BMJ Open

Molecular detection of CTG repeat lengths in the DMPK gene in healthy individuals and diagnosis of myotonic dystrophy type 1 using triplet-primed PCR in Malaysia

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-010711
Article Type:	Research
Date Submitted by the Author:	10-Jan-2016
Complete List of Authors:	Ambrose, Kathlin; University of Malaya, Department of Molecular Medicine Ishak, Taufik; University of Malaya, Paediatrics Lian, Lay; University of Malaya, Molecular Medicine Goh, Khean; University of Malaya, Medicine Wong, Kum; University of Malaya, Pathology Ahmad-Annuar, Azlina; University of Malaya, Biomedical Science Thong, Meow; University of Malaya, Paediatrics
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Genetics and genomics, Pathology
Keywords:	CTG repeats, genetic counselling, myotonic dystrophy type 1, molecular diagnosis, TP-PCR, prevalence
	·

Title

Molecular detection of CTG repeat lengths in the *DMPK* gene in healthy individuals and diagnosis of myotonic dystrophy type 1 using triplet-primed PCR in Malaysia

Authors

Kathlin K. Ambrose¹, Ishak Taufik², Lay H. Lian¹, Khean J. Goh³, Kum T. Wong⁴, Azlina Ahmad-Annuar⁵, Meow K. Thong²

Author affiliations

Department of Molecular Medicine, 2. Department of Paediatrics, 3. Department of Medicine, 4.
 Department of Pathology, 5. Department of Biomedical Science, Faculty of Medicine, University of Malaya
 50603 Kuala Lumpur, Malaysia

Correspondence to

Professor Meow-Keong Thong; thongmk@um.edu.my

Abstract

Objective The lack of epidemiological data and molecular diagnostic services in Malaysia has hampered the setting-up of a comprehensive management plan for myotonic dystrophy type 1 (DM1) patients, leading to delayed diagnosis, treatment and support for patients and families. The aim of this study was to estimate the prevalence of DM1 in the three major ethnic groups in Malaysia and evaluate the feasibility of a single tube triplet-primed polymerase chain reaction (TP-PCR) method for diagnosis of DM1 in Malaysia.

Design, setting and participants We used PCR to determine the size of CTG repeats in 377 healthy individuals and 11 DM1 suspected patients, recruited from a tertiary hospital in Kuala Lumpur. Tripletprimed PCR was performed on selected samples, followed by Southern blotting to confirm and estimate the size of CTG expansion.

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

Outcome measures The number of healthy individuals with $(CTG)_{>18}$ was determined according to ethnic group and as a whole population. Chi-squared test was performed to compare the distribution of $(CTG)_{>18}$ with 12 other populations. Additionally, the accuracy of TP-PCR in detecting CTG expansion in 11 DM1 patients was determined by comparing the results with that from Southern Blot testing.

Results Of the 754 chromosomes studied, (CTG)_{>18} frequency of 3.60%, 1.57% and 4.00% in the Malay, Chinese and Indian sub-populations respectively, was detected, showing similarities to data from Thai, Taiwanese and Kuwaiti populations. We also successfully detected CTG expansions in nine patients using the TP-PCR method followed by the estimation of CTG expansion size via Southern blot.

Conclusions The results show a low DM1 prevalence in Malaysia with the possibility of underdiagnosis and demonstrates the feasibility of using a clinical and TP-PCR-based approach for rapid and cost effective DM1 diagnosis in developing countries.

Strengths and limitations of this study

- This is the first DM1 epidemiological study on healthy individuals from the three major ethnic groups in Malaysia.
- To date molecular diagnostic testing for DM1 is not performed in any hospital in Malaysia. This study describes the feasibility of a cost and time-effective TP-PCR based method for rapid screening and diagnosis of DM1.
- The number of DM1 samples analysed is small as DM1 is a rare disease in Malaysia.

Key Words

CTG repeats/genetic counselling/myotonic dystrophy type 1/molecular diagnosis/TP-PCR/prevalence

Introduction

The myotonic dystrophies (DM) are the most prevalent adult muscular dystrophy worldwide, with an estimated prevalence of 1 in 8000.¹ They are classified into two main sub-groups, myotonic dystrophy type 1 (DM1) and type 2 (DM2). These are caused by nucleotide repeat expansions, which are inherited

in an autosomal dominant manner, and manifest as clinically heterogeneous diseases. DM1 is due to CTG nucleotide repeats beyond the normal length of five to 49, in the 3' untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (*DMPK*) gene, located on chromosome 19q 13.3.^{2, 3} It is a progressive disease and categorised into several subtypes. The congenital form of DM1 is maternally transmitted more frequently, although the disease occurs equally in males and females.⁴ The general consensus is that the larger the CTG repeat in an individual, the more severe the disease and the earlier the age of onset. It is however, difficult to classify individual DM1 cases into distinct categories based merely on the size of CTG repeats, as genotype-phenotype correlation often overlap and are not clearly defined. In addition, the repeat sizes have shown variation, both between tissues, and over time in the same tissue.^{5, 6} This has made disease prognosis difficult. The genetic phenomenon of anticipation can also be observed in the inheritance of the disease, resulting in a more severe form of the disease coupled with an earlier age of onset in subsequent generations.^{7, 8}

The prevalence of DM1 varies greatly across populations—it is pre-dominantly seen amongst the Europeans and Japanese.⁹ A study also estimated a high disease frequency in the Finnish population.¹⁰ In Quebec, Canada, a particularly high DM1 prevalence of 1 in 500 has been recorded due to founder effects.¹¹ In contrast, it is a rare disease amongst ethnic sub-Saharan populations,¹² being almost unheard of with the exception of one case reported in Nigeria¹³ and two more recent cases amongst African Americans.¹⁴ In view of this disparity, a study was undertaken to determine the distribution of CTG repeats in normal African individuals. It was found that there was a highly significant difference in the distribution of normal CTG alleles larger than 18 between the African population and the European and Japanese populations.¹² This reiterates a previous theory that CTG alleles between 19 and 30 act as a source of DM1 mutations in subsequent generations.¹⁵ These findings have formed the basis for the estimation of DM1 incidence within a population.^{9, 12, 16-25}

Prior to the establishment of molecular diagnostic tests, DM1 was diagnosed in clinics mainly by observing clinical symptoms and conducting electromyography (EMG) tests, with confirmation by muscle biopsy.²⁶ At present, there are several molecular techniques that can be utilised in making a DM1

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

diagnosis, rendering little use for the invasive and painful EMG test and muscle biopsy.²⁷ However, a single test that is able to detect all ranges of expansion sizes is yet to be established. Laboratories often employ a combination of methods depending on mutation dynamics in the population and available equipment. Conventional PCR can detect the normal range of CTG repeats as well as premutated alleles. Optimised PCR conditions can detect alleles up to (CTG)₈₅, whereas those beyond that rely on Southern Blot for detection. Recently, a novel TP-PCR method was developed to detect the presence of large expanded alleles, thus reducing the number of reflex Southern Blot tests.²⁸

As a Southeast Asian country, Malaysia has a population consisting mainly of ethnic Malay, Chinese and Indian. There is also a large group of indigenous people belonging to various tribes. While DM1 is not commonly seen in this country, there is a possibility of underdiagnosis or misdiagnosis due to the lack of awareness about this condition with its diverse presentations. No study has been performed on the prevalence and incidence of the disease in the predominant ethnic groups, and to the best of our knowledge, diagnostic tests for this disease at the molecular level is not available anywhere in the country. Given the multisystemic and variable phenotypic manifestations in patients, it is therefore important for a simple standard confirmatory diagnostic test to be available, especially when trying to rule out different diagnoses. Here we report the use of PCR and Southern Blotting methods for the molecular analysis of healthy individuals from the Malay, Chinese and Indian sub-populations, where we studied the length of the CTG alleles in order to predict the prevalence of DM1 in these subpopulations. We also describe the use of a single-tube TP-PCR method for the screening and confirmation of DM1 amongst Malaysian patients, with the aim of reducing the number of Southern Blot tests that need to be performed.

Materials and Methods

Ethics Statement

Ethical approval to conduct this study was obtained from the University of Malaya Medical Centre (UMMC) ethics committee (Reference numbers 577.17 & 800.6). The ethics board required that all human subjects recruited in the study were briefed on the nature of the study, and provided with an

BMJ Open

information sheet describing the study. Subjects were also assured that their privacy will be protected, and all personal information provided will be kept confidential. Participation in the study was on a voluntary basis, and had no bearing on the quality of care patients received at the hospital.

Sample collection

Blood samples from 377 anonymous healthy blood donors of Malay, Chinese and Indian descent were obtained from the UMMC blood bank following oral consent to participate in the study. In addition, 11 patients displaying DM1 symptoms were recruited to this study. Written consent, clinical and familial history were obtained from these patients. The ethnicity of subjects was determined to be Malay, Chinese or Indian based on their own admission.

Molecular analysis

Genomic DNA was extracted from the blood samples using the QIAamp DNA Blood Mini kit according to manufacturer's protocol (QIAGEN, Hilden, Germany).

Conventional PCR

Analyses of the samples were carried out according to techniques described by Surh et al.²⁹ PCR was performed in a final volume of 30μ L utilising the Perkin Elmer GeneAmp PCR system. The forward, 103, 5' – CCA GTT CAC AAA CCG CTC CGA GCG TG – 3' and reverse, 96, 5' – GGT GCG TGG AGG ATG GAA CAC GGA C – 3' primers were used. The PCR conditions were set as follows: initial denaturation at 96°C for 5 minutes, followed by 25 cycles of denaturation, annealing and extension at 96°C, 62°C and 72°C respectively, for a period of one minute for each step. Final extension was performed at 72°C for seven minutes. The PCR products were sized by gel electrophoresis on 1.5% agarose gel, at 100V for 45 minutes. The separated products from a number of the total samples were cut out from the gel, purified using the QIAquick gel extraction kit (QIAGEN, Hilden, Germany) and sent to a service lab for sequencing to determine the exact number of CTG repeats.

Triplet-primed-PCR

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright

Southern Blotting

Southern Blotting was carried out in samples that only showed single peaks in the electropherograms, which indicated a CTG expansion. The conventional PCR products were transferred overnight from the agarose gel to a positively charged nylon membrane by capillary transfer and fixing of the DNA to the membrane done via the UV cross-linking method. The membrane was hybridised overnight in a hybridization buffer with the addition of 20µl alkaline phosphatase-conjugated (CTG)₁₀ oligonucleotide at 50°C. The membrane was then removed and the excess liquid drained off, prior to being washed using pre-heated wash buffers. Following hybridisation and washing of the membrane, development of the signals was carried out by exposing the blot to an autoradiography film. The presence of smears as opposed to distinct bands in the autoradiogram confirmed that the samples analysed were true DM1 patients.

Statistical analysis

Page 7 of 23

BMJ Open

The frequency of each of the allele present in the 754 chromosomes from the healthy individuals was calculated. Statistical analysis was performed by administering the chi-squared (χ^2) test with Yates' correction to compare the distribution of normal large repeats, (CTG)_{> 18}, with 12 other populations.

