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ABSTRACT
Objectives: Demonstrate the application of decision
trees—classification and regression trees (CARTs), and
their cousins, boosted regression trees (BRTs)—to
understand structure in missing data.
Setting: Data taken from employees at 3 different
industrial sites in Australia.
Participants: 7915 observations were included.
Materials and methods: The approach was
evaluated using an occupational health data set
comprising results of questionnaires, medical tests and
environmental monitoring. Statistical methods included
standard statistical tests and the ‘rpart’ and ‘gbm’

packages for CART and BRT analyses, respectively,
from the statistical software ‘R’. A simulation study was
conducted to explore the capability of decision tree
models in describing data with missingness artificially
introduced.
Results: CART and BRT models were effective in
highlighting a missingness structure in the data,
related to the type of data (medical or environmental),
the site in which it was collected, the number of visits,
and the presence of extreme values. The simulation
study revealed that CART models were able to identify
variables and values responsible for inducing
missingness. There was greater variation in variable
importance for unstructured as compared to structured
missingness.
Discussion: Both CART and BRT models were
effective in describing structural missingness in data.
CART models may be preferred over BRT models for
exploratory analysis of missing data, and selecting
variables important for predicting missingness. BRT
models can show how values of other variables
influence missingness, which may prove useful for
researchers.
Conclusions: Researchers are encouraged to use
CART and BRT models to explore and understand
missing data.

BACKGROUND AND SIGNIFICANCE
The motivating problem for this investigation
was the analysis and reporting of occupational
health data. The data set comprises 7915
observations of health variables reported on
individual workers and corresponding envir-
onmental variables recorded at monitoring
stations, at three worksites in Australia,

observed from 2006 to 2013. Within each site,
employees were grouped into Similar
Exposure Groups (SEGs), based on the type
of occupational exposure. For example, those
working in administration are in the
‘Support’ SEG, and those who drive large
construction vehicles are in the ‘Production’
SEG. Over the study timeframe, the number
of medical visits per person ranged from 1 to
8. Health data included measures of lung
function, body mass index (BMI), cholesterol,
cardiac function and blood pressure, hearing,
and psychological measures such as sleepi-
ness, anxiety and depression. Environmental
exposure data included measures of inhalable
and respirable dust, and noise.
This data set is potentially rich in its ability

to reveal relationships between health and
environmental variables, differences in
health profiles among SEGs, and health risk
profiles for individual employees. However,
there is a large amount of data missing in the
data set, with approximately 63% of data
missing overall. Here the proportion of
missing data per row was calculated as the
number of observed variables per row,
divided by the total number of variables in a
row. Consequently, prior to any analysis, it is
important to understand the structure of this
missingness and the potential impact that it
might have on the analyses and resultant
estimates.
A standard approach when seeing these

data might be to run a linear regression of
lung function being predicted by variables
such as age, gender, SEG, smoking status and
BMI. However, standard linear regression
estimation methods require complete data,

Strengths and limitations of this study

▪ This study demonstrates the utility in using deci-
sion tree statistical methods to identify variables
and values related to missing data in a data set.

▪ This study does not address whether the
missing data is missing completely at random
(MCAR), missing at random (MAR) or missing
not at random (MNAR).
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so cases with incomplete data are ignored, leading to
bias when data is missing not at random (MNAR) or
missing at random (MAR), and a loss of power when
data are missing completely at random (MCAR).1–3

Although methods such as multiple imputation could be
used to impute the missing values, care must be taken to
avoid bias.2

Missing data are a pervasive feature of observational
data. Three categories of missing data are usually identi-
fied.4 The first is MCAR, where missingness has no asso-
ciation with the observed or unobserved data. For
example, assessments of lung function taken at a work-
place may be missing for workers who are on vacation. If
there is no known or measurable relationship between
the timing of the tests and the timing of vacations, and
if the other relevant features of the workers who are on
vacation at the time of the tests are similar to that of
other workers, then these missing data can be consid-
ered MCAR. The second category is MAR. This is a
more specific case of MCAR where missingness depends
on data observed, but not data unobserved. For
example, if the missing lung function data occurs in
workers who are being assessed for depression, and if
there is no relationship between lung function and
depression, then it can be considered as MAR. The
third category is MNAR, where the missingness of the
response is related to an unobserved value relevant to
the assessment of interest. For example, if BMI is of
interest, but those with especially large BMIs are more
likely to have missing BMI data, these data can be con-
sidered as MNAR. It is important for researchers to rec-
ognise MNAR as it introduces bias into the estimation of
associations and parameters of interest. For example, if
lung function and BMI are negatively correlated, an esti-
mate of BMI based on the MNAR may be too low.
These three varieties of missing data could be further

