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ABSTRACT
Objective: The statistical analysis for a 2-arm
randomised controlled trial (RCT) with a baseline
outcome followed by a few assessments at fixed
follow-up times typically invokes traditional analytic
methods (eg, analysis of covariance (ANCOVA),
longitudinal data analysis (LDA)). ‘Constrained’
longitudinal data analysis (cLDA) is a well-established
unconditional technique that constrains means of
baseline to be equal between arms. We use an analysis
of fasting lipid profiles from the Group Medical Clinics
(GMC) longitudinal RCT on patients with diabetes to
illustrate applications of ANCOVA, LDA and cLDA to
demonstrate theoretical concepts of these methods
including the impact of missing data.
Methods: For the analysis of the illustrated example,
all models were fit using linear mixed models to
participants with only complete data and to
participants using all available data.
Results: With complete data (n=195), 95% CI
coverage are equivalent for ANCOVA and cLDA with an
estimated 11.2 mg/dL (95% CI −19.2 to −3.3;
p=0.006) lower mean low-density lipoprotein (LDL)
cholesterol in GMC compared with usual care. With all
available data (n=233), applying the cLDA model
yielded an LDL improvement of 8.9 mg/dL (95% CI
−16.7 to −1.0; p=0.03) for GMC compared with usual
care. The less efficient, LDA analysis yielded an LDL
improvement of 7.2 mg/dL (95% CI −17.2 to 2.8;
p=0.15) for GMC compared with usual care.
Conclusions: Under reasonable missing data
assumptions, cLDA will yield efficient treatment effect
estimates and robust inferential statistics. It may be
regarded as the method of choice over ANCOVA
and LDA.

INTRODUCTION
In a recent longitudinal randomised con-
trolled trial (RCT) designed to examine the
effect of Group Medical Clinics (GMC) on
cardiovascular outcomes in patients with dia-
betes, the statistical inference on the effect
of the GMC intervention on low-density lipo-
protein (LDL) levels was dependent on the
method of analysis applied.1 Estimates of

mean difference in LDL between treatment
arms ranged from 6.9 to 11.2 mg/dL
depending on the analysis method used.
Reviewers questioned the primary analysis
method which yielded an LDL improvement
of 8.9 mg/dL for the GMC arm compared
with usual care (p=0.03), and requested an
alternative, and seemingly plausible but less
powerful analysis that yielded an LDL
improvement of 7.2 mg/dL for the GMC
arm compared with usual care (p=0.15).
Thus, the interpretation of the intervention
effect varied significantly depending on
the analytic technique used. Based on this
experience and others of a similar nature,
clarification of methods available as well as
analysis recommendations is warranted and
may be useful, not only to statistical analysts,
but clinical researchers evaluating longitu-
dinal RCTs.

Longitudinal study designs
In many longitudinal RCTs, research partici-
pants are measured at the same follow-up
measurement occasions and the number of
follow-up occasions is small, for example, 2–
4. Typically, baseline outcomes are measured

Strengths and limitations of this study

▪ Clarification of the statistical methods available
for longitudinal randomised controlled trials
(RCTs) as well as analysis recommendations is
warranted.

▪ In many longitudinal RCTs, participants are mea-
sured at baseline, then at the same follow-up
occasions with a small number of follow-ups, for
example, 2–4. In this design, how should base-
line values be handled?

▪ In practical applications, constrained longitudinal
data analysis, an appropriate generalisation of
analysis of covariance, is the most straightfor-
ward to implement and under reasonable
missing data assumptions will yield robust esti-
mates of treatment effect differences and valid
inferential statistics.
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prior to randomisation. In analyses, baseline outcomes
can be ignored, used to calculate change scores, used
conditionally as covariates or can be part of the
outcome response vector. In this design, how should
baseline values be handled? Is the question of interest
conditional, given one’s baseline what is the difference
in outcome between treatment arms, or is the question
unconditional, what is the treatment difference in
change? Or does it matter? These fundamental ques-
tions and their implications on the method of analysis
were introduced over 50 years ago in a sentinel paper by
Lord2 subsequently leading to the term ‘Lord’s paradox.
In Lord’s hypothetical example, the difference between
the conditional and unconditional questions and how
analyses are applied yielded different answers and statis-
tical inference when applied to the same data set. In
spite of extensive literature3–8 for this type of data, there
remains a lack of clarity in biomedical research applica-
tions regarding longitudinal statistical analysis.
As the issue is addressed here, a major complication

