BMJ Open

Forecasting and Control Policy Assessment for the Ebola Virus Disease (EVD) Epidemic in Sierra Leone Using Small-World Networked Model Simulations

Journal:	BMJ Open
Manuscript ID:	bmjopen-2015-008649
Article Type:	Research
Date Submitted by the Author:	04-May-2015
Complete List of Authors:	Siettos, Constantinos; National Technical University of Athens, Applied Mathematics and Physical Sciences Anastassopoulou, Cleo; University of Patras, Biology Russo, Lucia; Consiglio Nazionale di Ricerca, Grigoras, Christos; Brown University, Medical School
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Health policy, Infectious diseases, Research methods, Global health, Public health
Keywords:	EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES, INFECTIOUS DISEASES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

1		
2	1	Title Dogo
3	T	Thue rage
4		
5	2	Forecasting and Control Policy Assessment for the Ebola Virus Disease (EVD)
0		
6		
7	3	Epidemic in Sierra Leone Using Small-World Networked Model Simulations
8		
9	4	
10		
11	-	$C_{\text{restructions}} = 1$ Sight $\frac{1}{2}$ Class American scalar ² Lessis Press ³ Chairtes Crisens ^{1,4}
12	5	Constantinos I. Siettos, Cleo Anastassopoulou, Lucia Russo, Christos Grigoras,
12		
13	6	Eleftherios Mylonakis ⁴
14		
15	7	
16	/	
17		
18	8	Authors' affiliations:
19	9	¹ School of Applied Mathematics and Physical Sciences National Technical University of
20	10	Athans Athans Graaca
21	10	
27	11	² Division of Genetics, Cell and Developmental Biology, Department of Biology, University
22	12	of Patras, Patras, Greece.
23	13	³ Consiglio Nazionale di Ricerca, Napoli, Italy,
24	14	⁴ Division of Infectious Diseases, Phode Island Hospital Warren Alpert Medical School of
25	14	Division of interno Discusses, know island hospital, water Alpert Medical School of
26	15	Brown University, Providence, RI, USA.
27	16	
28		
29	17	Corresponding author
30	17	corresponding author.
31		
22	18	Constantinos I. Siettos: Associate Professor Computational Science & Engineering, School of
32	19	Applied Mathematics and Physical Sciences, National Technical University of Athens, 9,
33	20	Heroon Polytechniou Str. GR-157 80 Athens. Greece. Tel: +30 210-772-3950; E-mail:
34	21	
35	21	<u>Kstet@man.ntua.gr</u>
36	22	
37		
38	23	Eleftherios Mylonakis, M.D., Ph.D., FIDSA, Dean's Professor of Medical Science (Medicine,
39	24	and Molecular Microbiology and Immunology) Chief, Infectious Diseases Division, Warren
40	24	A least Medical School of Drawn University, Dhe de Jalend Hearith 502 Eddy Street DO
/1	25	Alpert Medical School of Brown University, Knode Island Hospital 393 Eddy Street, POB,
40	26	3rd Floor, Suite 328/330, Providence, RI 02903, Tel: 401-444-7856 / Fax: 401-444-8179.
42	27	
43	28	Manuscript information.
44	20	
45	• •	Normalian of Elements / Tables, 2/2
46	29	Number of Figures/Tables: 3/2
47		
48	30	Word Count of Abstract: 249
49		
50	24	Wend Count of Main Date Tout 2050
51	31	word Count of Main-Body Text. 2009
51		
52	32	Word Count of Figure and Table Legends: 221
53		
54	22	
55	55	
56		
57	34	
58	• •	
59		
60		1
		1

Objectives: As the Ebola Virus Disease (EVD) still ravages Sierra Leone, we aimed at
analyzing the epidemic for the latest period (December 21, 2014 - April 17, 2015) using a
small-world networked model and forecast its evolution. Different policy-control scenarios
that could lead to the containment of the epidemic were also examined.

BMJ Open

41 Methods: We developed a stochastic model with 6.0 million individuals (the population of 42 Sierra Leone) interacting through a small-world social network with adjustable density. The 43 model incorporates the main epidemiologic factors, including the effect of burial practices to 44 virus transmission. The effective reproductive number (*Re*) was also evaluated directly from 45 the individual-based simulations. Estimates of the epidemiologic variables were computed on 46 the basis of the time series of the official cases as reported by the Centers for Disease Control 47 and Prevention (CDC).

Results: From December 21, 2014 to February 18, 2015 the epidemic was in recession

49 compared to previous months, as indicated by the estimated effective reproductive number

50 (*Re*) of ~0.77 (95% CI: 0.76-0.78). From February 18 to April 17, 2015 *Re* rose above

51 criticality (~1.98, 95% CI: 1.93-2.02), flashing a note of caution for the situation. Projecting

52 until mid June, we predicted that the epidemic will continue through July. Assessment of

53 different policy-control scenarios showed that the current density of the social network

should be reduced by more than 50% to obtain Re < 1 and contain the epidemic soon.

55 Conclusions: Our results call for an immediate implementation of drastic control measures to56 contain the epidemic in Sierra Leone.

Abstract

58 Keywords: EBOV, Sierra Leone, Effective reproductive number, Forecasting,

59 Communicable Disease Control

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

1		
2	61	Article summary
4	62	
5	62	Strongths and limitations of this study
6	03	Strengths and minitations of this study
7	64	
8	65	- The worst Ebola Virus Disease (EVD) epidemic in history continues to ravage West
10	66	Africa.
11	67	- The mounting concern regarding the continuation of the Ebola Virus Disease (EVD)
12	68	epidemic in Sierra Leone prompted us to investigate the most recent transmission
13	69	dynamics of the epidemic in the country.
14	70	- While the number of new cases in Sierra Leone seems to decline and schools have
16	71	reopened for the first time in months, we flash a note of caution for the situation
17	71 72	- Our analysis reveals that unless drastic control measures are taken immediately, the
18	72	- Our analysis reveals that unless drastic control measures are taken minediatery, the
19	73	epidemic is not expected to fade out, but it will continue through July.
20	74	- The validity of the analysis depends on the accuracy of the publicly available data. As
22	75	it has been reported there might be a potential underreporting of the estimated cases
23	76	and deaths. However even so, the outcome the analysis calls for immediate action.
24	77	
25		
27	78	
28		
29	79	
30	75	
32		
33	80	
34		
35	81	
30 37	-	
38		
39	82	
40		
41 42	83	
43		
44	~ ^	
45	84	
46		
47 48	85	
49		
50	0.0	
51	86	
52 53		
54	87	
55		
56	00	
5/ 58	ŏŏ	
59		
60		3

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

89 Introduction

The worst Ebola Virus Disease (EVD) epidemic in history continues to ravage West Africa. The epidemic began with the report of 49 cases and 29 deaths in Guinea on March 22, 2014 (1). Liberia reported its first laboratory-confirmed cases on March 30, 2014, while the first cases in Sierra Leone were reported on May 28, 2014 (2). Following regular daily population movements for trade and family visitation, the virus crossed the local porous international borders, establishing chains of transmission not just in small villages, where it would have been easier to contain it, but also in large urban centers. Insufficient public health infrastructure, poor sanitation conditions, lack of education about the disease and unsafe traditional burial practices have also contributed to the spread of the epidemic in the region (2).

In Liberia, one of the most affected countries, as of April 20, 2015, a total of 10,042 cases have been recorded, while the toll of death has exceeded 4,480 (3). In early March a halt of the epidemic was announced, and even though a new case was confirmed on March 20, 2015, the epidemic is considered to have ceased, while the situation in Sierra Leone is notably different. With more than 12,360 cases and 3,900 deaths until now, Sierra Leone experienced a drop in new cases in January 2015 and authorities loosened mobilization restriction measures to support economic activity (4). However, recent WHO updates on the status of the EVD epidemic in this West African nation report a flare up (3), with a significant increase among the community of fishermen living in the coastal area of Aberdeen in Freetown (5). The synchronous occurrence of over 20 cases suggested they had been infected by a single source, possibly an unsafe burial (5). In light of these recent developments, we analyzed the EVD epidemic dynamics in

In light of these recent developments, we analyzed the EVD epidemic dynamics in
Sierra Leone for the period between December 21, 2014 and April 17, 2015, using an agentbased, social network model that we reported recently and that proved to provide accurate

BMJ Open

predictions for the case of Liberia (6). For this purpose, the latest official case counts from WHO were fitted to the model, following the so-called Equation-Free approach (7). The estimation of key epidemiologic parameters, such as the case fatality rate, the per-contact transmission probability and the mean time from symptoms onset to recovery or to death, allowed us to study the evolving dynamics through the social transmission network whose structure and density are also examined. Through agent-based simulations, we found that the indicative of secondary infections, effective reproductive number (Re) was raised above criticality (~1.97, 95% CI: 1.92-2.01) from February 18 to April 17. We thus explored different policy-control scenarios that could lead to reduced *Re* values, and, thereby, to the containment of the epidemic.

125 Methods

We developed an individual-based model for the study of the Ebola epidemic (6) with N individuals that interact through a Watts & Strogatz (WS) (8) small-world network that approximates some attributes of the real social interactions, which are characterized by relatively high clustering and short social distances between them. Here, the network was constructed with the Newman-Watts (9) algorithm, in which short-cut edges are added between pairs of nodes with a probability, in the same way as in a WS network, but without removing edges from the underlying lattice. The algorithm starts with a one-dimensional ring network with k local-nearest neighbors per node and with a probability p_{rw} that a link is added between two nodes. Hence, the mean number of additional shortcuts is $p_{rw} k N$, and the mean total degree of the network is $2 k N (1 + p_{rw})$. In the constructed small-world network we can adjust the density of the network, say α , at will, by randomly adding or subtracting the required number of links.

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

.38	Agents are categorized in five discrete states: Susceptible (S) , Exposed (E) , In	fected
.39	(I) , Dead of the disease but not yet buried (D_I) , and Dead of the disease and safely but	uried
.40	(D_b) . The D_I infectious state includes agents who die, but whose burial entails risk for	
.41	onward virus transmission. The transition between states is modeled as a discrete-time,	
.42	discrete state non-Markov random process. Within this framework, the state space over	the
.43	set of the network links is represented by $Y(\mathbf{V})$, where $Y(v_k) \equiv Y_{v_k} = \{S, E, I, D_b, D_I, I\}$	R} is
.44	the set of the states of individual v_k .	
.45	The agent-based rules that govern the dynamics of the epidemic on a daily basis read as	
.46	follows:	
.47	$p(Y_{v_{k}}(t+1) = D_{b} Y_{v_{k}}(t-1) = D_{I}) = 1$	(1)
.48	$p(Y_{v_{k}}(t+1) = E Y_{v_{l}}(t) = I, Y_{v_{l}}(t) = D_{I}) = p_{s \to E}, v_{l} \in \Re_{v_{k}}$	(2)
.49	$p(Y_{v_k}(t+1) = I Y_{v_k}(t) = E) = p_{E \to I}$	(3)
.50	$p(Y_{v_k}(t+1) = D_I Y_{v_k}(t) = I) = p_{I \to D}$	(4)
51	$p(Y_{v_k}(t+1) = R Y_{v_k}(t) = I) = p_{I \to R}$	(5)
.52		
53	where $p_{s \to E}$ is the per infected contact transmission probability (still alive or dead, but	not
54	yet buried), $p_{E \to I}$, is the inverse of the incubation period, $p_{I \to D}$ is the inverse of the time	ie
.55	from symptoms onset to death, $p_{I \rightarrow R}$ is the inverse of the recovery period, and, $p_{D/I}$, is	the
56	ratio of deaths to the infected population. The rate of the incubation period is taken to b	e
.57	constant, set at $p_{E \to I} = \frac{1}{9}$, as reported by the Who Ebola Response Team (10). \Re_{v_k} denotes	tes the
.58	neighborhood of an individual v_k . This first rule sets the time period from death to buris	al to

Page 7 of 21

BMJ Open

159	two days, during which family members and loved ones may be infected due to physical
160	contact with the dead, still-contagious body. Long-range links of a dead, yet potentially
161	infectious, agent are cut, reflecting the fact that only relatives and close community members
162	can be infected during unsafe funeral practices and rites. The second rule implies that a
163	susceptible agent gets exposed to the disease with a rate determined by the probability $p_{s \to E}$
164	per infected contact (still alive or dead, but not yet buried). The third rule implies that an
165	exposed agent becomes infectious with a rate determined by the probability $p_{E \rightarrow I}$, whose
166	inverse corresponds to the incubation period, i.e. the time from exposure to symptoms onset.
167	Rules (4) and (5) define the case fatality rate, $p_{D/I}$: an agent dies of the disease with a rate
168	determined by the probability $p_{I \rightarrow D}$ (whose inverse is the time from symptoms onset to
169	death) (Rule (4)); alternatively, an agent could recover with a rate determined by the
170	probability $p_{I \to R}$ (Rule (5)).
171	The effective reproductive ratio R_e , defined as the average number of secondary
172	infections produced by a typical infective person, is also computed directly from the agent-
173	based simulations.
174	Based on the demographics reported by the United Nations (UN), the population of
175	Sierra Leone is 6 million (11). Time series of the official case counts from the Centers for
176	Disease Control and Prevention (CDC) were used for model fitting (3). Case data, which
177	included cumulative incidence and cumulative deaths by date of report for Sierra Leone
178	retrieved on March 19, 2015 were found on (12) and compiled from WHO case reports.
179	Simulations were performed using December 21, 2014 as an initial date and a time
180	horizon of 60 days with an equal sliding window time interval; the last date was April 18,
181	2015. Thus, fitted values of the network and model parameters, as well as estimates of the
182	effective reproductive ratio, were computed in sequences of succeeded time intervals of 6
183	weeks corresponding to 2 periods (December 21, 2014 – February 18, 2015 and February 18,

