruments for mood and anxiety disorders in Japan. Psychiatry Clin
12 13 14 15	551		<i>Neurosci</i> 2011; 65 :434–41. doi:10.1111/j.1440-1819.2011.02236.x
15 16 17	552	33	Zou G. A Modified Poisson Regression Approach to Prospective Studies with Binary
19 20	553		Data. Am J Epidemiol 2004;159:702–6. doi:10.1093/aje/kwh090
21 22 23	554	34	Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in
24 25 26	555		cohort studies of common outcomes. J Am Med Assoc 1998;280:1690–1.
27 28 29	556		doi:10.1001/jama.280.19.1690
30 31 32	557	35	Mathur MB, Ding P, Riddell CA, et al. Web Site and R Package for Computing E-
33 34 35	558		values. <i>Epidemiology</i> 2018; 29 :e45–7. doi:10.1097/EDE.000000000000864
37 38 30	559	36	Van Der Weele TJ, Ding P. Sensitivity analysis in observational research: Introducing
39 40 41	560		the E-Value. Ann Intern Med 2017;167:268-74. doi:10.7326/M16-2607
42 43 44	561	37	Mudie LI, Varadaraj V, Gajwani P, et al. Dual sensory impairment: The association
45 46 47	562		between glaucomatous vision loss and hearing impairment and function. PLoS One
48 49 50	563		2018;13:1-12. doi:10.1371/journal.pone.0199889
51 52 53	564	38	Ding H, Tang Y, Xue Y, et al. A report on the prevalence of depression and anxiety in
54 55 56	565		patients with frozen shoulder and their relations to disease status. Psychol Heal Med
57 58 59 60	566		2014; 19 :730–7. doi:10.1080/13548506.2013.873814

Page 36 of 41

BMJ Open

1 2 3			35
5 4 5 6	567	39	American Cancer Society. Cancer Treatment and Survivorship Facts and Figures
7 8 9	568		2019-2021. Am Cancer Soc 2019;:1-48.https://www.cancer.org/research/cancer-facts-
10 11 12	569		statistics/survivor-facts-figures.html
13 14 15	570	40	Tchekmedyian NS. Anemia in cancer patients: significance, epidemiology, and current
16 17 18	571		therapy. Oncology (Williston Park) 2002;16:17–24.
19 20 21	572	41	Birgegård G, Gascón P, Ludwig H. Evaluation of anaemia in patients with multiple
22 23 24	573		myeloma and lymphoma: Findings of the European Cancer Anaemia Survey. Eur J
25 26 27	574		Haematol 2006;77:378-86. doi:10.1111/j.1600-0609.2006.00739.x
28 29 30	575	42	Hsu CY, McCulloch CE, Curhan GC. Epidemiology of anemia associated with chronic
31 32 33	576		renal insufficiency among adults in the United States: Results from the Third National
34 35 36	577		Health and Nutrition Examination Survey. J Am Soc Nephrol 2002;13:504–10.
37 38 39	578		doi:10.1681/asn.v132504
40 41 42	579	43	Grov EK, Fosså SD, Dahl AA. A controlled study of the influence of comorbidity on
43 44 45	580		activities of daily living in elderly cancer survivors (the HUNT-3 survey). J Geriatr
46 47 48	581		Oncol 2017;8:328-35. doi:10.1016/j.jgo.2017.05.007
49 50 51	582	44	Simões D, Araújo FA, Monjardino T, et al. The population impact of rheumatic and
52 53 54	583		musculoskeletal diseases in relation to other non-communicable disorders: comparing
55 56 57	584		two estimation approaches. <i>Rheumatol Int</i> 2018; 38 :905–15. doi:10.1007/s00296-018-
58 59 60	585		3990-8

