BMJ Open Association of worker characteristics and early reimbursement for physical therapy, chiropractic and opioid prescriptions with workers' compensation claim duration, for cases of acute low back pain: an observational cohort study

Jason W Busse,^{1,2,3} Shanil Ebrahim,^{2,3,4,5} Diane Heels-Ansdell,³ Li Wang,² Rachel Couban,² Stephen D Walter³

ABSTRACT

To cite: Busse JW, Ebrahim S, Heels-Ansdell D, et al. Association of worker characteristics and early reimbursement for physical therapy, chiropractic and opioid prescriptions with workers' compensation claim duration, for cases of acute low back pain: an observational cohort study. BMJ Open 2015;5:e007836. doi:10.1136/bmiopen-2015-007836

Prepublication history and additional material is available. To view please visit the journal (http://dx.doi.org/ 10.1136/bmjopen-2015-007836).

Received 30 January 2015 Revised 13 July 2015 Accepted 21 July 2015

For numbered affiliations see end of article.

Correspondence to Professor Jason W Busse; bussejw@mcmaster.ca

Objective: To assess the association between early reimbursement for physiotherapy, chiropractic and opioid prescriptions for acute low back pain (LBP) with disability claim duration.

Design: Observational cohort study.

Setting and participants: From a random sample of 6665 claims for acute, uncomplicated LBP approved by the Ontario Workplace Safety and Insurance Board (WSIB) in 2005, we analysed 1442 who remained on full benefits at 4 weeks after claim approval.

Primary outcome measure: Our primary outcome was WSIB claim duration.

Results: We had complete data for all but 3 variables. which had <15% missing data, and we included missing data as a category for these factors. Our timeto-event analysis was adjusted for demographic, workplace and treatment factors, but not injury severity, although we attempted to include a sample with very similar, less-severe injuries, Regarding significant factors and treatment variables in our adjusted analysis, older age (eg, HR for age \geq 55 vs <25=0.52; 99% CI 0.36 to 0.74) and WSIB reimbursement for opioid prescription in the first 4 weeks of a claim (HR=0.68; 99% CI 0.53 to 0.88) were associated with longer claim duration. Higher predisability income was associated with longer claim duration, but only among persistent claims (eg, HR for active claims at 1 year with a predisability income >\$920 vs \$480/week=0.34; 99% CI 0.17 to 0.68). Missing data for union membership (HR=1.27; 99% CI 1.01 to 1.59), and working for an employer with a return-to-work programme were associated with fewer days on claim (HR=1.78; 99% CI 1.45 to 2.18). Neither reimbursement for physiotherapy (HR=1.01; 99% CI 0.86 to 1.19) nor chiropractic care (HR for active claims at 60 days=1.15; 99% CI 0.94 to 1.41) within the first 4 weeks was associated with claim duration.

Strengths and limitations of this study

- An a priori creation of our regression model and the anticipated direction of included independent variables, as well as the assessment of the proportional hazards assumption for all independent variables, provide greater confidence in our findings.
- The reasons for reimbursement of physiotherapy, chiropractic or opioid prescription are uncertain, and despite our adjustments for potential confounders (but not injury severity) it is possible that low back pain claimants who chose to receive these healthcare interventions were prognostically different from those who did not.
- A number of variables that may be important to consider were unavailable (eg, patient expectations regarding recovery); also, chiropractic and physiotherapy are professions, not modalities, and details of the treatment provided could not be obtained for our analysis.
- Our primary outcome, time to claim closure, is a surrogate for patient-important outcomes such as functional restoration or return to work.

Our meta-analysis of 3 studies (n=51 069 workers) confirmed a strong association between early opioid use and prolonged claim duration (HR=0.57, 95% CI 0.48 to 0.69; low certainty evidence).

Conclusions: Our analysis found that early WSIB reimbursement for physiotherapy or chiropractic care, in claimants fully off work for more than 4 weeks, was not associated with claim duration, and that early reimbursement for opioids predicted prolonged claim duration. Well-designed randomised controlled trials are needed to verify our findings and establish causality between these variables and claim duration.

INTRODUCTION

Back pain is a common problem among working adults in North America, with a lifetime prevalence of 63% and a point prevalence of 21%.¹ After the common cold, low back pain (LBP) is the most frequent cause of lost time from work.² Globally, LBP is the primary cause of years lived with disability.³

In Canada, annual medical expenditures for LBP are estimated to be between \$6 and \$12 billion, with additional costs associated with loss in worker productivity from time off work and associated disability payments.⁴ Canadian workers who are disabled secondarily to a work-related LBP injury are typically eligible for wage replacement benefits through their provincial Workers' Compensation Board.

In 2013, the Ontario Workplace Safety and Insurance Board (WSIB) approved approximately 232 000 claims that were associated with \$2761 million in payments, and 18% of all allowed lost-time claims were for low back injuries.^{5 6} The WSIB's liability for disability claims greatly exceeds their assets, and as of 31 March 2013 the WSIB's unfunded liabilities were \$12.4 billion⁷—more than double their unfunded liability of \$5.9 billion in 2006.⁸ Unfunded liability is the amount by which future payment obligations exceed the present value of funds available to pay them. To reduce their unfunded liability, the WSIB has become more aggressive about denying claims, decreasing disability benefits and increasing employee premiums;^{9 10} however, these measures do not address the optimal management of disability claims.

Interventions that are commonly reimbursed by WSIB for LBP claims include physiotherapy, chiropractic care and opioids; however, there is limited evidence about their effectiveness. Our systematic review of the Cochrane Back Review Group trial registry found no randomised controlled trials of these interventions focused on workers fully disabled by acute LBP and receiving benefits for lost-time claims (see online supplementary tables S1 and S2, and figure S1). We also found that many trials of patients with LBP use receipt of disability benefits as an exclusion criterion, most likely because of concerns that secondary gain (eg, receipt of financial compensation conditional on disability) will reduce the impact of study interventions. Henschke et al followed a cohort of 973 consecutive primary care patients with non-specific, acute LBP recruited from the clinics of 170 general practitioners, physiotherapists and chiropractors for 1 year. They found that, in an analysis adjusted for age, gender, injury severity and psychological factors, receipt of disability benefits was strongly associated with delayed recovery (HR=0.59; 95% CI 0.47 to 0.74).¹¹ Since compensated acute LBP has a worse prognosis than uncompensated acute LBP, the results of trials that do not enrol patients receiving disability benefits cannot be confidently generalised to patients who are receiving compensation.

Using administrative data from the Ontario WSIB, we evaluated the association between receiving early

reimbursement for physiotherapy, chiropractic care or prescription for opioids for uncomplicated, acute LBP and disability claim duration. On the basis of prior observational studies,^{12–16} we hypothesised that early reimbursement for opioids would be associated with delayed recovery, and early reimbursement for physiotherapy or chiropractic care would be associated with faster recovery. We reported our findings in concordance with the STROBE¹⁷ and TRIPOD¹⁸ statements.

METHODS

Patient characteristics and eligibility criteria

Using WSIB administrative data, we identified an inception cohort of workers with uncomplicated, acute low back injuries (ie, strain or sprain) who were fully disabled from working and receiving wage replacement benefits from the Ontario WSIB. We excluded workers if they were approved for no-lost-time claims. Acute LBP has a different prognosis than chronic LBP (duration >12 weeks),¹⁹ and we excluded all claims in which the number of days between the accident date and registration date of the claim was greater than 30 days. Most LBP claims resolve within the first month,²⁰ and Workers' Compensation Boards are primarily interested in factors that predict claim resolution among claimants who remain disabled after this time. We therefore excluded claims that ended before 4 weeks.

Between 1 January and 30 June 2005, the Ontario WSIB approved 18 974 lost-time claims for an uncomplicated, acute low back injury. Using the WSIB's administrative database, we acquired a random sample of 6665 injured workers from this population; 1442 unique workers remained on full benefits at 4 weeks and provided data for our analysis. If a worker had more than one claim for acute LBP, their first claim was used. The WSIB database recorded benefit status for 2 years after the first day of injury. Patient information was anonymised and de-identified prior to analysis.

Administrative variables

Our primary outcome was time to claim closure, defined as the duration in days from disability claim approval until the claim was closed. The WSIB database also contained demographic, administrative and clinical information, which was acquired from forms completed by the worker, their employer and their primary healthcare provider. The employer form (Employer's Report of Injury/Disease Form; Form 7), which is used to indicate whether there is doubt regarding the work-relatedness of an employee's back injury, is mandatory and must be submitted within 3 days of a work-related injury. The form asks employers "Do you have any reason to doubt the injury/disease is work-related?" and they can indicate either 'no' or 'yes'.

The worker may elect to fill out a form (Worker's Report of Injury/Disease; Form 6) if they have expenses related to their injury. The healthcare provider can elect

to complete a form (Health Professional's Report; Form 8) to support their patient's claim that their injury is work related, which is a prerequisite for wage replacement benefits through the WSIB. Healthcare providers are asked to complete and submit a Functional Abilities Form for Planning Early and Safe Return to Work for each claim, and the WSIB provides compensation as an incentive.

In order to increase confidence in our findings, we defined our regression model before conducting any analyses. Guided by the results from our ongoing systematic review of observational studies evaluating predictors of recovery in patients receiving disability benefits,²¹ feedback from administrators at WSIB, and content experts within our research team, we selected, a priori, 11 variables from the WSIB database that we judged may be associated with claim closure; we also specified the direction of anticipated effects on claim duration (table 1): age, gender, native language, predisability income, prior disability claim, union membership, working for an employer with a return to work (RTW) programme, employer's doubt that the injury was work related, and early (1st month) receipt of reimbursement for opioids, physiotherapy or chiropractic care (table 1). In 2005, the Ontario WSIB did not capture any measure of LBP injury severity on Forms 6, 7 or 8, and as such we were unable to adjust for this variable. Injured workers may attend a healthcare provider for assessment purposes and we required ≥ 3 reimbursed visits for physiotherapy or chiropractic, within the first 28 days of claim, in order to gualify as reimbursement for treatment.