divided into a knowable structure (MAR) or an
unknown structure (MAR or MNAR), where the process
driving data becoming missing are either known or
unknown,5 and structure refers to variables and interac-
tions that may influence missingness. Data MCAR are
without a structure, as they are missing without any
dependence on other variables. Determining whether
this is known or unknown is important for determining
whether bias may be introduced into the analysis.

EXAMPLES OF MISSINGNESS
Canonical sources of missing data are questionnaires.
Data obtained from questionnaires are often subject to
both unknown and known missingness structure. For
example, MCAR data can arise from respondents acci-
dentally failing to answer questions or inadvertently pro-
viding inappropriate answers. On the other hand, MAR
data may arise due to the structure of the questionnaire.
For example, the first question on a survey might be: ‘If
YES, skip to question 4’, resulting in questions 2 and 3
missing. If the structure of the questionnaire is known,

this type of missingness can be evaluated easily. However,
if this information is not available, the mechanism
responsible for producing missing data must be inferred
from the data.
Another common source of known and unknown

structured missingness is medical examination data. The
results of particular medical tests may be: absent for
purely random reasons (MCAR), due to the procedure
(MAR), or based on decisions arising from the observed
data (MNAR). For example, if a worker is young, they
may not be subjected to neurodegenerative tests
reserved for older workers, leading to MAR or MNAR
data, depending on the aim of the analysis. A final
example is dropouts in a longitudinal study, where parti-
cipants do not return for future testing sessions. In this
case, it is difficult, sometimes impossible, to ascertain
the reason for the dropouts, and hence, whether the
missingness is known or unknown, or MCAR, MAR or
MNAR. However, this ascertainment is essential if the
estimates based on these data are to be believed as
unbiased.5–7

EXISTING APPROACHES FOR HANDLING MISSING DATA
Tests confirming whether data is MCAR or not are very
useful as they open up the doors for the use of standard
multiple imputation techniques. As described by Little,6

a standard approach to determine whether data are
MCAR when only one variable, y, is missing from a data
set is to compare those variables fully observed for
responders and non-responders, using t tests to compare
differences in means, or χ2 for differences in expected
counts. Evidence against data MCAR is provided when a
significant difference is observed. This approach can be
extended to cases in which multiple variables have
missing values, where the sample is split into cases with
a given variable observed, or missing. Although this
procedure is informative, it yields up to p−1 tests
(where p is the number of variables) for each variable
and p(p−1) statistics to assess the MCAR assumption.
Inference on all these tests is problematic as the tests are
correlated in a way that is dependent on the pattern of
missing data and association of the y variables. This lack
of independence affects the probability of type I errors
(ie, erroneous declaration of statistics significance), and
makes it difficult to gain clear inference on the nature
of missingness, as illustrated in our Results section.
To combat this problematic process, Little proposed a

single test statistic for testing MCAR. This involved an
evaluation of equality of means between identified
missing data groups. Rejection of this test result gives
strong evidence that the data are not MCAR. Little’s test
of MCAR is widely used today, especially in social
science8 and medical research.9

Recent research has also provided statistical tests and
software that evaluate missing data via patterns, equality
of means, and homogeneity of variance, and allow for
non-normal data. This is achieved, for example, in the
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MissMech package for the R statistical software,10 which
uses imputation (from either normal or non-normal dis-
tributions) to compare means and covariances. These
tests enable the researcher to determine whether or not
there is sufficient evidence for data to be declared as
MCAR. However, understanding how and why missing-
ness is being generated can become arduous when
handling larger data sets, as they can have many missing-
ness patterns, making inference difficult for the same
reasons as having p variables and p(p−1) statistics, as
explained previously.
In addition, reliance on statistical significance testing

to assess whether data are missing may fail to address set-
tings where there may not be significant missingness,
but a complete case analysis may still result in bias.11