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

184	2015 – April 17, 2015). The initial conditions for the starting date of December 21, 2014
185	were calculated on the basis of agent-based simulations from May 27, 2014, i.e. the date on
186	which the first cases were officially reported from WHO (2), following the procedure
187	described in detail elsewhere (6) . In particular, we obtained the following (expected) numbers
188	for December 21, 2014: $E_0 = 450$, $I_0 = 901$, $D_{b0} = 2390$, $D_{I0} = 28$, $R_0 = 5579$; the estimated
189	cumulative number of cases then was 8,828.
190	The expected (averaged) values of the agents' states $Y(v_k) \equiv Y_{v_k} = \{S, E, I, D_b, D_I, R\}$
191	were computed over $N_r = 8$ network realizations and $N_s = 100$ simulations for each one of the
192	network realizations. The model parameters were fitted to the reported data using a trust-
193	region-reflective approach for nonlinear minimization, implemented for parameter estimation
194	(13) exploiting the Equation-Free approach $(7, 14-18)$. Matlab (19) was the simulation
195	environment of choice, while the model was programmed in Fortran 90 and linked to Matlab
196	through mex files.
197	To forecast the evolution of the Ebola virus epidemic in Sierra Leone, we used the
198	values of the model parameters as estimated in the last period; the resulting parameter values
199	were then fed to the simulator using as coarse initial conditions the values of
200	$\{S, E, I, D_b, D_I, R\}$ as computed on April 17, 2015. We tested the effect of control policy
201	scenarios by reducing the density of the network structure as estimated in the second period.
202	Sparser network densities could reflect partial isolation of the population, restriction of social
203	mobilization combined with an expanded public campaign for increased awareness.
204	
205	
206	Results and Discussion
207	The cumulative numbers of infected and dead obtained by the model compared to the
208	reported cases in Sierra Leone are shown in Figure 1. As shown, our framework succeeds in

209	approximating the actual data for total cases and deaths (3). For example, on December 21,
210	2014 the number of total cases, as reported by the WHO, was 9,004 and the number of deaths
211	was 2,582, while our simulations resulted in 8,828 cases and ~2,400 deaths. On February 18,
212	2015, the total cases and deaths were 11,103 and 3,408, respectively, and our simulations
213	resulted in 11,049 total cases and 3,394 deaths. Finally, on April 17, 2015, the reported total
214	cases and deaths were 12,244 and 3,865, respectively; our simulations resulted in 12,299 total
215	cases and 3,919 deaths.
216	The epidemiologic parameters that were obtained through the optimization approach
217	are illustrated in Figure 2 and a summary of the estimated epidemic parameters for the period
218	under study, together with their 95% confidence intervals, is presented in Table 1. Panel (a)
219	depicts the evolution of the estimated network characteristics, p_{rw} and a , while panels (b-e)
220	illustrate the model parameters $p_{D/I}$, $p_{I \rightarrow R}$, $p_{I \rightarrow D}$, and $p_{s \rightarrow E}$ that fit best to the reported EVD
221	epidemic dynamics in the country. The evolution of the estimated effective reproductive
222	number R_e in Sierra Leone is shown in panel (f). More specifically, the contact network of
223	Sierra Leone exhibits a rather random structure with a rewiring switching probability (p_{rw}) of
224	~0.37 (95% CI: ~0.33-0.41) that falls down to ~0.22 (95% CI: 0.20-0.24) during the study
225	period (Figure 2a). A slight increase is shown in the density ratio of the network as
226	represented by a , which was ~0.54 (95% CI: ~0.51-0.58) during the first period (December
227	21, 2014 – February 18, 2015) and ~0.63 (95% CI: 0.59-0.68) during the second period of the
228	study (February 18, 2015 – April 17, 2015) (Figure 2a). The differences of the network
229	characteristics between the 2 periods indicate a more clustered, yet denser contact network
230	during the second period that could partially reflect a relaxation of awareness in the first
231	period, when the epidemic seemed to decline.
232	The case fatality rate ($p_{D/I}$) that was estimated to be ~32% (95% CI: 31-33%) for the
233	period extending from late December 2014 to February 18 2015, increased to ~39% (95% CI:

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

234	38-40%) from February 18 to April 17 (Figure 2b). The expected period from the onset of
235	symptoms to recovery (i.e., the inverse of $p_{I \to R}$) was ~9.5 days (95% CI: 8.6-10.7 days)
236	during the first period and ~8 days (95% CI: 6.5-10.5 days) for the second period of study
237	(Figure 2c). The expected period from the onset of symptoms to death (i.e., the inverse
238	of $p_{I \rightarrow D}$) was constant at ~3.6 days (95% CI: 3.3-4.0 days) during the period of study (Figure
239	2d).
240	Regarding the epidemic parameters, our estimates are quite close to the ones reported
241	by the WHO Ebola Response Team and other groups. For example, Ansumana et al. (20)
242	reported a 31% CFR at Hastings center, while the National Institute of Communicable
243	diseases (NICD) reports a CFR of 32% for Sierra Leone on April 5, 2015 (21); a mean of
244	31.6% CFR was reported for Sierra Leone from the WHO Ebola response team as of
245	September 14, 2014 (10). Gomes et al. (22) reported an \sim 8 day-period from the onset of

246 symptoms to recovery, while in a recent study by the WHO Ebola response team (23) a

period of 10.6 days (with a SD of 8.2 days) was reported from symptoms onset to hospital
discharge for individuals of older than 45 years old. In the same paper, a period of ~6 days
(with equal SD) is reported from symptoms onset to death for the same age group. The same

delay period from symptoms onset to death was also reported in Ansumana et al. (20).

The per-contact transmission probability $p_{s \to E}$ values were estimated at ~0.03 (95% CI: 0.028-0.033) in the first period and ~0.08 (95% CI: 0.067-0.09) in the second period

253 (Figure 2e). Finally, the effective reproductive number R_e , as computed using the agent-

254 based simulator, was ~0.77 (95% CI: 0.76-0.78) from December 21, 2014 to February 18,

255 2015, rising up to ~1.98 (95% 1.93-2.02) from February18, 2015 to April 17, 2015 (Figure

2f).

257 Simulations show that the expected cumulative number of infected cases may reach as258 high as 13,400 by mid of June, while the cumulative number of dead may reach 4,380, if no

BMJ Open

nt of the
olicy (24
ct to the
30%, 409
of the co
sed simu
arameter
nmarized
respect
parison. I
ected rej
n the netw
30%, 409
Ited in R
ge reduc
reflect ar
munity 1
medical
y lockdo
that even
fading ou
l.
was in re
as reflec
delines.>

259	further action is undertaken. Hence, we decided to perform an assessment of the impact of
260	potential control strategies. Based on the recently announced isolation policy (24), we
261	simulated the influence on the epidemic dynamics of sparser, with respect to the estimated
262	network density of the second period, network densities, by 10%, 20%, 30%, 40% and 50%.
263	We tested these scenarios by reducing analogously the expected density of the contact
264	network as estimated during the second period and running the agent-based simulation from
265	April 18 until mid of June 2015, keeping all other values of the model parameters fixed.
266	The results of the exploration of these different scenarios are summarized in Table 2
267	and portrayed graphically in Figure 3. The "no further action" case, with respect to the
268	estimated current network structure is also depicted in Figure 3 for comparison. By applying
269	a 10% reduction in the network density (yielding an a of ~0.57), the expected reproductive
270	number R_e was estimated to be ~1.7. Accordingly, for a 20% reduction in the network density
271	(yielding an <i>a</i> of ~0.51), R_e was estimated to be ~1.51. Reductions of 30%, 40% and 50%
272	yielding network densities of ~0.44 , ~0.38 and ~0.32 respectively, resulted in R_e values of
273	\sim 1.42, \sim 1.23 and \sim 1.05 correspondingly (Table 2). As is shown even large reductions in the
274	density of the network will not lower the R_e below unity soon.
275	In reality, the reduction in the network density could notentially reflect analogous

In reality, the reduction in the network density could potentially r nalogous mobilization. reductions in social interactions further to the current restrictions of com Examples would include raising public awareness and/or strengthening r care. The country's National Ebola Response Centre has already announced a 3-da own that will affect around 2.5 million people (20). Nevertheless, it is worth noticing n with a 30% reduction in the social network density, the epidemic shows no signs of ut until the mid of June and we estimate that new cases will continue to be recorded

In conclusion, we found that the EVD epidemic in Sierra Leone v ecession in the period between December 21, 2014 through mid of February, 2015, cted by the

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

284	<1 value of the reproductive number for this period. However, during the last period (i.e.,
285	from February 18 to April 17, 2015), the epidemic has spiked and the reproductive number
286	was estimated to be well above criticality, with the potential to persist at this level beyond the
287	end of June and through July. Control measures associated with mobilization restrictions
288	were also evaluated. Our findings, supported by real epidemiologic data and the projection of
289	a spilling over of the epidemic to mid of June, indicate that the measures implemented so far
290	are inadequate. Taken in their totality, these findings indicate that the epidemic, even with
291	strict control isolation policies in effect, will go on through July with a probability of fading
292	out thereafter if policies are implemented and consistently kept in place. Immediate, more
293	intense efforts are needed before further complications emerge. Reducing the effective
294	density of the derived contact small-world-like network, through limited social interactions,
295	has the potential to improve the current situation.
296	
297	
298	
299	
300	
201	
501	
302	
303	
304	
305	
306	
307	
	10

1		
2 3	308	Contributorship statement
4 5	309	Constantinos Siettos, Lucia Russo and Christos Grigoras contributed to the development of
6	310	the model. Constantinos Siettos and Cleo Anastassopoulou contributed to the data collection
7 8	211	interpretation of the data and drafting the paper. Eleftherios Mylonakis contributed to the
9	242	interpretation of the data and training the paper. Electricences Mytonakis controlled to the
10 11	312	interpretation of the data and substantially revised the paper. All authors approved the final
12	313	manuscript and accepted accountability for all aspects of the work.
13 14 15	314	
16 17 18	315	Competing interests
19	316	There are no competing interests.
20 21 22 23	317	
23 24	318	Funding Statement
25	319	
26 27	320	This research received no specific grant from any funding agency in the public, commercial
28 29	321	or not-for-profit sectors.
30 31 32	322	
33 34	323	Data Sharing Statement
35 36	324	The data used in this study are publicly available from CDC at
37 38	325	http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/
39 40 41	326	
42 43		
44 45		
46		
47		
48 49		
50		
51		
52 53		
54		
55		
56 57		
57 58		
59		
60		13

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

BMJ Open

327	References
328	
329	1. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, et al.
330	Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med. 2014; 371:1418-25.
331	PubMed PMID:24738640. http://dx.doi.org/10.1056/NEJMc1415318
332	2. Ebola virus disease (EVD) in West Africa: an extraordinary epidemic. Wkly Epidemiol
333	Rec. 2015;90:89-96.http://www.who.int/wer/2015/wer9010/en/
334	3. 2014 Ebola Outbreak in West Africa. Centers for Disease Control and Prevention.
335	www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/. Accessed 24 Mar 2015
336	4. Koroma EB. Address to the Nation on the Ebola crisis. 22 Jan 2015. http://www.sierra-
337	leone.org/Speeches/koroma-012215.html. Accessed 24 Mar 2015
338	5. Tracking Ebola in the fishing community of Aberdeen in Freetown, Sierra Leone. Mar
339	2015. http://www.who.int/features/2015/ebola-aberdeen/en/. Accessed 24 Mar 2015
340	6. Siettos C, Anastassopoulou C, Russo L, Grigoras C, Mylonakis E. Modeling the 2014
341	Ebola Virus Epidemic – Agent-Based Simulations, Temporal Analysis and Future
342	Predictions for Liberia and Sierra Leone. PLOS Currents Outbreaks. 2015 Mar 9.
343	
344	http://dx.doi.org/10.13/1/currents.outbreaks.8d59841148551c425e699e1a18cdc6c9
345	7. Kevrekidis IG, Gear CW, Hyman JM, Kevrekidis PG, Runborg O, Theodoropoulos C.
346	Equation-free, coarse-grained multiscale computation: enabling microscopic
347	simulators to perform system-level analysis. Commun. Math. Sci. 2003; 1: 715–62.
348	http://projecteuclid.org/euclid.cms/1119655353
349	8. Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature
350	1998;393:440-42. http://dx.doi.org/10.1038/30918
351	9. Newman, MEJ, Watts DJ. Scaling and percolation in the small-world network
352	model. Physical Review E 1999; 60: 7332–42.
353	http://dx.doi.org/10.1103/PhysRevE.60.7332
354	10. Aylwar B, Barboza P, Bawo L, Pharm B, Bertherat E, Bilivogui P. et al.; Who Ebola
355	Reponse Team. Ebola virus disease in West Africathe first 9 months of the
356	epidemic and forward projections. N Engl J Med. 2014; 371:1481-95.
357	http://dx.doi.org /10.1056/NEJMoa1411100
358	11. Sierra Leone. United Nations Statistics Division.
359	https://data.un.org/CountryProfile.aspx?crName=SIERRA%20LEONE. Accessed 24
360	Mar 2015.
361	12. http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/. Accessed 24 Mar 2015.
362	13. Coleman TF, Li Y. An interior trust region approach for nonlinear minimization
363	subject to bounds. SIAM J Optim. 1996; 6:418-45. http://dx.doi.org /10.1137/0806023
364	14. Makeev AG, Maroudas D, Kevrekidis IG. "Coarse" stability and bifurcation analysis
365	using stochastic simulators: Kinetic Monte Carlo examples. J Chem Phys. 2002;
366	116:10083-91. http://dx.doi.org/10.1063/1.1476929