We hypothesised that workers represented by a union would resolve their claim faster, as we felt that they

Table 1 Description of model variables			
Variable	Anticipated direction of effect		
Age (in decades)	Older age*		
Gender	Female*		
First language	Non-English*		
Predisability income	Higher income*		
Reimbursement for opioid	Opioid reimbursement*		
prescription in the first			
4 weeks of a claim			
Prior claim(s)	Prior claim*		
Union membership	Union member†		
Employer RTW programme	RTW programme†		
Work relatedness	Work related [†]		
Reimbursement for ≥ 3	Chiropractic care†		
chiropractic treatments in the			
first 4 weeks of a claim			
Reimbursement for ≥ 3	Physiotherapy care†		
physiotherapy treatments in			
the first 4 weeks of a claim			
*Associated with slower claim closure. †Associated with faster claim closure. RTW, return to work.			

would have more support for re-engagement with competitive employment (eg, graduated work hours) versus workers who were not members of a union. We also hypothesised that claims due to injuries that employers reported were work related would resolve faster than injuries in which the employer doubted that the employee was injured at work, as we felt this may be a surrogate for the influence of non-medical factors (eg, secondary gain). On the basis of the findings of a recent systematic review that found that RTW coordination was associated with faster RTW for disabled employees,²² we hypothesised that claimants employed by companies with formal RTW programmes would resolve their claim faster.

Data extraction

The Ontario WSIB's database consists of scanned paper documents, and data must therefore be extracted manually for analysis. Two reviewers extracted data, independently and in duplicate, from the first 100 eligible claims into an Access database (Microsoft Access, Filemaker). In order to minimise data entry mistakes, we developed data entry forms that included range checks and missing value alerts. The PROC COMPARE procedure in SAS V.9.2 (SAS Institute Inc, Cary, North Carolina, USA) revealed 98% agreement for the initial 100 claims; therefore, to increase feasibility, only a single abstractor completed data entry for the remaining claims used in our analyses.

We screened all data to identify outliers, inconsistencies and missing data by calculating summary statistics, and explored distributions graphically. We worked with WSIB representatives to correct identified outliers and inconsistencies. If inconsistencies could not be corrected, we treated them as missing data. Some WSIB forms are voluntary, and so we included 'missing data' as a discrete category for independent variables when applicable.

Statistical analysis

We generated frequencies for all collected data. We reported the mean and SD of continuous variables, and the number of occurrences represented as proportions for categorical variables. Age was negatively skewed and predisability gross income was positively skewed, and they were therefore entered as categorical variables into our regression model: by decade for age, starting at age 15 and ending at age 65, and by quartiles for predisability income.

We performed a time-to-event analysis using a Cox proportional hazards regression model to assess the association between time to claim closure and all 11 independent variables described in table 1. To avoid overfitting our models, we required at least 10 observations per variable term for our Cox regression model, for a total of 190 disabled workers.²³ We set a threshold of at least 50 observations per category for each independent factor in our regression model to provide some reassurance that each variable had sufficient discriminant power to detect an association with claim duration, if such an association existed.

For claims that were unresolved when the data were extracted, we used 2 years after claim approval as a censoring point. In order to be more stringent and minimise the likelihood of spurious findings, an independent variable was considered statistically significant if it had a p value of <0.01 in our adjusted model. We calculated adjusted HRs for our time-to-event analyses, their associated 99% CIs and the associated p values. We assessed each independent variable in our model to ensure that the proportional hazards assumption was met by entering each variable in the model separately and calculating its interaction with time. We considered a p value of <0.05 for the interaction term as significant. We reported the HRs for independent variables that violated the proportional hazards assumption at 60 days, 6 months and 1 year. We conducted a sensitivity analysis to investigate the impact of entering receipt of WSIB-reimbursed chiropractic care or physiotherapy as time-dependent covariates in a Cox proportional hazards regression model. This approach accounts for when treatments were initiated during the course of the disability claim.

Pooling data from similar studies

When possible, we pooled the association between early opioid, physiotherapy or chiropractic care and claim duration in our sample with similar data from observational studies identified through a systematic review (search strategy, online supplementary table S4). We considered studies to be similar if they enrolled workers' compensation patients who were completely disabled from working secondary to acute, uncomplicated LBP and explored the association of early treatment with opioids, physiotherapy or chiropractic care with claim duration. Using standardised, pilot-tested forms, two reviewers screened, independently and in duplicate, titles and abstracts of identified citations and then full texts of potentially eligible studies. The same reviewers extracted patient characteristics, methodology and measures of association between early use of opioids, physiotherapy or chiropractic care and disability claim duration from eligible articles.

We used the following criteria to gauge risk of bias: (1) representativeness of the study population (low risk of bias when using random sampling or consecutive sampling, high risk of bias when the source of the study population was not reported or acquired through convenience sampling); (2) validity of outcome assessment (low risk of bias when the claim duration was acquired directly from the benefits administrator); (3) proportion of lost to follow-up (high risk of bias if >20%) and (4) whether or not predictive models were appropriately adjusted (low risk of bias if adjusted for age, gender and injury severity).

When possible, we pooled measures of association between early opioid, physiotherapy or chiropractic care and claim duration, and presented the pooled estimate as an HR and the associated 95% CI. When necessary, we converted ORs to a relative risk (RR), then to an HR, using the following formula:²⁴

$$RR = OR/(1 - P_0 + P_0 \times OR)$$
$$HR = (\ln(1 - RR \times P_0))/(\ln(1 - P_0))$$

where P_0 is the proportion of patients in the control group who had an event by the follow-up time.

We used random-effects meta-analyses, which are usually conservative in that they take both within-study and between-study variability into account.²⁵ We examined heterogeneity using both a χ^2 test and the I² statistic, the latter being the percentage of the total variation in outcomes that is associated with between-study variability (ie, true differences between studies rather than with sampling error (chance)).²⁶ Heterogeneity of 0-40% was considered 'might not be important', 30-60% to be 'moderate heterogeneity', 50-90% to be 'substantial heterogeneity' and 75-100% to be 'considerable heterogeneity.²⁷ The Cochrane Collaboration has proposed overlapping categories to convey that there are no strict cut-offs for interpreting heterogeneity, and that this decision will depend on the magnitude and direction of effects, as well as the strength of evidence for heterogeneity.

We used the GRADE approach to summarise the certainty of evidence for the effect of early opioid use on claim duration as high, moderate, low or very low.28 Using GRADE, observational studies begin as a low certainty but can be rated down due to: (1) risk of bias; (2) inconsistency; (3) indirectness; (4) imprecision or (5) publication bias. GRADE suggests considering rating up the certainty of evidence by one level when methodologically rigorous observational studies show at least a twofold reduction or increase in risk, and by two levels for at least a fivefold reduction or increase in risk.²⁹ We assessed publication bias by visually observing asymmetry of funnel plots, but only if there were ≥ 10 studies eligible for meta-analysis. We performed all statistical analyses using SAS V.9.2 (SAS Institute Inc, Cary, North Carolina, USA). All hypothesis tests were two tailed and $p \le 0.05$ was considered statistically significant.

We estimated the cumulative proportion of claims closed in our WSIB data set at 90 days for disabled workers who did, and did not, receive early opioids by using the following formula:

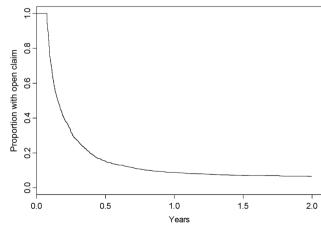
$$P_1 = 1 - (1 - P_0)^{HR}$$

where P_1 is the cumulative proportion of claims closed by 90 days in the early opioid group, P_0 is the cumulative proportion of claims closed by 90 days in the group that did not receive early opioids, and HR is the pooled estimate of the HR from our meta-analysis.

RESULTS

Table 2 presents the baseline characteristics for the 1442 disabled workers included in our analysis. The Ontario WSIB reimbursed 786 (55%) claimants for physiotherapy and 391 (27%) for chiropractic care. In the first 4 weeks of their claim, 27% (n=388) were reimbursed for \geq 3 physiotherapy treatments, 17% (n=247) were reimbursed for \geq 3 chiropractic treatments, and 9% (n=136) were reimbursed for an opioid prescription. Figure 1 presents the Kaplan-Meier curve for time to claim closure for LBP claimants. Most workers (67%, n=966) had resolved their claim by 90 days, 84% (n=1211) by 180 days and 91% by 1 year (n=1312); 1348

Table 2 Baseline characteristics of WSIB I claims (n=1442)	ow back pain
Age in years, mean (SD)	41.3 (10.5)
Gender, n (%)	11.0 (10.0)
Female	552 (38.3)
Male	890 (61.7)
First language, n (%)	
English	1372 (95.1)
Other	70 (4.9)
Predisability income (dollars/week)	731.4 (332.5)
mean (SD)	he first
Opioid prescription reimbursed by WSIB in t 4 weeks of claim, n (%)	ne inst
Yes	136 (9.4)
No	1306 (90.6)
Prior WSIB claim, n (%)	1000 (00.0)
Yes	1091 (75.7)
No	351 (24.3)
Union membership, n (%)	001 (210)
Yes	610 (42.3)
No	656 (45.5)
Missing data	176 (12.2)
Employer RTW programme, n (%)	. ,
Yes	1042 (72.3)
No	278 (19.3)
Missing data	122 (8.5)
Employer doubts work-relatedness of injury,	n (%)
Yes	195 (13.5)
No	1051 (72.9)
Missing data	196 (13.6)
Chiropractic care reimbursed by WSIB	391 (27.1)
during claim, n (%)	
Early Chiropractic care (\geq 3 treatments received within the first 28 days), n (%)	247 (17.1)
Physiotherapy reimbursed by WSIB during	786 (54.5)
claim, n (%)	760 (54.5)
Early Physiotherapy (≥3 treatments	388 (26.9)
received within the first 28 days), n (%)	000 (20.9)
RTW, return to work; WSIB, Workplace Safety and Board.	d Insurance


(93.5%) claims were closed prior to 2 years and 94 (6.5%) were censored.


Time-to-event analysis

Our adjusted regression analysis showed that older age (eg, HR for age ≥ 55 vs <25=0.52; 99% CI 0.36 to 0.74) and opioid prescription reimbursed by the Ontario WSIB in the first 4 weeks of claim (HR=0.68; 99% CI 0.53 to 0.88) were associated with longer claim duration. The HRs for predisability income and receiving reimbursement for early chiropractic care with claim duration were not proportional over time (p=0.001 and 0.031, respectively), and older claims showed a significant association of greater predisability income with longer claim duration (eg, HR for active claims at 1 year with a predisability income >\$920 vs <\$480/week=0.34; 99% CI 0.17 to 0.68). Working for an employer who had an RTW programme (HR=1.78; 99% CI 1.45 to 2.18), and missing data regarding union membership (HR=1.27, 99% CI 1.01 to 1.59) were associated with shorter claim duration. Contrary to our predictions, neither early receipt of WSIB reimbursement for physiotherapy (HR=1.01; 99% CI 0.86 to 1.19) nor chiropractic care (eg, HR for active claims at 60 days=1.15; 99% CI 0.94 to 1.41) was associated with claim duration (table 3). We found no important differences using alternative analytic methods (see online supplementary table S3). Figures 2–4 present the Kaplan-Meier curves for time to claim closure for acute LBP claimants who received reimbursement for early opioid prescription, physiotherapy and chiropractic care.