Approaches for better understanding missingness that
are simple to understand and implement, are therefore
still in demand.
Common methods of handling missing data, such as

complete case analysis, missing indicator method, and
last case carried forward have been shown to be accept-
able when data is MCAR.12 13 That being said, most
recommendations now are to use multiple imputation,
but subject to some care as it only reduces bias from
analysis when data are MAR or MCAR; multiple imput-
ation also requires variables that influence missingness
to be included in the imputation model.1–4 14 When
data are MNAR, multiple imputation can be used but
requires the MNAR mechanism to be known, which is
not often undertaken in practice.3 Improving the under-
standing of missingness structure in a data set allows for
consideration of other appropriate multiple imputation
methods, or other methods to incorporate partially
observed variables, such as random effect models,
Bayesian methods, down-weighting analyses, or pattern
mixture models.2 15 16

There are various approaches and packages specific-
ally developed to explore missing data, and resultant
imputation methods. These include: R packages VIM,
Amelia, mi, the MANET program,17 as well as the stan-
dalone software—MissingDataGUI.18–21 These packages
facilitate the graphical exploration of data prior to and
after imputation to evaluate missingness trends and cau-
sations, and imputation accuracy, respectively. These
methods require the user to visually search for and find
missingness trends, and infer interesting structure.17 22

While humans are very good at finding patterns, a
model-driven approach provides a more precise and
potentially more automatic framework for exploring
missing data. We propose the use of decision trees as a
complementary tool for doing this.

OBJECTIVE
Decision trees, in particular, classification and regression
trees (CARTs), and their cousins, boosted regression
trees (BRTs), are well known statistical non-parametric
techniques for detecting structure in data.23 Decision

tree models are developed by iteratively determining
those variables and their values that split the data into
two groups, so that the response is most homogeneous
within the groups, and there is greatest difference
between the groups.23–26 This paper demonstrates the
application of CARTs and BRTs in understanding the
structure of missing data.

MATERIALS AND METHODS
Decision tree models are typically represented as tree-
like structures. A CART analysis typically returns a single
tree with multiple splits, depicted as multiple branches.
Growing a tree involves recursively partitioning the
response into two parts based on some value of a vari-
able that best splits the data. The variable and split point
are chosen to optimise a given goodness-of-fit criterion,
such as minimising the residual sum of squares for con-
tinuous data, or a measure of node purity (eg, gini
index or cross-entropy) for categorical data.23 24 This
recursive partitioning continues until a selected stopping
rule is reached, such as when there are fewer than 10
observations in each final partition—terminal node.24 27

The final depth of the tree, the tree complexity, is
measured by the total number of splits determined by
various goodness-of-fit measures designed to trade-off
accuracy of estimation and parsimony. A large CART
model can be grown to fit the data very well, leading to
overfitting and a reduced capability to accurately fit new
data (robustness). To improve robustness in CART
models, one can use cross-validation and cost-complexity
pruning, where models are grown on subsets of the data
and then some ‘best’ model is selected using criterion
that best reduce a cost-complexity parameter.24 25 27 28

A useful feature of decision trees is the way that they
handle missing data. Whereas some methods, such as
linear regression, often default to only using complete
data to predict an outcome, decision trees use the surro-
gate split method. This means that when a value for a
variable is missing, and that variable needs to be used to
determine a split, an alternative variable that is highly
correlated with the missing variable is used to determine
the direction of the split.24

In contrast to CART, a BRT analysis typically generates
many sequentially grown simple trees based on random
samples of the data. Each sequentially grown tree
focuses on the errors of the previous tree, resulting in a
model where emphasis is placed on observations that
are poorly modelled by the existing collection of trees.
The boosted model returns a list of the variables used to
create the splits in the different trees. A ‘relative weight’
is then calculated for each variable by taking the average
number of times a variable is chosen for splitting
weighted by the squared improvement to the model
from each split and scaled to sum up to 100.29 Larger
weights indicate stronger influence.
Boosted regression trees require the parameters learn-