_	_
<u>c</u>	ק
ā	5
Ċ	2
रे	ž
9	D
-	-
-	7
2	''
7	2
ŝ	5
č	<u>ה</u>
Ę	2
č	5
Ş	Ŋ
	<u> </u>
Ċ	5
-	<u> </u>
ā	3
ğ	2
2	ז
3	₫.
- 2	2
ġ	Đ
-	<u>ر</u>
r	5
	L L
<u> </u>	Ľ
2	3
č	ğ
9	2
č	Ö
ç	2
-	<u>ر</u>
1	8
2	_
ŝ	ע
ā	2
2	ע
ų	2
1	2
-	4
	ົ
ſ	7
č	<u>j</u>
-	Ę
7	╡
ž	มี
2	2
č	5
2	5
Ì	nd from
	nd from
	h from ht
	ad from http
	http://
	ad from http://hr
	ad from http://hmi
	ad from http://hmion
	ad from http://hmionel
	ad from http://hmionen h
	ad from http://hmionen.hr
	ad from http://hmionen hmi
	ad from http://hmionen hmi co
	ad from http://bmionen hmi com
	ad from http://hmionen.hmi.com/
	ad from http://hmionen hmi com/ on
	ad from http://hmionen.hmi.com/.on S
	ad from http://hmionen.hmi.com/.on.Sei
	ad from http://hmionen.hmi.com/.on.Senti
	ad from http://hmionen.hmi.com/.on.Senter
	ad from http://hmionen.hmi.com/.on.Sentem/
	ad from http://hmionen.hmi.com/.on.Sentemhei
	ad from http://hmionen.hmi.com/ on September 2
	ad from http://hmionen.hmi.com/.on.September 23
	ad from http://hmionen.hmi.com/.on.September 23_2
	ad from http://hmionen.hmi.com/.on.Sentember 23-20
	ad from http://hmionen.hmi.com/.on.Sentember 23. 2023
	ad from http://hmionen.hmi.com/ on September 23 2023 h
	ad from http://hmionen.hmi.com/ on Sentember 23 2023 hv
	ad from http://hmionen.hmi.com/.on.Sentember 23, 2023 hv.al
	ad from http://hmionen.hmi.com/ on Sentember 23, 2023 hv nue
	ad from http://hmionen.hmi.com/ on Sentember 23, 2023 by quest
	ad from http://hmionen.hmi.com/ on Sentember 23, 2023 by quest E
a nom milestonijopontonijoone on oopwinton zo, zozo of gaost i	ad from http://hmionen.hmi.com/ on Sentember 23, 2023 hv guest. Pri
	ad from http://hmionen.hmi.com/ on Sentember 23, 2023 by guest. Prote
a non measurise contains on experimentary acts of growth toos	ad from http://hminnen.hmi.com/ on Sentember 23, 2023 by guest. Protec
A non mean adores and consent on opposition and access of garage records	ad from http://hmionen.hmi.com/ on Sentember 23, 2023 hv quest. Protecte
	ad from http://hmionen.hmi.com/ on Sentember 23, 2023 hv nuest. Protected
	of from http://hminnen.hmi.com/ on Sentember 23, 2023 by guest. Protected by
	ad from http://hminnen.hmi.com/ on Sentember 23, 2023 by quest. Protected by c
	ad from http://hmionen.hmi.com/ on Sentember 23, 2023 by quest. Protected by con
	ad from http://hmionen.hmi.com/ on September 23, 2023 by quest. Protected by conv
	ad from http://hmionen.hmi.com/ on Sentember 23, 2023 by guest. Protected by convris
	of from http://hmionen.hmi.com/ on Sentember 23, 2023 by quest. Protected by convrict

1 2		
2 3 4 5	367 368 369	 Gear CW, Kevrekidis IG, Theodoropoulos C. "Coarse" integration/bifurcation analysis via microscopic simulators: micro-Galerkin methods. Comput Chem Eng. 2002; 26:941-63. http://dx.doi.org /10.1016/S0098-1354(02)00020-0
6 7 8 9	370 371 372	 Theodoropoulos C, Qian YH, Kevrekidis IG. "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. Proc Natl Acad Sci U S A. 2000;97: 9840-43. http://dx.doi.org /10.1073/pnas.97.18.9840
10 11 12 13	373 374 375	 Siettos CI, Graham MD, Kevrekidis IG. Coarse Brownian dynamics for nematic liquid crystals: Bifurcation, projective integration, and control via stochastic simulation. J Chem Phys. 2003; 118:10149-56. http://dx.doi.org/10.1063/1.1572456
14 15 16 17	376 377 378	 Kevrekidis IG, Gear CW, Hummer G. Equation-free: The computer-aided analysis of complex multiscale systems. AIChE J. 2004; 50:1346-55. http://dx.doi.org /10.1002/aic.10106
18	379	19. MATLAB. The MathWorks Inc. http://www.mathworks.com/
20 21 22 23 24	380 381 382	20. Ansumana R, Jacobsen KH, Idris M, Bangura H, Boie-Jalloh M, Lamin JM. Et al. Ebola in Freetown area, Sierra Leone — a case study of 581 patients. N Engl J Med 2015; 372:587-88. http://dx.doi.org /10.1056/NEJMc1413685
24 25 26	383	21. http://www.nicd.ac.za/?page=alerts&id=5&rid=531
20 27 28 29 30	384 385 386 387	22. Gomes MFC, Pastore y Piontti A, Rossi L, Chao D, Longini I, Halloran ME, et al. Assessing the international spreading risk associated with the 2014 West African Ebola outbreak. PLOS Currents Outbreaks. 2014 Sep 2. Edition 1. http://dx.doi.org /10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
31 32 33 34 35	388 389 390	23. Agua-Agum J, Ariyarajah A, Blake IM, Cori A, Donnelly CA, Dorigatti I, et al.; Who Ebola Reponse Team. Ebola Virus Disease among Children in West Africa. N Engl J Med 2015; 372:1274-77. http://dx.doi.org/10.1056/NEJMc1415318
36 37 38	391 392	24. Ebola crisis: Sierra Leone lockdown to hit 2.5m people. BBC News. 19 Mar 2015. http://www.bbc.com/news/world-africa-31966989. Accessed 24 Mar 2015.
39 40 41 42 43 44	393 394 395 396 397 398 399	
45 46 47 48	400 401 402 403	
49 50 51 52	403 404 405 406 407	
53 54 55 56	408 409 410 411	
57 58 59	412 413 414 415	
60		15

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

 Table 1. Key epidemiologic features of the Ebola Virus Disease (EVD) epidemic in Sierra

Leone estimated by the model during the first and second study period (December 21, 2014 -

April 17, 2015).

			Sierra Leone
Period	Variable	Mean	95% CI
First (Dec. 21- Feb. 18, 2015)	p_{rw} Network density (α) Time to death (Days) Time to recovery (Days) CFR (%) R_e	0.37 0.55 3.6 9.5 32 0.77	0.33-0.41 0.51-0.58 3.3-4.0 8.6-10.7 31-33 0.76-0.78
Second (Feb. 18-April. 17, 2015)	p_{rw} Network density (α) Time to death (Days) Time to recovery (Days) CFR (%) R_e	0.22 0.63 3.6 8.0 39 1.98	0.20-0.24 0.59-0.68 3.3-4.0 6.5-10.5 38-40 1.93-2.02

 p_{rw} , Rewiring switching probability; CFR, Case fatality rate $(p_{D/I})$; R_e , Effective

reproductive number

BMJ Open

Table 2. Outcomes of isolation control policy scenarios on the basis of the expected reproductive number R_e , as computed by running the agent-based simulation from April 17 to the mid of June 2015 (keeping fixed all other values of the model parameters). Sparser density refers to a percent reduction of the expected density of the contact network compared to the 0.63 value that was estimated for the second period (February 18 – April 17, 2015).

Period	% Sparser density	Network density (α)	R _e	
(April 7	100/	0.57	17	
(April 7- June 17	20%	~0.57	~ 1.7	
2015)	20%	~0.31	~ 1.3	
_010)	30%	~0.44	~1.4	
	40% 50%	~ 0.38 ~ 0.32	~ 1.2 ~ 1.0	
	5070	10.52	1.0	

FIGURE LEGENDS

Figure 1. Simulation Results for Sierra Leone from December 21, 2014 to April 17,
2015. Expected cumulative cases of infected (dotted red) and dead (dotted black). WHO data
are depicted by solid lines. The period under study has been tessellated into two windows
with a length of 60 days each. For each window, the model parameters are estimated based on
the data reported from WHO.

Figure 2. Estimated model parameters for Sierra Leone from December 21, 2014 to April 17, 2015. (a) Evolution of contact network characteristics: switching probability (p_{rw}) and density ratio of the transmission network (a). (b) Case fatality rate $(p_{D/I})$. (c) $1/\{\text{recovery period}\}(p_{I\rightarrow R})$. (d) $1/\{\text{period from inset of symptoms to death}\}(p_{I\rightarrow D})$. (e) Percontact transmission probability $(p_{s\rightarrow E})$. (f) Effective reproductive number (R_e) . 95% Confidence intervals are also shown.

Figure 3. Forecasting of the evolution of the epidemic from April, 17 to June 17, 2015
under different control scenarios. Network density values were compared to the density of
the social network estimated for the period February 18-April 17, 2015. (a) Total Cases, (b)
Deaths. The "no further action" scenario is also depicted.

Figure 1. Simulation Results for Sierra Leone from December 21, 2014 to April 17, 2015. Expected cumulative cases of infected (dotted red) and dead (dotted black). WHO data are depicted by solid lines. The period under study has been tessellated into two windows with a length of 60 days each. For each window, the model parameters are estimated based on the data reported from WHO.

Figure 2. Estimated model parameters for Sierra Leone from December 21, 2014 to April 17, 2015. (a) Evolution of contact network characteristics: switching probability and density ratio of the transmission network . (b) Case fatality rate. (c) 1/{recovery period}. (d) 1/{period from inset of symptoms to death}. (e) Per-contact transmission probability. (f) Effective reproductive number. 95% Confidence intervals are also shown. 129x168mm (300 x 300 DPI)

BMJ Open

Forecasting and Control Policy Assessment for the Ebola Virus Disease (EVD) Epidemic in Sierra Leone Using Small-World Networked Model Simulations

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-008649.R1
Article Type:	Research
Date Submitted by the Author:	17-Sep-2015
Complete List of Authors:	Siettos, Constantinos; National Technical University of Athens, Applied Mathematics and Physical Sciences Anastassopoulou, Cleo; University of Patras, Biology Russo, Lucia; Consiglio Nazionale di Ricerca, Grigoras, Christos; Rhode Island Hospital, Providence, Rhode Island; and Warren Alpert Medical School of Brown University, Providence, Rhode Island, Infectious Diseases Division Mylonakis, E; Rhode Island Hospital, Providence, Rhode Island; and Warren Alpert Medical School of Brown University, Providence, Rhode Island, Infectious Diseases Division
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Health policy, Infectious diseases, Research methods, Global health, Public health
Keywords:	EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES, INFECTIOUS DISEASES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

1		
2	1	Title Page
3	T	Thie Tage
4	2	E-manufing and Company Deliver Assessment for the Ehele Views Discours (EVD)
5	2	Forecasting and Control Policy Assessment for the Edola virus Disease (EVD)
6	-	
7	3	Epidemic in Sierra Leone Using Small-World Networked Model Simulations
8		
9	4	
10		
10	5	Constantinos I. Siettos ¹ , Cleo Anastassopoulou ² , Lucia Russo ³ , Christos Grigoras ^{1,4} ,
12		
14	6	Eleftherios Mylonakis ⁴
15		
16	7	
17		
18	8	Authors' affiliations:
19	9	¹ School of Applied Mathematics and Physical Sciences. National Technical University of
20	10	Athens Athens Greece
21	 11	² Division of Genetics Cell and Developmental Biology Department of Biology University
22	12	of Patras Patras Greece
23	12	³ Consiglio Nazionale di Ricerca Napoli Italy
24	17	⁴ Division of Infectious Diseases Rhode Island Hospital Warren Alpert Medical School of
25	14	Dryston of Infectious Diseases, Rifoue Island Hospital, watten Alpert Medical School of
26	15	brown University, i Tovidence, Ki, USA.
27	10	
20	47	
29	17	Corresponding author:
30		
32	18	Constantinos I. Siettos: Associate Professor Computational Science & Engineering, School of
33	19	Applied Mathematics and Physical Sciences, National Technical University of Athens, 9,
34	20	Heroon Polytechniou Str., GR-157 80 Athens, Greece. Tel.: +30 210-772-3950; E-mail:
35	21	ksiet@mail.ntua.gr
36	22	
37		
38	23	Eleftherios Mylonakis, M.D., Ph.D., FIDSA, Dean's Professor of Medical Science (Medicine,
39	24	and Molecular Microbiology and Immunology), Chief, Infectious Diseases Division, Warren
40	25	Alpert Medical School of Brown University, Rhode Island Hospital 593 Eddy Street, POB,
41	26	3rd Floor, Suite 328/330, Providence, RI 02903, Tel: 401-444-7856 / Fax: 401-444-8179.
42	27	
43	28	Manuscript information:
44	_0	
45	29	Number of Figures/Tables: 3/3
40 47	25	
47 78	20	Word Count of Abstract: 203
40 40	50	word Count of Abstract. 235
50	21	Word Count of Main Dody Toxt: 2456
51	31	word Count of Mani-Body Text. 3430
52		W 10 () 1T 11 L 1 225
53	32	Word Count of Figure and Table Legends: 225
54	-	
55	33	
56		
57	34	
58		
59		
60		1

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

36	
37	Objectives: As the Ebola Virus Disease (EVD) is still sustained in Sierra Leone, we analyzed
38	the epidemic for the latest period (December 21, 2014 - April 17, 2015) using a small-world
39	networked model and forecasted its evolution. Policy-control scenarios for the containment of
40	the epidemic were also examined.
41	Methods: We developed an agent-based model with 6 million individuals (the population of
42	Sierra Leone) interacting through a small-world social network. The model incorporates the
43	main epidemiologic factors, including the effect of burial practices to virus transmission. The
44	effective reproductive number (<i>Re</i>) was evaluated directly from the agent-based simulations.
45	Estimates of the epidemiologic variables were computed on the basis of the official cases as
46	reported by the Centers for Disease Control and Prevention (CDC).
47	Results: From December 21, 2014 to February 18, 2015 the epidemic was in recession
48	compared to previous months, as indicated by the estimated effective reproductive number
49	(<i>Re</i>) of ~0.77 (95% CI: 0.72-0.82). From February 18 to April 17, 2015, <i>Re</i> rose above
50	criticality (~1.98, 95% CI: 1.33-2.22), flashing a note of caution for the situation. By
51	projecting in time, we predicted that the epidemic would continue through July 2015. Our
52	predictions were close to the cases reported by CDC by the end of June, verifying the
53	criticality of the situation. In light of these developments, while revising our manuscript, we
54	expanded our analysis to include the most recent data (until August 15, 2015). By mid-
55	August, <i>Re</i> has fallen below criticality and the epidemic is expected to fade out by early
56	December 2015.
57	Conclusions: Our results call for the continuation of drastic control measures, which in the
58	absence of an effective vaccine or therapy at present can only translate to isolation of the
59	infected section of the population, to contain the epidemic.
60	
61	Keywords: EBOV, Sierra Leone, Effective reproductive number, Forecasting,
62	Communicable Disease Control, Agent-Based Modeling, Social Transmission Network
62	
63	

• •	Article summary
65	
66	Strengths and limitations of this study
 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 	 Strengths and limitations of this study The greatest strength of this study stems from the undertaken mathematical approa of choice, integrating agent-based modeling on complex networks and the so-call Equation-Free approach, which allowed us to assess various important epidemiolog parameters and to obtain accurate short-term forecasts of the evolution of the Ebo Virus Disease (EVD) epidemic in Sierra Leone. Another advantage of the proposed methodology is that it allows for the rap evaluation of different policy-control scenarios that could lead to the containment the epidemic. Our predictions were verified by the official case count reported by CDC. An updat analysis considering data until mid August shows that the epidemic is expected fade out by early December 2015. The validity of a modeling analysis depends on the accuracy of input data. The modification of our study pertains to the quality and accuracy of the outbre data that were "fed" to the mathematical model compared to the real figure Underreporting of cases and deaths is certainly to be expected under the particul circumstances of such a severe epidemic evolving in one of the most impoverish countries in the world. However, even so, the outcome the analysis calls for the severe epidemic evolvement analysis calls for the severe evolution of the most impoverish countries in the world.
85	continuation of control measures to contain the epidemic.
86	
87	

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

88 Introduction

The worst Ebola Virus Disease (EVD) epidemic in history continues to ravage West Africa. The epidemic began with the report of 49 cases and 29 deaths in Guinea on March 22, 2014 (1). Liberia reported its first laboratory-confirmed cases on March 30, 2014, while the first cases in Sierra Leone were reported on May 28, 2014 (2). Following regular daily population movements for trade and family visitation, the virus crossed the local porous international borders, establishing chains of transmission not just in small villages, where it would have been easier to contain it, but also in large urban centers. Insufficient public health infrastructure, poor sanitation conditions, lack of education about the disease and unsafe traditional burial practices have also contributed to the spread of the epidemic in the region (2).