Systematic review

Our systematic review of observational studies identified 2998 unique records, of which we retrieved 99 in full text; three were eligible for our review and explored early opioid use (see online supplementary figure S2). All three observational studies that explored early use of opioids for workers' compensation claims due to uncomplicated, acute LBP reported a significant association with

	Univariate		Multivariable	
	HR (99% CI)	p Value	Adjusted HR (99% CI)	p Value
Baseline predictors				
Age categories in years		<0.001		<0.001
15 to <25	1.00		1.00	
25 to <35	0.88 (0.65 to 1.19)		0.79 (0.58 to 1.09)	
35 to <45			· · · · · · · · · · · · · · · · · · ·	
	0.78 (0.59 to 1.04)		0.70 (0.52 to 0.95)	
45 to <55	0.76 (0.56 to 1.02)		0.67 (0.49 to 0.91)	
55–65	0.56 (0.40 to 0.80)		0.52 (0.36 to 0.74)	
Gender		0.114		0.446
Females	1.09 (0.95 to 1.26)		0.96 (0.82 to 1.12)	
Males	1.00		1.00	
First language		0.137		0.312
English	1.00		1.00	
Other	0.83 (0.59 to 1.15)		0.88 (0.63 to 1.23)	
Predisability income in dollars per week	, , , , , , , , , , , , , , , , , , , ,		. ,	
At 60 days				
≤480	1.00	_	1.00	_
481–694	1.09 (0.89 to 1.34)	0.273	1.03 (0.83 to 1.27)	0.749
695–920	1.13 (0.92 to 1.39)	0.137	0.96 (0.77 to 1.21)	0.678
>920		0.326		0.078
	1.08 (0.88 to 1.33)	0.320	0.93 (0.74 to 1.18)	0.443
At 180 days	4.00		4.00	
≤480	1.00	_	1.00	_
481–694	0.89 (0.68 to 1.17)	0.267	0.89 (0.67 to 1.17)	0.266
695–920	0.84 (0.63 to 1.12)	0.115	0.73 (0.54 to 0.98)	0.006
>920	0.72 (0.54 to 0.97)	0.004	0.63 (0.46 to 0.86)	<0.001
At 365 days				
≤480	1.00	-	1.00	-
481–694	0.65 (0.36 to 1.18)	0.064	0.71 (0.38 to 1.31)	0.147
695–920	0.53 (0.28 to 1.02)	0.012	0.47 (0.24 to 0.91)	0.003
>920	0.39 (0.20 to 0.75)	<0.001	0.34 (0.17 to 0.68)	<0.001
Early reimbursement for opioid prescription		< 0.001		< 0.001
within the first 28 days)				40.001
Yes	0.62 (0.48 to 0.80)		0.68 (0.53 to 0.88)	
No	1.00		1.00	
	1.00	0.000	1.00	0 700
Prior claims		0.306		0.709
Yes	1.07 (0.91 to 1.26)		1.03 (0.86 to 1.22)	
No	1.00		1.00	
Jnion membership		<0.001		0.016
Yes	1.29 (1.11 to 1.50)		1.14 (0.96 to 1.35)	
No	1.00		1.00	
Missing	1.34 (1.07 to 1.68)		1.27 (1.01 to 1.59)	
Employer RTW programme	· · · ·	<0.001	````	<0.001
Yes	1.73 (1.43 to 2.09)		1.78 (1.45 to 2.18)	
No	1.00		1.00	
Missing	1.17 (0.87 to 1.58)		1.17 (0.86 to 1.59)	
	1.17 (0.87 to 1.58)	0 174	1.17 (0.80 to 1.59)	0 1 2 9
Doubt work relatedness	0.04 (0.70 to 1.10)	0.174	0.00 (0.71 to 1.00)	0.138
Yes	0.94 (0.76 to 1.16)		0.88 (0.71 to 1.08)	
No	1.00		1.00	
Missing	1.13 (0.92 to 1.39)		1.08 (0.87 to 1.33)	
Early reimbursement for chiropractic care				
At 60 days	1.19 (0.99 to 1.45)	0.017	1.15 (0.94 to 1.41)	0.067
At 180 days	0.91 (0.65 to 1.24)	0.437	0.90 (0.65 to 1.24)	0.392
At 365 days	0.60 (0.29 to 1.23)	0.067	0.61 (0.29 to 1.29)	0.089
Early reimbursement for physiotherapy	0.98 (0.84 to 1.15)	0.726	1.01 (0.86 to 1.19)	0.848

Early reimbursement for chiropractic or physiotherapy=3 or more treatments received within the first 28 days. *HR>1 indicates faster claim closure.

RTW, return to work.

Open Access

Claim closure by opioid prescription

6

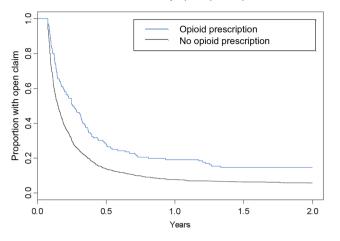
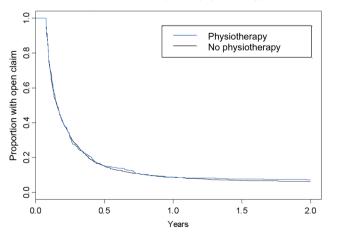



Figure 2 Kaplan-Meier curve for early reimbursement for opioid prescription.

prolonged claim duration, and two studies adjusted for injury severity in their regression models (table 4).^{13–15} When our results were pooled with the two studies that reported measures of association in relative units,^{14–15} resulting in a total of 51 069 participants, the association between early opioid use and prolonged claim duration was consistent with our findings (adjusted HR=0.57, 95% CI 0.48 to 0.69, heterogeneity test p=0.02, I²=75%; low certainty evidence) (figure 5). Applying this effect to our WSIB data set means that, at 90 days, 69% of workers without reimbursement for early opioids had resolved their disability claim versus 49% of workers who received reimbursement for early opioids.

The pooled effect was associated with substantial heterogeneity; however, statistical tests of heterogeneity can be misleading when sample sizes are very large and CIs for measures of association are therefore very narrow.³⁰ These results provide an excellent example of the phenomenon. The three studies all show consistent, large

Claim closure by early physiotherapy

Figure 3 Kaplan-Meier curve for early reimbursement for physiotherapy.

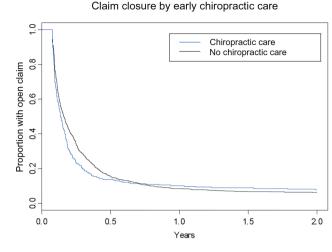


Figure 4 Kaplan-Meier curve for early reimbursement for chiropractic care.

effect estimates (0.52-0.68), which increases confidence in our findings.

DISCUSSION

Statement of principal findings

Our analysis of the Ontario WSIB's administrative data revealed that older claimants who were fully disabled at 4 weeks due to uncomplicated, acute LBP and who are reimbursed for opioid prescription in the first 4 weeks of their claim were more likely to experience prolonged claim duration. Higher preinjury income was also associated with prolonged claim duration, but only among persistent claims. Injured workers employed by organisations with an RTW programme and/or missing information on union affiliation were likely to resolve their claim faster. Neither early receipt of reimbursement for physiotherapy nor chiropractic care for uncomplicated LBP was associated with claim duration.

Strengths and weaknesses

A priori specification of our regression model and stating the anticipated direction of included independent variables, as well as the assessment of the proportional hazards assumption for all independent variables, provide greater confidence in our findings. In 2005, the Ontario WSIB did not capture any measure of LBP injury severity on Forms 6-8, and we were therefore unable to adjust for this factor. The Ontario WSIB Health Professional's Report (Form 8) was updated in August 2011, and now includes capture of baseline pain.³¹ We did attempt to include patients with similar injuries by restricting our cohort to acute, uncomplicated LBP, and while there may still be important differences in injury severity in our cohort, our findings regarding the association with early opioid use and delayed claim recovery are consistent with other studies that have adjusted for low back injury severity.¹³ ¹⁴ Other strengths include limited missing data, correction of

တာ

Study	Population	Opioid variable tested	Adjustments	Dependent variable	Results for early opioid use*
Webster <i>et al</i> ¹³	8443 American workers' compensation claimants with new-onset, disabling LBP	Receipt of opioids within the first 15 days of claim	Injury severity, age, gender, length of job tenure	Change in mean disability duration	1–140 mg MEA 5.4 days, 95% CI –14.6 to 25. 141–225 mg MEA 21.9 days, 95% CI 3.2 to 40.6 226–450 mg MEA 43.8 days, 95% CI 23.7 to 63.9 >450 mg MEA 69.1 days, 95% CI 49.3 to 89.0
Franklin <i>et al¹⁴</i>	1843 Washington, USA, workers' compensation claimants with new-onset, disabling LBP	Reimbursement for opioids within 6 weeks of 1st medical visit for LBP	Age, gender, race, education, injury severity, pain intensity, Roland disability questionnaire	Receipt of wage replacement benefits at 1 year	1–150 mg MED OR=1.9, 95% Cl 1.2 to 3.1 151–300 mg MED OR=2.0, 95% Cl=1.2 to 3.3 301–650 mg MED OR=1.6, 95% Cl=0.9 to 2.6 >650 mg MED OR=1.9, 95% Cl 1.2 to 2.9
Gross <i>et al</i> ¹⁵	47 784 Alberta, Canada, workers' compensation claimants with new-onset, disabling LBP	Reimbursement for opioids within the first 2 weeks of claim	Age, gender, annual salary, year of claim, number of previous claims	Receipt of wage replacement benefits at 1 year	HR=1.94, 95% CI 1.86 to 2.02

BMJ Open: first published as 10.1136/bmjopen-2015-007836 on 26 August 2015. Downloaded from http://bmjopen.bmj.com/ on March 5, 2024 by guest. Protected by copyright.