Results

Estimation of DM1 prevalence

The distribution of $(CTG)_{>18}$ alleles in the Malay, Chinese and Indian sub-populations all point towards a low prevalence of DM1. Figure 1 shows the breakdown of all alleles present in the three sub-populations. A bimodal allelic distribution was noted—this was in alignment with patterns observed in other populations with low DM1 frequencies. The first peak came from the $(CTG)_5$ alleles, which totaled to 33.7% of all alleles, while the second peak consisted of three alleles, 11 to 13 that accounted for a majority of 51.1% of the total alleles. The frequencies for $(CTG)_{>18}$ alleles were 9/250 = 3.60% (95% CI = 0.0166–0.0672) in the Malay subpopulation, 4/254 = 1.57% (95% CI = 0.0043–0.0398) in the Chinese subpopulation, and 10/250 = 4.00% (95% CI = 0.0193–0.0723) amongst the Indians. Heterozygosity was measured at 79.9%, 77.0%, and 76.2% in the three subpopulations, respectively, averaging at 77.7%. This result is aligned to those reported in other populations, which ranged from 73.0% in Europeans⁹ to 92% in Iranians.²⁴

Tables 1 and 2 show the comparison and χ^2 analysis of the frequency of $(CTG)_{>18}$ alleles in healthy individuals from the three subpopulations in this study, and in those from 12 worldwide populations, respectively. The $(CTG)_{>18}$ frequency for the Malay, Chinese and Indian subpopulations were significantly different when compared to frequencies in European, German and Chilean populations. All three Malaysian subpopulations showed frequencies similar to Thai,²⁰ Taiwanese²¹ and Kuwaiti²³ populations. It is also interesting to note that the Han-Chinese show similarity with the Malaysian Chinese, the population that the majority of Malaysian Chinese trace their ancestry to. This allows for our speculation that the DM1 frequency among Chinese Malaysians is low, similar to that observed in the Han-Chinese,²² Taiwanese²¹ and South African negroids.¹²

Diagnostic testing for DM1

 Samples from 11 individuals with DM1-like symptoms and two healthy controls were analysed for CTG expansion using TP-PCR followed by confirmation by Southern Blot. Triplet-primed PCR testing showed single peaks in nine of the samples, and double peaks in the remaining four. The samples with single peaks also showed a clear laddering pattern indicating the presence of CTG expansion (Figure 2). Southern Blot testing confirmed the diagnosis of DM1 in the nine samples, with the detection of expanded alleles ranging from a size of 97 to 690 CTG repeats, as shown in Figure 3. Table 3 shows a summary of the characteristics of the disease exhibited by each patient. Figure 4 shows the pedigree diagram and the CTG repeat size of the families and individuals we studied. It is important to note that apart from those diagnosed (dark squares/circles), none of the other family members were examined or tested for DM1. Hence, there is a possibility that there may be family members showing very mild symptoms who have not presented in our clinics, contributing to the apparent under transmission of the disease in the families.

Discussion

In order to obtain a better understanding of the burden of DM1, we estimated the prevalence of the DM1 using the distribution of CTG alleles larger than 18 in the Malaysian population. The result of (CTG)_{>18} of 3.05% (23/754) was observed in the Malaysian population. By comparing with the results of studies performed in other populations, we predict that DM1 is a rare disease in Malaysia. A larger study is needed to verify these findings, due to the fact that the subjects in this study were recruited from a major hospital in the capital city of Malaysia, therefore may not be representative of the whole country. It is likely that DM1 in the local community is underdiagnosed due to a lack of awareness amongst the public and healthcare professionals. There are also other contributing factors such as social stigma, and reduced access to major hospitals where specialised consultation and testing are available.

It is interesting to note that the frequency of (CTG)_{>18} was the lowest in the Chinese subpopulation, although they account for the most number of DM1 patients seen in our hospital (including those not

Page 9 of 23

BMJ Open

reported here). The Indians on the other hand show the highest frequency of (CTG)_{>18} in agreement with the findings that DM1 is highly prevalent in India³⁰. However, the number of Indian DM1 patients seen in our study was the lowest among the three subpopulations. This may reflect socio-economic and demographic reasons, as well as misdiagnosis/underdiagnosis of DM1 in the respective subpopulations.

Our study also provides for the first time, data on the $(CTG)_{>18}$ allele frequency in a Malay population. The Malay ethnic group is genetically more similar to the Chinese compared to the Indians. Comparison of the $(CTG)_{>18}$ distribution of the three ethnic groups however, shows a closer similarity between the Malays and the Indians (p=0.8151) compared to the Chinese (p=0.249). It would be interesting to see this same analysis done on other modern Malay populations in the region, such as the Singapore Malays and the Indonesians, as well as the aboriginal Malays.

The usage of the single tube TP-PCR allows for the rapid identification of large pathogenic CTG repeats, thus reducing the need for reflex Southern Blot testing. Southern Blot requires large amounts of DNA, the use of radioactive materials and is time consuming. In addition, this procedure is also less sensitive and may be difficult to replicate. Hence, any method that reduces the number of Southern Blot that needs to be performed, while demonstrating high sensitivity and specificity is advantageous in a clinical setting. However, the TP-PCR test used requires a highly specialized equipment, the genetic analyser, which may not yet be widely available and is unable to estimate the size of CTG expansions beyond 85 repeats.

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

Genotype-phenotype correlation studies in DM1 patients have thus far given conflicting results, with various underlying mechanisms, associations and theories proposed³¹⁻³⁴. In our study, a disparity in the genotype-phenotype correlation in the Chinese family was seen, whereby Patient 3 is largely asymptomatic although she carries 350 repeats. Her disease status was only suspected and diagnosed following the birth of her children who exhibited symptoms. Both her children were congenitally affected, which is consistent with findings in previous studies that showed that the majority of congenital cases were maternally transmitted. Patients 2 and 7 on the other hand paternally inherited their pathogenic alleles, resulting in the classic/adult onset DM1. The same disease phenotype is seen in patients 8 and 9. We were not able to determine whether their diseases were inherited, as their parents have never been tested. However, these patients were given genetic counselling and in accordance with ethical principles,

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright

have the autonomy of deciding whether or not to disclose their disease status to family members at risk, for future counselling and testing. It was also observed that congenitally affected patient 5 showed a comparable expansion size to those who were classically affected. The only symptoms he has shown, however is neonatal hypotonia and a mild cognitive dysfunction. The comparable repeat size is most likely due to the younger age of patient 5 compared to the classically affected adults, and suggest that a larger repeat size would be observed, as the patient grows older. Apart from these disease dynamics, there have also been findings of contraction of allele sizes upon transmission reported elsewhere²⁵. All these factors point towards the high complexity of DM1 and illustrate the important need for genetic counselling services to be offered to affected families.

Molecular testing is generally established as the gold standard in diagnosing genetic disorders such as DM1. This is because a molecular test is rapidly able to eliminate differential diagnoses, confirm the DM1 diagnosis, and estimate the size of CTG expansion in a patient, thus avoiding the need for invasive procedures such as muscle biopsies. Hilbert et al³⁵ who studied a large cohort of DM patients enrolled in the US National Registry, explored their diagnostic journeys, which on average took seven years for a correct DM1 diagnosis to be made. This delay brought about many implications to the patients and their families, ranging from lack of appropriate disease management to missed opportunities for genetic counselling. The situation in many developing countries is much similar or even worse as molecular diagnostic testing for DM1 is not easily available. Potentially, there could be a large number of patients who are undiagnosed/misdiagnosed, as well as those who have been unnecessarily subjected to various investigations for a definitive diagnosis to be made.

The findings from our preliminary study can aid the structuring of a rare disease management framework in Malaysia, using DM1 as a disease model. The data presented here adds to the scarce literature of DM1 in the South East Asian region. The information on CTG repeat lengths of the *DMPK* gene in healthy individuals, and DM1 patients, together with proper clinical assessment as well as a cost-effective molecular approach, carry implications for earlier diagnosis of DM1 and genetic counselling in a low resource setting.

Contributorship statement

All authors were involved in the conception and design of the work as well as the final approval of the submitted manuscript.

KA and TI were involved in the acquisition and analysis of data and drafting the manuscript.

LLH, GKJ, KTW, AAA and MKT contributed to the critical evaluation of the manuscript.

Competing interests

The authors state no competing interests

Funding

This study was supported by grants from the Ministry of Higher Education, Malaysia (Fundamental Research Grant Scheme; grant number: FG029/2010A), and University of Malaya (Postgraduate Research Fund; grant number: PV126/2012A).

Data sharing statement

None available

Acknowledgements

The authors acknowledge the contributions of Ms. Juliana Lee who helped in providing genetic counseling and support to the patients and their families. We also want to thank the UMMC blood bank for blood samples of healthy controls, as well as the DM1 patients for their participation in this study.

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

References

- 1. Harper PS. Myotonic dystrophy 3rd edn (WB Saunders, London, 2001)
- 2. Fu, YH, Pizzuti, A, Fenwick, R, King, J, Rajnarayan, S, Dunne, PW, et al. An unstable triplet repeat in a gene related to Myotonic Muscular Dystrophy. *Science* **255**, 1256-1258 (1992).
- Mahadevan, M, Tsilfidis, C, Sabourin, L, Shutler, G, Amemiya, C, Jansen, G, et al. Myotonic Dystrophy mutation: An unstable CTG repeat in the 3' untranslated region of the gene. *Science* 255, 1253-1255 (1992).

1 2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24

25 26 27

28

29 30

31 32

33 34

35 36

37 38

39 40

41 42

43 44

45 46

47 48

49 50

51 52

53 54

55 56

4. Turner C, Hilton-Jones D. The Myotonic Dystrophies: Diagnosis and management. J. Neurol. Neurosurg. Psychiatry. 81, 358-367 (2008). Jaspert A, Fahsold R, Grehl H, Claus D. Myotonic Dystrophy: Correlation of clinical symptoms with 5. the size of the CTG trinucleotide repeat. J. Neurol. 242, 99-104 (1995). 6. Gennarelli, M, Novelli, F, Bassi, A, Martorell, L, Cornet, M, Menegazzo, E, et al. Prediction of Myotonic Dystrophy clinical severity based on the number of intragenic [CTG]_n trinucleotide repeats. Am. J. Med. Genet. 65, 342-347 (1996). Ashizawa T, Harper PS. in Genetic Instabilities and Neurological Diseases (eds Wells RD, 7. Ashizawa T.) 21-26 (Academic Press. 2011). 8. Harper PS, Harley HG, Reardon W, Shaw DJ. Anticipation in Myotonic Dystrophy: New light on an old problem. Am. J. Hum. Genet. 51, 10-16 (1992). 9. Davies, J, Yamagata, H, Shelbourne, P, Buxton, J, Ogihara, T, Nokelainen, P, et al. Comparison of the Myotonic Dystrophy associated CTG repeat in European and Japanese populations. J. Med. Genet. 29, 766-769 (1992). 10. Suominnen, T, Bachinski, LL, Auvinen, S, Hackman, P, Baggerly, KA, Angelini, C., et al. Population frequency of Myotonic Dystrophy: Higher than expected frequency of Myotonic Dystrophy type 2 (DM2) in Finland. Eur. J. Hum. Genet. 19, 776-782 (2011). 11. Yotova, V, Labuda, D, Zietkiewicz, E, Gehl, D, Lovell, A, Lefebvre, JF, et al. Anatomy of a founder effect: Myotonic Dystrophy in Northeastern Quebec. Hum. Genet. 117, 177-187 (2005). 12. Goldman A, Ramsay M, Jenkins T. Absence of Myotonic Dystrophy in Southern African Negroids is associated with a significantly lower number of CTG trinucleotide repeats. J. Med. Genet. 31, 37-40 (1994). Krahe, R, Eckhart, M, Ogunniyi, AO, Osuntokun, BO, Siciliano, MJ, Ashizawa, T. De novo Myotonic 13. Dystrophy mutation in a Nigerian kindred. Am. J. Hum. Genet. 56, 1067-1074 (1995). Acton RT, Rivers CA, Watson B, Oh SJ. DMPK-associated Myotonic Dystrophy and CTG repeats in 14. Alabama African Americans. Clin. Genet. 72, 448-453 (2007). 15. Imbert G, Kretz C, Johnson K, Mandel JL. Origin of the expansion mutation in Myotonic Dystrophy. Nature Genet. 4, 72-76 (1993).