In Liberia, one of the most affected countries, as of April 20, 2015, a total of 10,042 cases have been recorded, while the toll of death has exceeded 4,480 (3). In early March a halt of the epidemic was announced, and even though a new case was confirmed on March 20, 2015, the epidemic is considered to have ceased, while the situation in Sierra Leone is notably different. With more than 12,360 cases and 3,900 deaths until now, Sierra Leone experienced a drop in new cases in January 2015 and authorities loosened mobilization restriction measures to support economic activity (4). However, recent World Health Organization WHO updates on the status of the EVD epidemic in this West African nation report a flare up (3), with a significant increase among the community of fishermen living in the coastal area of Aberdeen in Freetown (5). The synchronous occurrence of over 20 cases suggested they had been infected by a single source, possibly an unsafe burial (5).

In light of these recent developments, we analyzed the EVD epidemic dynamics in Sierra Leone for the period between December 21, 2014 and April 17, 2015, using an agent-based, social network model that we reported recently and that proved to provide accurate predictions for the case of Liberia (6). For this purpose, the latest official case counts from WHO were fitted to the model, following the so-called Equation-Free approach (7). Our objective was to obtain estimates of key epidemiologic parameters, such as the case fatality rate, the per-contact transmission probability and the mean time from symptoms onset to recovery or to death, in order to study the evolving dynamics through the social transmission network whose structure and density are also examined. Through agent-based simulations, we found that the indicative of secondary infections, effective reproductive number (Re) was raised above criticality (~1.97, 95% CI: 1.92-2.01) from February 18 to April 17, 2015. We

Page 5 of 23

BMJ Open

thus explored different policy-control scenarios that could lead to reduced Re values, and, thereby, to the containment of the epidemic. While revising our manuscript, we also processed the reported data from CDC of the very last period (April 18-August 15, 2015), obtaining more optimistic estimates indicative of a remission of the epidemic in Sierra Leone, as reflected by the derived R_e for the period June 17-August 15, 2015 (~0.68, 95% CI: 0.49-1.01). Projecting from August 15, we estimate that the epidemic will fade out in early December.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

 $\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\end{array}$

130	Methods	
131	We developed an agent-based model for the study of the Ebola epidemic (6) wit	h N
132	individuals that interact through a Watts & Strogatz (WS) (8) small-world network that	
133	approximates some attributes of the real social interactions, which are characterized by	
134	relatively high clustering and short social distances between them. Here, the network w	as
135	constructed with the Newman-Watts (9) algorithm, in which short-cut edges are added	
136	between pairs of nodes with a probability, in the same way as in a WS network, but wit	hout
137	removing edges from the underlying lattice. The algorithm starts with a one-dimensional	al ring
138	network with k local-nearest neighbors per node and with a probability p_{rw} that a link is	S
139	added between two nodes. Hence, the mean number of additional shortcuts is $p_{rw} k N$, a	and
140	the mean total degree of the network is $2 k N (1 + p_{rw})$. In the constructed small-world	
141	network we can adjust the density of the network, say α , at will, by randomly adding or	ſ
142	subtracting the required number of links.	
143	Agents are categorized in five discrete states: Susceptible (S), Exposed (E), In	fected
144	(I) , Dead of the disease but not yet buried (D_I) , Dead of the disease and safely burie	d
145	(D_b) , and <i>Recovered (R)</i> (6). The D_I infectious state includes agents who die, but whos	e
146	burial entails risk for onward virus transmission. The transition between states is model	ed as
147	a discrete-time, discrete state non-Markov random process. Within this framework, the	state
148	space over the set of the network links is represented by $Y(\mathbf{V})$, where	
149	$Y(v_k) \equiv Y_{v_k} = \{S, E, I, D_b, D_I, R\}$ is the set of the states of individual v_k .	
150	The agent-based rules that govern the dynamics of the epidemic on a daily basis read as	6
151	follows:	
152	$p(Y_{v_{k}}(t+1)=D_{b} Y_{v_{k}}(t-1)=D_{T})=1$	(1)
152	$p(Y_{t+1}) - E Y_{t}) - I Y_{t} - D_{t} - p_{t} + v \in \Re$	(2)
155	$P\left(I_{v_{k}}(t+1)-D+I_{v_{l}}(t)-I,I_{v_{l}}(t)-D_{l}\right)-P_{s\to E}, v_{l} \in \mathcal{V}_{v_{k}}$	(2)
154	$p\left(Y_{\nu_{k}}\left(t+1\right)=I\mid Y_{\nu_{k}}\left(t\right)=E\right)=p_{E\to I}$	(3)
155	$p(Y_{v_k}(t+1)=D_I Y_{v_k}(t)=I) = p_{I \to D}$	(4)
156	$p\left(Y_{v_k}\left(t+1\right)=R \mid Y_{v_k}\left(t\right)=I\right)=p_{I\to R}$	(5)
157		

Page 7 of 23

BMJ Open

158	where $p_{s \to E}$ is the per infected contact transmission probability (still alive or dead, but not
159	yet buried), $p_{E \to I}$, is the inverse of the incubation period, $p_{I \to D}$ is the inverse of the time
160	from symptoms onset to death, $p_{I \rightarrow R}$ is the inverse of the recovery period, and, $p_{D/I}$, is the
161	ratio of deaths to the infected population (6). The rate of the incubation period is taken to be
162	constant, set at $p_{E \to I} = \frac{1}{9}$, as reported by the Who Ebola Response Team (10). \Re_{v_k} denotes the
163	neighborhood of an individual v_k . This first rule sets the time period from death to burial to
164	two days, during which family members and loved ones may be infected due to physical
165	contact with the dead, still-contagious body. Long-range links of a dead, yet potentially
166	infectious, agent are cut, reflecting the fact that only relatives and close community members
167	can be infected during unsafe funeral practices and rites. The second rule implies that a
168	susceptible agent gets exposed to the disease with a rate determined by the probability $p_{s \to E}$
169	per infected contact (still alive or dead, but not yet buried). The third rule implies that an
170	exposed agent becomes infectious with a rate determined by the probability $p_{E \rightarrow I}$, whose
171	inverse corresponds to the incubation period, i.e. the time from exposure to symptoms onset.
172	Rules (4) and (5) define the case fatality rate, $p_{D/I}$: an agent dies of the disease with a rate
173	determined by the probability $p_{I \rightarrow D}$ (whose inverse is the time from symptoms onset to
174	death) (Rule (4)); alternatively, an agent could recover with a rate determined by the
175	probability $p_{I \rightarrow R}$ (Rule (5)).
176	The effective reproductive ratio R_e , defined as the average number of secondary
177	infections produced by a typical infective person, is also computed directly from the agent-
178	based simulations.
179	Based on the demographics reported by the United Nations (UN), the population of
180	Sierra Leone is 6 million (11). Time series of the official Ebola case counts from the Centers
181	for Disease Control and Prevention (CDC) were used for model fitting (3). These case counts

were collected from public data released by the World Health Organization (WHO) (12) and

183 CDC (3). Even though these data sets do not distinguish between suspect, probable and

184 laboratory-confirmed case counts, they are considered to represent the best available

estimates of the current state of the epidemic in the severely afflicted West African countries.

186 Case data, which included cumulative incidence and cumulative deaths by date of report for

187 Sierra Leone, were retrieved on April 24, 2015.

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

Simulations were performed using December 21, 2014 as an initial date and a time horizon of 60 days with an equal sliding window time interval; the last date was April 17, 2015. Thus, fitted values of the network and model parameters, as well as estimates of the effective reproductive ratio, were computed in sequences of succeeded time intervals of 60 days corresponding to 2 periods (December 21, 2014 – February 18, 2015 and February 18, 2015 – April 17, 2015). The initial conditions for the starting date of December 21, 2014 were calculated on the basis of agent-based simulations from May 27, 2014, i.e. the date on which the first cases were officially reported from WHO (2), following the procedure described in detail elsewhere (6). In particular, we obtained the following (expected) numbers for December 21, 2014: $E_0 = 450$, $I_0 = 901$, $D_{b0} = 2390$, $D_{10} = 28$, $R_0 = 5579$; the estimated cumulative number of cases then was 8,828. The expected (averaged) values of the agents' states $Y(v_k) \equiv Y_{v_k} = \{S, E, I, D_b, D_I, R\}$

were computed over N_r =8 network realizations and N_s =100 simulations for each one of the network realizations. The model parameters were fitted to the reported data using a trustregion-reflective approach for nonlinear minimization, implemented for parameter estimation (13) exploiting the Equation-Free approach (7,14-18). Matlab (19) was the simulation environment of choice, while the model was programmed in Fortran 90 and linked to Matlab through mex files.

To forecast the evolution of the Ebola virus epidemic in Sierra Leone, we used the values of the model parameters as estimated in the last period; the resulting parameter values were then fed to the simulator using as coarse initial conditions the values of $\{S, E, I, D_b, D_I, R\}$ as computed on April 17, 2015. We tested the effect of control policy scenarios by reducing the density of the network structure as estimated in the second period. Sparser network densities could reflect partial isolation of the population, restriction of social mobilization combined with an expanded public campaign for increased awareness.

BMJ Open

Results and Discussion The cumulative numbers of infected and dead obtained by the model compared to the reported cases in Sierra Leone are shown in Figure 1. Our framework succeeds in approximating the actual data for total cases and deaths (3). For example, on December 21, 2014 the number of total cases, as reported by the WHO, was 9,004 and the number of deaths was 2,582, while our simulations resulted in 8,828 cases and \sim 2,400 deaths. On February 18, 2015, the total cases and deaths were 11,103 and 3,408, respectively, and our simulations resulted in 11,049 total cases and 3,394 deaths. Finally, on April 17, 2015, the reported total cases and deaths were 12,244 and 3,865, respectively; our simulations resulted in 12,299 total cases and 3,919 deaths. The epidemiologic parameters that were obtained through the optimization approach are illustrated in Figure 2 and a summary of the estimated epidemic parameters for the period under study, together with their 95% confidence intervals, is presented in Table 1. Panel (a) depicts the evolution of the estimated network characteristics, p_{rw} and a, while panels (b-e) illustrate the model parameters $p_{s \to E}$, $p_{D/I}$, $p_{I \to R}$ and $p_{I \to D}$ that fit best to the reported EVD epidemic dynamics in the country. The evolution of the estimated effective reproductive number R_e in Sierra Leone is shown in panel (f). More specifically, the contact network of Sierra Leone exhibits a rather random structure with a rewiring switching probability (p_{rw}) of ~0.37 (95% CI: ~0.33-0.41) that falls down to ~0.22 (95% CI: 0.20-0.24) during the study period (Figure 2a). A slight increase is shown in the density ratio of the network as represented by a , which was ~ 0.54 (95% CI: $\sim 0.51-0.58$) during the first period (December 21, 2014 – February 18, 2015) and ~0.63 (95% CI: 0.59-0.68) during the second period of the study (February 18, 2015 – April 17, 2015) (Figure 2a). The differences of the network characteristics between the two periods indicate a more clustered, yet denser contact network during the second period that could partially reflect a relaxation of awareness in the first period, when the epidemic seemed to decline. The case fatality rate ($p_{D/I}$) that was estimated to be ~32% (95% CI: 31-33%) for the period extending from late December 2014 to February 18 2015, increased to ~39% (95% CI: 38-40%) from February 18 to April 17 (Figure 2e). The expected period from the onset of symptoms to recovery (i.e., the inverse of $p_{I \rightarrow R}$) was ~9.5 days (95% CI: 8.6-10.7 days) during the first period and ~8 days (95% CI: 6.5-10.5 days) for the second period of study (Figure 2c). The expected time interval from the onset of symptoms to death (i.e., the inverse

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

of $p_{I \to D}$) was constant at ~3.6 days (95% CI: 3.3-4.0 days) during the period of study (Figure 2d).

Regarding the epidemic parameters, our estimates are quite close to the ones reported by the WHO Ebola Response Team and other groups. For example, Ansumana et al. (20) reported a 31% CFR at Hastings center, while the National Institute of Communicable diseases (NICD) reports a CFR of 32% for Sierra Leone on April 5, 2015 (21); a mean of 31.6% CFR was reported for Sierra Leone from the WHO Ebola response team as of September 14, 2014 (10). Gomes et al. (22) reported an ~8 day-period from the onset of symptoms to recovery, while in a recent study by the WHO Ebola response team (23) a period of 10.6 days (with a SD of 8.2 days) was reported from symptoms onset to hospital discharge for individuals of older than 45 years old. In the same paper, a period of ~ 6 days (with equal SD) is reported from symptoms onset to death for the same age group. The same delay period from symptoms onset to death was also reported in Ansumana et al. (20).

The per-contact transmission probability $P_{s \rightarrow E}$ values were estimated at ~0.03 (95% CI: 0.028-0.033) in the first period and ~0.08 (95% CI: 0.067-0.09) in the second period (Figure 2b). Finally, the effective reproductive number R_e , as computed using the agentbased simulator, was ~0.77 (95% CI: 0.72-0.82) from December 21, 2014 to February 18, 2015, rising up to ~1.98 (95% 1.33-2.22) from February18, 2015 to April 17, 2015 (Figure 264 2f).