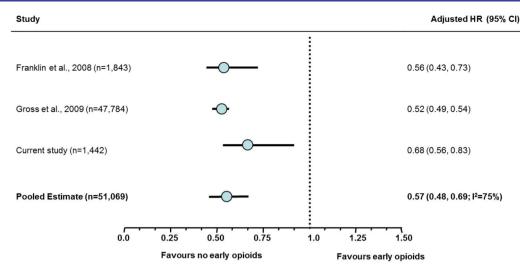


Figure 5 The association between early opioid use/prescription and claim duration.

identifiable data errors and inconsistencies, and validation checks to ensure the accuracy of the data used to inform our regression model.

Our study has several limitations. First, it was a retrospective cohort study in which the reasons for reimbursement of physiotherapy, chiropractic or opioid prescription are uncertain. Thus, despite our adjustments for potential confounders, it remains possible that acute LBP claimants who received these healthcare interventions were prognostically different from those claimants who did not. Second, the WSIB database captures only those physiotherapy or chiropractic treatments that are reimbursed by the WSIB, and it is possible that some patients paid out of pocket to receive these services. It is highly unlikely that patients would have received opioids outside of WSIB reimbursement (Dr Norman Buckley, Chair of Anesthesiology, McMaster University, personal communication, 2015). Third, a number of variables that may be important to consider were unavailable (eg, patient expectations regarding recovery³²), and some variables were not optimally collected. For example, chiropractic and physiotherapy are professions and not modalities, and there were no details of treatment provided. Fourth, our study focused on workers with acute LBP who were receiving disability benefits from the Ontario WSIB for at least 4 weeks in 2005, and we cannot say whether our findings are generalisable to other disabled workers. We are, however, unaware of any major changes in practices among Ontario chiropractors or physiotherapists since 2005, and there is evidence that both rates of opioids prescriptions and average morphine equivalent dose for nonmalignant pain have increased since 2005, which would suggest that our findings regarding early reimbursement for opioids apply to a greater proportion of current WSIB LBP claimants.³³ Finally, our primary outcome, time to claim closure, is a surrogate for patientimportant outcomes such as functional restoration or RTW; however, claim closure and faster claim resolution

is associated with functional recovery among adults disabled by non-severe low back injuries,³⁴ which provides some assurances that patients who resolve their disability claim are also likely to experience clinical improvement.

Our findings in the context of other relevant literature

Our finding that older age is associated with prolonged claim duration is consistent with the literature.³⁵ We predicted that injured workers employed by companies that had formal RTW programmes would resolve their claims faster, and this was supported by our findings. It is unclear why missing data for union membership was associated with shorter claim duration. Similarly, reasons why higher predisability income was associated with prolonged claim duration, but only among persistent claims, are uncertain. Possibilities include that injured workers with higher salaries who do not resolve their claims in the initial 6 months may find it more difficult to identify suitable employment at similar earnings levels, or that compared with other workers (ie, with lower predisability income), workers with higher salaries can accommodate limited compensatory income for longer periods of time.

Although there are no randomised controlled trials exploring the effect of physiotherapy, chiropractic care or early opioid use for workers with acute, uncomplicated LBP receiving lost-time compensation benefits (see online supplementary table S2), our systematic review identified six observational studies that are relevant to our findings.^{13–16 36 37} Turner *et al* followed 1885 workers from Washington for 1 year after they had been awarded workers' compensation benefits for acute LBP. In a comprehensive regression model adjusted for multiple sociodemographic, employment, clinical, healthcare and administrative factors-including injury severity -they found that workers who attended a chiropractor first, versus a primary care provider, were significantly less likely to remain on disability benefits at 1 year (adjusted OR=0.41, 95% CI 0.24 to 0.70).¹⁶

9

Wasiak *et al*^{66} found that workers in Florida, USA, with acute low back injuries who were reimbursed for limited chiropractic care (<30 days) experienced an 8.6% shorter duration of work disability versus workers' compensation claimants who were reimbursed for prolonged chiropractic care (>30 days). The authors did exclude severe injuries from their population, but were unable to adjust for injury severity within their sample. Further, chiropractic care was collected after baseline and not treated as time-dependent, and so it is not surprising that claims with longer duration also received more chiropractic care.

Lemstra and Olszynski³⁷ explored the effect of standard care (which included long waiting lists for physiotherapy) to provision of rapid rehabilitation services on workers' compensation claim duration from a company in Saskatchewan, Canada. After adjusting for a number of factors, including age and injury severity, longer claim duration was associated with chiropractic care (adjusted HR=2.88, 95% CI 1.45 to 5.73) and physical therapist involvement (adjusted HR=19.88, 95% CI 7.95 to 39.77). The authors collected healthcare provider utilisation data after baseline and did not treat these variables as time-dependent, and so an alternative explanation is that claims with longer duration are simply more likely to involve either chiropractors or physical therapists.

Canada is currently the second largest per capita consumer of opioids in the world;³⁸ however, prescribing patterns in Ontario show considerable variation between primary care providers.³⁹ Workers' compensation data from the USA have shown an almost 10-fold range (5.7-52.9%) in the early prescription of opioid medications between various states, suggesting that local prescribing patterns have significant influence on the use of these analgesics.⁴⁰ Findings from a study of workers' compensation non-specific LBP claims (that did not adjust for injury severity) revealed that, compared with a no opioid reference group, the odds of chronic work loss were six times greater for claimants who used strong opioids and 11-14 times greater for claimants with opioid prescriptions which exceeded 90 days.⁴¹ We found that reimbursement for early opioid use by the Ontario WSIB was associated with prolonged claim duration for uncomplicated back pain, and pooling of our data with similar studies¹⁴ ¹⁵ shows a consistent effect, which increases confidence in our findings.

Implications and future research

To manage their growing unfunded liability, the Ontario WSIB has focused on increasing their claim denial rate, decreasing benefits to injured workers, reducing WSIB staff and raising employer premiums.^{9 10} Most employers are obligated to pay WSIB premiums because they are legally bound to provide injury benefits to their employees, and the Ontario WSIB is protected by laws prohibiting competition in the marketplace. Another strategy is to optimise clinical management of injured workers.

Our findings, which were not adjusted for illness severity, suggest that receiving reimbursement from the Ontario WSIB for early chiropractic care or physiotherapy for acute, uncomplicated LBP is not associated with shorter time to claim closure and receiving reimbursement for early opioids was linked with longer claim duration. We did find a non-significant association between early reimbursement for chiropractic care and shorter claim duration, which disappeared at 6 months. In 2005, the Ontario WSIB typically limited reimbursement for chiropractic care to no more than 3 months after a low back injury and the change in association that we found may reflect discontinuation of reimbursement by the WSIB and consequent termination of chiropractic care.

The Ontario WSIB should continue to incorporate established prognostic factors for recovery into their baseline data collection forms, as well as outcomes of direct importance to patients, such as functional recovery, to facilitate more rigorous analyses of their administrative data. However, since observational data cannot establish causality, high quality randomised controlled trials are urgently needed to confirm or refute our findings.

Author affiliations

¹The Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada

²Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada ³Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada

⁴Department of Medicine, Stanford Prevention Research Center, Stanford University, Stanford, California, USA

⁵Department of Anaesthesia & Pain Medicine, The Hospital for Sick Children, Toronto, Canada

Acknowledgements The authors thank Dr Gordon Guyatt for helpful discussion.

Contributors JWB, SE, DH-A and SDW designed the study. DH-A and LW conducted the data analysis and SDW provided statistical advice. JWB, SE, DH-A and SDW were involved in interpreting the data. RC designed and conducted all literature searches. JWB drafted the manuscript and wrote the final version. All authors critically revised the manuscript, provided comment and approved the final version for publication.

Funding This study was funded by research grants from the Ontario Workers Safety and Insurance Board Research Advisory Council and the Ontario Chiropractic Association. SE was supported by an MITACS Elevate Postdoctoral Fellowship Award.

Competing interests JWB acts as a consultant to Prisma Health Canada, a private incorporated company funded by employers and insurers that consults on and manages long-term disability claims.

Ethics approval The study was approved by the Health Sciences Research Ethics Board of the University of Toronto.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http:// creativecommons.org/licenses/by-nc/4.0/

0

REFERENCES

- Thiese MS, Hegmann KT, Wood EM, et al. Low-back pain ratings for lifetime, 1-month period, and point prevalences in a large occupational population. *Hum Factors* 2014;56:86–97.
- Deyo RA, Phillips WR. Low back pain. A primary care challenge. Spine (*Phila Pa 1976*) 1996;21:2826–32.
- Hoy D, March L, Brooks P, *et al.* The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. *Ann Rheum Dis* 2014;73:968–74.
- Brown A, Angus D, Chen S, et al. Costs and outcomes of chiropractic treatment for low back pain [Technology report no 56]. Ottawa: Canadian Coordinating Office for Health Technology Assessment, 2005.
- WSIB-CSPAAT Ontario. By the Numbers: 2012 WSIB Statistical Report. Schedule 1 Toronto, ON: WSIB-CSPAAT Ontario, Workplace Safety & Insurance Board, Commission de la sécurité professionnelle et de l'assurance contre les accidents du travail. 2014. http://www.wsibstatistics.ca/WSIB-StatisticalReport_S1.pdf (accessed 3 Aug 2014).
- WSIB-CSPAAT Ontario. By the Numbers: 2012 WSIB Statistical Report. Schedule 2 WSIB-CSPAAT Ontario, Workplace Safety & Insurance Board, Commission de la sécurité professionnelle et de l'assurance contre les accidents du travail. 2014. http://www. wsibstatistics.ca/WSIB-StatisticalReport_S2.pdf (accessed 3 Aug 2014).
- WSIB-CSPAAT Ontario. First Quarter Sufficiency Report to Stakeholders WSIB-CSPAAT Ontario, Workplace Safety & Insurance Board, Commission de la sécurité professionnelle et de l'assurance contre les accidents du travail. 2013. http://www.wsib.on.ca/files/ Content/SufficiencySufficiencyReport2013/2013Q1WSIBSufficiency Report.pdf (accessed 3 Aug 2014).
- Ontario WSIB funding fiasco [Editorial] (18 November 2008). National Post. 2008. http://www.nationalpost.com/opinion/story.html? id=eb83e348-1660-4771-9804-e47a502aa756 (accessed 3 Aug 2014).
- UFCW Canada. WSIB President gets \$80K bonus on the backs of injured workers. Media & News Canada's Best Labour and Social Justice News. 2012. http://www.ufcw.ca/index.php?option=com_ content&view=article&id=2760:wsib-president-gets-80k-bonus-onthe-backs-of-injured-workers&Itemid=6&Iang=en (accessed 3 Aug 2014).
- WSIB raises its rates to tackle \$12 billion in unfunded liabilities. Machinery and Equipment MRO—Maintenance, Repair and Operations. 2010. http://www.mromagazine.com/news/wsib-raisesits-rates-to-tackle-12-billion-in-unfunded-liabilities/1000391835/? &er=NA (accessed 3 Aug 2014).
- 11. Henschke N, Maher CG, Refshauge KM, *et al.* Prognosis in patients with recent onset low back pain in Australian primary care: inception cohort study. *BMJ* 2008;337:a171.
- Childs JD, Fritz JM, Wu SS, *et al.* Implications of early and guideline adherent physical therapy for low back pain on utilization and costs. *BMC Health Serv Res* 2015;15:150.
- Webster BS, Verma SK, Gatchel RJ. Relationship between early opioid prescribing for acute occupational low back pain and disability duration, medical costs, subsequent surgery and late opioid use. *Spine (Phila Pa 1976)* 2007;32:2127–32.
- Franklin GM, Stover BD, Turner JA, *et al.* Early opioid prescription and subsequent disability among workers with back injuries: the Disability Risk Identification Study Cohort. *Spine (Phila Pa 1976)* 2008;33:199–204.
- Gross DP, Stephens B, Bhambhani Y, *et al.* Opioid prescriptions in Canadian workers' compensation claimants: prescription trends and associations between early prescription and future recovery. *Spine* (*Phila Pa 1976*) 2009;34:525–31.
- Turner JA, Franklin G, Fulton-Kehoe D, *et al.* ISSLS prize winner: early predictors of chronic work disability: a prospective, populationbased study of workers with back injuries. *Spine (Phila Pa 1976)* 2008;33:2809–18.
- von Elm E, Altman DG, Egger M, *et al.* The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Int J Surg* 2014;12:1495–9.
- 18. Collins GS, Reitsma JB, Altman DG, *et al.* Transparent Reporting of a multivariable prediction model for Individual Prognosis Or