requiring consideration in the analysis strategy of a lon-
gitudinal RCT is missing data. Attrition (dropout) or
intermittent missingness occurs even in studies with few
measurement occasions as we are addressing. Reducing
the quantity of missing data in an RCTenhances the reli-
ability of results;9 however, rarely is it possible to elimin-
ate missing data completely? The assumptions and
methods applied for handling missing data when analys-
ing ‘change’ in a longitudinal RCT can greatly affect the
robustness, validity and power of results and need to be
clearly understood.
The general consensus in the statistical literature for

a longitudinal RCT is that the conditional approach,
that is, analysis of covariance (ANCOVA), is the most
powerful and robust method4 8 to address the funda-
mental questions of interest. We take this view, and
elaborate on its implementation, taking into account
the additional complication of missing data, and enu-
merate the benefits of unconditional constrained lon-
gitudinal data analysis (cLDA) models, illustrating that
they generalise the ANCOVA approach in the longitu-
dinal trials’ setting.

Analysis strategies
In a longitudinal RCT of the type addressed here, the
outcome of interest is measured at each of the defined
assessment periods of the trial (each participant in each
arm of the trial). In this setting define the outcome as
Yit , the assessed value at each time point, t for each
individual i (where i ¼ 1::n; t ¼ 0::kÞ. In its simplest
form, a longitudinal RCT is a pre/post-type of study
where there are assessments at two time points, one
pre-treatment baseline, Yi0, and one post-treatment, Yi1.
In the more general longitudinal RCT study design

with multiple but few follow-up time points, response
profile modelling6 also known as mixed model repeated
measures10 is generally used as it allows for arbitrary pat-
terns in the mean responses over time (ie, time is

dummy coded) as well as for the covariance of responses
and can be used for fitting ANCOVA, cLDA or longitu-
dinal data analysis (LDA) models. From a modelling
perspective, the pre-treatment baseline assessment can
be viewed as either a fixed predictor of post-treatment
outcome or as an outcome assessment. For the former,
the conditional ANCOVA approach yields estimates of
treatment differences over time given the observed
baseline values where post-treatment outcome measure-
ments are the response variables. For the latter, an
unconditional model (LDA or cLDA) yields estimates of
treatment differences unconditionally, and in the
context of a longitudinal RCT, both the pre-treatment
and post-treatment outcome measurements are response
variables.

Conditional versus unconditional models
A fundamental difference between a conditional or
unconditional analysis is in the modelling of the
pre-treatment assessment. In unconditional analysis,
baseline is part of the response vector requiring add-
itional assumptions for modelling baseline. In an LDA,
there are no modelling constraints on the baseline; sep-
arate baseline means are assumed and fit for each ran-
domised group. The general test used for treatment
difference over time in LDA is equivalent to a change
score type of analysis; comparing change from baseline
to follow-up between randomised groups. In contrast
for cLDA baseline means are constrained to be equal
between the randomised groups; a common baseline
mean is assumed and fit across randomised groups. In
an RCT, baseline precedes any treatment deliverance
and under expectation the baseline means are equal.
The test for treatment difference over time in the
cLDA is essentially equivalent to a test for treatment
difference in an ANCOVA when no outcome data are
missing.5 11–13

Conditional model
An ANCOVA model in a two-arm ( j=1, 2) RCT with a
pre/post design will have study outcome measures at
baseline and one follow-up time (t=0,1). However, there
will only be one response variable per participant (i=1,
…,nj) as the baseline (Y0) is a covariate in the model.
The model is written as:

Yij1¼mþaYij0 þ b I( j ¼ 2)þ eij1 ð1Þ

The marginal mean at follow-up time (t=1) is con-
ditional on the baseline Yij0. The parameter a is the
slope for the baseline, and b is the effect of treatment
( j=2) at time (t=1) compared with treatment ( j=1)
adjusted for the baseline effect.