Simulations show that the expected cumulative number of infected cases may reach as high as 13,400 by June 17, while the cumulative number of dead may exceed 4,300, if no further action is undertaken. Hence, we decided to perform an assessment of the impact of potential control strategies. Based on the recently announced isolation policy (24), we simulated the influence on the epidemic dynamics of sparser, with respect to the estimated network density of the second period, network densities, by 10%, 20%, 30%, 40% and 50%. We tested these scenarios by reducing analogously the expected density of the contact network as estimated during the second period and running the agent-based simulation from April 18 until June 17, 2015, keeping all other values of the model parameters fixed.

The results of the exploration of these different scenarios are summarized in Table 2 and portrayed graphically in Figure 3. The "no further action" case, with respect to the estimated current network structure is also depicted in Figure 3 for comparison. By applying a 10% reduction in the network density (yielding an *a* of ~0.57), the expected reproductive number R_e was estimated to be ~1.7. Accordingly, for a 20% reduction in the network density

BMJ Open

(yielding an *a* of ~0.51), R_e was estimated to be ~1.51. Reductions of 30%, 40% and 50% yielding network densities of ~0.44, ~0.38 and ~0.32 respectively, resulted in R_e values of ~1.42, ~1.23 and ~1.05 correspondingly (Table 2). As shown, even large reductions in the density of the network will not lower the R_e below unity soon.

A study by Khan *et al.* that obtained robust estimates for the basic reproductive ratio *R*₀ in both Liberia and Sierra Leone showed that effective isolation is required to bring the value of *R*₀ to less than 1, and hence control the outbreak (25). Khan *et al.* suggested that the contact rate in isolation should be less than one quarter of that for the infected non-isolated population, and that, the fraction of high-risk individuals should be brought to less than 10% of the overall susceptible population, to halt the epidemic (25).

In reality, the reduction in the network density could potentially reflect analogous reductions in social interactions further to the current restrictions of community mobilization. Examples would include raising public awareness and/or strengthening medical care. The country's National Ebola Response Centre has already announced a 3-day lockdown that will affect around 2.5 million people (*20*). Nevertheless, it is worth noticing that even with a 30% reduction in the social network density, the epidemic shows no signs of fading out until June 17 and we estimate that new cases will continue to be recorded.

In conclusion, we found that the EVD epidemic in Sierra Leone was in recession in the period between December 21, 2014 through mid-February, 2015, as reflected by the <1 value of the reproductive number for this period. However, during the second study period (i.e., from February 18 to April 17, 2015), the epidemic has spiked and the reproductive number was estimated to be well above criticality, with the potential to persist at this level beyond the end of June and through July. Control measures associated with mobilization restrictions were also evaluated. Our findings, supported by real epidemiologic data and the projection of a spilling over of the epidemic to mid-June, indicate that the measures implemented so far are inadequate. Taken in their totality, these findings indicate that the epidemic, even with strict control isolation policies in effect, will go on through July with a probability of fading out thereafter if policies are implemented and consistently kept in place. Immediate, more intense efforts are needed before further complications emerge. Reducing the effective density of the derived contact small-world-like network, through limited social interactions, has the potential to improve the current situation. Our results and predictions were verified from the official data reported by CDC for the corresponding period of study. Hence, our approach seems promising to forecast re-emergent outbreaks in other vulnerable regions of Africa, such as Eastern and Central Africa, where Ebola outbreaks have

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

traditionally occurred in the past. Estimations through clinical studies of important factors

as well as detailed age-specific data as the epidemic develops in space and time, would

enhance our ability to better model, forecast and design efficient control policies.

such as the contact transmission probability, mortality and recovery rate, incubation periods

However, the usefulness of mathematical models should not be overestimated.

Despite the significant technological progress and concentrated wealth, breakdowns and cuts

in public health infrastructures worldwide are (the) major reasons for boosting epidemics.

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

Liberia and Sierra Leone, the two countries that have been worst affected from the Ebola epidemic had an almost non-existent health care system: as reported Liberia with a population of more than 4 million people had just 51 physicians and Sierra Leone with a population exciting 6 million had just 136 physicians (26). Update to the case of Sierra Leone (period April 18-August 15, 2015) Since the results we obtained by analyzing the reported data until April 17, 2015 showed that the epidemic was sustained in Sierra Leone, we decided to investigate further the current trends of the epidemic dynamics. Therefore, we expanded our analysis by taking into account the reported data for the country for the very last period (April 18-August 15, 2015). The results of this expanded analysis indicate a declining trend in the transmission potential of the virus, as shown in Table 3. More specifically, (p_{rw}) rose significantly in the period April 18-June 16, 2015 to ~0.69 (95% CI: ~0.67-0.72) with a further slight increase in the very last period (June 17-August 15, 2015) to ~0.75 (95% CI: 0.69-0.80). The density ratio of the network as represented by a, did not show significant changes: in the period April 18-June 16, 2015 it was found to be ~0.47 (95% CI: ~0.42-0.51) and ~0.46 (95% CI: 0.37-0.53) during the period June 17-August 15, 2015. The case fatality rate (p_{DII}) dropped to ~10% (95% CI: 8-12%) for both last periods. The expected period from the onset of symptoms to recovery (i.e., the inverse of $P_{I \rightarrow R}$) was ~20 days (95% CI: 16-30 days) during the period April 18-June 16, 2015 and ~16 days (95% CI: 8-32 days) for the period June 17- August 15, 2015. The expected period from the onset of symptoms to death (i.e., the inverse of $p_{I \to D}$)

was almost constant at ~3.0 days (95% CI: 2.8-3.2 days) for both last periods. The per-

contact transmission probability $P_{s \rightarrow E}$ values were estimated at ~0.023 (95% CI: 0.02-0.026)

in the period April 18-June 16 and ~0.015 (95% CI: 0.01-0.21) in the period June 17- August

15, 2015. Finally, the *Re* obtained through the agent-based simulations dropped to ~ 1.38

	(
	7
	-
	i
	1
	1
	-
	ļ
	ļ
	1
	J

345	(95% CI: 0.95-1.72) in the period April 18-June 16, 2015 and ~ 0.68 (95% CI: 0.47-1.01)		
346	from June 17– August 15, 2015, thus indicating a saturation of the epidemic.		
347	Our analysis succeeded in approximating the actual data for total cases and deaths (3).		
348	For example, on June 16, 2015 the number of total cases, as reported by the CDC, was 12,990		
349	and the number of deaths was 3,922, while our simulations resulted in 12,963 cases and		
350	~3,940 deaths. On August 14, 2015, the total cases and deaths were 13,485 and 3,952,		
351	respectively, and our simulations resulted in 13,437 total cases and 3,993 deaths.		
352			
353			
BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 11	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
00 50	
60	
00	

1

354 **Contributorship statement**

- 355 Constantinos Siettos, Lucia Russo, and Christos Grigoras contributed to the development of
- the model. Constantinos Siettos and Cleo Anastassopoulou contributed to the data collection,
- 357 interpretation of the data and drafting the paper. Eleftherios Mylonakis contributed to the
- interpretation of the data and substantially revised the paper. All authors approved the final
- 359 manuscript and accepted accountability for all aspects of the work.

360

361 Competing interests

- 362 There are no competing interests.
- 363

364 Funding Statement

- 366 This research received no specific grant from any funding agency in the public, commercial
- 367 or not-for-profit sectors.
- 368

365

369 Data Sharing Statement

- The data used in this study are publicly available from CDC at
- 371 <u>http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/</u>
- 372

ŝ
Q
en:
firs
tpu
blis
hec
as
10.
113
6/b
njoj
pen
-20
15-0
)086
<u>}</u> 49
n ,
<u>ر و</u>
anu
ary
201
6. [
Dow
nlo
ade
d fro
m
http
://br
njop
en.
bmj
Cor
n o
n S
epte
du
er 2
, 2
023
by
gue
st. F
Prot
ecte
d þ
усс
эруг
ight.

п

Page 15 of	23	BMJ Open
1		
2 3 4	373	References
5	374	
6	375	1. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, et al.
7	376	Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med. 2014; 371:1418-25.
8	377	PubMed PMID:24738640. http://dx.doi.org/10.1056/NEJMc1415318
9		
10	378	2. Ebola virus disease (EVD) in West Africa: an extraordinary epidemic. Wkly Epidemiol
12	379	Rec. 2015;90:89-96.http://www.who.int/wer/2015/wer9010/en/
13	380	3. 2014 Ebola Outbreak in West Africa. Centers for Disease Control and Prevention.
14	381	www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/. Accessed 24 Apr 2015
15		
16	382	4. Koroma EB. Address to the Nation on the Ebola crisis. 22 Jan 2015. http://www.sierra-
1/	383	leone.org/Speeches/koroma-012215.html. Accessed 24 Mar 2015
10		
20	384	5. Tracking Ebola in the fishing community of Aberdeen in Freetown, Sierra Leone. Mar
20	385	2015. http://www.who.int/features/2015/ebola-aberdeen/en/. Accessed 24 Mar 2015
22	286	6 Siettos C. Anastassonoulou C. Russo I. Grigoras C. Mulonakis F. Modeling the 2014
23	300	Ebola Virus Epidemic – Agent-Based Simulations, Temporal Analysis and Future
24	200	Predictions for Liberia and Sierra Leone, PLOS Currents Outbreaks, 2015 Mar 9
25	380	Edition 1
26	300	http://dx.doi.org/10.1371/currents.outbreaks.8d5984114855fc425e699e1a18cdc6c9
27	390	http://dx.doi.org/10.15/1/currents.outbreaks.ou5/041148551042500//c1a18edebe/
20 20	391	7. Kevrekidis IG, Gear CW, Hyman JM, Kevrekidis PG, Runborg O, Theodoropoulos C.
30	392	Equation-free, coarse-grained multiscale computation: enabling microscopic
31	393	simulators to perform system-level analysis. Commun. Math. Sci. 2003; 1: 715–62.
32	394	http://projecteuclid.org/euclid.cms/1119655353
33		
34	395	8. Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature
35	396	1998;393:440-42. http://dx.doi.org/10.1038/30918
30 37	397	9 Newman MEI Watts DI Scaling and percolation in the small-world network
38	398	model Physical Review E 1999: 60: 7332–42
39	399	http://dx doi org/10 1103/PhysRevE 60 7332.
40	555	http://uk.doi.org/10.1105/11fy5ht011.00.7552
41	400	10. Aylwar B, Barboza P, Bawo L, Pharm B, Bertherat E, Bilivogui P. et al.; Who Ebola
42	401	Reponse Team. Ebola virus disease in West Africathe first 9 months of the
43	402	epidemic and forward projections. N Engl J Med. 2014; 371:1481-95.
44 45	403	http://dx.doi.org /10.1056/NEJMoa1411100
45		
47	404	11. Sterra Leone. United Nations Statistics Division.
48	405	nttps://data.un.org/CountryProfile.aspx?crName=SIEKKA%20LEONE. Accessed 24
49	406	Wiar 2015.
50	407	12 Ebola Situation Reports World Health Organization http://apps.who.int/ebola/ebola-
51	408	situation-reports.
52		
53 54	409	13. Coleman TF, Li Y. An interior trust region approach for nonlinear minimization
55	410	subject to bounds. SIAM J Optim. 1996; 6:418-45. http://dx.doi.org /10.1137/0806023
56		
57		
58		
59		
60		15

2 3 4 5	411 412 413	 Makeev AG, Maroudas D, Kevrekidis IG. "Coarse" stability and bifurcation analysis using stochastic simulators: Kinetic Monte Carlo examples. J Chem Phys. 2002; 116:10083-91. http://dx.doi.org/10.1063/1.1476929
6 7 8 9	414 415 416	 Gear CW, Kevrekidis IG, Theodoropoulos C. "Coarse" integration/bifurcation analysis via microscopic simulators: micro-Galerkin methods. Comput Chem Eng. 2002; 26:941-63. http://dx.doi.org /10.1016/S0098-1354(02)00020-0
10 11 12 13	417 418 419	 Theodoropoulos C, Qian YH, Kevrekidis IG. "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. Proc Natl Acad Sci U S A. 2000;97: 9840-43. http://dx.doi.org /10.1073/pnas.97.18.9840
14 15 16 17	420 421 422	 Siettos CI, Graham MD, Kevrekidis IG. Coarse Brownian dynamics for nematic liquid crystals: Bifurcation, projective integration, and control via stochastic simulation. J Chem Phys. 2003; 118:10149-56. http://dx.doi.org/10.1063/1.1572456
19 20 21	423 424 425	 Kevrekidis IG, Gear CW, Hummer G. Equation-free: The computer-aided analysis of complex multiscale systems. AIChE J. 2004; 50:1346-55. http://dx.doi.org /10.1002/aic.10106
22	426	19. MATLAB. The MathWorks Inc. http://www.mathworks.com/
24 25	427	20. Ansumana R, Jacobsen KH, Idris M, Bangura H, Boie-Jalloh M, Lamin JM, et al.
26 27	428	Ebola in Freetown area, Sierra Leone — a case study of 581 patients. N Engl J Med
28	429	2015; 372:587-88. http://dx.doi.org/10.1056/NEJMc1413685
29 30	430	21. http://www.nicd.ac.za/?page=alerts&id=5&rid=531
31	431	22. Gomes MFC, Pastore y Piontti A, Rossi L, Chao D, Longini I, Halloran ME, et al.
32 33	432	Assessing the international spreading risk associated with the 2014 West African
34 35	433 434	Ebola outbreak. PLOS Currents Outbreaks. 2014 Sep 2. Edition 1. http://dx.doi.org /10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
36 27	435	23. Agua-Agum J, Ariyarajah A, Blake IM, Cori A, Donnelly CA, Dorigatti I, et
38	436 437	al.;Who Ebola Reponse Team. Ebola Virus Disease among Children in West Africa. N Engl J Med 2015: 372:1274-77 http://dx doi org/10.1056/NEJMc1415318
39 40	420	24 Ehala ariais. Sieme Laana laakdaum ta hit 2 5m naarla, PPC Naug. 10 Mar 2015
41 42	438 439	http://www.bbc.com/news/world-africa-31966989. Accessed 24 Mar 2015.
43	440	25. Khan A, Naveed M, Dur-e-Ahmad M, Imran M. Estimating the basic reproductive
44 45	441	ratio for the Ebola outbreak in Liberia and Sierra Leone. Infectious Diseases of
46	442	Poverty (2015) 4:13 DOI 10.1186/s40249-015-0043-3.
47 48	443	26. http://www.bbc.com/news/world-africa-29324595
40 49	ллл	
50	444	
51 52		
52 53		
54		
55		
56		
57		
58		

1

59 60 BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

BMJ Open

445 446 447	Table 1. Key epidemiologic features of the Ebola Virus Disease (EVD) epidemic in Sierra
448	Leone estimated by the model during the first and second study period (December 21, 2014
449	April 17, 2015).