Diagnosis (TRIPOD): the TRIPOD statement. *Br J Surg* 2015;102:148–58.

- da C Menezes Costa L, Maher CG, Hancock MJ, et al. The prognosis of acute and persistent low-back pain: a meta-analysis. CMAJ 2012;184:E613–24.
- Frank JW, Brooker AS, DeMaio SE, et al. Disability resulting from occupational low back pain. Part II: What do we know about secondary prevention? A review of the scientific evidence on prevention after disability begins. *Spine (Phila Pa 1976)* 1996;21:2918–29.
- Busse J, Steenstra I, Riva J, et al. Predictors of prolonged recovery following acceptance for disability benefits: a systematic review of observational studies. Occup Environ Med 2011;68(Suppl 1):A97.
- Schandelmaier S, Ebrahim S, Burkhardt SC, *et al.* Return to work coordination programmes for work disability: a meta-analysis of randomised controlled trials. *PLoS ONE* 2012;7:e49760.
- Harrell FE Jr. Multivariate modeling strategies. In: Harrell FE Jr. ed. Regression modeling strategies with applications to linear models, logistic regression and survival analysis. New York, NY: Springer, 2001:53–85.
- Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. *JAMA* 1998;280:1690–1.
- Montori V, Ioannidis J, Cook DJ. Fixed-effects and random-effects models. In: Guyatt GH, Rennie D, Meade MO, et al. eds. Users' guides to the medical literature: a manual for evidence-based clinical practice. 2nd edn. USA: McGraw Hill, 2008:555–62.
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
- Higgins JPT, Green Se. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.
- Atkins D, Best D, Briss PA, *et al.* Grading quality of evidence and strength of recommendations. *BMJ* 2004;328:1490.
- Guyatt GH, Oxman AD, Sultan S, *et al.* GRADE guidelines:
 9. Rating up the quality of evidence. *J Clin Epidemiol* 2011;64:1311–16.
- Rucker G, Schwarzer G, Carpenter JR, et al. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol 2008;8:79.
- The Ontario WSIB Health Professional's Report (Form 8). http:// www.wsib.on.ca/cs/groups/public/documents/staticfile/c2li/mdey/ ~edisp/wsib012197.pdf (accessed 2 Jul 2015).
- Cole DC, Mondloch MV, Hogg-Johnson S. Listening to injured workers: how recovery expectations predict outcomes—a prospective study. *CMAJ* 2002;166:749–54.
- Gomes T, Mamdani MM, Paterson JM, et al. Trends in high-dose opioid prescribing in Canada. Can Fam Physician 2014;60: 826–32.
- Cassidy JD, Carroll L, Côté P, *et al.* Low back pain after traffic collisions: a population-based cohort study. *Spine (Phila Pa 1976)* 2003;28:1002–9.
- 35. Hadler NM. The bane of the aging worker. *Spine (Phila Pa 1976)* 2001;26:1309–12.
- Wasiak R, Kim J, Pransky GS. The association between timing and duration of chiropractic care in work-related low back pain and workdisability outcomes. *J Occup Environ Med* 2007;49:1124–34.
- Lemstra M, Olszynski WP. The effectiveness of standard care, early intervention, and occupational management in worker's compensation claims. *Spine (Phila Pa 1976)* 2003;28:299–304.
- Pain and Policy Studies Group. *PPSG opioid consumption motion chart.* Madison, WI: University of Wisconsin Paul P Carbone Comprehensive Cancer Center, 2011 https://ppsg.medicine.wisc.edu/chart (accessed 15 May 2015).
- Dhalla IA, Mamdani MM, Gomes T, *et al.* Clustering of opioid prescribing and opioid-related mortality among family physicians in Ontario. *Can Fam Physician* 2011;57:e92–6.
- Webster BS, Cifuentes M, Verma S, *et al.* Geographic variation in opioid prescribing for acute, work-related, low back pain and associated factors: a multilevel analysis. *Am J Ind Med* 2009;52:162–71.
- Volinn E, Fargo JD, Fine PG. Opioid therapy for nonspecific low back pain and the outcome of chronic work loss. *Pain* 2009;142:194–201.

Table S1: Search strategy for the Cochrane Back Group trials registry*

Search Strategy in Cochrane Library:

*:ti,ab,kw in Trials, with Back Group in Review Groups 6476

Endnote search strategy:

Any field contains: acute AND Any field contains chiropractic (43) Any field contains: acute AND Any field contains physiotherapy* (87) Any field contains: acute AND Any field contains opioid (30) Any field contains: opioid NOT Any field contains: surgery NOT Any field contains: chronic (28) Any field contains: emergency (57) NOT Any field contains: whiplash (18)

*On May 1, 2015 we used the Cochrane Library to search the Cochrane Back Review Group (CBRG) Trials Register, which we exported to Endnote. We also screened the included studies lists of recent CBRG Reviews of chiropractic and physiotherapy interventions for acute low back pain (Franke et al., 2015, Rubinstein et al., 2012).

Table S2: Randomized controlled trials of acute low back pain assessing the effect of opioids, chiropractic care, or physical therapy, and their generalizability to injured workers receiving disability benefits

Study	Participants and Interventions	Representation of injured workers receiving lost-time disability benefits for acute low back pain
Glover 1974	84 patients with unilateral low back pain (LBP), randomized to manipulation or control (sham diathermy)	No mention regarding receipt of lost-time disability benefits
Bergquist- Ullman 1977	217 patients consulting a workplace health centre with acute or subacute LBP randomized to back school, physiotherapy or placebo	At least 88% of patients were enrolled with acute LBP, and of the 217, 184 were "sick-listed" for a median of 21 days during the study, but there was no mention regarding receipt of lost-time disability benefits
Rasmussen 1979	26 patients with LBP duration <3weeks, randomized to manipulation or diathermy	No mention regarding receipt of lost-time disability benefits
Hoehler 1981	95 patients with palpatory cues indicating hyperalgesia or a restricted or painful range of vertebral motion, randomized to rotational manipulation of the trunk or massage	No mention regarding receipt of lost-time disability benefits
Farrell 1982	48 subjects with acute LBP duration <3 weeks, randomized to passive mobilization and manipulation or combination of diathermy, exercises and ergonomic advice	No mention regarding receipt of lost-time disability benefits
Gilbert 1985	270 patients presenting with LBP, randomized to bed rest or physiotherapy	The authors reported that "people who were receiving workman's compensation were also slower to recover." p.794, but they did not report any associated data (e.g. how many patients were receiving disability benefits, or the quantitative results for this subgroup).
Waterworth 1985	112 patients with acute mechanical LBP, randomized to ergonomic advice/ Diflunisal or ergonomic advice/ conservative physiotherapy (ultrasound and exercise) or ergonomic advice/manipulation	The authors enrolled a mixed group of patients, that may include up to 54% receiving lost-time claim benefits, but that the proportion is unequal between study group (ranging from 47% to 63%) and the results are provided for the total population which precludes confident generalizability to only those who were receiving lost-time claim benefits.
Hadler 1987	54 subjects with acute LBP, randomized to mobilization or manipulation	Patients who were receiving disability benefits were explicitly excluded from this trial: "neither workers' compensation nor disability insurance should be at issued [sic] and the acute low-back pain must not be considered work-related."pg 703
MacDonald 1990	95 subjects with LBP duration <4 weeks, randomized to osteopathic manipulation or control (advice to rest and resume activities gradually)	"Less than 30% [of the study group] suffered loss of income because of disability" pg. 366