ing rate and tree complexity. It is worth noting that
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these terms are also referred to as shrinkage parameter
and tree complexity, respectively. The learning rate con-
trols how much each tree contributes to the model as it
develops. Typically, a smaller learning rate provides
better prediction than a larger learning rate. The tree
complexity sets the number of interactions fitted in the
model, where a tree complexity of two allows for two-way
interactions, three allows for three-way interactions, and
so on.26 Creating reproducible results in the BRT model
requires setting a random seed, as the process used to
create the BRT model involves random subsampling of
data.
Whereas the single trees produced by the CART ana-

lysis are appealing, they are less able to predict linear
relationships, are very sensitive to small variations in
data, and may provide an oversimplification of the ‘real’
model.30 In contrast, the BRT analysis is better able to
describe linear relationships and is more robust in terms
of predictive accuracy, although interpretability suffers as
a result.26 Using both CART and BRT models provides
complementary inference—one is simple but provides
interpretability, the other provides complexity and
robustness, but with reduced interpretability.
CART and BRT models were applied to the case study

data, using per cent data missing per row as the response
variable and the following explanatory variables: Site,
UIN (unique identifying number), Sex, Type (of data),
Date, FVC, FVC%, FEV1, FEV1%, FEV1%, FVC%, SEG
Primary, Age, BMI, Code, Systolic Blood Pressure,
Diastolic Blood Pressure, HDL Cholesterol, Total
Cholesterol, Cardiac Risk Score, Smoking, Epworth
Sleeping Scale, Secondary SEG, K10 Depression, ETOH
Alcohol Scale, BHL, Repeated Visits, Exercise Per Week,
Weight, Height, Waist, Blood Sugar Level, Pulse,
Concentration, LAeq. These variables can be seen in
table form in online supplementary table S1.
The statistical software package ‘R’ and the graphical

user interface, ‘RStudio’ were employed for the
analyses.31 32 R packages ‘rpart’ and ‘gbm’ were used for
the CART and BRT analyses.27 33 The rpart model
handles missing values by using surrogate splits: when a
value for a variable is missing, and that variable needs to
be used for a split, an alternative variable with a similar
splitting property is used to determine the direction of
the split. The gbm function also uses a surrogate split
method.
The current analysis generated CART models using

the default values specified in ‘rpart’27 and BRT models
using the guidelines provided by Reference 26, which
build on the package ‘gbm’.33 The BRT model was run
assuming a Gaussian error distribution for the response,
an interaction depth of 5, learning rate of 0.01, and
bagging (fraction of training set observations randomly
selected) set to 0.5.
When there is extensive missing data, those variables

identified as important for describing missingness struc-
ture may also be missing. This was observed in the case
study, and may affect the reliability and/or validity of

results and predictions. To explore how missingness may
affect the CART and BRT models, a simulation study was
conducted, such that CART and BRT models were
applied to smaller data sets with missing data inserted
artificially. These are described following the results of
the case study analysis.
As noted earlier, the case study contained a very large

amount of missing data. The overall proportion missing
was 0.63. The missingness map (from the R package
‘Amelia’,19 shown in figure 1, displays whether data is
missing (grey) or present (black), for each case.

RESULTS
As an exploratory assessment to determine whether
there was sufficient missingness to warrant an investiga-
tion, t tests and χ2 tests were used to assess whether the
presence or absence of BMI, FEV1, FVC, FEV1/FVC,
and concentration, influenced either the mean values of
other variables (via a t test), or the expected count of a
particular factor (via a χ2 test). Results indicated that
consistent sets of variables were affected, suggesting a
potential pattern or structure of missingness. Those vari-
ables affected are listed in table 1. These variables, and
their mean values or expected counts, were reported to
the industry collaborator to help explore the causes of
missing data and consider down-weighting them in
other analyses.
The CART and BRT models were run as described in

the Materials and methods section. The CART model
obtained from the analysis of the case study data is
represented in figure 2. The tree indicates that the type
of data best predicts the proportion of missing data in
an individual’s record. There are three main classes of
data type: medical (Type 1), follow-up medical (Type 2),
and hygiene or environmental exposure (Types 3–6).
The missingness proportion for each type can be seen
in the violin plot in online supplementary figure S1.
The prediction from the CART model is such that when
Type is 1 (medical data), there is a lower proportion of
missing data (30%), compared with the right split, when
data are of Type=2–6, (repeated medical and environ-
mental exposure; 74% missing data). Another split
occurs within Type 1, where data from site 3 has less
missing data (22%) compared to sites 1 and 2 (34%).
Another split occurs based on Type 2 (repeated medical
data) compared to Types 3–6 (environmental exposure),
where data of Type 2 has 64% missing data, and data of
Types 3–6 has 76% missing data. Within Type 2, there is
a split for repeated visit, such that for those with one
visit, there is 37% missing data, and for all other visits
(2–8) there is 65% missing data.
The analysis ably demonstrated the utility of this mod-