Period	Variable	Mean	95% CI
First (Dec. 21- Feb. 18, 2015)	p_{rw} Network density (α) Time to death (Days) Time to recovery (Days) CFR (%) R_{c}	0.37 0.55 3.6 9.5 32 0.77	0.33-0.41 0.51-0.58 3.3-4.0 8.6-10.7 31-33 0.72-0.82
Second (Feb. 18-Apr. 17, 2015)	P_{rw} Network density (α) Time to death (Days) Time to recovery (Days) CFR (%) R_e	0.22 0.63 3.6 8.0 39 1.98	0.20-0.24 0.59-0.68 3.3-4.0 6.5-10.5 38-40 1.33-2.22

 p_{rw} , Rewiring switching probability; CFR, Case fatality rate $(p_{D/I})$; R_e , Effective

452 reproductive number

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

Table 2. Outcomes of isolation control policy scenarios on the basis of the expected reproductive number R_e , as computed by running the agent-based simulation from April 17 to the mid-June 2015 (keeping fixed all other values of the model parameters). Sparser density refers to a percent reduction of the expected density of the contact network compared to the 0.63 value that was estimated for the second period (February 18 – April 17, 2015).

Period	% Sparser density	Network density (a)	R _e	
(April 18-	10%	~0.57	~1.7	
June 17,	20%	~0.51	~1.5	
2015)	30%	~0.44	~1.4	
	40%	~0.38	~1.2	
	50%	~0.32	~1.0	

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

Table 3. Up-to-date key epidemiologic features of the Ebola Virus Disease (EVD) epidemic

in Sierra Leone estimated by the model during the period (June 18- August 15, 2015).

Period	Variable	Mean	95% CI
(June 18-	p_{rw}	0.69	0.67-0.72
July 16, 2015)	Network density (α)	0.47	0.42-0.51
	Time to death (Days)	3.0	2.8-3.2
	Time to recovery (Days)	20	16-30
	CFR (%)	10	8-12
	R _e	1.38	0.95-1.72
(July 16-	p_{rw}	0.75	0.69-0.80
August 15,	Network density (α)	0.46	0.37-0.53
2015)	Time to death (Days)	3.0	2.8-3.2
	Time to recovery (Days)	16	8-32
	CFR (%)	10	8-12
	R _e	0.68	0.47-1.01

 p_{rw} , Rewiring switching probability; CFR, Case fatality rate ($p_{D/I}$); R_e , Effective

reproductive number

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

Figure 1. Simulation Results for Sierra Leone from December 21, 2014 to April 17,
2015. Expected cumulative cases of infected (dotted red) and dead (dotted black). WHO data
are depicted by solid lines. The period under study has been tessellated into two windows
with a length of 60 days each. For each window, the model parameters are estimated based on
the data reported from WHO.

Figure 2. Estimated model parameters for Sierra Leone from December 21, 2014 to April 17, 2015. (a) Evolution of contact network characteristics: switching probability (p_{rw}) and density ratio of the transmission network (*a*). (b) Per-contact transmission probability ($p_{s\to E}$). (c) 1/{recovery period} ($p_{1\to R}$). (d) 1/{period from inset of symptoms to death} ($p_{I\to D}$). (e) Case fatality rate ($p_{D/I}$). (f) Effective reproductive number (R_e). 95% Confidence intervals are also shown.

Figure 3. Forecasting of the evolution of the epidemic from April 18 to June 17, 2015
under different control scenarios. Network density values were compared to the density of
the social network estimated for the period February 18-April 17, 2015. (a) Total Cases, (b)
Deaths. The "no further action" scenario is also depicted.

Simulation Results for Sierra Leone from December 21, 2014 to April 17, 2015. Expected cumulative cases of infected (dotted red) and dead (dotted black). WHO data are depicted by solid lines. The period under study has been tessellated into two windows with a length of 60 days each. For each window, the model parameters are estimated based on the data reported from WHO.

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

Estimated model parameters for Sierra Leone from December 21, 2014 to April 17, 2015. (a) Evolution of contact network characteristics: switching probability and density ratio of the transmission network. (b) Percontact transmission probability. (c) 1/{recovery period}. (d) 1/{period from inset of symptoms to death}. (e) Case fatality rate. (f) Effective reproductive number. 95% Confidence intervals are also shown.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Forecasting of the evolution of the epidemic from April 18 to June 17, 2015 under different control scenarios. Network density values were compared to the density of the social network estimated for the period February 18-April 17, 2015. (a) Total Cases, (b) Deaths. The "no further action" scenario is also depicted.

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

BMJ Open

Forecasting and Control Policy Assessment for the Ebola Virus Disease (EVD) Epidemic in Sierra Leone Using Small-World Networked Model Simulations

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-008649.R2
Article Type:	Research
Date Submitted by the Author:	27-Oct-2015
Complete List of Authors:	Siettos, Constantinos; National Technical University of Athens, Applied Mathematics and Physical Sciences Anastassopoulou, Cleo; University of Patras, Biology Russo, Lucia; Consiglio Nazionale di Ricerca, Grigoras, Christos; Rhode Island Hospital, Providence, Rhode Island; and Warren Alpert Medical School of Brown University, Providence, Rhode Island, Infectious Diseases Division Mylonakis, E; Rhode Island Hospital, Providence, Rhode Island; and Warren Alpert Medical School of Brown University, Providence, Rhode Island, Infectious Diseases Division
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Health policy, Infectious diseases, Research methods, Global health, Public health
Keywords:	EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES, INFECTIOUS DISEASES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts **BMJ Open**

1 2	1	Title Page
3	T	Thue Tage
5	2	Forecasting and Control Policy Assessment for the Ebola Virus Disease (EVD)
6 7	3	Epidemic in Sierra Leone Using Small-World Networked Model Simulations
8		
9 10	4	
11	Ę	Constantinos I. Siettos ¹ Cleo Anastassonoulou ² Lucia Russo ³ Christos Grigoras ^{1,4}
12	J	Constantinos I. Sicilos, Cico Anastassopoulou, Eucla Russo, Christos Origoras,
13	6	Eleftherios Mylonakis ⁴
14 15		
16	7	
17		
18	8	Authors' affiliations:
19	9	¹ School of Applied Mathematics and Physical Sciences, National Technical University of
20	10	Athens, Athens, Greece.
21	11	² Division of Genetics, Cell and Developmental Biology, Department of Biology, University
22	12	of Patras, Patras, Greece.
23	13	³ Consiglio Nazionale di Ricerca, Napoli, Italy.
25	14	⁴ Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of
26	15	Brown University, Providence, RI, USA.
27	16	
28		
29	17	Corresponding author:
30		
31	18	Constantinos I. Siettos: Associate Professor Computational Science & Engineering, School of
3Z 22	19	Applied Mathematics and Physical Sciences, National Technical University of Athens, 9,
34	20	Heroon Polytechniou Str., GR-157 80 Athens, Greece. Tel.: +30 210-772-3950; E-mail:
35	21	ksiet@mail.ntua.gr
36	22	
37		
38	23	Eleftherios Mylonakis, M.D., Ph.D., FIDSA, Dean's Professor of Medical Science (Medicine,
39	24	and Molecular Microbiology and Immunology), Chief, Infectious Diseases Division, Warren
40	25	Alpert Medical School of Brown University, Rhode Island Hospital 593 Eddy Street, POB,
41	26	3rd Floor, Suite 328/330, Providence, RI 02903, Tel: 401-444-7856 / Fax: 401-444-8179.
42	27	
43	28	Manuscript information:
45		
46	29	Number of Figures/Tables: 3/ 3
47		
48	30	Word Count of Abstract: 293
49		
50	31	Word Count of Main-Body Text: 3456
51		
52 53	32	Word Count of Figure and Table Legends: 225
55 54		
55	33	
56		
57	34	
58		
59		
60		1
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract **Objectives:** As the Ebola Virus Disease (EVD) is still sustained in Sierra Leone, we analyzed the epidemic for the latest period (December 21, 2014 - April 17, 2015) using a small-world networked model and forecasted its evolution. Policy-control scenarios for the containment of the epidemic were also examined. **Methods:** We developed an agent-based model with 6 million individuals (the population of Sierra Leone) interacting through a small-world social network. The model incorporates the main epidemiologic factors, including the effect of burial practices to virus transmission. The effective reproductive number (*Re*) was evaluated directly from the agent-based simulations. Estimates of the epidemiologic variables were computed on the basis of the official cases as reported by the Centers for Disease Control and Prevention (CDC). **Results:** From December 21, 2014 to February 18, 2015 the epidemic was in recession compared to previous months, as indicated by the estimated effective reproductive number (*Re*) of ~0.77 (95% CI: 0.72-0.82). From February 18 to April 17, 2015, *Re* rose above criticality (~1.98, 95% CI: 1.33-2.22), flashing a note of caution for the situation. By

- 51 projecting in time, we predicted that the epidemic would continue through July 2015. Our
- 52 predictions were close to the cases reported by CDC by the end of June, verifying the
- 53 criticality of the situation. In light of these developments, while revising our manuscript, we
- 54 expanded our analysis to include the most recent data (until August 15, 2015). By mid-
- August, *Re* has fallen below criticality and the epidemic is expected to fade out by earlyDecember 2015.
- **Conclusions:** Our results call for the continuation of drastic control measures, which in the 58 absence of an effective vaccine or therapy at present can only translate to isolation of the
- 59 infected section of the population, to contain the epidemic.

- 61 Keywords: EBOV, Sierra Leone, Effective reproductive number, Forecasting,
- 62 Communicable Disease Control, Agent-Based Modeling, Social Transmission Network

BMJ Open

Ē
g
en:
firs
p
ablic
she
dag
\$ 10
36/t
j mj
ope
n-2
015
00
864
00
n 20
er 6
เทนอ
, N
201
6. D
00W
nloa
ade
d fro
Ħ
ЪЩ,
://b
Щ.
pen
.bm
<u>1</u> .00
Ň
n (
Sep
terr
ıber
23
20:
23 b
бÃ
ues
: P
rote
cte
β
00
pyri
ght.

п

64	Article summary
65	
66	Strengths and limitations of this study
67	
68	- The greatest strength of this study stems from the undertaken mathematical appro
69	of choice, integrating agent-based modeling on complex networks and the so-ca
70	Equation-Free approach.
71	- Various important epidemiologic parameters were assessed and accurate short-t
72	forecasts of the evolution of the Ebola Virus Disease (EVD) epidemic in Sierra Le
73	were obtained.
74	- Another advantage of the proposed methodology is that it allows for the ra
75	evaluation of different policy-control scenarios that could lead to the containment
76	the epidemic.
77	- Our predictions were verified by the official case count reported by CDC.
78	- The most important limitation of our study pertains to the quality and accuracy of
79	outbreak data that were "fed" to the mathematical model compared to the real figu
80	- Even though underreporting of cases and deaths is to be expected under the partic
81	circumstances of such a severe epidemic, real-life figures agree well with
82	projections of our analysis.
83	
84	

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

85 Introduction

The worst Ebola Virus Disease (EVD) epidemic in history continues to ravage West Africa. The epidemic began with the report of 49 cases and 29 deaths in Guinea on March 22, 2014 (1). Liberia reported its first laboratory-confirmed cases on March 30, 2014, while the first cases in Sierra Leone were reported on May 28, 2014 (2). Following regular daily population movements for trade and family visitation, the virus crossed the local porous international borders, establishing chains of transmission not just in small villages, where it would have been easier to contain it, but also in large urban centers. Insufficient public health infrastructure, poor sanitation conditions, lack of education about the disease and unsafe traditional burial practices have also contributed to the spread of the epidemic in the region (2).

In Liberia, one of the most affected countries, as of April 20, 2015, a total of 10,042 cases have been recorded, while the toll of death has exceeded 4,480 (3). In early March a halt of the epidemic was announced, and even though a new case was confirmed on March 20, 2015, the epidemic is considered to have ceased, while the situation in Sierra Leone is notably different. With more than 12,360 cases and 3,900 deaths until now, Sierra Leone experienced a drop in new cases in January 2015 and authorities loosened mobilization restriction measures to support economic activity (4). However, recent World Health Organization WHO updates on the status of the EVD epidemic in this West African nation report a flare up (3), with a significant increase among the community of fishermen living in the coastal area of Aberdeen in Freetown (5). The synchronous occurrence of over 20 cases suggested they had been infected by a single source, possibly an unsafe burial (5).

In light of these recent developments, we analyzed the EVD epidemic dynamics in Sierra Leone for the period between December 21, 2014 and April 17, 2015, using an agent-based, social network model that we reported recently and that proved to provide accurate predictions for the case of Liberia (6). For this purpose, the latest official case counts from WHO were fitted to the model, following the so-called Equation-Free approach (7). Our main objective was to obtain estimates of key epidemiologic parameters, such as the indicative of secondary infections effective reproductive number (Re), the case fatality rate, the per-contact transmission probability and the mean time from symptoms onset to recovery or to death, in order to study the evolving dynamics through the social transmission network whose structure and density are also examined. Secondary objectives of the study included the

BMJ Open

exploration of different policy-control scenarios that could lead to reduced *Re* values, and,thereby, to the containment of the epidemic.

120 Methods

We developed an agent-based model for the study of the Ebola epidemic (6) with Nindividuals that interact through a Watts & Strogatz (WS) (8) small-world network that approximates some attributes of the real social interactions, which are characterized by relatively high clustering and short social distances between them. Here, the network was constructed with the Newman-Watts (9) algorithm, in which short-cut edges are added between pairs of nodes with a probability, in the same way as in a WS network, but without removing edges from the underlying lattice. The algorithm starts with a one-dimensional ring network with k local-nearest neighbors per node and with a probability p_{rw} that a link is added between two nodes. Hence, the mean number of additional shortcuts is $p_{rw} k N$, and the mean total degree of the network is $2 k N (1 + p_{rv})$. In the constructed small-world network we can adjust the density of the network, say α , at will, by randomly adding or subtracting the required number of links.