BMJ Open

	>
	N D
•	В
	en
	 ⊐n
	en: first pul
•	פ
	0
	ıblish
	he
	0
	lished as 10.1136
	10.1
	2
	ά
	36/bmjopen-2
	B
•	ਤੋਂ
	ğ
	Ϋ́
	20
	5
	5
	2
	-2015-010711
	36/bmjopen-2015-010711 on 31 March 2017. Downle
	q
	ω
	<u>ω</u>
	Š
	arc
	÷
	201
	17
	. `
	Do
	Š
	Ы.
	ăd
	ğ
	Ŧ
	_
	⊆.
	m
	om htt
	om http:/
	om http://b
	om http://bmj
	om http://bmjop
	om http://bmjopen
-	om http://bmjopen.bi
	om http://bmjopen.bmj
	om http://bmjopen.bmj.cc
	om http://bmjopen.bmj.com
-	om http://bmjopen.bmj.com/ c
	om http://bmjopen.bmj.com/ on
	om http://bmjopen.bmj.com/ on Nc
	om http://bmjopen.bmj.com/ on Nove
	om http://bmjopen.bmj.com/ on Noverr
	om http://bmjopen.bmj.com/ on Novembe
	om http://bmjopen.bmj.com/ on November '
	om http://bmjopen.bmj.com/ on November 1, ;
	om http://bmjopen.bmj.com/ on November 1, 20.
	om http://bmjopen.bmj.com/ on November 1, 2024
	om http://bmjopen.bmj.com/ on November 1, 2024 by
	om http://bmjopen.bmj.com/ on November 1, 2024 by c
	ppen.bmj.com/ on November 1, 2024 by gu
	om http://bmjopen.bmj.com/ on November 1, 2024 by guest
	ppen.bmj.com/ on November 1, 2024 by guest.
	ppen.bmj.com/ on November 1, 2024 by guest.
	ppen.bmj.com/ on November 1, 2024 by guest.
	ppen.bmj.com/ on November 1, 2024 by guest.
	ppen.bmj.com/ on November 1, 2024 by guest.
	ppen.bmj.com/ on November 1, 2024 by guest.
	ppen.bmj.com/ on November 1, 2024 by guest.
	ppen.bmj.com/ on November 1, 2024 by guest.
	ppen.bmj.com/ on November 1, 2024 by guest. Protected by copyri
	ppen.bmj.com/ on November 1, 2024 by guest.

Π

- Deka, R, Majumder, PP, Shriver, MD, Stivers, DN, Zhong, Y, Yu, LM, et al. Distribution and evolution of CTG repeats at the myotonin protein kinase gene in human populations. *Genome Res.* 6, 142-154 (1996).
 - Magaña, JJ, Cortés-Reynosa, P, Escobar-Cedillo, R, Gómez, R, Leyva-García, N, Cisneros, B. Distribution of CTG repeats at the DMPK gene in Myotonic Dystrophy patients and healthy individuals from the Mexican population. *Mol. Biol. Rep.* 38, 1341-1346 (2011).
 - Freitas SRS, Cabello PH, Moura-Neto RS, Duro LA. Analysis of the DMPK gene CTG repeats in healthy Brazilians. *Genet. Mol. Bio.* **30**, 14-16 (2007).
 - 19. Amenabar F, Jorquera H, Acuna M, Cifuentes L. CTG repeats at the myotonic protein kinase gene in a healthy Chilean population sample. *Acta Neurol. Scand.* **119**, 321-324 (2009).
 - Theerasasawat S, Papsing C, Pulkes T. CTG repeat lengths of the DMPK gene in Myotonic Dystrophy patients compared to healthy controls in Thailand. *J. Clin. Neurosci.* **17**, 1520-1522 (2010).
 - Pan H, Lin HM, Ku WY, Li TC, Li SY, Lin CC, Hsiao KM. Haplotype analysis of the Myotonic Dystrophy type 1 (DM1) locus in Taiwan: Implications for low prevalence and founder mutations of Taiwanese Myotonic Dystrophy type 1. *Eur. J. Hum. Genet.* 9, 638-641 (2001).
 - 22. Zhang S, Wu H, Pan A, et al. Low incidence of Myotonic Dystrophy in Chinese Hans is associated with a lower number of CTG trinucleotide repeats. *Am. J. Med. Genet.* **96**, 425-428 (2000).
 - 23. Alfadhli S, Elshafey AE, Bastaki L, Al-Awadi S. CTG repeat number at the Myotonic Dystrophy locus in healthy Kuwaiti individuals. *Arch. Neurol.* **61**, 895-898 (2004).
 - 24. Shojasaffar B, Moradin N, Kahrizi K, Cobo AM, Najmabadi H. CTG expansion and haplotype analysis of DM1 gene in healthy Iranian population. *Can. J. Neurol. Sci.* **35**, 216-218 (2008).
 - 25. Kim SY, Kim JY, Kim GP, Sung JJ, Lim KS, Lee KW, et al. Molecular and clinical characteristics of Myotonic Dystrophy type 1 in Koreans. *Korean J. Lab. Med.* **28**, 483-492 (2008).
 - 26. Magaña JJ, Cisneros B. in *Muscular Dystrophy* (ed Madhuri Hegde) 48-72 (InTech, 2012)
 - Kamsteeg EJ, Kress W, Catalli C, Hertz JM, Witsch-Baumgartner M, Buckley MF, et al. Best practise guidelines and recommendations on the molecular diagnosis of Myotonic Dystrophy types 1 and 2. *Eur. J. Hum. Genet.* 20, 1203-1208 (2012).

- 28. Singh S, Zhang A, Dlouhy S, et al. Detection of large expansions in myotonic dystrophy type 1 using triplet primed PCR. *Front. Genet.* 5, 94. doi: 10.3389/fgene.2014.00094 (2014).
 - 29. Surh LC, Mahadevan M, Korneluk RG. Analysis of trinucleotide repeats in Myotonic Dystrophy. *Curr. Prot. Hum. Genet.* 9.6.1-9.6.13 (1998).
 - Basu, P, Majumder, P, Roychoudhury, S, Bhattacharyya, N. Haplotype analysis of genomic polymorphisms in and around the myotonic dystrophy locus in diverse populations of India. *Hum. Genet.* **108**, 310-317 (2001).
 - Kinoshita, M, Takahashi, R, Hasegawa, T, Komori, T, Nagasawa, R, Hirose, K, Tanabe, H. (CTG)_n expansions in various tissues from a Myotonic Dystrophy patient. *Muscle Nerve* 19, 240-242 (1996).
 - Meola G. Clinical and genetic heterogeneity in Myotonic Dystrophies. *Muscle Nerve* 23, 1789-1799 (2000).
 - Zatz, M, Passos-Bueno, MR, Cerqueira, A, Marie, SK, Vainzof, M, Pavanello, RC. Analysis of the CTG repeat in skeletal muscle of young and adult Myotonic Dystrophy patients: When does the expansion occur? *Hum. Mol. Genet.* 4, 401-406 (1995).
 - Savić, D, Rakočvić-Stojanović, V, Keckarević, D, Čuljković, B, Stojković, O, Mladenović, J, et al.
 250 CTG repeats in DMPK is a threshold for correlation of expansion size and age at onset of juvenile–adult DM1. *Hum. Mut.* 19, 131-139 (2002).
 - 35. Hilbert, JE, Ashizawa, T, Day, JW, Luebbe, EA, Martens, WB, McDermott, MP, et al. Diagnostic odyssey of patients with Myotonic Dystrophy. *J. Neurol.* **260**, 2497-2504 (2013).

Figure Legends

Figure 1. Frequency of CTG repeats in healthy individuals from the Malay, Chinese and Indian sub-populations. The frequency for large normal alleles, (CTG)_{>18} was 9/250 or 3.60% in the Malays, 4/254 or 1.57% in the Chinese, and 10/250 or 4.00% in the Indians. A bimodal allelic distribution was observed in the Malaysian population, in alignment with patterns observed in other populations with low

DM1 frequency. The most frequently seen allele was $(CTG)_5$ in all three sub-populations, whereas $(CTG)_{10-13}$ was the most common allele group.

Figure 2. Electropherogram results of TP-PCR. *The X-axis represent the CTG repeat size and the* Yaxis represents the allele peak height. (A) The electropherogram shows a DM1 patient sample with a single peak corresponding to (CTG)₁₁ and a laddering pattern indicating an expanded allele. (B) Two normal heterozygous alleles with sizes 5 and 11 and no laddering pattern observed.

Figure 3. Expanded CTG repeats of DM1 patients following PCR-Southern blotting as seen on an autoradiography film. Expanded alleles in patients ranging from a size of 97 to 690 CTG repeats have been detected. A sample of the bands are shown here, ranging from 270 repeats (1045bp) to 690 repeats (2305bp). Normal alleles of four sizes were seen amongst the patients, 5 (332bp), 11 (350bp), 12(356bp) and 13 (356bp). Due to somatic heterogeneity, the expanded alleles usually appear as smears. A 1Kb DNA ladder as well as samples from healthy individuals were run alongside patient samples as controls.

Figure 4. Pedigree diagrams of DM1 patients studied including the size of their CTG alleles. *Members of three families and two individuals had their CTG repeat size analyzed. The sizes of the allele pairs for each patient are as stated in the pedigree diagrams. The phenomenon of anticipation was clearly observed in the three families, whereby with the increased CTG expansion in successive generations, a decreasing age of onset is noted.* BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

Tables

Table 1: Comparison and χ^2 analysis of the frequency of (CTG)_{>18} alleles in healthy individuals from the Malay, Chinese and Indian sub-populations.