Unconditional models
LDA model
An LDA model in a two-arm ( j=1, 2) RCT with a pre/
post design will have study outcome measures at both
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the baseline and follow-up time (t=0,1). The model is
written as:

Yijt ¼ mþ g I( j ¼ 2)þ t I(t ¼ 1)

þ d I( j ¼ 2; t ¼ 1)þ eijt ð2Þ

The parameter γ is the difference in baseline means at
time (t=0) between arms, τ is the mean difference in
change from baseline to follow-up for arm ( j=1), and δ
is the difference in change from baseline to follow-up
between arms.

cLDA model
A cLDA model in a two-arm ( j=1, 2) RCT with a pre/
post design will have study outcome measures at both
the baseline and follow-up time (t=0,1). The model is
written as:

Y ijt ¼ m0 þ t0 I(t ¼ 1)þ d0 I( j ¼ 2; t ¼ 1)þ eijt ð3Þ

The parameter t0 is the mean change in outcome from
baseline to follow-up time in arm ( j=1), and δ′ is the
mean difference in change from baseline to follow-up
between arms, however, since baseline means are
assumed equivalent this is the mean difference between
arms at the follow-up time.

Conditional and unconditional model comparison
No missing baseline or follow-up data: When there is no
missing baseline or follow-up data, Liang and Zeger5

and Liu et al11 have shown that ANCOVA and cLDA
models produce identical point estimates for treatment
differences. Using our model notation we can state
under the case of no missing baseline or follow-up data:

bANCOVA ¼ d
0
cLDA ð4Þ

Similarly, for reasonably sized trials the variance of the
treatment effect differences will be approximately
equivalent between ANCOVA and cLDA models (see
online supplementary appendix A).
Frison and Pocock3 have shown that estimated treat-

ment differences from ANCOVA or of POST-treatment
means or CHANGE from baseline from an LDA model
have the same expected value. However, they demon-
strate the general superiority of inferential power for
ANCOVA over both POST and CHANGE from baseline
analysis. We can see from plotting equations of estimates
of variance in figure 1 that ANCOVA and cLDA are
superior to LDA-POST and LDA-CHANGE over the
range of correlations between pre and post measure-
ments (see online supplementary appendix A for vari-
ance estimates). For high correlations between pre-
measurements and post-measurements the variances of
LDA-CHANGE and ANCOVA/cLDA are similar.
The conditional and unconditional models described

above are easily extendible from the pre/post type

design with only one follow-up time point to multiple
follow-up time points by additional dummy variables to
represent follow-up times. Similarly, comparison of
models and estimates from the pre/post design apply to
the follow-up time points. In the longitudinal RCTs with
few measurement occasions, the comparison of interest
is generally the treatment difference at the last follow-up
time point (T)—the theory as described above for the
post-time measurement in a pre/post design applies to
analysing the differences between treatment arms at any
specific follow-up time.

Motivating example: group medical clinics study
We present an analysis of fasting lipid profiles from the
GMC longitudinal RCT on patients with diabetes to illus-
trate applications of ANCOVA, LDA and cLDA models
and demonstrate theoretical concepts described above
including the impact of missing data.1 This study rando-
mised 239 participants at a 3:2 ratio to the GMC arm
(n=133) and usual care arm (n=106). Fasting lipid profiles
are secondary outcomes from the GMC study measured at
baseline, midpoint (median follow-up 6.8 months) and
end of study (median follow-up 12.8 months).14

For illustration, we focus analysis on the baseline and
12-month LDL cholesterol (LDL-C) measurements. For
notation, the two arms will be denoted with j=G for
GMC or j=U for usual care and time with t=0 for base-
line and t=12 for 12 months. All analyses were con-
ducted using SAS V.9.2 (SAS Institute, Cary, North
Carolina, USA).