133 Agents are categorized in five discrete states: Susceptible (S), Exposed (E), Infected

(I), Dead of the disease but not yet buried (D_I) , Dead of the disease and safely buried

 (D_b) , and *Recovered*(R) (6). The D_I infectious state includes agents who die, but whose 136 burial entails risk for onward virus transmission. The transition between states is modeled as 137 a discrete-time, discrete state *non-Markov random process*. Within this framework, the state 138 space over the set of the network links is represented by $Y(\mathbf{V})$, where

 $Y(v_k) \equiv Y_{v_k} = \{S, E, I, D_b, D_I, R\}$ is the set of the states of individual v_k .

140 The agent-based rules that govern the dynamics of the epidemic on a daily basis read as141 follows:

142
$$p(Y_{\nu_k}(t+1) = D_b | Y_{\nu_k}(t-1) = D_I) = 1$$
 (1)

143
$$p(Y_{v_k}(t+1) = E | Y_{v_l}(t) = I, Y_{v_l}(t) = D_I) = p_{S \to E}, v_l \in \Re_{v_k}$$
 (2)

144
$$p(Y_{v_k}(t+1) = I | Y_{v_k}(t) = E) = p_{E \to I}$$
 (3)

145
$$p(Y_{v_k}(t+1) = D_I | Y_{v_k}(t) = I) = p_{I \to D}$$
 (4)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(5)

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

147

where $p_{S \to E}$ is the per infected contact transmission probability (still alive or dead, but not 148 yet buried), $p_{E \to I}$, is the inverse of the incubation period, $p_{I \to D}$ is the inverse of the time 149 from symptoms onset to death, $p_{I \rightarrow R}$ is the inverse of the recovery period, and, $p_{D/I}$, is the 150 ratio of deaths to the infected population (6). The rate of the incubation period is taken to be 151 constant, set at $p_{E \to I} = \frac{1}{9}$, as reported by the Who Ebola Response Team (10). \Re_{v_k} denotes the 152 neighborhood of an individual v_k . This first rule sets the time period from death to burial to 153 154 two days, during which family members and loved ones may be infected due to physical 155 contact with the dead, still-contagious body. Long-range links of a dead, yet potentially 156 infectious, agent are cut, reflecting the fact that only relatives and close community members 157 can be infected during unsafe funeral practices and rites. The second rule implies that a susceptible agent gets exposed to the disease with a rate determined by the probability $p_{S \to E}$ 158 159 per infected contact (still alive or dead, but not yet buried). The third rule implies that an 160 exposed agent becomes infectious with a rate determined by the probability $p_{E \rightarrow I}$, whose 161 inverse corresponds to the incubation period, i.e. the time from exposure to symptoms onset. 162 Rules (4) and (5) define the case fatality rate, p_{DII} : an agent dies of the disease with a rate determined by the probability $p_{I \rightarrow D}$ (whose inverse is the time from symptoms onset to 163 164 death) (Rule (4)); alternatively, an agent could recover with a rate determined by the 165 probability $p_{I \to R}$ (Rule (5)).

166 The effective reproductive ratio R_e , defined as the average number of secondary 167 infections produced by a typical infective person, is also computed directly from the agent-168 based simulations.

Based on the demographics reported by the United Nations (UN), the population of Sierra Leone is 6 million (*11*). Time series of the official Ebola case counts from the Centers for Disease Control and Prevention (CDC) were used for model fitting (*3*). These case counts were collected from public data released by the World Health Organization (WHO) (*12*) and CDC (*3*). Even though these data sets do not distinguish between suspect, probable and laboratory-confirmed case counts, they are considered to represent the best available estimates of the current state of the epidemic in the severely afflicted West African countries.

BMJ Open

176	Case data, which included cumulative incidence and cumulative deaths by date of report for
177	Sierra Leone, were retrieved on April 24, 2015.
178	Simulations were performed using December 21, 2014 as an initial date and a time
179	horizon of 60 days with an equal sliding window time interval; the last date was April 17,
180	2015. Thus, fitted values of the network and model parameters, as well as estimates of the
181	effective reproductive ratio, were computed in sequences of succeeded time intervals of 60
182	days corresponding to 2 periods (December 21, 2014 – February 18, 2015 and February 18,
183	2015 – April 17, 2015). The initial conditions for the starting date of December 21, 2014
184	were calculated on the basis of agent-based simulations from May 27, 2014, i.e. the date on
185	which the first cases were officially reported from WHO (2), following the procedure
186	described in detail elsewhere (6). In particular, we obtained the following (expected) numbers
187	for December 21, 2014: $E_0 = 450$, $I_0 = 901$, $D_{b0} = 2390$, $D_{10} = 28$, $R_0 = 5579$; the estimated
188	cumulative number of cases then was 8,828.
189	The expected (averaged) values of the agents' states $Y(v_k) \equiv Y_{v_k} = \{S, E, I, D_b, D_I, R\}$
190	were computed over $N_r = 8$ network realizations and $N_s = 100$ simulations for each one of the
191	network realizations. The model parameters were fitted to the reported data using a trust-
192	region-reflective approach for nonlinear minimization, implemented for parameter estimation
193	(13) exploiting the Equation-Free approach $(7, 14-18)$. Matlab (19) was the simulation
194	environment of choice, while the model was programmed in Fortran 90 and linked to Matlab
195	through mex files.
196	To forecast the evolution of the Ebola virus epidemic in Sierra Leone, we used the
197	values of the model parameters as estimated in the last period; the resulting parameter values
198	were then fed to the simulator using as coarse initial conditions the values of
199	$\{S, E, I, D_b, D_I, R\}$ as computed on April 17, 2015. We tested the effect of control policy
200	scenarios by reducing the density of the network structure as estimated in the second period.
201	Sparser network densities could reflect partial isolation of the population, restriction of social
202	mobilization combined with an expanded public campaign for increased awareness.
203	

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

4 Results and Discussion

The cumulative numbers of infected and dead obtained by the model compared to the reported cases in Sierra Leone are shown in Figure 1. Our framework succeeds in approximating the actual data for total cases and deaths (*3*). For example, on December 21, 2014 the number of total cases, as reported by the WHO, was 9,004 and the number of deaths was 2,582, while our simulations resulted in 8,828 cases and ~2,400 deaths. On February 18, 2015, the total cases and deaths were 11,103 and 3,408, respectively, and our simulations resulted in 11,049 total cases and 3,394 deaths. Finally, on April 17, 2015, the reported total cases and deaths were 12,244 and 3,865, respectively; our simulations resulted in 12,299 total cases and 3,919 deaths.

The epidemiologic parameters that were obtained through the optimization approach are illustrated in Figure 2 and a summary of the estimated epidemic parameters for the period under study, together with their 95% confidence intervals, is presented in Table 1. Panel (a) depicts the evolution of the estimated network characteristics, p_{rw} and a, while panels (b-e) illustrate the model parameters $p_{S \rightarrow E}$, $p_{D/I}$, $p_{I \rightarrow R}$ and $p_{I \rightarrow D}$ that fit best to the reported EVD epidemic dynamics in the country. The evolution of the estimated effective reproductive number R_e in Sierra Leone is shown in panel (f).

More specifically, the contact network of Sierra Leone exhibits a rather random structure with a rewiring switching probability (p_{rw}) of ~0.37 (95% CI: ~0.33-0.41) that falls down to ~0.22 (95% CI: 0.20-0.24) during the study period (Figure 2a). A slight increase is shown in the density ratio of the network as represented by a, which was ~0.54 (95% CI: ~0.51-0.58) during the first period (December 21, 2014 – February 18, 2015) and ~0.63 (95%) CI: 0.59-0.68) during the second period of the study (February 18, 2015 – April 17, 2015) (Figure 2a). The differences of the network characteristics between the two periods indicate a more clustered, yet denser contact network during the second period that could partially reflect a relaxation of awareness in the first period, when the epidemic seemed to decline. The per-contact transmission probability $p_{S \rightarrow E}$ values were estimated at ~0.03 (95% CI: 0.028-0.033) in the first period and ~0.08 (95% CI: 0.067-0.09) in the second period (Figure 2b). The expected period from the onset of symptoms to recovery (i.e., the inverse of $p_{I \rightarrow R}$) was ~9.5 days (95% CI: 8.6-10.7 days) during the first period and ~8 days (95% CI: 6.5-10.5 days) for the second period of study (Figure 2c). The expected time interval from the onset of symptoms to death (i.e., the inverse of $p_{I \rightarrow D}$) was constant at ~3.6 days (95% CI: 3.3-4.0 days) during the period of study (Figure 2d). The case fatality rate ($p_{D/I}$) that was estimated

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 28

BMJ Open

1		
2 3	237	to be ~32% (95% CI: 31-33%) for the period extending from late December 2014 to February
4	238	18 2015, increased to ~39% (95% CI: 38-40%) from February 18 to April 17 (Figure 2e).
5 6	239	Finally, the effective reproductive number R_e , as computed using the agent-based simulator,
7 8	240	was ~0.77 (95% CI: 0.72-0.82) from December 21, 2014 to February 18, 2015, rising up to
9 10	241	~1.98 (95% 1.33-2.22) from February18, 2015 to April 17, 2015 (Figure 2f).
11	242	Regarding the epidemic parameters, our estimates are quite close to the ones reported
12 13	243	by the WHO Ebola Response Team and other groups. For example, Ansumana et al. (20)
14 15	244	reported a 31% CFR at Hastings center, while the National Institute of Communicable
16	245	diseases (NICD) reports a CFR of 32% for Sierra Leone on April 5, 2015 (21); a mean of
17 18	246	31.6% CFR was reported for Sierra Leone from the WHO Ebola response team as of
19 20	247	September 14, 2014 (10). Gomes et al. (22) reported an ~8 day-period from the onset of
21	248	symptoms to recovery, while in a recent study by the WHO Ebola response team (23) a
22 23	249	period of 10.6 days (with a SD of 8.2 days) was reported from symptoms onset to hospital
24 25	250	discharge for individuals of older than 45 years old. In the same paper, a period of \sim 6 days
26	251	(with equal SD) is reported from symptoms onset to death for the same age group. The same
28	252	delay period from symptoms onset to death was also reported in Ansumana et al. (20).
29 30	253	Simulations show that the expected cumulative number of infected cases may reach as
31 32	254	high as 13,400 by June 17, while the cumulative number of dead may exceed 4,300, if no
33	255	further action is undertaken. Hence, we decided to perform an assessment of the impact of
34 35	256	potential control strategies. Based on the recently announced isolation policy (24), we
36 37	257	simulated the influence on the epidemic dynamics of sparser, with respect to the estimated
38	258	network density of the second period, network densities, by 10%, 20%, 30%, 40% and 50%.
39 40	259	We tested these scenarios by reducing analogously the expected density of the contact
41 42	260	network as estimated during the second period and running the agent-based simulation from
43	261	April 18 until June17, 2015, keeping all other values of the model parameters fixed.
44 45	262	The results of the exploration of these different scenarios are summarized in Table 2
46 47	263	and portrayed graphically in Figure 3. The "no further action" case, with respect to the
48	264	estimated current network structure is also depicted in Figure 3 for comparison. By applying
49 50	265	a 10% reduction in the network density (yielding an a of ~0.57), the expected reproductive
51 52	266	number R_e was estimated to be ~1.7. Accordingly, for a 20% reduction in the network density
53 54	267	(yielding an <i>a</i> of ~0.51), R_e was estimated to be ~1.51. Reductions of 30%, 40% and 50%
55 56 57 58	268	yielding network densities of ~0.44, ~0.38 and ~0.32 respectively, resulted in R_e values of

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

269 ~1.42, ~1.23 and ~1.05 correspondingly (Table 2). As shown, even large reductions in the 270 density of the network will not lower the R_e below unity soon.

A study by Khan *et al.* that obtained robust estimates for the basic reproductive ratio *R*₀ in both Liberia and Sierra Leone showed that effective isolation is required to bring the value of *R*₀ to less than 1, and hence control the outbreak (25). Khan *et al.* suggested that the contact rate in isolation should be less than one quarter of that for the infected non-isolated population, and that, the fraction of high-risk individuals should be brought to less than 10% of the overall susceptible population, to halt the epidemic (25).

In reality, the reduction in the network density could potentially reflect analogous reductions in social interactions further to the current restrictions of community mobilization. Examples would include raising public awareness and/or strengthening medical care. The country's National Ebola Response Centre has already announced a 3-day lockdown that will affect around 2.5 million people (*20*). Nevertheless, it is worth noticing that even with a 30% reduction in the social network density, the epidemic shows no signs of fading out until June 17 and we estimate that new cases will continue to be recorded.

In conclusion, we found that the EVD epidemic in Sierra Leone was in recession in the period between December 21, 2014 through mid-February, 2015, as reflected by the <1value of the reproductive number for this period. However, during the second study period (i.e., from February 18 to April 17, 2015), the epidemic has spiked and the reproductive number was estimated to be well above criticality, with the potential to persist at this level beyond the end of June and through July. Control measures associated with mobilization restrictions were also evaluated. Our findings, supported by real epidemiologic data and the projection of a spilling over of the epidemic to mid-June, indicate that the measures implemented so far are inadequate. Taken in their totality, these findings indicate that the epidemic, even with strict control isolation policies in effect, will go on through July with a probability of fading out thereafter if policies are implemented and consistently kept in place. Immediate, more intense efforts are needed before further complications emerge. Reducing the effective density of the derived contact small-world-like network, through limited social interactions, has the potential to improve the current situation. Our results and predictions were verified from the official data reported by CDC for the corresponding period of study. Hence, our approach seems promising to forecast re-emergent outbreaks in other vulnerable regions of Africa, such as Eastern and Central Africa, where Ebola outbreaks have traditionally occurred in the past. Estimations through clinical studies of important factors such as the contact transmission probability, mortality and recovery rate, incubation periods

as well as detailed age-specific data as the epidemic develops in space and time, would enhance our ability to better model, forecast and design efficient control policies. However, the usefulness of mathematical models should not be overestimated. Despite the significant technological progress and concentrated wealth, breakdowns and cuts in public health infrastructures worldwide are (the) major reasons for boosting epidemics. Liberia and Sierra Leone, the two countries that have been worst affected from the Ebola epidemic had an almost non-existent health care system: as reported Liberia with a population of more than 4 million people had just 51 physicians and Sierra Leone with a population exceeding 6 million had just 136 physicians (26).