Page 37 of 41

1 2 BMJ Open

3 4 5	586	45	Cañón-Esquivel A, González-Vélez AE, Forjaz MJ. Factors associated with self-rated
6 7 8	587		health status of older people with multimorbidity in Colombia: A cross-sectional study.
9 10 11	588		Rev Esp Geriatr Gerontol 2021;56:326-33. doi:10.1016/J.REGG.2021.07.005
12 13 14	589	46	Vos HMM, Bor HH, Rangelrooij-Minkels MJAV, et al. Multimorbidity in older
15 16 17	590		women: The negative impact of specific combinations of chronic conditions on self-
18 19 20	591		rated health. Eur J Gen Pract 2013;19:117–22. doi:10.3109/13814788.2012.755511
21 22 23	592	47	Bustos-Vázquez E, Fernández-Niño JA, Astudillo-García CI. Autopercepción de la
24 25 26	593		salud, presencia de comorbilidades y depresión en adultos mayores mexicanos:
27 28 29	594		Propuesta y validación de un marco conceptual simple. <i>Biomedica</i> 2017; 37 :92–103.
30 31 32	595		doi:10.7705/biomedica.v37i3.3070
33 34 35 36	596	48	Song X, Wu J, Yu C, et al. Association between multiple comorbidities and self-rated
37 38 39	597		health status in middle-aged and elderly Chinese: the China Kadoorie Biobank study.
40 41 42	598		BMC Public Health 2018;18:744. doi:10.1186/s12889-018-5632-1
43 44 45	599	49	Marques A, Peralta M, Gouveia ÉR, et al. Physical activity buffers the negative
46 47 48	600		relationship between multimorbidity, self-rated health and life satisfaction. J Public
49 50 51	601		Health (Oxf) 2018;40:e328-35. doi:10.1093/pubmed/fdy012
52 53 54	602	50	Bayliss EA, Ellis JL, Shoup JA, et al. Association of patient-centered outcomes with
55 56 57	603		patient-reported and ICD-9-based morbidity measures. Ann Fam Med;10:126-33.
58 59 60	604		doi:10.1370/afm.1364

CSLC, the Comprehensive Survey of Living Conditions; SRH, self-rated health

BMJ Open

	Malignant/dige	stive/urol	ogic/haematologic	pattern	Degener	ative/men	tal health pattern'	•	Cardio	vascular/i	netabolic pattern	
	Complete case a (N = 19,93	nalysis 0)	Multiple imputation (N = 23,340)		Complete case analysis (N = 19,930)		Multiple imputation (N = 23,340)		Complete case analysis (N = 19,930)		Multiple imputation (N = 23,340)	
	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P valu
Multimorbidity pattern score†	1.68 (1.62-1.75)	< 0.001	1.69 (1.63-1.75)	< 0.001	1.65 (1.60-1.69)	< 0.001	1.65 (1.61-1.69)	< 0.001	1.30 (1.25-1.34)	< 0.001	1.29 (1.26-1.34)	< 0.001
Age (years)												
65-69	ref		ref		ref		ref		ref		ref	
70-74	1.18 (1.09-1.28)	< 0.001	1.19 (1.10-1.28)	< 0.001	1.14 (1.06-1.24)	0.001	1.15 (1.07-1.23)	< 0.001	1.19 (1.10-1.29)	< 0.001	1.19 (1.11-1.28)	< 0.001
75-79	1.53 (1.41-1.65)	< 0.001	1.49 (1.39-1.60)	< 0.001	1.41 (1.30-1.52)	< 0.001	1.38 (1.29-1.49)	< 0.001	1.55 (1.43-1.67)	< 0.001	1.51 (1.41-1.63)	< 0.001
80-84	1.83 (1.69-1.98)	< 0.001	1.82 (1.69-1.96)	< 0.001	1.69 (1.56-1.83)	< 0.001	1.69 (1.57-1.82)	< 0.001	1.90 (1.75-2.06)	< 0.001	1.89 (1.75-2.04)	< 0.001
85-89	2.05 (1.87-2.24)	< 0.001	2.06 (1.90-2.24)	< 0.001	1.90 (1.74-2.08)	< 0.001	1.92 (1.77-2.09)	< 0.001	2.13 (1.95-2.33)	< 0.001	2.13 (1.96-2.32)	< 0.001
≥90	2.08 (1.85-2.33)	< 0.001	2.00 (1.79-2.24)	< 0.001	2.01 (1.79-2.26)	< 0.001	1.95 (1.74-2.17)	< 0.001	2.16 (1.92-2.42)	< 0.001	2.08 (1.87-2.33)	< 0.001
Female sex	1.13 (1.08-1.19)	< 0.001	1.13 (1.08-1.19)	< 0.001	0.96 (0.92-1.01)	0.15	0.96 (0.92-1.01)	0.12	1.03 (0.98-1.09)	0.21	1.03 (0.98-1.08)	0.21
Educational level												
Less than high school	ref		ref		ref		ref		ref		ref	
High school	0.91 (0.86-0.96)	< 0.001	0.91 (0.86-0.96)	< 0.001	0.91 (0.87-0.96)	< 0.001	0.91 (0.87-0.96)	< 0.001	0.91 (0.87-0.96)	< 0.001	0.91 (0.87-0.96)	< 0.001
More than high school	0.83 (0.77-0.89)	< 0.001	0.83 (0.77-0.90)	< 0.001	0.85 (0.78-0.91)	< 0.001	0.85 (0.79-0.92)	< 0.001	0.84 (0.78-0.91)	< 0.001	0.85 (0.79-0.92)	< 0.001