Figure 1 Comparison of variance of treatment difference

estimates over the range of correlations between pre and post

measurements for LDA, cLDA, ANCOVA and SPO methods;

plot generated from variance estimate formulas given in online

supplementary appendix A. ANCOVA, analysis of covariance;

cLDA, constrained longitudinal data analysis; LDA,

longitudinal data analysis; SPO, simple post only.
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METHODS
For completeness of analyses approaches, in addition to
the ANCOVA, LDA and cLDA models, we also
conducted simple post only (SPO) and simple change
score analysis (SACS). For SPO, we compared mean
12-month LDL-C (b�Y G;12) for GMC ( j=G) to mean usual
care ( j=U) 12-month LDL-C (b�Y U;12) and for SACS, we
compared mean LDL-C change from baseline (b�CG;12)
for GMC ( j=G) to the mean change from baseline
LDL-C (b�CU;12) for usual care ( j=U) using two-sample
t-tests. We then applied the ANCOVA, LDA-CHANGE
and cLDA models to, Yj;0 and Yj;12, the assessed value of
LDL-C. All three types of models were fit using linear
mixed models15 and the response profile modelling
approach. Models were fit using PROC MIXED with
restricted maximum likelihood estimation and unstruc-
tured covariance.

Completers analysis
The first set of analyses was applied to participants that
had both baseline and 12-month measurements (com-
pleters) to demonstrate theoretical comparisons of
models as described without the added complication of
missing data.

RESULTS
Among the 239 patients randomised in the study, 195 par-
ticipants had LDL-C measurements at both baseline and
12 months. All methods yield statistically significant dif-
ferences in LDL-C between arms (table 1) with change
score analysis methods (SACS and LDA) right at p=0.05.
SPO had the largest estimated difference in mean LDL-C
between GMC and usual care. As expected, estimated
mean treatment differences at 12 months and 95% CI
coverage are equivalent for the ANCOVA and cLDA with
an estimated 11.2 mg/dL lower mean LDL-C in GMC
compared with usual care. The SACS and LDA estimated
differences and 95% CI coverage are equivalent with an
estimated 10.1 mg/dL lowering between baseline and
12 months of mean LDL-C for GMC compared with
usual care. LDA and SACS analyses yield a wider 95% CI
than ANCOVA and cLDA methods. For completers, the
ANCOVA and cLDA yield the most robust results and
illustrate their superiority (as shown in figure 1) over

SPO and change score methods (both SACS and LDA),
as the correlation between baseline and 12-month LDL-C
values was estimated in the 0.50 range.

All participants analysis
The second set of analyses was applied to all participants
(ie, including those with either missing baseline or
12-month measurements) to compare methods and illus-
trate the impact of missing data. SPO participants with
missing 12-month LDL-C are deleted and SACS partici-
pants with either missing baseline or end of study mea-
surements are deleted. Similarly, for ANCOVA with only
two time points, participants with missing baseline or
12-month measurements are deleted. For LDA and
cLDA, all available data were used; no participants were
deleted due to missing data. The estimation procedure
used in the mixed model framework for longitudinal
analysis yields unbiased estimates of parameters when
missing outcomes are assumed to be ignorable, that is,
when missing values are related to either observed cov-
ariates or response variables but not to unobserved
variables.16 17

RESULTS
Among the 239 patients randomised, 6 participants had
no baseline or 12-month LDL-C, so they are excluded
yielding 233 patients for the all participants analysis.
The estimated treatment differences diverge across ana-
lysis methods as well as statistical significance using a
α=0.05 (table 2). ANCOVA and SACS are equivalent to
completers analyses, as the 38 cases with either a missing
baseline or 12-month LDL-C are deleted. ANCOVA and
cLDA methods no longer have equivalent estimates of
treatment differences. All 233 participants contribute at
least one measurement to cLDA analysis so that partici-
pants missing either a baseline or 12-month LDL-C con-
tribute to estimated treatment difference of an 8.9 mg/
dL lower mean LDL-C at 12 months in GMC compared
with usual care (see table 2). The discrepancy in the esti-
mated treatment difference between ANCOVA and
cLDA is due to missing data and assumptions that are
made about missing data. As discussed previously,
mixed-effect models yield unbiased estimates of treat-
ment effects under the assumption that the missing data

Table 1 Completers only (n=195 participants)—pre/post analyses

Model Outcome (Yt and/or Ct) GMC (n=117) Usual care (n=78) GMC vs usual care (95% CI) p Value