313 Update to the case of Sierra Leone (period April 18-August 15, 2015)

Since the results we obtained by analyzing the reported data until April 17, 2015 showed that the epidemic was sustained in Sierra Leone, we decided to investigate further the current trends of the epidemic dynamics. Therefore, we expanded our analysis by taking into account the reported data for the country for the very last period (April 18-August 15, 2015). The results of this expanded analysis indicate a declining trend in the transmission potential of the virus, as shown in Table 3. More specifically, (p_{rw}) rose significantly in the period April 18-June 16, 2015 to ~0.69 (95% CI: ~0.67-0.72) with a further slight increase in the very last period (June 17-August 15, 2015) to ~0.75 (95% CI: 0.69-0.80). The density ratio of the network as represented by a, did not show significant changes: in the period April 18-June 16, 2015 it was found to be ~0.47 (95% CI: ~0.42-0.51) and ~0.46 (95% CI: 0.37-0.53) during the period June 17-August 15, 2015. The case fatality rate (p_{DII}) dropped to ~10% (95% CI: 8-12%) for both last periods. The expected period from the onset of symptoms to recovery (i.e., the inverse of $P_{I \rightarrow R}$) was ~20 days (95% CI: 16-30 days) during the period April 18-June 16, 2015 and ~16 days (95% CI: 8-32 days) for the period June 17– August 15, 2015. The expected period from the onset of symptoms to death (i.e., the inverse of $P_{I \to D}$) was almost constant at ~3.0 days (95% CI: 2.8-3.2 days) for both last periods. The percontact transmission probability $P_{s \to E}$ values were estimated at ~0.023 (95% CI: 0.02-0.026) in the period April 18-June 16 and ~0.015 (95% CI: 0.01-0.21) in the period June 17- August 15, 2015. Finally, the *Re* obtained through the agent-based simulations dropped to ~ 1.38 (95% CI: 0.95-1.72) in the period April 18-June 16, 2015 and ~ 0.68 (95% CI: 0.47-1.01) from June 17– August 15, 2015, thus indicating a saturation of the epidemic.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

Our analysis succeeded in approximating the actual data for total cases and deaths (*3*). For example, on June 16, 2015 the number of total cases, as reported by the CDC, was 12,990 and the number of deaths was 3,922, while our simulations resulted in 12,963 cases and ~3,940 deaths. On August 14, 2015, the total cases and deaths were 13,485 and 3,952, respectively, and our simulations resulted in 13,437 total cases and 3,993 deaths.

1		
2 3	342	Contributorship statement
4	343	Constantinos Siettos, Lucia Russo, and Christos Grigoras contributed to the development of
5 6	344	the model. Constantinos Siettos and Cleo Anastassopoulou contributed to the data collection,
7 8	345	interpretation of the data and drafting the paper. Eleftherios Mylonakis contributed to the
9	346	interpretation of the data and substantially revised the paper. All authors approved the final
10 11	347	manuscript and accepted accountability for all aspects of the work.
12		
13 14	348	
15 16	349	Competing interests
17		
18 19	350	There are no competing interests.
20	351	
21 22	551	
23 24	352	Funding Statement
25	353	
26 27	354	This research received no specific grant from any funding agency in the public, commercial
28	355	or not-for-profit sectors.
29 30	250	
31 32	350	
33	357	Data Sharing Statement
34 35	250	Na additional data available
36 37	358	No additional data available.
38	359	
39 40		
41 42		
42 43		
44 45		
46		
47 48		
49 50		
50 51		
52 53		
54		
ວວ 56		
57 58		
59		
60		13

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

BMJ Open

2	
2	
3	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
40	
12	
13	
14	
15	
16	
47	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
20	
30	
31	
32	
33	
31	
04	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
40	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
57	
58	
59	

60

360	References
361	
362	1. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, et al.
363 364	Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med. 2014; 3/1:1418-25. PubMed PMID:24738640. http://dx.doi.org/10.1056/NEJMc1415318
365 366	 Ebola virus disease (EVD) in West Africa: an extraordinary epidemic. Wkly Epidemiol Rec. 2015;90:89-96.http://www.who.int/wer/2015/wer9010/en/
367 368	3. 2014 Ebola Outbreak in West Africa. Centers for Disease Control and Prevention. www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/. Accessed 24 Apr 2015
369 370	 Koroma EB. Address to the Nation on the Ebola crisis. 22 Jan 2015. http://www.sierra- leone.org/Speeches/koroma-012215.html. Accessed 24 Mar 2015
371 372	5. Tracking Ebola in the fishing community of Aberdeen in Freetown, Sierra Leone. Mar 2015. http://www.who.int/features/2015/ebola-aberdeen/en/. Accessed 24 Mar 2015
272	6 Signa C. Anastassonoulou C. Russo I. Grigoras C. Mylonakis F. Modeling the 2014
373	Ebola Virus Epidemic – Agent-Based Simulations Temporal Analysis and Future
375	Predictions for Liberia and Sierra Leone. PLOS Currents Outbreaks. 2015 Mar 9.
376	Edition 1.
377	http://dx.doi.org/10.1371/currents.outbreaks.8d5984114855fc425e699e1a18cdc6c9
378	7. Kevrekidis IG, Gear CW, Hyman JM, Kevrekidis PG, Runborg O, Theodoropoulos C.
379	Equation-free, coarse-grained multiscale computation: enabling microscopic
380 381	simulators to perform system-level analysis. Commun. Math. Sci. 2003; 1: 715–62. http://projecteuclid.org/euclid.cms/1119655353
382	8. Watts DJ, Strogatz SH, Collective dynamics of 'small-world' networks, Nature
383	1998;393:440-42. http://dx.doi.org/10.1038/30918
384	9. Newman, MEJ, Watts DJ. Scaling and percolation in the small-world network
385	model. Physical Review E 1999; 60: 7332–42.
386	http://dx.doi.org/10.1103/PhysRevE.60.7332
387	10. Aylwar B, Barboza P, Bawo L, Pharm B, Bertherat E, Bilivogui P. et al.; Who Ebola
388	Reponse Team. Ebola virus disease in West Africathe first 9 months of the
389	epidemic and forward projections. N Engl J Med. 2014; 371:1481-95.
390	http://dx.doi.org /10.1056/NEJMoa1411100
391	11. Sierra Leone. United Nations Statistics Division.
392	https://data.un.org/CountryProfile.aspx?crName=SIERRA%20LEONE. Accessed 24
393	Mar 2015.
394	12. Ebola Situation Reports. World Health Organization. http://apps.who.int/ebola/ebola-
395	situation-reports.
396	13. Coleman TF, Li Y. An interior trust region approach for nonlinear minimization
397	subject to bounds. SIAM J Optim. 1996; 6:418-45. http://dx.doi.org/10.1137/0806023

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

2 3 4 5	398 399 400	 Makeev AG, Maroudas D, Kevrekidis IG. "Coarse" stability and bifurcation analysis using stochastic simulators: Kinetic Monte Carlo examples. J Chem Phys. 2002; 116:10083-91. http://dx.doi.org/10.1063/1.1476929
6 7 8 9	401 402 403	 Gear CW, Kevrekidis IG, Theodoropoulos C. "Coarse" integration/bifurcation analysis via microscopic simulators: micro-Galerkin methods. Comput Chem Eng. 2002; 26:941-63. http://dx.doi.org /10.1016/S0098-1354(02)00020-0
10 11 12 13	404 405 406	 Theodoropoulos C, Qian YH, Kevrekidis IG. "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. Proc Natl Acad Sci U S A. 2000;97: 9840-43. http://dx.doi.org /10.1073/pnas.97.18.9840
14 15 16 17	407 408 409	 Siettos CI, Graham MD, Kevrekidis IG. Coarse Brownian dynamics for nematic liquid crystals: Bifurcation, projective integration, and control via stochastic simulation. J Chem Phys. 2003; 118:10149-56. http://dx.doi.org/10.1063/1.1572456
18 19 20 21	410 411 412	 Kevrekidis IG, Gear CW, Hummer G. Equation-free: The computer-aided analysis of complex multiscale systems. AIChE J. 2004; 50:1346-55. http://dx.doi.org /10.1002/aic.10106
22 23	413	19. MATLAB. The MathWorks Inc. http://www.mathworks.com/
24 25 26 27	414 415 416	20. Ansumana R, Jacobsen KH, Idris M, Bangura H, Boie-Jalloh M, Lamin JM, et al. Ebola in Freetown area, Sierra Leone — a case study of 581 patients. N Engl J Med 2015; 372:587-88. http://dx.doi.org /10.1056/NEJMc1413685
28 29	417	21. http://www.nicd.ac.za/?page=alerts&id=5&rid=531
30 31 32 33 34 35	418 419 420 421	22. Gomes MFC, Pastore y Piontti A, Rossi L, Chao D, Longini I, Halloran ME, et al. Assessing the international spreading risk associated with the 2014 West African Ebola outbreak. PLOS Currents Outbreaks. 2014 Sep 2. Edition 1. http://dx.doi.org /10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
36 37 38 39	422 423 424	23. Agua-Agum J, Ariyarajah A, Blake IM, Cori A, Donnelly CA, Dorigatti I, et al.;Who Ebola Reponse Team. Ebola Virus Disease among Children in West Africa. N Engl J Med 2015; 372:1274-77. http://dx.doi.org /10.1056/NEJMc1415318
40 41 42	425 426	24. Ebola crisis: Sierra Leone lockdown to hit 2.5m people. BBC News. 19 Mar 2015. http://www.bbc.com/news/world-africa-31966989. Accessed 24 Mar 2015.
43 44 45 46	427 428 429	25. Khan A, Naveed M, Dur-e-Ahmad M, Imran M. Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone. Infectious Diseases of Poverty (2015) 4:13 DOI 10.1186/s40249-015-0043-3.
47 48	430	26. http://www.bbc.com/news/world-africa-29324595
49 50 51 52 53 54	431	

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright

432
433
434 Table 1. Key epidemiologic features of the Ebola Virus Disease (EVD) epidemic in Sierra
435 Leone estimated by the model during the first and second study period (December 21, 2014 436 April 17, 2015).

Period	Variable	Mean	95% CI
First	<i>p</i> _{rw}	0.37	0.33-0.41
(Dec. 21-	Network density (α)	0.55	0.51-0.58
Feb. 18, 2015)	Time to death (Days)	3.6	3.3-4.0
	Time to recovery (Days)	9.5	8.6-10.7
	CFR (%)	32	31-33
	R_e	0.77	0.72-0.82
Second	<i>p</i> _{<i>rw</i>}	0.22	0.20-0.24
(Feb. 18-Apr.	Network density (a)	0.63	0.59-0.68
17, 2015)	Time to death (Days)	3.6	3.3-4.0
	Time to recovery (Days)	8.0	6.5-10.5
	CFR (%)	39	38-40
	R_{e}	1.98	1.33-2.22

 p_{rw} , Rewiring switching probability; CFR, Case fatality rate ($p_{D/I}$); R_e , Effective

439 reproductive number

BMJ Open

Table 2. Outcomes of isolation control policy scenarios on the basis of the expected 442 reproductive number R_e , as computed by running the agent-based simulation from April 17 443 to the mid-June 2015 (keeping fixed all other values of the model parameters). Sparser 444 density refers to a percent reduction of the expected density of the contact network compared 445 to the 0.63 value that was estimated for the second period (February 18 – April 17, 2015).

Period	% Sparser density	Network density (a)	R_{e}
(April 18-	10%	~0.57	~1.7
June 17,	20%	~0.51	~1.5
2015)	30%	~0.44	~1.4
	40%	~0.38	~1.2
	50%	~0.32	~1.0

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

449	
450	Table 3. Up-to-date key epidemiologic features of the Ebola Virus Disease (EVD) epidemic

451 in Sierra Leone estimated by the model during the period (June 18- August 15, 2015).

Period	Variable	Mean	95% CI
(June 18-	p_{rw}	0.69	0.67-0.72
July 16, 2015)	Network density (α)	0.47	0.42-0.51
	Time to death (Days)	3.0	2.8-3.2
	Time to recovery (Days)	20	16-30
	CFR (%)	10	8-12
	R_{e}	1.38	0.95-1.72
(July 16-	p_{rw}	0.75	0.69-0.80
August 15,	Network density (α)	0.46	0.37-0.53
2015)	Time to death (Days)	3.0	2.8-3.2
	Time to recovery (Days)	16	8-32
	CFR (%)	10	8-12
	R_{e}	0.68	0.47-1.01

 p_{rw} , Rewiring switching probability; CFR, Case fatality rate $(p_{D/I})$; R_e , Effective

454 reproductive number

BMJ Open

456 FIGURE LEGENDS

Figure 1. Simulation Results for Sierra Leone from December 21, 2014 to April 17, 2015. Expected cumulative cases of infected (dotted red) and dead (dotted black). WHO data are depicted by solid lines. The period under study has been tessellated into two windows with a length of 60 days each. For each window, the model parameters are estimated based on the data reported from WHO.

Figure 2. Estimated model parameters for Sierra Leone from December 21, 2014 to April 17, 2015. (a) Evolution of contact network characteristics: switching probability (p_{rw}) and density ratio of the transmission network (a). (b) Per-contact transmission probability $(p_{s\to E})$. (c) 1/{recovery period} $(p_{I\to R})$. (d) 1/{period from inset of symptoms to death} $(p_{I\to D})$. (e) Case fatality rate $(p_{D/I})$. (f) Effective reproductive number (R_e) . 95% Confidence intervals are also shown.

471 Figure 3. Forecasting of the evolution of the epidemic from April 18 to June 17, 2015
472 under different control scenarios. Network density values were compared to the density of
473 the social network estimated for the period February 18-April 17, 2015. (a) Total Cases, (b)

- 474 Deaths. The "no further action" scenario is also depicted.

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

Simulation Results for Sierra Leone from December 21, 2014 to April 17, 2015. Expected cumulative cases of infected (dotted red) and dead (dotted black). WHO data are depicted by solid lines. The period under study has been tessellated into two windows with a length of 60 days each. For each window, the model parameters are estimated based on the data reported from WHO.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Estimated model parameters for Sierra Leone from December 21, 2014 to April 17, 2015. (a) Evolution of contact network characteristics: switching probability and density ratio of the transmission network. (b) Percontact transmission probability. (c) 1/{recovery period}. (d) 1/{period from inset of symptoms to death}. (e) Case fatality rate. (f) Effective reproductive number. 95% Confidence intervals are also shown.

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2015-008649 on 29 January 2016. Downloaded from http://bmjopen.bmj.com/ on September 23, 2023 by guest. Protected by copyright.

Forecasting of the evolution of the epidemic from April 18 to June 17, 2015 under different control scenarios. Network density values were compared to the density of the social network estimated for the period February 18-April 17, 2015. (a) Total Cases, (b) Deaths. The "no further action" scenario is also depicted.