elling approach in identifying those variables and their
values that are important for predicting missingness
structure. From this model, we were able to confer with
data collectors to determine that the ‘Types’ of data
were originally separate data sets, which were then
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combined and represented as records for each individ-
ual (employee), resulting in many missing values per
record. We were also able to identify that different

variables were measured at sites 1 and 2 compared to
site 3, and that repeated measures had less data as tests
became more specific for subsequent visits.
Figure 3 provides a graphical evaluation of model fit

of the CART and BRT models. Figure 3A shows the pre-
dicted proportions of missing data per row based on the

Figure 1 Missingness map

showing the amount of missing

data in the case study. The

horizontal axis indicates the

variables in the data set, and

each individual in the study is a

row in the y axis. Black indicates

present data, grey indicates

absent data.

Table 1 Variables affected by presence/absence of BMI,

FEV1, FVC, FEV1/FVC and concentration

Presence/

absence of Variables affected

BMI Date, Age, SYS, DIAS, HDL, CRS,

BHL, Missing%, FEV1/FVC, FEV1%,

Site, Type, SEG (P), Code, SEG (S),

Rpt Visit, Smoking, Sex

FEV1, FVC,

FEV1/FVC

Date, Age, SYS, DIAS, HDL, CRS,

BHL, Missing%, FEV1/FVC, FEV1%,

Site, Type, SEG (P), Code, SEG (S),

Rpt Visit, Smoking, Sex, Ex/week

Concentration UIN, Date, Missing%, Site, Type,

SEG (P), SEG (S)

Age, age at time of examination; BHL, binaural hearing loss (%);
BMI, body mass index; Code, medical code; CRS, cardiac risk
score; Date, date of examination; Dias, diastolic blood pressure;
Ex/week, # planned exercise sessions per week; FEV1/FVC, ratio
of FEV1% to FVC% (FVC, forced vital capacity; FEV1%, forced
expiratory volume in 1 s; HDL, high density lipoprotein cholesterol;
Missing %, the per cent of missing data in that row; Rpt Visit,
number of medical attendances; SEG(P), primary SEG; SEG(S) is
the secondary SEG; Sex, gender; Site, site the data belongs to;
Smoking, smoking status of employees—current, ex, or
non-smoker; Sys, systolic blood pressure; Type, type of data
(1=medical, 2=follow-up medical, 3=inhalable data; 4=respirable
data; 5=silica exposure data; 6=noise exposure data); UIN, unique
identifying number for an employee.

Figure 2 CART analysis of the case study data, indicating

that type of data and repeated visit (rpt-visit) are important

predictors of the proportion of data missing. The three numbers

in each oval indicate the expected proportion of missing data

(Prop. Miss) per row of data (ie, individual’s record) and the

number of rows (n). Definitions of variables used for splits are

given in the caption of table 1 (CART, classification and

regression trees; BRT, boosted regression tree).
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CART model, compared with the observed proportions.
It is apparent that the model can accurately predict
small and large proportions of missing data, but is less
accurate at predicting moderate proportions. This pre-
dictive resolution is a result of the trade-off between

robustness, parsimony, and accuracy, reflected by the
degree of pruning of the tree. Allowing more branches
in the model on the right panel in figure 3 provided a
better fit to the observed data but may lead to overfit-
ting. The predictive resolution was also a result of using

Figure 3 Comparison of

observed (horizontal axis) and

predicted (vertical axis) proportion

of data missing per row, based on

(A) the CART model (top left) and

(B) the BRT model (top right). All

points in these plots have a small

jitter added to their position so

that repeated points can be seen.