Population	(CTG) _{>18} alleles /	Comparison of Malay data with	Comparison of Chinese data with	Comparison of Indian data with
	Total alleles	other populations χ^2	other populations χ^2	other populations χ^2
	analyzed (%)	(p value)	(p value)	(p value)
Malay	9/250	- 1.3	329 (0.249) 0.0	055 (0.8151)
	(3.60)			
Chinese	4/254 1.3	329 (0.249)	- 1.9	919 (0.166)
	(1.57)			
Indian	10/250 0.0	055 (0.8151) 1.9	919 (0.166)	-
	(4.00)			

BMJ Open

BM	
BM	
\geq	
_	
0	
pe	
'n:	
÷	
rst	
σ	
Ъ	
- Si	
shed	
ă	
l as 1	
<u> </u>	
<u>0</u>	
1	
မ္မ	
Š	
Ĕ	
ğ	
ĕ	
bmjopen-2015-010711 on	
20	
10	
5	
Ĕ	
ų	
1	
₽	
5	
3	
ublished as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downlc	
ar	
arch	
Ň	
2	
.7	
Down	
'n	
<u> </u>	
ad	
ď	
bé fr	
ed fron	
0m	
0m	
om http:	
om http:	
om http:	
0m	
om http:	
om http://bmjopen.b	
om http://bmjopen.bmj.com/ on November 1, 2024 by g	
om http://bmjopen.bmj.com/ on November 1, 2024 by gues	
om http://bmjopen.bmj.com/ on November 1, 2024 by gues	
om http://bmjopen.bmj.com/ on November 1, 2024 by gues	
om http://bmjopen.bmj.com/ on November 1, 2024 by guest. Prov	
om http://bmjopen.bmj.com/ on November 1, 2024 by guest. Prov	
om http://bmjopen.bmj.com/ on November 1, 2024 by guest. Prov	
om http://bmjopen.bmj.com/ on November 1, 2024 by guest. Prov	
om http://bmjopen.bmj.com/ on November 1, 2024 by gues	
om http://bmjopen.bmj.com/ on November 1, 2024 by guest. Prov	
om http://bmjopen.bmj.com/ on November 1, 2024 by guest. Prov	
om http://bmjopen.bmj.com/ on November 1, 2024 by guest. Prov	
om http://bmjopen.bmj.com/ on November 1, 2024 by guest. Prov	

Table 2: Comparison and χ^2 analysis of the frequency of (CTG)_{>18} alleles in healthy individuals from the three Malaysian sub-populations to those in twelve worldwide populations.

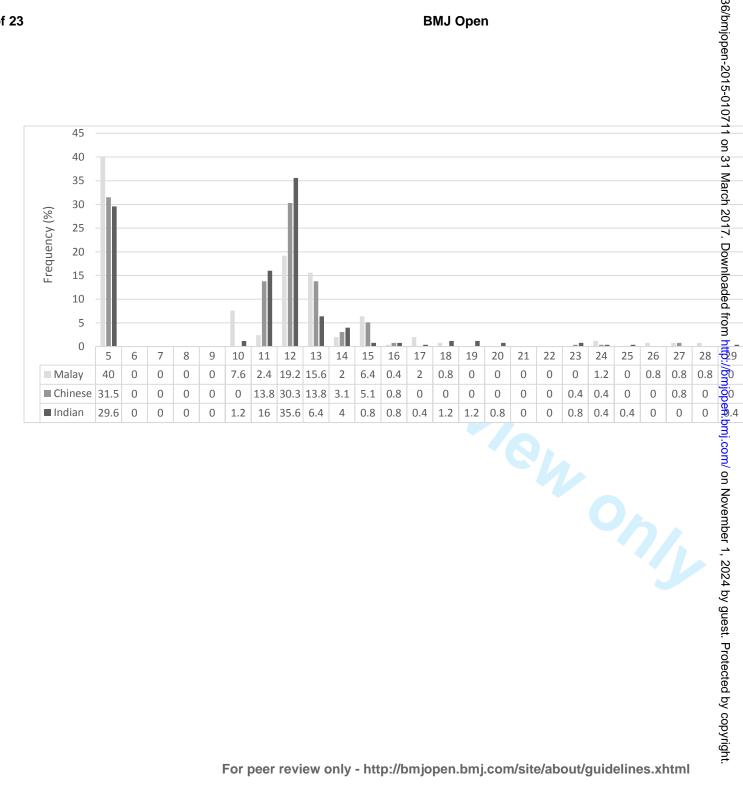
Population	(CTG)>18 alleles	Comparison of	Comparison of	Comparison of
	/ Total alleles	Malay data with	Chinese data with	Indian data with
	analyzed (%)	other populations	other populations	other populations
		χ^2 (p value)	χ² (p value)	χ² (p value)
^a European ⁹	15/130 (11.54)	7.817 (0.005**)	16.094 (<0.0001***)	6.729 (0.009**)
German ¹⁶	22/104 (21.20)	26.17 (<0.0001***)	39.141 (<0.0001***)	24.239 (<0.0001***)
Mexican ¹⁷	51/800 (6.38)	2.232 (0.135)	8.037 (0.005**)	1.553 (0.213)
Brazilian ¹⁸	24/312 (7.69)	3.497 (0.062)	9.88 (0.002**)	2.334 (0.127)
Chilean ¹⁹	30/272 (11.00)	9.354 (0.002**)	17.887 (<0.0001***)	8.131 (0.004**)
Japanese ⁹	9/106 (8.50)	2.760 (0.097)	8.386 (0.004**)	2.149 (0.143)
Thai ²⁰	11/400 (2.75)	0.142 (0.706)	0.505 (0.477)	0.421 (0.516)
Taiwanese ²¹	7/499 (1.40)	2.867 (0.090)	0.018 (0.893)	3.962 (0.050)
Han Chinese ²²	6/600 (1.00)	5.463 (0.019*)	0.134 (0.714)	7.052 (0.008**)
Kuwaiti ²³	14/370 (3.78)	0.010 (0.920)	1.894 (0.169)	0.006 (0.938)
Iranian ²⁴	29/400 (7.25)	3.090 (0.079)	9.292 (0.002**)	2.334 (0.127)
South African ¹²	3/420 (0.71)	5.869 (0.015*)	0.457(0.499)	7.249 (0.007*)

P* < .05 (significant); ** *P* < .01 (highly significant); * *P* < .001(very highly significant)

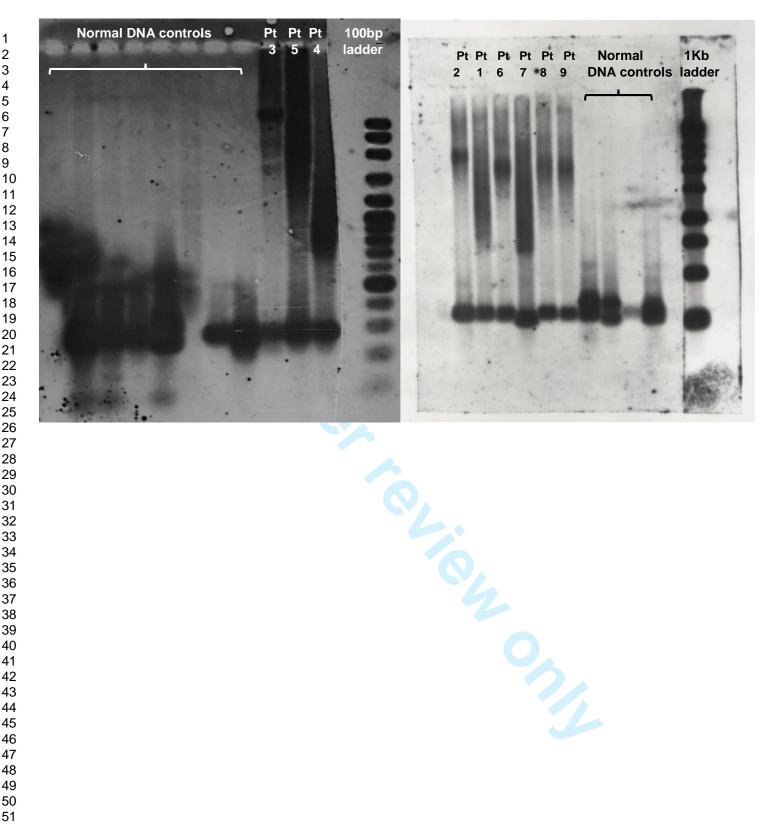
^a Includes British, German, Belgian, Swedish and Finnish subjects

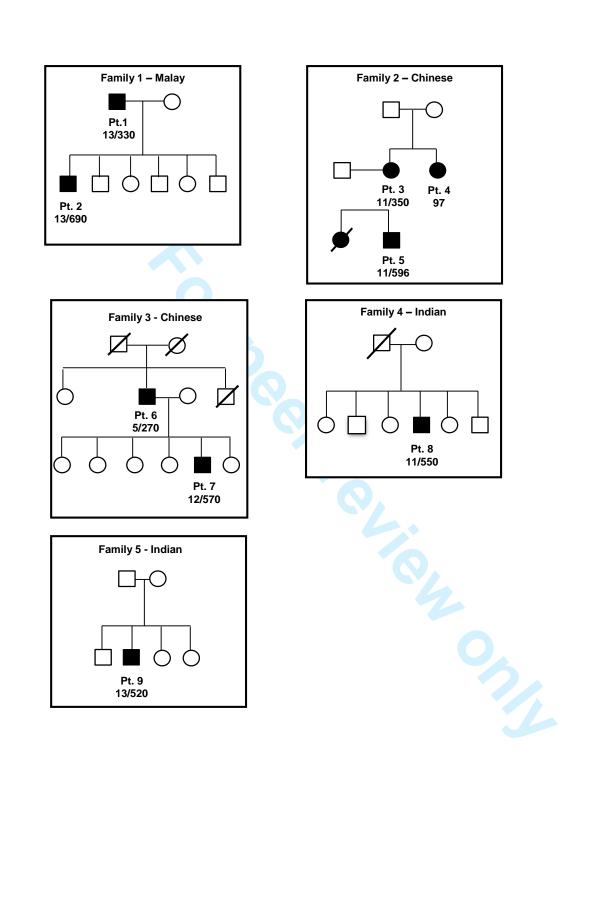
BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

1
2 3
3
3 4 5 6 7 8
о С
6 7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
o 9 10 11 23 14 56 78 9 0 11 22 23 24 25 26 27 28 9 30 13 23 34 35 36 37 8 9 0
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
47 48
40 49
49 50
50 51
52
5∠ 53
54 55
56
57
58
59
60


1

Family	Patient	Gender	^a Age	^b Disease Onset	^c Phenotype	CTG Repeat Size
1	1	Male	54	Late adult	Classical	330
	2	Male	30	Early adult	Classical	690
2	3	Female	30	Early adult	Mild	350
	4	Female	31	Early adult	Mild	97
	5	Male	5	Birth	Congenital	596
3	6	Male	60	Late adult	Classical	270
	7	Male	30	Early adult	Classical	570
4	8	Male	44	Early adult	Classical	550
5	9	Male	32	Early adult	Classical	520


^a Age of patient at time of molecular testing


^b Early adulthood: 20 – 49 years old; Late adulthood: >50 years old

^c Phenotype classification as described by Kamsteeg et al

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
	-		1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	2-4
Methods			
Study design	3	Present key elements of study design early in the paper	4–7
Setting	4	Describe the setting, locations, and relevant dates, including periods of recruitment, and data collection	4–7
Participants	5	(a) Cohort study—Give the sources and methods of selection of participants.	5
Statistical methods	6	(a) Describe all statistical methods, including those used to control for confounding	7
Results			
Participants	7	(a) Report numbers of individuals at each stage of study	7–8
Descriptive data	8	(a) Give characteristics of study participants (eg demographic, clinical, social	7–8
Outcome data	9	Cohort study—Report numbers of outcome events or summary measures over time	7–8
Main results	10	(a) Give unadjusted estimates and their precision (eg, 95% confidence interval)	7–8
Discussion			
Key results	11	Summarise key results with reference to study objectives	8&9
Interpretation	12	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Other information			
Funding	13	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