SRH, self-rated health; K6, Kessler 6; aRR, adjusted risk ratio; CI, confidence interval

Adjusted for age, sex, and educational level.

*Degenerative/mental health pattern consisted of ear, eye, and musculoskeletal system diseases and mental disorders.

†Multimorbidity pattern scores corresponded to the number of affected body system-dependent clusters in each pattern. vel.

Each pattern score was individually included in the model, adjusted for age, sex, and educational level.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-063729 on 1 September 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright.

	Malignant/digestive/urologic/haematologic pattern				Degene	erative/men	tal health pattern*		Cardi	iovascular/	metabolic pattern	
	Complete case analysis (N = 18,534)		Multiple imputation (N = 23,340)		Complete case a (N = 18,53	analysis 34)	Multiple imputation (N = 23,340)		Complete case analysis (N = 18,534)		Multiple imputation (N = 23,340)	
	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P value	Poor SRH (aRR (95% CI))	P valu
Multimorbidity pattern score†	1.49 (1.44-1.56)	< 0.001	1.49 (1.44-1.54)	< 0.001	1.47 (1.43-1.51)	< 0.001	1.46 (1.42-1.50)	< 0.001	1.24 (1.20-1.29)	< 0.001	1.24 (1.20-1.28)	< 0.001
Age (years)												
65-69	ref		ref		ref		ref		ref		ref	
70-74	1.15 (1.06-1.25)	< 0.001	1.17 (1.09-1.25)	< 0.001	1.12 (1.04-1.21)	0.005	1.14 (1.06-1.22)	< 0.001	1.16 (1.07-1.25)	< 0.001	1.17 (1.09-1.25)	< 0.001
75-79	1.51 (1.40-1.63)	< 0.001	1.46 (1.37-1.57)	< 0.001	1.41 (1.31-1.53)	< 0.001	1.38 (1.29-1.48)	< 0.001	1.52 (1.40-1.64)	< 0.001	1.48 (1.38-1.58)	< 0.001
80-84	1.75 (1.61-1.90)	< 0.001	1.71 (1.59-1.84)	< 0.001	1.64 (1.51-1.78)	< 0.001	1.61 (1.50-1.73)	< 0.001	1.78 (1.64-1.93)	< 0.001	1.74 (1.63-1.87)	< 0.001
85-89	1.86 (1.69-2.04)	< 0.001	1.85 (1.71-2.01)	< 0.001	1.76 (1.61-1.93)	< 0.001	1.77 (1.63-1.92)	< 0.001	1.89 (1.73-2.07)	< 0.001	1.89 (1.74-2.05)	< 0.001
≥90	1.82 (1.62-2.05)	< 0.001	1.73 (1.56-1.92)	< 0.001	1.81 (1.61-2.04)	< 0.001	1.72 (1.54-1.91)	< 0.001	1.87 (1.66-2.10)	< 0.001	1.76 (1.59-1.96)	< 0.001
Female sex	1.06 (1.01-1.12)	0.031	1.05 (1.00-1.10)	0.039	0.93 (0.88-0.98)	0.005	0.92 (0.88-0.97)	< 0.001	0.98 (0.93-1.03)	0.45	0.97 (0.93-1.02)	0.25
Educational level												
Less than high school	ref		ref		ref		ref		ref		ref	
High school	0.93 (0.88-0.98)	0.009	0.94 (0.89-0.98)	0.009	0.93 (0.88-0.99)	0.012	0.94 (0.89-0.99)	0.011	0.94 (0.89-0.99)	0.018	0.94 (0.90-0.99)	0.023
More than high school	0.89 (0.83-0.97)	0.004	0.89 (0.83-0.96)	0.002	0.91 (0.84-0.98)	0.016	0.91 (0.85-0.98)	0.009	0.91 (0.84-0.98)	0.014	0.91 (0.85-0.98)	0.012
K6 score												
0-4 (normal)	ref		ref		ref		ref		ref		ref	
5-12 (psychological distress)	2.57 (2.44-2.71)	< 0.001	2.61 (2.48-2.74)	< 0.001	2.47 (2.34-2.61)	< 0.001	2.50 (2.38-2.63)	< 0.001	2.64 (2.50-2.78)	< 0.001	2.66 (2.53-2.79)	< 0.001
13-24 (severe mental illness)	4.31 (4.04-4.60)	< 0.001	4.29 (4.05-4.55)	< 0.001	3.98 (3.71-4.26)	< 0.001	3.97 (3.72-4.23)	< 0.001	4.57 (4.29-4.86)	< 0.001	4.56 (4.31-4.83)	< 0.001
SRH, self-rated health; K6, Kessl Adjusted for age, sex, educationa *Degenerative/mental health pattor †Multimorbidity pattern scores co	ler 6; aRR, adjusted l level, and K6. ern consisted of ear, orresponded to the n	risk ratio; C eye, and m umber of af	CI, confidence interva usculoskeletal system fected body system-o	l 1 diseases ar 1ependent cl	nd mental disorders. lusters in each pattern	n.						
Each pattern score was individua	lly included in the m	nodel, adjus	ted for age, sex, educ	ational leve	l, and K6 score.							