Post-only 12 months (Y12) 81.9 94.1 −12.1 (−21.5 to −2.7) 0.01

SACS 12 months−baseline (C12) −12.9 −2.8 −10.1 (−20.2 to 0.0) 0.05

ANCOVA 12 months (Y12) 82.3 93.5 −11.2 (−19.2 to −3.3) 0.006

LDA Baseline (Y0) 94.8 96.9

12 months (Y12) 81.9 94.1 −10.1 (−20.2 to 0.0) 0.05

cLDA Baseline (Y0) 95.7 95.7

12 months (Y12) 82.3 93.5 −11.2 (−19.2 to −3.3) 0.006

ANCOVA, analysis of covariance; cLDA, constrained longitudinal data analysis; GMC, Group Medical Clinics; LDA, longitudinal data analysis;
SACS, simple change score analysis.
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are conditional on observed quantities. Although this
assumption cannot be specifically tested, the discrepancy
in estimates between ANCOVA and cLDA model yields
some evidence that data are missing conditional on
observed quantities. If data were missing completely at
random (not conditional on observed quantities) then
estimated treatment differences between ANCOVA with
case deletion and cLDA should be similar. Similarly, dif-
ferences in estimates from the POST-only as well as LDA
models between completers only and participants using
all available data provide evidence that participants with
missing observations may not be a completely random
sample from the study population. Therefore, any ana-
lyses based on completers only (including the ANCOVA
model) may be biased.
As shown for ANCOVA and cLDA, LDA and SACS

methods estimated differences are discrepant due to
missing data and assumptions that are made about
missing data. LDA is using all available data and fit using
mixed-effects model, whereas in SACS participants with
missing data are deleted. Similar to completers analysis,
LDA methods yield wider 95% CI than both cLDA and
ANCOVA.

DISCUSSION
Missing data implications: the case for cLDA
The illustrative example presented above clearly demon-
strates the statistical theory described for the analysis
methods and the impact of missing data3 4 16 on the infer-
ence and interpretations of results. In general, the implica-
tions of how missing data are handled in a trial range from
sample size and statistical power loss to potentially biased
estimates of treatment effects. Olsen et al18 discuss prin-
cipled methods for handling missing data in longitudinal
sleep disorder trials that are relevant to the types of longi-
tudinal RCTs we are discussing. The default method for
handling missing data in many software packages is case
deletion; if any variable or outcome is missing for a partici-
pant, then the participant is deleted from analysis. In
order for estimates of treatment effect differences to be
unbiased when case deletion occurs, we have to assume
that the subset of participants with complete data is a
random sample of the entire study sample. Therefore, for

ANCOVA, SACS and SPO analysis above, we are making
this assumption. For many longitudinal RCTs it is likely
that the probability of dropout is related to some observ-
able characteristic or quantity (eg, treatment arm assign-
ment) and therefore the subset of participants with
complete data is not a random sample of the entire study.
Under this assumption unbiased estimates of treatment
effects can be achieved with mixed-effect models or by per-
forming multiple imputation.18 Methods for handling
missing data when we cannot assume that missing data can
be characterised by observable quantities are beyond the
scope of this paper.
The choice of whether to use multiple imputation is

up to the analyst and based on the untestable assump-
tion that all predictors of missing data can be included
in the mixed-effect model. In many longitudinal RCTs it
is a reasonable assumption that treatment group assign-
ment, time of assessment and available outcome assess-
ments along with potential baseline stratification
variables would be the predictors of missing outcome
data. If the number of potential predictor variables of
missing data is expansive and unreasonable to include
in the mixed-effects model then it may be necessary to
perform a multiple imputation analysis.
Multiple imputation is a more complicated process for

handling missing data that is also based on the untest-
able assumption that all predictors of missing data are
included in the imputation model.17 In the multiple
imputation framework, comparisons of conditional and
unconditional models would be equivalent to what was
discussed above for no missing baseline or follow-up
data. Once imputed data sets are created, there are no
missing outcome data; the uncertainty from estimating
imputed values is accounted for in the SE estimates.
For ease of implementation and robustness of

results15 16 mixed-effect models with maximum likeli-
hood estimates are a good first-line choice for handling
missing data. Even when applying mixed-effects models,
the treatment of baseline values can impact results
because of differences in case deletion. In the pre/post
design if the baseline is a covariate (ANCOVA), partici-
pants with the missing covariate will be deleted. Similarly,
with only one follow-up time, if the follow-up time is
missing then there is no outcome data for the participant