The bottom panel (C) also also

shows the error distribution of the

BART and CART results, with

both having good prediction

(close to 0), and the CART model

having a wider distribution (BRT,

boosted regression tree; CART,

classification and regression

tree).
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a single tree rather than multiple trees,30 motivating the
complementary use of BRTs. The comparison of pre-
dicted and observed values of proportion of missing
data from the BRT model in figure 3B confirmed that
this model provides improved goodness-of-fit. Figure 3C
also shows that the CART and BRT models provided
mostly very accurate model fits, with the BRT model
having a comparatively tighter error distribution com-
pared to the wider distribution of the CART model.
Results from the BRT model also give the relative

importance of variables in predicting the proportion of
missing data; figure 4. This analysis shows that obesity
(measured by BMI) and lung function (measured by
FEV1 and FVC) are the most important variables for
prediction of missingness.
Figure 5 shows the observed proportions of missing-

ness compared with the fitted function based on the
BRT model, for the first nine variables indicated in
figure 4. The centre of the vertical axis indicates the
model expected proportion of missingness. As might be
anticipated, those variables with more definite non-
linearity in the fitted function have more influence in
the BRT analysis. For example, more missingness is
anticipated in individuals with higher BMI or lower lung
function measurements.

SIMULATION STUDY
Two experiments were created to explore the capability
of decision tree models in elucidating the induced miss-
ingness structure.

Experiment one
In this first experiment, data sets were created where the
variable instigating the missingness was either (1) not
missing, or (2) 50% MCAR. These new data sets con-
tained five variables, two categorical and three continu-
ous, with 1000 observations in each. The two categorical
factors, F1 and F2, ranged uniformly across categories
nominally labelled 1–7, and 1–10, respectively. The
three continuous variables, C1, C2 and C3, were nor-
mally distributed with means and SDs of 50 and 10, 90
and 10, and 30 and 3, respectively.
These variables and values were chosen to represent

specific variables in our data set. C1: age; C2: lung func-
tion; C3: BMI; F1: SEGs; and F2: a score obtained from
a measurement. The variable C1 determined whether
C2, C3, F1 and F2 were missing, such that when C1 was
greater than 55 these variables went missing with prob-
ability 0.95. C1 was selected as the missingness instigator
to mimic a scenario where someone aged 55 years is not
measured on a variety of variables.
The CART and BRT models were assessed on 100

simulated data sets for each of these two scenarios,
where the outcome is the proportion of missing data in
the variables C1, C2, C3, F1 and F2.
Model performance in the first experiment was evalu-

ated based on the following criteria:
▸ Did the model predict the variable, C1, as responsible

for the missingness?
▸ Did the model identify the threshold value of 55

for the variable C1 as the value causing the
missingness?

Figure 4 Relative importance

(RI) of variables in predicting the

proportion of missing data per row

based on a BRT analysis. Only

variables with RI >1 are the

variables included, in order of

importance (left to right) are BMI

(25.57), FEV1 (25.25), FEV1

(Predicted) (14.22), FVC (11.34),

FVC (Predicted) (6.266), Type

(4.23), FEV1 (Percent) (1.80),

Smoking (1.66), Systolic Blood

Pressure (1.58), Blood Sugar

Level (1.02), K10 Depression

score (1.00) (BMI, body mass

index; BRT, boosted regression

trees; FEV1, forced expiratory

volume in 1 s; FVC, forced vital

capacity).
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If the models performed well in this first experiment,
we have confidence that the models can identify struc-
tured missingness.

Experiment 2
The second experiment explored the performance of
decision trees for use with MCAR data. For the second
experiment, the CART and BRT models were assessed
on two data sets, MCAR 20%, or MCAR 50%, with 100
simulated data sets created. In this experiment, the
simulated data sets were the same as the first experiment
with the addition of two variables, R1 and R2, drawn
from a random uniform distribution. These last two

variables were deliberately included as ‘noise’ in the
simulations to assist in assessing whether the models are
overfitting the data. In addition to the criteria used for
experiment 1, we assessed experiment 2 based on the
variance in the measures of variable importance as we
are interested in exploring whether these variables are
consistently selected as important in an MCAR scenario.
If this is the case, then we can assume the decision tree
models are simply picking up on noise, rather than
signal. These variables represent a small, simple and
realistic data set that we would encounter at our industry
site (except for variables R1 and R2 from experiment 2).
The intention was to evaluate the missingness