BMJ Open

Analysis of CTG repeat length variation in the DMPK gene in the general population and the molecular diagnosis of myotonic dystrophy type 1 in Malaysia

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-010711.R1
Article Type:	Research
Date Submitted by the Author:	10-Jun-2016
Complete List of Authors:	Ambrose, Kathlin; University of Malaya, Department of Molecular Medicine Ishak, Taufik; University of Malaya, Paediatrics Lian, Lay; University of Malaya, Molecular Medicine Goh, Khean; University of Malaya, Medicine Wong, Kum; University of Malaya, Pathology Ahmad-Annuar, Azlina; University of Malaya, Biomedical Science Thong, Meow-Keong; University of Malaya, Paediatrics
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Genetics and genomics, Pathology
Keywords:	CTG repeats, genetic counselling, myotonic dystrophy type 1, molecular diagnosis, TP-PCR, prevalence

Title

Analysis of CTG repeat length variation in the *DMPK* gene in the general population and the molecular diagnosis of myotonic dystrophy type 1 in Malaysia

Authors

Kathlin K. Ambrose¹, Ishak tAUFIK², Lay H. Lian¹, Khean J. Goh³, Kum T. Wong⁴, Azlina Ahmad-Annuar⁵, Meow-Keong Thong²

Author affiliations

Department of Molecular Medicine, 2. Department of Paediatrics, 3. Department of Medicine, 4.
 Department of Pathology, 5. Department of Biomedical Science, Faculty of Medicine, University of Malaya
 50603 Kuala Lumpur, Malaysia

KKA, MKT and IT contributed equally to the work

Correspondence to

Professor Meow-Keong Thong; thongmk@um.edu.my

Abstract

Objective The lack of epidemiological data and molecular diagnostic services in Malaysia has hampered the setting-up of a comprehensive management plan for myotonic dystrophy type 1 (DM1) patients, leading to delayed diagnosis, treatment and support for patients and families. The aim of this study was to estimate the prevalence of DM1 in the three major ethnic groups in Malaysia and evaluate the feasibility of a single tube triplet-primed polymerase chain reaction (TP-PCR) method for diagnosis of DM1 in Malaysia.

Design, setting and participants We used PCR to determine the size of CTG repeats in 377 individuals not known to be affected by DM and 11 DM1 suspected patients, recruited from a tertiary hospital in Kuala Lumpur. Triplet-primed PCR was performed on selected samples, followed by Southern blothybridisation of PCR amplified fragments to confirm and estimate the size of CTG expansion.

Outcome measures The number of individuals not known to be affected by DM with (CTG)>18 was determined according to ethnic group and as a whole population. Chi-squared test was performed to compare the distribution of (CTG)_{>18} with 12 other populations. Additionally, the accuracy of TP-PCR in detecting CTG expansion in 11 DM1 patients was determined by comparing the results with that from Southern blot testing.

Results Of the 754 chromosomes studied, (CTG)_{>18} frequency of 3.60%, 1.57% and 4.00% in the Malay, Chinese and Indian sub-populations respectively, was detected, showing similarities to data from Thai, Taiwanese and Kuwaiti populations. We also successfully detected CTG expansions in nine patients using the TP-PCR method followed by the estimation of CTG expansion size via Southern blot hybridisation.

Conclusions The results show a low DM1 prevalence in Malaysia with the possibility of underdiagnosis and demonstrates the feasibility of using a clinical and TP-PCR-based approach for rapid and cost effective DM1 diagnosis in developing countries.

Strengths and limitations of this study

- This is the first DM1 epidemiological study on individuals not known to be affected by DM from the three major ethnic groups in Malaysia.
- To date molecular diagnostic testing for DM1 is not performed in any hospital in Malaysia. This study describes the feasibility of a cost and time-effective TP-PCR based method for rapid screening and diagnosis of DM1.
- The number of DM1 samples analysed is small as DM1 is a rare disease in Malaysia.

Key Words

CTG repeats/genetic counselling/myotonic dystrophy type 1/molecular diagnosis/TP-PCR/prevalence

Introduction

The myotonic dystrophies (DM) are the most prevalent adult muscular dystrophy worldwide, with an estimated prevalence of 1 in 8000.¹ They are classified into two main sub-groups, myotonic dystrophy type 1 (DM1) and type 2 (DM2). These are caused by nucleotide repeat expansions, which are inherited as an autosomal dominant trait, and manifest as clinically heterogeneous diseases. DM1 is due to CTG nucleotide repeats beyond the normal length of five to 49, in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (*DMPK*) gene, located on chromosome 19q 13.3.^{2, 3} It is a progressive disease and categorised into several subtypes. The congenital form of DM1 is maternally transmitted more frequently, although the disease occurs equally in males and females.⁴ The general consensus is that the larger the CTG repeat in an individual, the more severe the disease and the earlier the age of onset. It is however, difficult to classify individual DM1 cases into distinct categories based merely on the size of CTG repeats, as genotype-phenotype correlation often overlap and are not clearly defined. In addition, the repeat sizes have shown variation, both between tissues, and over time in the same tissue.^{5, 6} This has made disease prognosis difficult. The genetic phenomenon of anticipation can also be observed in the inheritance of the disease, resulting in a more severe form of the disease coupled with an earlier age of onset in subsequent generations.^{7, 8}

The prevalence of DM1 varies greatly across populations—it is pre-dominantly seen amongst the Europeans and Japanese.^{9,10} A study also estimated a high disease frequency in the Finnish population.¹¹ In Quebec, Canada, a particularly high DM1 prevalence of 1 in 500 has been recorded due to founder effects.¹² In contrast, it is a rare disease amongst ethnic sub-Saharan populations,¹³ being almost unheard of with the exception of one case reported in Nigeria.¹⁴ Two more recent cases amongst African Americans have also been observed, most likely representing recent population admixture .¹⁵ In view of this disparity, a study was undertaken to determine the distribution of CTG repeats in normal African individuals. It was found that there was a highly significant difference in the distribution of normal CTG alleles larger than 18 between the African population and the European and Japanese populations.¹³ This reiterates a previous theory that CTG alleles between 19 and 30 act as a source of DM1 mutations in subsequent generations.¹⁶ These findings have formed the basis for the estimation of DM1 incidence within a population.^{17, 13, 18-6-27}

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright

Prior to the establishment of molecular diagnostic tests, DM1 was diagnosed in clinics mainly by observing clinical symptoms and conducting electromyography (EMG) tests, with confirmation by muscle biopsy.²⁸ At present, there are several molecular techniques that can be utilised in making a DM1 diagnosis, rendering little use for the invasive and painful EMG test and muscle biopsy.²⁹ However, a single test that is able to detect all ranges of expansion sizes is yet to be established. Laboratories often employ a combination of methods depending on mutation dynamics in the population and available equipment. Conventional PCR can detect the normal range of CTG repeats as well as premutated alleles. Optimised PCR conditions can detect alleles up to (CTG)₈₅, whereas those beyond that rely on Southern blot for detection. The TP-PCR method was developed to detect the presence of large expanded alleles, thus reducing the number of reflex Southern blot tests.³⁰

As a Southeast Asian country, Malaysia has a population consisting mainly of ethnic Malay, Chinese and Indian. There is also a large group of indigenous people belonging to various tribes. While DM1 has not been frequently diagnosed in this country, there is a possibility of underdiagnosis or misdiagnosis due to the lack of awareness about this condition with its diverse presentations. No study has been performed on the prevalence and incidence of the disease in the predominant ethnic groups, and to the best of our knowledge, diagnostic tests for this disease at the molecular level is not available anywhere in the country. Given the multisystemic and variable phenotypic manifestations in patients, it is therefore important for a simple standard confirmatory diagnostic test to be available, especially when trying to rule out different diagnoses. Here we report the use of PCR and Southern blothybridisation methods for the molecular analysis of individuals not known to be affected by DM from the Malay, Chinese and Indian sub-populations, where we studied the length of the CTG alleles in order to predict the prevalence of DM1 in these subpopulations. We also describe the use of a single-tube TP-PCR method for the screening and confirmation of DM1 amongst Malaysian patients, with the aim of reducing the number of Southern blot tests that need to be performed.

Materials and Methods

Ethics statement

Ethical approval to conduct this study was obtained from the University of Malaya Medical Centre (UMMC) ethics committee (Reference numbers 577.17 & 800.6). The ethics board required that all human subjects recruited in the study were briefed on the nature of the study, and provided with an information sheet describing the study. Subjects were also assured that their privacy will be protected, and all personal information provided will be kept confidential. Participation in the study was on a voluntary basis, and had no bearing on the quality of care patients received at the hospital.

Sample collection

Blood samples from 377 randomly selected anonymous blood donors not known to be affected by DM of Malay, Chinese and Indian descent were obtained from the UMMC blood bank following oral consent to participate in the study. In addition, 11 patients displaying DM-like symptoms were recruited to this study. Written consent, clinical and familial history were obtained from these patients. The ethnicity of subjects was determined to be Malay, Chinese or Indian based on their own admission.

Molecular analysis

Genomic DNA was extracted from the blood samples using the QIAamp DNA Blood Mini kit according to manufacturer's protocol (QIAGEN, Hilden, Germany).

Conventional PCR

Analyses of the samples were carried out according to techniques described by Surh et al.³¹ PCR was performed in a final volume of 30μ L utilising the Perkin Elmer GeneAmp PCR system. The forward, 103, 5' – CCA GTT CAC AAA CCG CTC CGA GCG TG – 3' and reverse, 96, 5' – GGT GCG TGG AGG ATG GAA CAC GGA C – 3' primers were used. The PCR conditions were set as follows: initial denaturation at 96°C for 5 minutes, followed by 25 cycles of denaturation, annealing and extension at 96°C, 62°C and 72°C respectively, for a period of one minute for each step. Final extension was performed at 72°C for

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

seven minutes. The PCR products were sized by gel electrophoresis on 1.5% agarose gel, at 100 V for 45 minutes. The separated products were cut out from the gel, purified using the QIAquick gel extraction kit (QIAGEN, Hilden, Germany) and sent to a service lab for sequencing to determine the exact number of CTG repeats.

Triplet-primed-PCR

Analysis of the samples were done according to techniques described by Singh et al.³² Thirteen samples were subjected to TP-PCR analysis—11 individuals with DM1 symptoms and two controls not known to be affected by DM. The subjects recruited were all adults between the ages of 30 and 60, and one child aged 5. Testing was performed with 100 ng of genomic DNA from blood samples in a reaction volume of 25 μl. The primers FAM-P1-Forward 5'FAM – GGG GCT CGA AGG GTC CTT GT – 3' and P2-Reverse 5' - GTG CGT GGA GGA TG AAC ACG - 3' flanked the CTG repeat region, with the forward primer labeled with FAM fluorescence. The third primer P3 5' - AGC GGA TAA CAA TTT CAC ACA GGA - 3' was designed to bind to the complement of the tail of the fourth primer P4-(CAG)₆ –Reverse 5' – AGC GGA TAA CAA TTT CAC ACA GGA CAG CAG CAG CAG CAG CAG - 3'. The primer combination was prepared in a ratio of FAM-P1-Forward: P4-(CAG)₆ -Reverse:P3:P2 = 1.5:1:1.5:1.5, with a final working concentration of 0.6 µM:0.4 µM:0.6 µM:0.6 µM. The TP-PCR conditions were set as follows: initial denaturation at 95°C for five minutes, followed by 10 cycles each of denaturation (97°C) for 35 seconds, annealing (65°C) for 35 seconds and extension (68°C) for four minutes. Subsequently, 20 cycles of denaturation, annealing and extension were performed, with the extension time increased by 20 seconds per cycle to allow for increased yield of PCR product. The products were separated on an ABI PRISM 3130 x 1 genetic analyser (Life Tech, New York, USA) and fragment size determined using GeneMarker V2.6 (Softgenetics, State College, USA).