Cramer 1993	36 subjects with mechanical LBP less than two weeks duration randomized to side-lying manipulation, electrical stimulation and cold packs or control (detuned ultrasound, cold packs and 15-30 sec. gentle massage)	Patients who were receiving disability benefits were explicitly excluded from this trial. Inclusion criteria stipulate "no litigation or workers' compensation" (as per the review by Rubinstein 2012, pg. 52)
Skargren 1997	323 patients with back and neck pain of mixed duration, randomized to chiropractic or physiotherapy.	51% of patients (166 of 323) were on "sick-leave" when enrolled (Table 3, pg. 2170), but there was no mention regarding receipt of lost-time disability benefits.
Innes 1998	123 patients with acute LBP, randomized to ketorolac or acetaminophen/codeine	Patients who were receiving disability benefits were limited during enrollment: "Because Workers Compensation status might influence response to therapy, we limited each site to 10 work-related back injuries, hoping to limit such cases to no more than half the total study enrollment." pg. 550
Cherkin 1998	321 adults with acute LBP randomized to the McKenzie method of physical therapy, chiropractic manipulation, or provision of an educational booklet	patients who were receiving disability benefits were explicitly excluded from this trial: "Subjects who were involved in claims for compensation or litigation because of the back injurywere also excluded"; pg. 1022
Seferlis 1998	180 patients sick-listed for < 2 weeks for LBP randomized to General Practitioner Program (rest, sick-leave, analgesics etc.) or Manual Therapy Program (autotraction, manipulation, mobilization etc.) or Intensive Training Program (information, muscle training and general condition training 3x/week for 8 weeks)	All enrolled patients were "sick listed for acute low-back pain for up to 2 weeks", but there is no mention regarding receipt of lost-time disability benefits.
Morton 1999	29 patients with acute mechanical LBP, randomized to manipulation/ exercise or exercise alone	Patients who were receiving disability benefits were explicitly excluded from this trial: "Exclusion criteria were third-party, public liability or workers' compensation claimants"; pg. 185
Veenema 2000	155 patients with musculoskeletal LBP, randomized to meperidine or ketorolac	No mention regarding receipt of lost-time disability benefits
Metscher 2001	192 Patients with acute LBP randomized to dexketoprofen-trometamol or tramadolhydrochloride	Abstract in English, paper in German. No mention in the abstract about receipt of lost-time disability benefits
Palangio 2002	147 patients with acute LBP, first episode or exacerbation of chronic condition with onset <48 hours before enrolment, randomized to combination hydrocodone 7.5 mg and ibuprofen 200 mg (HC/IB) or combination oxycodone 5 mg and acetaminophen 325 mg (OX/AC)	No mention regarding receipt of lost-time disability benefits
Hofstee 2002	250 patients with sciatica of less than 1 months duration randomized to bed rest, physiotherapy or continuation of activities of daily living	No mention regarding receipt of lost-time disability benefits
Johnstone 2002	12 patients with acute LBP with signs of psychological distress (DRAM score Modified Zung score >17) randomized to cognitive behavioral therapy and conventional physiotherapy or conventional physiotherapy alone	Patients with "ongoing medico legal issues" were excluded (pg.183). No mention regarding receipt of lost-time disability benefits

Childs 2004	131 patients with LBP of median duration of 27 days, randomized to manipulation and exercise or exercise alone	39.8% of patients had missed work due to LBP, Table 2 pg. 925, but there was no mention regarding receipt of lost-time disability benefits
Hoiriis 2004	192 patients with LBP of 3 to 6 weeks duration randomized to chiropractic adjustments with placebo medicine, muscle relaxants with sham adjustments, or placebo medicine with sham adjustments	No mention regarding receipt of lost-time disability benefits
Salvador 2005	28 subjects randomly allocated to a muscle energy technique or transcutaneous electrical nerve stimulation (TENS)	Abstract in English, paper in Portuguese. No mention in the abstract about receipt of lost-time disability benefits
Brennan 2006	123 patients referred to physiotherapy for LBP less than 90 days duration, randomized to manipulation or specific exercise or stabilization	No mention regarding receipt of lost-time disability benefits
Santilli 2006	102 patients with acute moderate to severe radiating LBP of duration <10 days with MRI evidence of disc protrusion, randomized to manipulation or simulated manipulation	No mention regarding receipt of lost-time disability benefits
Hancock 2007	240 subjects with acute LBP duration < 6 weeks, randomized to four groups: control (placebo drug and placebo manipulation) or NSAIDs (diclofenac and placebo manipulation) or manipulation (placebo drug and active manipulation) or manipulation and NSAIDs (diclofenac and active manipulation)	No mention regarding receipt of lost-time disability benefits
Lee 2008	Study of 78 musculoskeletal pain patients, 67% with LBP, randomized to tramadol/paracetemol (n=28 with LBP) or ketorolac/paracetemol (n=24 with LBP)	No mention regarding receipt of lost-time disability benefits
Lau 2008	110 patients with acute LBP, randomized to immediate intervention (advice to stay active, Back Care booklet, reassurance, advice, interferential current therapy) or control (walking training and prescription of walking aids as indicated) followed by outpatient physiotherapy (for both groups)	12% of patients (13 of 110) had work-related injuries (see Table 1), but no mention regarding receipt of lost-time disability benefits
Selkow 2009	20 subjects with acute LBP, randomly allocated to muscle energy technique or sham manual treatment	No mention regarding receipt of lost-time disability benefits
Cleland 2009	112 subjects with LBP, that met 4 out of 5 criteria for a clinical prediction rule for LBP likely to respond to manipulation, randomized to supine thrust manipulation, side-lying thrust manipulation or non- thrust manipulation	Only 6% of patients were unable to work due to LBP. Table 2, pg.2724.
Hallegraef 2009	64 patients with acute nonspecific LBP duration <16 days, randomized to manipulative therapy plus physical therapy or physical therapy alone	No mention regarding receipt of lost-time disability benefits

Sutlive 2009	60 subjects with LBP meeting 3 out of 5 criteria for a clinical prediction rule for LBP likely to respond to manipulation, randomized to lumbopelvic manipulation or neutral gap manipulation	Patients "with litigation pending for their LBP" were excluded. No mention regarding receipt of lost-time disability benefits
Juni 2009	104 patients with acute LBP duration < 4 weeks, randomized to standard care with manipulation or standard care alone	No mention regarding receipt of lost-time disability benefits
Machado 2010	148 adults with acute LBP duration <6 weeks, randomized to the McKenzie method and first-line care (advice, reassurance and time-contingent acetaminophen) or first-line care alone	Only 3% of participants (4 of 146) were receiving disability benefits for their injury (see Table 1)
Lewis 2011	89 patients with acute LBP duration < 3 months, randomized to strain-counterstrain manual therapy/exercise or exercise alone	No mention regarding receipt of lost-time disability benefits
Biondi 2013	1664 patients with acute LBP, randomized to tapentadol or oxycodone	No mention regarding receipt of lost-time disability benefits
Goertz 2013	91 patients with acute LBP, duration < 4 weeks, randomized to standard medical care and chiropractic manipulation or standard care alone	No mention regarding receipt of lost-time disability benefits
Behrbalk 2014	65 adults with acute LBP, randomized to morphine or morphine/promethazine	No mention regarding receipt of lost-time disability benefits
Eken 2014	137 patients with moderate or severe acute LBP, randomized to paracetemol, morphine or dexketoprophen	No mention regarding receipt of lost-time disability benefits
Tanen 2014	44 patients with acute radicular LBP, randomized to lidocaine or ketorolac	No mention regarding receipt of lost-time disability benefits

References for Tables S1 and S2

- 1. Franke H, Fryer G, Ostelo RW, Kamper SJ. Muscle energy technique for non-specific lowback pain. *Cochrane Database Syst Rev* 2015; 2: CD009852.
- 2. Rubinstein SM, Terwee CB, Assendelft WJ, de Boer MR, van Tulder MW. Spinal manipulative therapy for acute low-back pain. *Cochrane Database Syst Rev* 2012; 9: CD008880.
- 3. Glover JR, Morris JG, Khosla T. Back pain: a randomized clinical trial of rotational manipulation of the trunk. *British journal of industrial medicine* 1974; 31: 59-64.
- 4. Bergquist-Ullman M, Larsson U. Acute low back pain in industry. A controlled prospective study with special reference to therapy and confounding factors. *Acta orthopaedica Scandinavica* 1977; 48(Suppl. 170): 1-117.
- 5. Rasmussen GG. Manipulation in treatment of low back pain (a randomized clinical trial. *Man-Med* 1979; 17: 8-10.
- 6. Hoehler FK, Tobis JS, Buerger AA. Spinal manipulation for low back pain. *JAMA* 1981; 245: 1835-1838.
- 7. Farrell JP, Twomey LT. Acute low back pain. Comparison of two conservative treatment approaches. *Medical journal of Australia* 1982; 1: 160-164.
- 8. Gilbert JR, Taylor DW, Hildebrand A, Evans C. Clinical practice of common treatments for low back pain in family practice. *British Medical Journal Clinical Research Ed* 1985; 291: 791-794.
- 9. Waterworth RF, Hunter IA. An open study of diflunisal, conservative and manipulative therapy in the management of acute mechanical low back pain. *New Zealand medical journal* 1985; 98: 372-375.
- 10. Hadler NM, Curtis P, Gillings DB, Stinnett S. A benefit of spinal manipulation as adjunctive therapy for acute low-back pain: a stratified controlled trial. *Spine* 1987; 12: 702-706.
- 11. MacDonald RS, Bell CMJ. An open controlled assessment of osteopathic manipulation in nonspecific low-back pain. *Spine* 1990; 15: 364-370.
- 12. Cramer GD, Humphreys CR, Hondras MA, McGregor M, Triano JJ. The Hmax/Mmax ratio as an outcome measure for acute low back pain. *Journal of manipulative and physiological therapeutics* 1993; 16: 7-13.
- 13. Skargren EI, Oberg BE, Carlsson PG, Gade M. Cost and effectiveness analysis of chiropractic and physiotherapy treatment for low back and neck pain. Six-month follow-up. *Spine* 1997; 22: 2167-2177.
- 14. Innes GD, Croskerry P, Worthington J, Beveridge R, Jones D. Ketorolac versus acetaminophen-codeine in the emergency department treatment of acute low back pain. *Journal of emergency medicine* 1998; 16: 549-556.
- 15. Cherkin DC, Deyo RA, Battie M, Street J, Barlow W. A comparison of physical therapy, chiropractic manipulation, and provision of an educational booklet for the treatment of patients with low back pain. *N Engl J Med* 1998; 339: 1021-1029.
- 16. Seferlis T, Németh G, Carlsson AM, Gillström P. Conservative treatment in patients sicklisted for acute low-back pain: a prospective randomised study with 12 months' follow-up. *European spine journal* 1998; 7: 461-470.
- 17. Morton JE. Manipulation in the treatment of acute low back pain. *Journal of manual & manipulative therapy* 1999; 7: 182-189.
- 18. Veenema KR, Leahey N, Schneider S. Ketorolac versus meperidine: ED treatment of severe musculoskeletal low back pain. *American journal of emergency medicine* 2000; 18: 404-407.