Figure 5 Fitted function of variables based on the boosted regression trees model with the zero-point of the vertical axis

indicating the model expected proportion of missingness. Lines above 0.00 indicate more missingness than expected, and lines

below indicate less missingness. Note that type and smoking (smok) are represented differently as they are discrete, whereas the

remainder are continuous.
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represented by our real data set, MAR and MNAR, and
compare it to data MCAR to evaluate model
performance.
Variable importance was measured for each of the

simulated data sets, and was compared with the case
study data set. For both experiments in the simulation
study, the BRT model had a smaller interaction depth of
2, rather than 5 that was used in the case study analysis,
as the simulation study data set had far fewer variables.

Simulation study results
In the first experiment, for both parts 1i (not missing)
and 1ii (50% MCAR), the CART model identified that
the variable C1 was responsible for instigating the miss-
ingness, satisfying criterion A. The CART model also cor-
rectly identified the split for C1, such that when the
threshold C1 >55 there was an increased amount of
missingness, and this satisfied criterion B. All developed
CART models selected C1 for the split and the value 55,
meaning that all models were essentially identical. These
models can be viewed in online supplementary
figure S2.
Intriguingly, the BRT model was unable to identify C1

as the most important variable in predicting the propor-
tion of missing data, irrespective of whether C1 was not
missing, or 50% MCAR. Hence the BRT model did not
satisfy criterion A. However, when inspecting model pre-
dictions against variable values, the BRT model pre-
dicted a change in missingness as C1 reached 55. These
fitted functions can be seen in online supplementary
figure S3. This BRT model satisfied criterion B.
For the BRT model, there was variation around vari-

able importance in this simulation study, such that when
there was more missingness, there was greater variation
in variable importance. An illustration of this is given in
online supplementary figure S4. The CART model
always used C1, and the value 55 to split on, and so
evaluating variable importance is somewhat irrelevant.
For the second experiment, the data were either (1)

20% MCAR, or (2) 50% MCAR. The CART model
showed different levels of variable importance over simu-
lated data sets, and that the spurious random variables
R1 and R2 were often identified as important. This can
be seen in online supplementary figure 4.
The variation in variable importance was smaller in

the resampled case study data set, compared with experi-
ment 2. The BRT model, such as the CART model, also
chose variables R1 and R2 as relatively important in pre-
dicting missingness. Visual depictions of the variation in
variable importance for the CART and BRT models over
the experiment and case study data can be found in
online supplementary figures 6–8.
The difference in variation of variable importance for

simulated versus the resampled case study data provided
evidence that data MCAR produces greater variation in
variable importance. There was less variation in variable
importance for simulated data compared to case study

data, suggesting the case study data does have a missing-
ness structure.

DISCUSSION
In this paper, we proposed the use of decision tree
models, notably CARTs and BRTs, for inspecting the
structure of missingness in observational data. To the
authors’ knowledge, this is the first time that these deci-
sion tree models have been proposed for this purpose.
The application of the models to a substantive case study
involving occupational health data, specifically medical
tests for employees, demonstrated the complementarity
of the analyses. Whereas the CART model identified
three variables: type of medical; how many visits the
employee had and site; the BRT model identified
BMI and lung function as the most important factors
predicting the proportion of missingness in the employ-
ees’ health records. In addition, the BRT analysis also
modelled the expected missingness for variable values.
The case study partners found that these results

revealed important known and unknown structure in
the data. An example of structure that was known to
exist but not known to have such dominant influence,
was that the data set was a collection of smaller databases
coming from different sources, denoted by the values of
type; that is, Types 1 and 2 are different kinds of
medical data, and Types 3–6, environmental exposure
data. The data sets were originally combined in this
fashion so that data could be matched by ID number,
allowing deidentified inspection of individual results.
Where matching was not possible, group results could
be observed. As a result of this concatenation of differ-
ent data types, large chunks of data were missing, as the
sources collected different kinds of information and
used different IDs, preventing data matching. Further
exploration of the relationship between missingness and
type revealed that the majority of missing data was
missing for Types 3–6, compared to Types 1 and 2. This
is demonstrated in the violin plot in online supplemen-
tary figure S1.
Another missing data structure revealed in our ana-