Southern blothybridisation of PCR amplified fragments

Southern blot hybridisation of amplified PCR fragments was carried out in samples that only showed single peaks in the electropherograms, which indicated a CTG expansion or homozygosity for a non-expanded allele. The conventional PCR products were transferred overnight from the agarose gel to a

positively charged nylon membrane by capillary transfer and fixing of the DNA to the membrane done via the UV cross-linking method. The membrane was hybridised overnight in a hybridisation buffer with the addition of 20 µl alkaline phosphatase-conjugated (CTG)₁₀ oligonucleotide at 50°C. The membrane was then removed and the excess liquid drained off, prior to being washed using pre-heated wash buffers. Following hybridisation and washing of the membrane, the CDP-Star Detection Reagent is applied and the development of the signals was subsequently carried out by exposing the blot to an autoradiography film. Identification of DM1 positive samples were done by comparing the size of the bands or smears obtained with DNA molecular weight markers.

Statistical analysis

The frequency of each of the allele present in the 754 chromosomes from the individuals not known to be affected by DM was calculated. Statistical analysis was performed by administering the chi-squared (χ^2) test with Yates' correction to compare the distribution of normal large repeats, (CTG)_{> 18}, with 12 other populations.

Results

Analysis of DMPK CTG repeat length variation in the general population

The distribution of $(CTG)_{>18}$ alleles in the Malay, Chinese and Indian sub-populations all point towards a low prevalence of DM1. Figure 1 shows the breakdown of all alleles present in the three sub-populations. A bimodal allelic distribution was noted—this was in alignment with patterns observed in other populations with low DM1 frequencies. The first peak came from the $(CTG)_5$ alleles, which totaled to 33.7% of all alleles, while the second peak consisted of three alleles, 11 to 13 that accounted for a majority of 51.1% of the total alleles. The frequencies for $(CTG)_{>18}$ alleles were 9/250 = 3.60% (95% CI = 0.0166–0.0672) in the Malay subpopulation, 4/254 = 1.57% (95% CI = 0.0043–0.0398) in the Chinese subpopulation, and 10/250 = 4.00% (95% CI = 0.0193–0.0723) amongst the Indians. Heterozygosity was measured at 79.9%, 77.0%, and 76.2% in the three subpopulations, respectively, averaging at 77.7%.

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright

This result is aligned to those reported in other populations, which ranged from 73.0% in Europeans¹⁷ to 92% in Iranians.²⁶

Tables 1 and 2 show the comparison and χ^2 analysis of the frequency of $(CTG)_{>18}$ alleles in individuals not known to be affected by DM1 from the three subpopulations in this study, and in those from 12 worldwide populations, respectively. The $(CTG)_{>18}$ frequency for the Malay, Chinese and Indian subpopulations were significantly different when compared to frequencies in European, German and Chilean populations. All three Malaysian subpopulations showed frequencies similar to Thai,²² Taiwanese²³ and Kuwaiti²⁴ populations. It is also interesting to note that the Han-Chinese show similarity with the Malaysian Chinese, the population that the majority of Malaysian Chinese trace their ancestry to. This allows for our speculation that the DM1 frequency among Chinese Malaysians is low, similar to that observed in the Han-Chinese,²⁴ Taiwanese²³ and South African negroids.¹³

Diagnostic testing for DM1

Samples from 11 individuals with DM1-like symptoms and two controls not known to be affected by DM were analysed for CTG expansion using TP-PCR followed by confirmation by Southern blot. Tripletprimed PCR testing showed single peaks in nine of the samples, and double peaks in the remaining four. The samples with single peaks also showed a clear laddering pattern indicating the presence of CTG expansion (Figure 2). Southern blot testing confirmed the diagnosis of DM1 in the nine samples, with the detection of expanded alleles ranging from a size of 97 to 690 CTG repeats, as shown in Figure 3. Table 3 shows a summary of the characteristics of the disease exhibited by each patient. Figure 4 shows the pedigree diagram and the CTG repeat size of the families and individuals we studied. It is important to note that apart from those diagnosed (dark squares/circles), none of the other family members were examined or tested for DM1. Hence, there is a possibility that there may be family members showing very mild symptoms who have not presented in our clinics, contributing to the apparent under transmission of the disease in the families.

Discussion

In order to obtain a better understanding of the burden of DM1, we estimated the prevalence of the DM1 using the distribution of CTG alleles larger than 18 in the Malaysian population. The result of (CTG)_{>18} of 3.05% (23/754) was observed in the Malaysian population. By comparing with the results of studies performed in other populations, we predict that DM1 is a rare disease in Malaysia. A larger study is needed to verify these findings, due to the fact that the subjects in this study were recruited from a major hospital in the capital city of Malaysia, therefore may not be representative of the whole country. It is likely that DM1 in the local community is underdiagnosed due to a lack of awareness amongst the public and healthcare professionals. There are also other contributing factors such as social stigma, and reduced access to major hospitals where specialised consultation and testing are available.

It is interesting to note that the frequency of (CTG)_{>18} was the lowest in the Chinese subpopulation, although they account for the most number of DM1 patients seen in our hospital (including those not reported here). The Indians on the other hand show the highest frequency of (CTG)_{>18} in agreement with the findings that DM1 is highly prevalent in India³³. However, the number of Indian DM1 patients seen in our study was the lowest among the three subpopulations. This may reflect socio-economic and demographic reasons, as well as misdiagnosis/underdiagnosis of DM1 in the respective subpopulations.

Our study also provides for the first time, data on the $(CTG)_{>18}$ allele frequency in a Malay population. The Malay ethnic group is genetically more similar to the Chinese compared to the Indians.³⁴ Comparison of the $(CTG)_{>18}$ distribution of the three ethnic groups however, shows a closer similarity between the Malays and the Indians (p=0.8151) compared to the Chinese (p=0.249). It would be interesting to see this same analysis done on other modern Malay populations in the region, such as the Singapore Malays and the Indonesians, as well as the aboriginal Malays.

The usage of the single tube TP-PCR allows for the rapid identification of large pathogenic CTG repeats, thus reducing the need for reflex Southern blot testing. Southern blot requires large amounts of DNA, the use of radioactive materials and is time consuming. In addition, this procedure is also less sensitive and may be difficult to replicate. Hence, any method that reduces the number of Southern blot that needs to be performed, while demonstrating high sensitivity and specificity is advantageous in a clinical setting.

However, the TP-PCR test used requires a highly specialized equipment, the genetic analyser, which may not yet be widely available and is unable to estimate the size of CTG expansions beyond 85 repeats.

Genotype-phenotype correlation studies in DM1 patients have thus far given conflicting results, with various underlying mechanisms, associations and theories proposed³⁵⁻¹⁻³⁸. In our study, a disparity in the genotype-phenotype correlation in the Chinese family was seen, whereby patient 3 is largely asymptomatic although she carries 350 repeats. Her disease status was only suspected and diagnosed following the birth of her children who exhibited symptoms. Both her children were congenitally affected, which is consistent with findings in previous studies that showed that the majority of congenital cases were maternally transmitted. Patients 2 and 7 on the other hand paternally inherited their pathogenic alleles, resulting in the classic/adult onset DM1. The same disease phenotype is seen in patients 8 and 9. We were not able to determine whether their diseases were inherited, as their parents have never been tested. However, these patients were given genetic counselling and in accordance with ethical principles, have the autonomy of deciding whether or not to disclose their disease status to family members at risk, for future counselling and testing. It was also observed that congenitally affected patient 5 showed a comparable expansion size to those who were classically affected. The only symptoms he has shown, however is neonatal hypotonia and a mild cognitive dysfunction. The comparable repeat size is most likely due to the younger age of patient 5 compared to the classically affected adults, and suggest that a larger repeat size would be observed, as the patient grows older. Apart from these disease dynamics, there have also been findings of contraction of allele sizes upon transmission reported elsewhere²⁷. All these factors point towards the high complexity of DM1 and illustrate the important need for genetic counselling services to be offered to affected families.

Molecular testing is generally established as the gold standard in diagnosing genetic disorders such as DM1. This is because a molecular test is rapidly able to eliminate differential diagnoses, confirm the DM1 diagnosis, and estimate the size of CTG expansion in a patient, thus avoiding the need for invasive procedures such as muscle biopsies. Hilbert *et al*³⁹ who studied a large cohort of DM patients enrolled in the US National Registry, explored their diagnostic journeys, which on average took seven years for a correct DM1 diagnosis to be made. This delay brought about many implications to the patients and their

BMJ Open

families, ranging from lack of appropriate disease management to missed opportunities for genetic counselling. The situation in many developing countries is much similar or even worse as molecular diagnostic testing for DM1 is not easily available. Potentially, there could be a large number of patients who are undiagnosed/misdiagnosed, as well as those who have been unnecessarily subjected to various investigations for a definitive diagnosis to be made.

The findings from our preliminary study can aid the structuring of a rare disease management framework in Malaysia, using DM1 as a disease model. The data presented here adds to the scarce literature of DM1 in the Southeast Asian region. The information on CTG repeat lengths of the *DMPK* gene in individuals not known to be affected by DM, and DM1 patients, together with proper clinical assessment as well as a cost-effective molecular approach, carry implications for earlier diagnosis of DM1 and genetic counselling in a low resource setting.

Contributorship statement

All authors were involved in the conception and design of the work as well as the final approval of the submitted manuscript.

KA, MKT and IT were involved in the acquisition and analysis of data and drafting the manuscript and were joint senior authors.

LLH, GKJ, KTW and AAA contributed to the critical evaluation of the manuscript.

Competing interests

The authors state no competing interests

Funding

This study was supported by grants from the Ministry of Higher Education, Malaysia (Fundamental Research Grant Scheme; grant number: FG029/2010A, F0176/2007B and FS146/2008A), and University of Malaya (Postgraduate Research Fund; grant number: PV126/2012A).

Data sharing statement

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

Acknowledgements

The authors acknowledge the contributions of Ms. Juliana Lee who helped in providing genetic counseling and support to the patients and their families. We also want to thank the UMMC blood bank for blood samples of controls, as well as the DM1 patients for their participation in this study.