- 19. Metscher B, Kübler U, Jahnel-Kracht H. Dexketoprofen-trometamol and tramadol in acute lumbago [German]. *Fortschritte der Medizin Originalien* 2001; 118: 147-151.
- 20. Palangio M, Morris E, Doyle RT, Dornseif BE, Valente TJ. Combination hydrocodone and ibuprofen versus combination oxycodone and acetaminophen in the treatment of moderate or severe acute low back pain. *Clinical therapeutics* 2002; 24: 87-99.
- 21. Hofstee DJ, Gijtenbeek JM, Hoogland PH, Houwelingen HC, Kloet A, Lötters F, et al. Westeinde sciatica trial: randomized controlled study of bed rest and physiotherapy for acute sciatica. *Journal of neurosurgery* 2002; 96(1 Suppl): 45-49.
- 22. Johnstone R, Donaghy M, Martin D. A pilot study of a cognitive-behavioural therapy approach to physiotherapy, for acute low back pain patients, who show signs of developing chronic pain. *Advances in physiotherapy* 2002; 4: 182-188.
- 23. Childs JD, Fritz JM, Flynn TW, Irrgang JJ, Johnson KK, Majkowski GR, et al. A clinical prediction rule to identify patients with low back pain most likely to benefit from spinal manipulation: a validation study. *Annals of internal medicine* 2004; 141: 920-928.
- 24. Hoiriis KT, Pfleger B, McDuffie FC, Cotsonis G, Elsangak O, Hinson R, et al. A Randomized Clinical Trial Compring Chiropractic Adjustments to Muscle Relaxants for Subacute Low Back Pain. *Journal of manipulative and physiological therapeutics* 2004; 27: 388-398.
- 25. Salvador D, Neto PD, Ferrari FP. Application of muscle energy technique in garbage collectors with acute mechanical lumbar pain [Portuguese]. *Fisioterapia e Pesquisa* 2005; 12: 20-27.
- 26. Brennan GP, Fritz JM, Hunter SJ, Thackeray A, Delitto A, Erhard RE. Identifying subgroups of patients with acute/subacute "nonspecific" low back pain: results of a randomized clinical trial. *Spine* 2006; 31: 623-631.
- 27. Santilli V, Beghi E, Finucci S. Chiropractic manipulation in the treatment of acute back pain and sciatica with disc protrusion: a randomized double-blind clinical trial of active and simulated spinal manipulations. *Spine journal* 2006; 6: 131-137.
- 28. Hancock MJ, Maher CG, Latimer J, McLachlan AJ, Cooper CW, Day RO, et al. Assessment of diclofenac or spinal manipulative therapy, or both, in addition to recommended first-line treatment for acute low back pain: a randomised controlled trial. *Lancet* 2007; 370: 1638-1643.
- 29. Lee HKH, Ting SM, Lau FL. A randomised control trial comparing the efficacy of tramadol and paracetamol against ketorolac and paracetamol in the management of musculoskeletal pain in the emergency department. Hong Kong Journal of Emergency Medicine [Internet]. 2008; 15(1):[5-11 pp.]
- 30. Lau PM, Chow DH, Pope MH. Early physiotherapy intervention in an Accident and Emergency Department reduces pain and improves satisfaction for patients with acute low back pain: a randomised trial. *Australian journal of physiotherapy* 2008; 54: 243-249.
- Selkow N, Grindstaff T, Cross K, Pugh K, Hertel J, Saliba S. Short-Term Effect of Muscle Energy Technique on Pain in Individuals with Non-Specific Lumbopelvic Pain: A Pilot Study. *Journal of Manual & Manipulative Therapy* 2009; 17: 14-18.
- 32. Cleland JA, Fritz JM, Kulig K, Davenport TE, Eberhart S, Magel J, et al. Comparison of the effectiveness of three manual physical therapy techniques in a subgroup of patients with low back pain who satisfy a clinical prediction rule: a randomized clinical trial. *Spine (Phila Pa 1976)* 2009; 34: 2720-2729.
- 33. Hallegraeff JM, Hallegraeff HJ, Greef M, Winters JC, Lucas C. Manipulative therapy and clinical prediction criteria in treatment of acute nonspecific low back pain. *Perceptual and motor skills* 2009; 108: 196-208.

- 34. Sutlive TG, Mabry LM, Easterling EJ, Durbin JD, Hanson SL, Wainner RS, et al. Comparison of short-term response to two spinal manipulation techniques for patients with low back pain in a military beneficiary population. *Military medicine* 2009; 174: 750-756.
- 35. Jüni P, Battaglia M, Nüesch E, Hämmerle G, Eser P, Beers R, et al. A randomised controlled trial of spinal manipulative therapy in acute low back pain. *Annals of the rheumatic diseases* 2009; 68: 1420-1427.
- 36. Machado LA, Maher CG, Herbert RD, Clare H, McAuley JH. The effectiveness of the McKenzie method in addition to first-line care for acute low back pain: a randomized controlled trial. *BMC Med* 2010; 8: 10.
- 37. Lewis C, Souvlis T, Sterling M. Strain-Counterstrain therapy combined with exercise is not more effective than exercise alone on pain and disability in people with acute low back pain: a randomised trial. *Journal of physiotherapy* 2011; 57: 91-98.
- Biondi D, Xiang J, Benson C, Etropolski M, Moskovitz B, Rauschkolb C. Tapentadol immediate release versus oxycodone immediate release for treatment of acute low back pain. *Pain physician* 2013; 16: E237-E246.
- 39. Goertz CM, Long CR, Hondras MA, Petri R, Delgado R, Lawrence DJ, et al. Adding chiropractic manipulative therapy to standard medical care for patients with acute low back pain: results of a pragmatic randomized comparative effectiveness study. *Spine* 2013; 38: 627-634.
- 40. Behrbalk E, Halpern P, Boszczyk BM, Parks RM, Chechik O, Rosen N, et al. Anxiolytic medication as an adjunct to morphine analgesia for acute low back pain management in the emergency department: A prospective randomized trial. *Spine* 2014; 39: 17-22.
- 41. Eken C, Serinken M, Elicabuk H, Uyanik E, Erdal M. Intravenous paracetamol versus dexketoprofen versus morphine in acute mechanical low back pain in the emergency department: A randomised double-blind controlled trial. *Emergency medicine journal* 2014; 31: 177-181.
- 42. Tanen DA, Shimada M, Danish DC, Santos FD, Makela M, Riffenburgh RH. Intravenous lidocaine for the Emergency Department treatment of acute radicular low back pain, a randomized controlled trial. *Journal of emergency medicine* 2014; 47: 119-124.

	Univariate		Multivariable	
	Hazard Ratio (99% CI)	p-value	Adjusted Hazard Ratio (99% CI)	p-value
Baseline predictors				
Age categories in years		< 0.001		< 0.001
15 to <25	1.00		1.00	
25 to <35	0.88 (0.65, 1.19)		0.79 (0.58, 1.08)	
35 to <45	0.78 (0.59, 1.04)		0.70 (0.52, 0.95)	
45 to <55	0.76 (0.56, 1.02)		0.67 (0.49, 0.91)	
55 to 65	0.56 (0.40, 0.80)		0.52 (0.36, 0.74)	
Gender		0.114		0.451
Females	1.09 (0.95, 1.26)		0.96 (0.82, 1.12)	
Males	1.00		1.00	
First language		0.137		0.327
English	1.00		1.00	
Other	0.83 (0.59, 1.15)		0.88 (0.63, 1.23)	
Pre-disability income in				
dollars per week				
At 30 days:				
≤480	1.00	-	1.00	-
481-694	1.15 (0.91, 1.45)	0.125	1.08 (0.85, 1.37)	0.396
695-920	1.21 (0.96, 1.54)	0.034	1.05 (0.81, 1.36)	0.614
>920	1.20 (0.94, 1.52)	0.050	1.04 (0.80, 1.35)	0.689
At 60 days:				
≤480	1.00	-	1.00	-
481-694	1.09 (0.89, 1.34)	0.273	1.03 (0.83, 1.27)	0.710
695-920	1.13 (0.92, 1.39)	0.137	0.97, (0.77, 1.22)	0.746
>920	1.08 (0.88, 1.33)	0.326	0.94 (0.74, 1.19)	0.477
At 180 days:				
≤480	1.00	-	1.00	-
481-694	0.89 (0.68, 1.17)	0.267	0.85 (0.65, 1.12)	0.130
695-920	0.84 (0.63, 1.12)	0.115	0.71 (0.52, 0.96)	0.003
>920	0.72 (0.54, 0.97)	0.004	0.61 (0.45, 0.84)	< 0.001
At 365 days:				
≤480	1.00	-	1.00	-
481-694	0.65 (0.36, 1.18)	0.064	0.63 (0.35, 1.16)	0.051
695-920	0.53 (0.28, 1.02)	0.012	0.44 (0.23, 0.84)	0.001
>920	0.39 (0.20, 0.75)	<0.001	0.32 (0.16, 0.63)	< 0.001
Opioid prescription		< 0.001		< 0.001
Yes	0.62 (0.48, 0.80)		0.69 (0.53, 0.89)	
No	1.00		1.00	
Prior claims		0.306		0.661
Yes	1.07 (0.91, 1.26)		1.03 (0.87, 1.22)	
No	1.00		1.00	
Union membership		< 0.001		0.014
Yes	1.29 (1.11, 1.50)		1.14 (0.96, 1.36)	
No	1.00		1.00	
Missing	1.34 (1.07, 1.68)		1.27 (1.01, 1.60)	
Employer RTW program	. , ,	< 0.001		< 0.001
Yes	1.73 (1.43, 2.09)		1.77 (1.45, 2.18)	

Table S3: Sensitivity analysis of factors associated with time to claim closure, entering chiropractic care and physiotherapy as time-dependent co-variates (n=1,442)

No	1.00		1.00	
Missing	1.17 (0.87, 1.58)		1.18 (0.86, 1.60)	
Doubt Work-relatedness		0.174		0.119
Yes	0.94 (0.76, 1.16)		0.87 (0.70, 1.08)	
No	1.00		1.00	
Missing	1.13 (0.92, 1.39)		1.08 (0.87, 1.33)	
Time-dependent predictors*				
Chiropractic care received	1.11 (0.95, 1.30)	0.096	1.08 (0.91, 1.29)	0.268
after the accident prior to				
claim closure				
Physiotherapy after the	0.96 (0.83, 1.10)	0.420	0.99 (0.85, 1.16)	0.913
accident prior to claim closure				

HR>1 indicates faster claim closure; RTW = return to work

* The time-dependent predictors are "turned on" once the claimant has received their first service after their accident.