lyses was found by comparing results from the CART
and BRT analyses. The focus of the CART analysis was
on type, site and repeated visits. Compared with the
CART model, the BRT analysis focused more deeply on
the medical data, and highlighted that extreme values
for variables such as BMI or lung function, had more
missing data. Discussion with industry partners on these
findings revealed that individuals with extreme values
for measurements such as BMI or lung function require
follow-up tests. As follow-up tests are taken on a small
specific set of variables relating to the particular health
query or concern, they result in more missing data in
the overall data set. Discovering these missing data struc-
tures has resulted in future research being conducted
on subsets of data with selection based on these missing
data structures. This allows for more representative,
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reliable and valid results. It may also motivate different
and more informed methods of data analysis and
modelling.
In our analysis, we used the proportion of missing

data in a row as our response. This has the advantage of
accommodating correlation between variables and pro-
viding a single, easily understood, summary statistic for
missingness. Alternative measures of missingness of the
data set could be used, such as missingness in individual
variables, or an index based on a factor analysis, or
similar dimension reduction method. These could then
be used to predict other structural features of the data,
such as multiple individual variable’s missingness in a
multivariate analysis, or clusters of missingness, and
would tell us different things about the missingness
structures in the data set.
The analysis of missing data described in this paper is

not limited to decision trees, and could be extended to
other analyses such as neural networks, random forests,
and Bayesian Learning Networks. Moreover, decision
trees themselves can be implemented using different vari-
able selection methods, although recursive partitioning is
the standard choice.24 27 As illustrated in this paper, deci-
sion trees using recursive partitioning were desirable for
ease of implementation, handling non-parametric data,
and automatic handling of missing data.
It was mentioned in the introduction that knowing the

structure of the missing data may not give a clear indica-
tion of the mechanism (in terms of MCAR, MAR,
MNAR). However, understanding the missingness struc-
ture can help lead the researcher to create better imput-
ation models or use alternative methods of addressing
missing data, as well as improve future data collection or
conduct their own further investigations into missingness
structure.3

Our simulation analysis performed the decision tree
analysis on MCAR and MAR scenarios to evaluate model
performance using a simple, known example of missing-
ness. In the case study, however, although MAR and
MCAR variables are present, the dominant form of miss-
ingness is MNAR due to the nature of the medical exam-
inations. Thus, the methods suggested in this paper have
been demonstrated to be effective for all three types of
missingness. However, as indicated in the introduction,
MNAR scenarios could be envisaged whereby the data
explaining the missinginess are not observed structurally.
This motivates further research on this issue.

CONCLUSION
The use CART and BRT models have allowed us to
develop our understanding of missingness structure in
the data. The authors’ experience in using these models
was that they motivated the appropriate questions to
explore the missing data structure, leading to a better
understanding of the origins of the data. This under-
standing will help improve both data collection and the
handling of missing data in future analyses.

The results of the simulation study were surprising.
Despite the a priori expectation, based on published lit-
erature that the BRT model would be more robust and
accurate than the CART model, this was not borne out
in the analysis. The BRT model accurately predicted
whether or not there was substantial missing data, and
the diagnostic charts provided a visual indication of how
missingness behaves for variables. However, in the simu-
lation study, BRT was unable to select the correct vari-
able as the most important for predicting the (known,
modelled) missingness structure in the data. In contrast,
the CART model did this consistently.
Experiment 2 involved the evaluation of decision tree

performance on data MCAR (20% or 50%) using the
simulated data sets from the first experiment with the
addition of two variables, R1 and R2, drawn from a
random uniform distribution. R1 and R2 were included
in these simulations to assist in exploring which variables
were important for splitting in the CART and BRT
models when there was no structure in the missingness.
Results from experiment two demonstrated that both
the CART and BRT models had greater variation in vari-
able importance when more missingness was introduced,
although this seemed to relate to the degree that the
dependent variable was missing.
Although this study has demonstrated the utility in using

decision tree statistical methods to identify variables and
values related to missing data in a data set, it is noted that
these methods do not address whether the data is MCAR,
MAR or MNAR, and they do not specifically outline the
bias that is in the data due to missingness. Instead, these
methods are helpful in determining why and how data are
missing. It is still up to the researcher to understand the
potential bias that this may or may not cause.
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