Table 2 All available data (n=233 participants)—pre/post analyses

Model Outcome (Yt and/or Ct) N GMC Usual care GMC vs usual care (95% CI) p Value

Post-only 12 months (Y12) 204 89.7 96.7 −6.9 (−14.2 to 0.4) 0.07

SACS 12 months−baseline (C12) 195 −12.9 −2.8 −10.1 (−22.0 to −0.8) 0.05

ANCOVA 12 months (Y12) 195 83.4 94.6 −11.2 (−19.2 to −3.3) 0.006

LDA* Baseline (Y0) 233 96.7 99.6

12 months (Y12) 83.5 93.6 −7.2 (−17.2 to 2.8) 0.15

cLDA* Baseline (Y0) 233 98.0 98.0

12 months (Y12) 84.0 92.9 −8.9 (−16.7 to −1.0) 0.03

*Baseline LDL-C is missing for 9 participants and 12-month LDL-C is missing for 29 participants.
ANCOVA, analysis of covariance; cLDA, constrained longitudinal data analysis; GMC, Group Medical Clinics; LDA, longitudinal data analysis;
LDL-C, low-density lipoprotein cholesterol; SACS, simple change score analysis.
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to be included. However, with unconditional models
since both baseline and follow-up are part of the
outcome vector, if a participant is missing either measure-
ment, their available data will be included and partici-
pant is not deleted. When missing data occur and
mixed-effect models are used, cLDA models are the
optimal choice for providing the most precise estimate of
treatment differences under a reasonable assumption
that missing data are related to observable characteristics.
Finally, it should also be noted that these methods will
not diverge for every data set to which they may be
applied to—however as certain missing data assumptions
cannot specifically be tested, cLDA models are the
optimal choice across a range of conditions and data sets.

SUMMARY
It does not appear widely appreciated that cLDA can often
be regarded as the method of choice for the analysis of a
longitudinal RCT with few measurement occasions. Except
for small samples it is equivalent to ANCOVA when there
are no missing data, and cLDA is an appropriate generalisa-
tion of ANCOVA under reasonable missing data assump-
tions. Without question, potential baseline imbalance
between treatment arms has implications for the analysis of
longitudinal RCTs and is a source of confusion. In an RCT,
baseline differences can be attributed to random chance
assuming there were no problems or issues with the ran-
domisation process and no significant measurement error
issues. LDA or CHANGE score analysis is sometimes viewed
as a more intuitive analysis; however, for an RCT most often
the best method is an ANCOVA as far as bias, precision and
power.19 In a longitudinal RCT, when within-participant
correlations are not high, change score or LDA (an uncon-
ditional analysis) is not the most powerful analyses. Frison
and Pocock3 found that ANCOVA treatment difference esti-
mates have small bias under the assumption that measure-
ment error is a small proportion of the between-participant
variance; however, bias in a change score analysis may be
somewhat larger especially if correlations between pre- and
post-measurements are small.
cLDA is sometimes erroneously viewed as more prob-

lematic when there is baseline imbalance in outcomes
between treatment arms. However, cLDA and ANCOVA
are equivalent when analysing complete data. cLDA gen-
eralises the ANCOVA approach and both are superior to
an LDA in many cases. Therefore, the primary analytic
issue is not necessarily whether or not to perform condi-
tional analysis. ANCOVA is a conditional analysis and
cLDA is an unconditional analysis, yet both are powerful
methods that can be applied to examine treatment differ-
ences over time in a longitudinal RCT. In practical appli-
cations, cLDA is the most straightforward to implement
and under reasonable missing data assumptions will yield
robust estimates of treatment effect differences and infer-
ential statistics. In most cases, it is the method of choice.
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