References

- 1. Harper PS. Myotonic dystrophy 3rd edn (WB Saunders, London, 2001)
- 2. Fu, YH, Pizzuti, A, Fenwick, R, King, J, Rajnarayan, S, Dunne, PW, *et al.* An unstable triplet repeat in a gene related to Myotonic Muscular Dystrophy. *Science* **255**, 1256-1258 (1992).
- Mahadevan, M, Tsilfidis, C, Sabourin, L, Shutler, G, Amemiya, C, Jansen, G, *et al.* Myotonic Dystrophy mutation: An unstable CTG repeat in the 3' untranslated region of the gene. *Science* 255, 1253-1255 (1992).
- 4. Turner C, Hilton-Jones D. The Myotonic Dystrophies: Diagnosis and management. *J. Neurol. Neurosurg. Psychiatry.* **81**, 358-367 (2008).
- 5. Jaspert A, Fahsold R, Grehl H, Claus D. Myotonic Dystrophy: Correlation of clinical symptoms with the size of the CTG trinucleotide repeat. *J. Neurol.* **242**, 99-104 (1995).
- Gennarelli, M, Novelli, F, Bassi, A, Martorell, L, Cornet, M, Menegazzo, E, *et al.* Prediction of Myotonic Dystrophy clinical severity based on the number of intragenic [CTG]_n trinucleotide repeats. *Am. J. Med. Genet.* 65, 342-347 (1996).
- Ashizawa T, Harper PS. in *Genetic Instabilities and Neurological Diseases* (eds Wells RD, Ashizawa T.) 21-26 (Academic Press. 2011).
- Harper PS, Harley HG, Reardon W, Shaw DJ. Anticipation in Myotonic Dystrophy: New light on an old problem. *Am. J. Hum. Genet.* **51**, 10-16 (1992).
- 9. Harper PS. Myotonic dystrophy 2nd edn (Saunders, Philadelphia, 1989)
- Osame M, Furusho T. Genetic epidemiology of myotonic dystrophy in Kagoshima and Okinawa districts in Japan. *Clin Neurol.* 23, 1067–1071 (1983).

BMJ Open

11.	Suominnen, T, Bachinski, LL, Auvinen, S, Hackman, P, Baggerly, KA, Angelini, C., et al. Population
	frequency of Myotonic Dystrophy: Higher than expected frequency of Myotonic Dystrophy type 2
	(DM2) in Finland. <i>Eur. J. Hum. Genet.</i> 19 , 776-782 (2011).
12.	Mathieu J, De Braekeleer M, Prevost C. Genealogical reconstruction of myotonic dystrophy in the
	Saguenay-Lac-Saint-Jean area (Quebec, Canada). Neurology. 56, 328–335.
3.	Goldman A, Ramsay M, Jenkins T. Absence of Myotonic Dystrophy in Southern African Negroids is
	associated with a significantly lower number of CTG trinucleotide repeats. J. Med. Genet. 31, 37-40
	(1994).
4.	Krahe, R, Eckhart, M, Ogunniyi, AO, Osuntokun, BO, Siciliano, MJ, Ashizawa, T. De novo Myotonic
	Dystrophy mutation in a Nigerian kindred. Am. J. Hum. Genet. 56, 1067-1074 (1995).
5.	Acton RT, Rivers CA, Watson B, Oh SJ. DMPK-associated Myotonic Dystrophy and CTG repeats in
	Alabama African Americans. Clin. Genet. 72, 448-453 (2007).
16.	Imbert G, Kretz C, Johnson K, Mandel JL. Origin of the expansion mutation in Myotonic Dystrophy.
	Nature Genet. 4 , 72-76 (1993).
17.	Davies J, Yamagata H, Shelbourne P, Buxton J, Ogihara T, Nokelainen P, et al. Comparison of the
	Myotonic Dystrophy associated CTG repeat in European and Japanese populations. J. Med. Genet.
	29 , 766–769 (1992).
8.	Deka, R, Majumder, PP, Shriver, MD, Stivers, DN, Zhong, Y, Yu, LM, et al. Distribution and
	evolution of CTG repeats at the myotonin protein kinase gene in human populations. Genome Res.
	6 , 142-154 (1996).
9.	Magaña, JJ, Cortés-Reynosa, P, Escobar-Cedillo, R, Gómez, R, Leyva-García, N, Cisneros, B.
	Distribution of CTG repeats at the DMPK gene in Myotonic Dystrophy patients and healthy
	individuals from the Mexican population. Mol. Biol. Rep. 38, 1341-1346 (2011).
20.	Freitas SRS, Cabello PH, Moura-Neto RS, Duro LA. Analysis of the DMPK gene CTG repeats in
	healthy Brazilians. Genet. Mol. Bio. 30, 14-16 (2007).
21.	Amenabar F, Jorquera H, Acuna M, Cifuentes L. CTG repeats at the myotonic protein kinase gene
	in a healthy Chilean population sample. Acta Neurol. Scand. 119, 321-324 (2009).

- 22. Theerasasawat S, Papsing C, Pulkes T. CTG repeat lengths of the *DMPK* gene in Myotonic Dystrophy patients compared to healthy controls in Thailand. *J. Clin. Neurosci.* **17**, 1520-1522 (2010).
 - Pan H, Lin HM, Ku WY, Li TC, Li SY, Lin CC, Hsiao KM. Haplotype analysis of the Myotonic Dystrophy type 1 (DM1) locus in Taiwan: Implications for low prevalence and founder mutations of Taiwanese Myotonic Dystrophy type 1. *Eur. J. Hum. Genet.* **9**, 638-641 (2001).
- 24. Zhang S, Wu H, Pan A, *et al.* Low incidence of Myotonic Dystrophy in Chinese Hans is associated with a lower number of CTG trinucleotide repeats. *Am. J. Med. Genet.* **96**, 425-428 (2000).
- 25. Alfadhli S, Elshafey AE, Bastaki L, Al-Awadi S. CTG repeat number at the Myotonic Dystrophy locus in healthy Kuwaiti individuals. *Arch. Neurol.* **61**, 895-898 (2004).
- 26. Shojasaffar B, Moradin N, Kahrizi K, Cobo AM, Najmabadi H. CTG expansion and haplotype analysis of DM1 gene in healthy Iranian population. *Can. J. Neurol. Sci.* **35**, 216-218 (2008).
- 27. Kim SY, Kim JY, Kim GP, Sung JJ, Lim KS, Lee KW, *et al.* Molecular and clinical characteristics of Myotonic Dystrophy type 1 in Koreans. *Korean J. Lab. Med.* **28**, 483-492 (2008).
- 28. Magaña JJ, Cisneros B. in *Muscular Dystrophy* (ed Madhuri Hegde) 48-72 (InTech, 2012)
- 29. Kamsteeg EJ, Kress W, Catalli C, Hertz JM, Witsch-Baumgartner M, Buckley MF, *et al.* Best practise guidelines and recommendations on the molecular diagnosis of Myotonic Dystrophy types 1 and 2. *Eur. J. Hum. Genet.* **20**, 1203-1208 (2012).
- 30. Warner JP, Barron LH, Goudie D, Kelly K, Dow D, Fitzpatrick DR, *et al.* A general method for the detection of large CAG repeat expansions by fluorescen PCR. *J. Med. Genet.* **33**, 1022–1026 (1996).
- 31. Surh LC, Mahadevan M, Korneluk RG. Analysis of trinucleotide repeats in Myotonic Dystrophy. *Curr. Prot. Hum. Genet.* 9.6.1-9.6.13 (2001).
- 32. Singh S, Zhang A, Dlouhy S, *et al.* Detection of large expansions in myotonic dystrophy type 1 using triplet primed PCR. *Front. Genet.* 5, 94. doi: 10.3389/fgene.2014.00094 (2014).
- Basu, P, Majumder, P, Roychoudhury, S, Bhattacharyya, N. Haplotype analysis of genomic polymorphisms in and around the myotonic dystrophy locus in diverse populations of India. *Hum. Genet.* **108**, 310-317 (2001).

BMJ Open

- 34. Tan SG. Genetic relationships among sixteen ethnic groups from Malaysia and Southeast Asia (pp. 83–92). Singapore: World Scientific. (2001).
 - Kinoshita, M, Takahashi, R, Hasegawa, T, Komori, T, Nagasawa, R, Hirose, K, Tanabe, H. (CTG)_n expansions in various tissues from a Myotonic Dystrophy patient. *Muscle Nerve* **19**, 240-242 (1996).
 - Meola G. Clinical and genetic heterogeneity in Myotonic Dystrophies. *Muscle Nerve* 23, 1789-1799 (2000).
 - Zatz, M, Passos-Bueno, MR, Cerqueira, A, Marie, SK, Vainzof, M, Pavanello, RC. Analysis of the CTG repeat in skeletal muscle of young and adult Myotonic Dystrophy patients: When does the expansion occur? *Hum. Mol. Genet.* 4, 401-406 (1995).
 - Savić, D, Rakočvić-Stojanović, V, Keckarević, D, Čuljković, B, Stojković, O, Mladenović, J, *et al.* 250 CTG repeats in *DMPK* is a threshold for correlation of expansion size and age at onset of juvenile–adult DM1. *Hum. Mut.* **19**, 131-139 (2002).
 - 39. Hilbert, JE, Ashizawa, T, Day, JW, Luebbe, EA, Martens, WB, McDermott, MP, *et al.* Diagnostic odyssey of patients with Myotonic Dystrophy. *J. Neurol.* **260**, 2497-2504 (2013).

Figure Legends

Figure 1. Frequency of CTG repeats in individuals not known to be affected by DM from the Malay, Chinese and Indian sub-populations. The frequency for large normal alleles, $(CTG)_{>18}$ was 9/250 or 3.60% in the Malays, 4/254 or 1.57% in the Chinese, and 10/250 or 4.00% in the Indians. A bimodal allelic distribution was observed in the Malaysian population, in alignment with patterns observed in other populations with low DM1 frequency. The most frequently seen allele was $(CTG)_5$ in all three subpopulations, whereas $(CTG)_{10-13}$ was the most common allele group. The genotyping data for each individual is provided in the supplementary files 1–3.

Figure 2. Electropherogram results of TP-PCR. *The X-axis represents the CTG repeat size and the* Yaxis represents the allele peak height. (A) The electropherogram shows a DM1 patient sample with a

Page 16 of 39

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright

BMJ Open

single peak corresponding to (CTG)₁₁ and a laddering pattern indicating an expanded allele. (B) Two normal heterozygous alleles with sizes 5 and 11 and no laddering pattern observed.

Figure 3. Expanded CTG repeats of DM1 patients following PCR-Southern blotting as seen on an autoradiography film. Expanded alleles in patients ranging from a size of 97 to 690 CTG repeats have been detected. A sample of the bands are shown here, ranging from 270 repeats (1045 bp) to 690 repeats (2305 bp). Normal alleles of four sizes were seen amongst the patients, 5 (332 bp), 11 (350 bp), 12(356 bp) and 13 (356 bp). Due to somatic heterogeneity, the expanded alleles usually appear as smears. A 1 Kb DNA ladder as well as samples from individuals not known to be affected by DM were run alongside patient samples as controls.

Figure 4. Pedigree diagrams of DM1 patients studied including the size of their CTG alleles. Members of three families and two individuals had their CTG repeat size analyzed. The sizes of the allele pairs for each patient are as stated in the pedigree diagrams. The phenomenon of anticipation was clearly observed in the three families, whereby with the increased CTG expansion in successive generations, a decreasing age of onset is noted.

Tables

Table 1: Comparison and χ^2 analysis of the frequency of (CTG)_{>18} alleles in individuals not known to be affected by DM from the Malay, Chinese and Indian sub-populations.