Table S4: Search strategy for observational studies exploring the association of early opioid, physiotherapy, or chiropractic care with Workers' Compensation claim duration, for cases of acute low back pain

MEDLINE (OvidSP)

- 1 exp Whiplash Injuries/
- 2 exp Soft Tissue Injuries/
- 3 repetitive strain injur\$.mp.
- 4 carpal tunnel syndrome.mp.
- 5 exp Cumulative Trauma Disorders/
- 6 exp Back pain/ or exp pain/ or chronic pain.tw.
- 7 exp Anxiety/
- 8 exp Depression/
- 9 exp Neck Pain/
- 10 exp Depressive Disorder/
- 11 exp Back Injuries/
- 12 injured worker\$.mp.
- 13 musculoskeletal injur\$.mp.
- 14 or/1-13
- 15 exp "Wounds and Injuries"/
- 16 Musculoskeletal System/ or Musculoskeletal Diseases/
- 17 15 and 16
- 18 14 or 17
- 19 exp insurance claim reporting/ or exp "insurance claim review"/ or exp insurance, disability/
- or insurance, liability/
- 20 Insurance, Accident/
- 21 ((worker\$ or workman\$ or workmen&) adj compensation).mp. or exp Workers'

compensation/

- 22 claim.mp.
- 23 claimant.mp.
- 24 or/19-23
- 25 prognosis.mp. or exp Prognosis/
- 26 Time/ or exp Time Factors/
- 27 exp "Recovery of Function"/
- 28 "Severity of Illness Index"/
- 29 exp Trauma Severity Indices/
- 30 (recovery or prognostic).mp.
- 31 or/25-30
- 32 18 and 24 and 31
- 33 exp Disability Evaluation/
- 34 24 and 31 and 33
- 35 exp Occupational Diseases/ or exp Accidents, Occupational/ or (occupational injur: or occupational accident:).mp.
- occupational accident:).mj
- 36 24 and 31 and 35
- 37 exp Accidents, Traffic/
- 38 24 and 31 and 37
- 39 "Compensation and Redress"/
- 40 18 and 31 and 39

- 41 exp Work Capacity Evaluation/ or exp workload/ or workload.mp.
- 42 (18 or 35) and 24 and 41
- $43 \ 32 \ or \ 34 \ or \ 36 \ or \ 38 \ or \ 40 \ or \ 42$
- 44 18 or 33
- 45 31 or 41
- 46 35 and 44 and 45
- 47 46 or 43

EMBASE (OvidSP)

- 1 whiplash injur\$.mp. or exp whiplash injury/
- 2 exp soft tissue injury/
- 3 soft tissue injur\$.mp.
- 4 repetitive strain injur\$.mp.
- 5 carpal tunnel syndrome.mp. or exp carpal tunnel syndrome/
- 6 exp cumulative trauma disorder/
- 7 back pain.mp. or exp backache/
- 8 backpain.mp.
- 9 chronic pain.mp. or exp chronic pain/
- 10 exp pain/
- 11 anxiety/
- 12 exp depression/
- 13 neck pain.mp. or exp neck pain/
- 14 back injur\$.mp.
- 15 low back injury/
- 16 injured worker\$.mp.
- 17 musculoskeletal injury/
- 18 occupational injuries.mp. or exp occupational accident/
- 19 occupational accidents.mp.
- 20 occupational diseases.mp. or exp occupational disease/
- 21 or/1-20
- 22 insurance/ or exp compensation/ or exp workman compensation/ or exp health insurance/ or
- exp "health plan employer data and information set"/
- 23 accident insurance.mp.
- 24 exp workman compensation/
- 25 ((worker\$ or workman\$ or workmen&) adj compensation).mp.
- 26 (claim or claimant).mp.
- 27 or/22-26
- 28 prognosis.mp. or prognosis/
- 29 exp time/
- 30 recovery of function.mp. or convalescence/
- 31 disease severity/
- 32 exp injury scale/
- 33 (recovery or prognostic).mp.
- 34 workload.mp. or exp workload/
- 35 exp work capacity/
- 36 exp work resumption/ or return to work.mp.
- 37 or/28-36

- 38 21 and 27 and 37
- 39 or/1-17
- 40 or/18-20
- 41 37 and 39 and 40
- 42 38 or 41

PsycInfo (OvidSP)

- 1 exp Whiplash/
- 2 whiplash injur:.mp.
- 3 soft tissue injur\$.mp.
- 4 cumulative trauma disorder\$.mp.
- 5 repetitive strain injur\$.mp.
- 6 carpal tunnel syndrome.mp.
- 7 back pain.mp. or exp Back Pain/
- 8 (backpain or backache).mp.
- 9 chronic pain.mp. or exp Chronic Pain/
- 10 exp Musculoskeletal Disorders/ or exp Fibromyalgia/ or fibromyalgia.mp.
- 11 exp Anxiety/
- 12 exp "Depression (Emotion)"/ or exp Major Depression/
- 13 neck pain.mp.
- 14 back injur:.mp.
- 15 musculoskeletal injur\$.mp.
- 16 exp Industrial Accidents/
- 17 exp Occupational Safety/
- 18 (occupational injur: or occupational accident:).mp.
- 19 exp Work Related Illnesses/
- 20 or/1-19
- 21 exp Workers' Compensation Insurance/
- 22 exp Employee Health Insurance/
- 23 exp Insurance/
- 24 disability insurance.mp.
- 25 (claim or claimant).mp.
- 26 ((worker: or workman: or workmen:) adj compensation).mp.
- 27 accident insurance.mp.
- 28 or/21-27
- 29 prognosis.mp. or exp Prognosis/
- 30 exp Time/
- 31 time factors.mp.
- 32 exp "Recovery (Disorders)"/
- 33 recovery of function.mp.
- 34 exp "Severity (Disorders)"/ or severity of illness.mp.
- 35 (recovery or prognostic).mp.
- 36 exp Work Load/ or workload.mp. or exp Job Performance/
- 37 exp Vocational Evaluation/ or exp Disability Evaluation/ or work capacity evaluation.mp. or
- exp Reemployment/
- 38 work resumption.mp.
- 39 or/29-38
- 40 20 and 28 and 39

42 or/1-15 43 39 and 41 and 42 44 28 and 41 45 40 or 43 or 44 CINAHL (Ebsco) 49 S46 or S48 S48 S22 and S45 and S47 S47 S23 or S24 or S25 or S26 S46 S27 and S33 and S45 S45 S34 or S35 or S36 or S37 or S38 or S39 or S40 or S41 or S42 or S43 or S44 S44 (MH "Disability Evaluation+") S43 "work resumption" S42 "return to work" OR (MH "Job Re-Entry") S41 (MH "Work Capacity Evaluation") S40 (MH "Workload Measurement") OR (MH "Workload") OR "workload" S39 (recovery or prognostic) S38 (MH "Severity of Illness") OR (MH "Severity of Illness Indices+") S37 (MH "Recovery") S36 "recovery of function" S35 (MH "Time+") OR (MH "Time Factors") S34 (MH "Prognosis+") OR "prognosis" S33 S28 or S29 or S30 or S31 or S32 S32 "accident insurance" S31 (worker* N2 compensation) OR (workman* N2 compensation) OR (workmen* N2 compensation) S30 (Claim or claimant) S29 (MH "Insurance") OR (MH "Insurance, Disability+") S28 (MH "Worker's Compensation") S27 S22 or S23 or S24 or S25 or S26 S26 "occupational accident" OR (MH "Accidents, Occupational+") S25 "occupational inju*" S24 (MH "Occupational-Related Injuries") S23 (MH "Occupational Diseases+") S22 S18 or S21 S21 S19 and S20 S20 (MH "Wounds and Injuries+") OR (MH "Occupational-Related Injuries") S19 (MH "Musculoskeletal Diseases+") or (MH "Musculoskeletal System+") S18 S1 or S2 or S3 or S4 or S5 or S6 or S7 or S8 or S9 or S10 or S11 or S12 or S13 or S14 or S15 or S16 or S17 S17 "musculoskeletal injur*" S16 "back injur*" S15 (MH "Back Injuries+") S14 (MH "Neck Pain") OR "neck pain"

S13 (MH "Depression+")

41 16 or 17 or 18 or 19

- S12 (MH "Anxiety+")
- S11 (MH "Pain+")

- S10 (MH "Fibromyalgia") OR "fibromyalgia"
- S9 (MH "Chronic Pain") OR "chronic pain"
- S8 (backpain or backache)
- S7 (MH "Back Pain") OR "back pain"
- S6 (MH "Carpal Tunnel Syndrome") OR "carpal tunnel syndrome"
- S5 "repetitive strain injur*"
- S4 (MH "Cumulative Trauma Disorders+")
- S3 "soft tissue injur*"
- S2 (MH "Soft Tissue Injuries")
- S1 "whiplash injur*" OR (MH "Whiplash Injuries")

Figure S1: Flow diagram of the literature search process for randomized controlled trials assessing the effect of opioids, physiotherapy, or chiropractic care for acute low back pain.

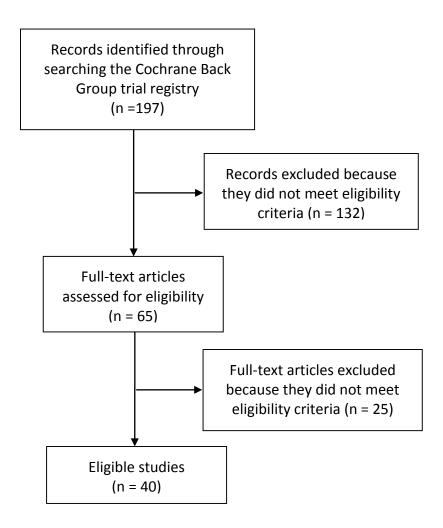
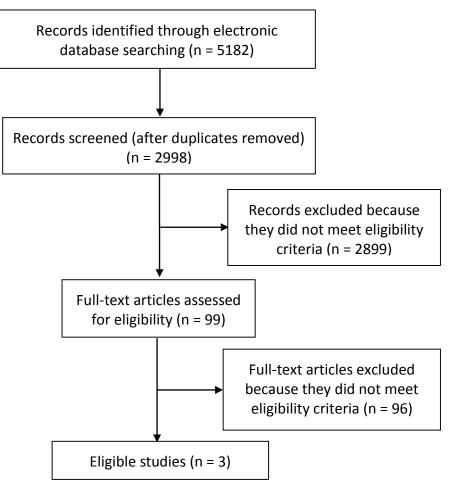



Figure S2: Flow diagram of the literature search process for observational studies assessing the effect of early opioids, physiotherapy, or chiropractic care for acute low back pain.