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-063729 on 1 September 2022. Downloaded from http://bmjopen.bmj.com/ on September 21, 2023 by guest. Protected by copyright.

Page 41 of 41

 BMJ Open

Section/Topic	ltem #	Recommendation Sep	Reported on page #			
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1-2			
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	2-3			
Introduction		22. [
Background/rationale	ackground/rationale 2 Explain the scientific background and rationale for the investigation being reported					
Objectives 3 State specific objectives, including any prespecified hypotheses B						
Methods		led f				
Study design	4	Present key elements of study design early in the paper	6			
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6			
Participants	Intricipants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants 30					
Variables	7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if					
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 열	7-11			
Bias	9	Describe any efforts to address potential sources of bias	7-13			
Study size	10	Explain how the study size was arrived at	6-7			
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-11			
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11-13			
		(b) Describe any methods used to examine subgroups and interactions	NA			
		(c) Explain how missing data were addressed	13			
		(d) If applicable, describe analytical methods taking account of sampling strategy	6			
		(e) Describe any sensitivity analyses	13			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 42 of 41

		BMJ Open 7-20222	Page 4
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	14 and Supplemental
		confirmed eligible, included in the study, completing follow-up, and analysed g	Figure 1
		(b) Give reasons for non-participation at each stage o	Supplemental Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	16 and Table 3
		(b) Indicate number of participants with missing data for each variable of interest	Table 3
Outcome data	15*	Report numbers of outcome events or summary measures	16 and Table 3
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	17-19 and Tables 4 and 5
		(b) Report category boundaries when continuous variables were categorized	Table 5
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	21 and Supplemental Tables 1 and 2
Discussion		j. gg	
Key results	18	Summarise key results with reference to study objectives	21
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	26-27
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	26
Generalisability	21	Discuss the generalisability (external validity) of the study results	22, 24, and 27
Other information		ber	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	28

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in controls in case-control studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine 🛱 rg/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.spobe-statement.org.

Š

copyright