Population	(CTG)>18	Comparison of	Comparison of	Comparison of
	alleles /	Malay data with	Chinese data with	Indian data with
	Total alleles	other populations χ^2	other populations χ^2	other populations χ^2
	analyzed (%)	(p value)	(p value)	(p value)
Malay	9/250	- 1.3	329 (0.249) 0.	.055 (0.8151)
	(3.60)			
Chinese	4/254 1	.329 (0.249)	- 1.	.919 (0.166)
	(1.57)			
Indian	10/250 0	0.055 (0.8151) 1.9	919 (0.166)	-
	(4.00)			

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

BMJ Open

3
1
5
0
1
8
9
10
11
12
13
1/
15
10
10
17
18
8 9 10 11 12 13 14 15 16 17 18 19 20
20
21
22
23
20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38 39 40
25
20
20
27
28
29
30
31
32
33
34
25
30
30
37
38
39
40
41
42
43
44
45
46
40
47
48
49
50
51
52
52 53
54
55
56
57
58
59
~~

60

1 2

Table 2: Comparison and χ^2 analysis of the frequency of (CTG)_{>18} alleles in individuals not known to be affected by DM from the three Malaysian sub-populations to those in twelve worldwide populations.

Population	(CTG)>18 alleles	Comparison of	Comparison of	Comparison of
	/ Total alleles	Malay data with	Chinese data with	Indian data with
	analyzed (%)	other populations	other populations	other populations
		χ^2 (p value)	χ² (p value)	χ^2 (p value)
^a European ¹⁷	15/130 (11.54)	7.817 (0.005**)	16.094 (<0.0001***)	6.729 (0.009**)
German ¹⁸	22/104 <mark>(21.20</mark>)	26.17 (<0.0001***)	39.141 (<0.0001***)	24.239 (<0.0001***)
Mexican ¹⁹	51/800 (6.38)	2.232 (0.135)	8.037 (0.005**)	1.553 (0.213)
Brazilian ²⁰	24/312 (7.69)	3.497 (0.062)	9.88 (0.002**)	2.334 (0.127)
Chilean ²¹	30/272 (11.00)	9.354 (0.002**)	17.887 (<0.0001***)	8.131 (0.004**)
Japanese ¹⁷	9/106 (8.50)	2.760 (0.097)	8.386 (0.004**)	2.149 (0.143)
Thai ²²	11/400 (2.75)	0.142 (0.706)	0.505 (0.477)	0.421 (0.516)
Taiwanese ²³	7/499 (1.40)	2.867 (0.090)	0.018 (0.893)	3.962 (0.050)
Han Chinese ²⁴	6/600 (1.00)	5.463 (0.019*)	0.134 (0.714)	7.052 (0.008**)
Kuwaiti ²⁵	14/370 (3.78)	0.010 (0.920)	1.894 (0.169)	0.006 (0.938)
Iranian ²⁶	29/400 (7.25)	3.090 (0.079)	9.292 (0.002**)	2.334 (0.127)
South African ¹³	3/420 (0.71)	5.869 (0.015*)	0.457(0.499)	7.249 (0.007*)

P* < .05 (significant); ** *P* < .01 (highly significant); * *P* < .001(very highly significant)

^a Includes British, German, Belgian, Swedish and Finnish subjects

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Family	Patient	Gender	^a Age	^b Disease Onset	^c Phenotype	CTG Repeat Size
1	1	Male	54	Late adult	Classical	330
	2	Male	30	Early adult	Classical	690
2	3	Female	30	Early adult	Mild	350
	4	Female	31	Early adult	Mild	97
	5	Male	5	Birth	Congenital	596
3	6	Male	60	Late adult	Classical	270
	7	Male	30	Early adult	Classical	570
4	8	Male	44	Early adult	Classical	550
5	9	Male	32	Early adult	Classical	520

^a Age of patient at time of molecular testing

^b Early adulthood: 20 – 49 years old; Late adulthood: >50 years old

^c Phenotype classification as described by Kamsteeg et al

Supplementary file 4 is a record of the responses to the comments by reviewers and revisions done to the manuscript.

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

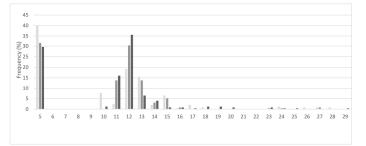


Figure 1. Frequency of CTG repeats in individuals not known to be affected by DM from the Malay, Chinese and Indian sub-populations. The frequency for large normal alleles, (CTG)>18 was 9/250 or 3.60% in the Malays, 4/254 or 1.57% in the Chinese, and 10/250 or 4.00% in the Indians. A bimodal allelic distribution was observed in the Malaysian population, in alignment with patterns observed in other populations with low DM1 frequency. The most frequently seen allele was (CTG)5 in all three sub-populations, whereas (CTG)10-13 was the most common allele group. The genotyping data for each individual is provided in the supplementary files 1–3.

215x166mm (300 x 300 DPI)

Fo

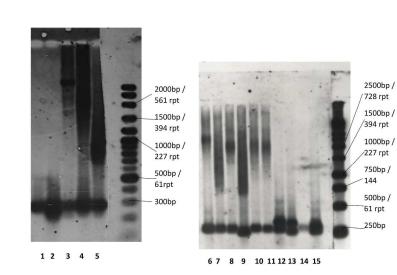
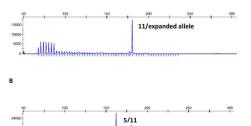



Figure 2. Electropherogram results of TP-PCR. The X-axis represents the CTG repeat size and the Y-axis represents the allele peak height. (A) The electropherogram shows a DM1 patient sample with a single peak corresponding to (CTG)11 and a laddering pattern indicating an expanded allele. (B) Two normal heterozygous alleles with sizes 5 and 11 and no laddering pattern observed.

279x361mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

Α

F

Figure 3. Expanded CTG repeats of DM1 patients following PCR-Southern blotting as seen on an autoradiography film. Expanded alleles in patients ranging from a size of 97 to 690 CTG repeats have been detected. A sample of the bands are shown here, ranging from 270 repeats (1045 bp) to 690 repeats (2305 bp). Normal alleles of four sizes were seen amongst the patients, 5 (332 bp), 11 (350 bp), 12(356 bp) and 13 (356 bp). Due to somatic heterogeneity, the expanded alleles usually appear as smears. A 1 Kb DNA ladder as well as samples from individuals not known to be affected by DM were run alongside patient samples as controls.

215x166mm (300 x 300 DPI)

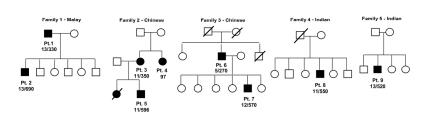


Figure 4. Pedigree diagrams of DM1 patients studied including the size of their CTG alleles. Members of three families and two individuals had their CTG repeat size analyzed. The sizes of the allele pairs for each patient are as stated in the pedigree diagrams. The phenomenon of anticipation was clearly observed in the three families, whereby with the increased CTG expansion in successive generations, a decreasing age of onset is noted.

215x166mm (300 x 300 DPI)

	Complete list of allele	distribution	n healthy i <mark>n</mark> d	ividuals from the Malay subpopulation
	No. Code	Allele 1	Allele 2	
	1 N1	10	5	
	2 N2	10	5	
	3 N3	11	5	
	4 N5	12	12	
0	5 N6	12	12	
1	6 N7	5	5	
2	7 N10	13	11	
3	8 N25	10	10	
4 5	9 N26	5	5	
5 6	10 N31	5	5	
7	11 N32	10	5	
8	12 N33	5	5	
9	12 N35	13	13	
0 1	14 N36	13	5	
2	15 N37	11	5	
3	16 N38	11	12	
4	17 N40	5		
5	17 N40 18 N45		5	
6 7		13	13	
8	19 N46	13	13	
9	20 N47	12	5	
0	21 N51	13	10	
1	22 N52	10	5	
2 3	23 N59	15	5	
4	24 N60	17	5	
5	25 N63	5	5	
6	26 N68	5	5	
7	27 N73	12	5	
8 9	28 N78	12	5	
0	29 N80	5	5	
1	30 N82	13	5	
2	31 N84	14	5	
3 4	32 N87	13	13	
4 5	33 N89	11	11	
6	34 N90	15	5	
7	35 N92	12	5	
8	36 N95	5	5	
9	37 N97	28	11	
0 1	38 N99	13	5	
2	39 N101	24	5	
3	40 N105	13	13	
4	41 N108	12	12	
5	42 N110	13	13	
6 7	43 N116	13	5	
8	44 N118	14	5	
9		10	J	
0				

1				
2	45 N120	13	13	
3	46 N125	5	5	
4	47 N130	12	12	
5	48 N132	12	12	
6 7	49 N133	10	5	
8	50 N134	12	5	
9	51 N137	5	5	
10	52 N139	15	5	
11 12	53 N144	10	5	
12	54 N147	10	5	
14	55 N148	12	5	
15				
16	56 N157	13	5	
17 18	57 N159	5	5	
10	58 N160	13	13	
20	59 N165	12	5	
21	60 N171	18	10	
22	61 N173	12	5	
23	62 N177	13	10	
24 25	63 N178	12	5	
26	64 N179	5	5	
27	65 N185	13	5	
28	66 N188	14	5	
29	67 N189	15	5	
30 31	68 N191	17	5	
32	69 N193	17	5	
33	70 N195	17	12	
34	71 N196	16	5	
35	72 N198	14	5	
36	73 N199	15	13	
37 38	74 N206	13	5	
39		17		
40	75 N207		5	
41	76 N208	17	13	
42	77 N209	16	5	
43 44	78 N211	28	12	
45	79 N212	27	12	
46	80 N213	17	12	
47	81 N214	5	10	
48	82 N215	13	5	
49 50	83 N217	15	5	
50 51	84 N218	26	10	
52	85 N219	13	5	
53	86 N220	13	5	
54	87 N223	15	12	
55 56	88 N228	5	15	
56 57	89 N229	24	24	
58	90 N230	5	5	
59	91 N232	12	5	
60				
	_		1	

12	5
12	5
12	5
13	5
12	12
26	12
15	12
15	10
~	~

			•	
4 5	94 N235	12	5	
6	95 N236	13	5	
° 7	96 N239	12	12	
8	97 N240	26	12	
9	98 N242	15	12	
10	99 N242	15	10	
11 12	100 N243	5	5	
12	100 N243 101 N244	5	5	
14				
15	102 N245	13	13	
16	103 N247	13	13	
17	104 M1	12	5	
18	105 M2	5	5	
19 20	106 M3	5	5	
20	107 M4	12	12	
22	108 M5	12	5	
23	109 B12	12	5	
24	110 B14	5	5	
25	111 B18	14	14	
26 27	112 B20	5	5	
28	113 B21	15	15	
29	113 B21 114 B34	15	15	
30				
31	115 B35	13	13	
32	116 B36	13	5	
33 34	117 B37	5	5	
34 35	118 B38	5	5	
36	119 B40	10	10	
37	120 B48	15	5	
38	121 B49	12	12	
39	122 B50	12	12	
40 41	123 B53	13	13	
41 42	124 B54	12	5	
43	125 B56	27	10	
44				

 92 N233

93 N234

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

No.	Code	Allele 1	Allele 2	
	1 N024W	11	5	
	2 N029W	11	11	
	3 N039W	13	5	
	4 N041W	13	13	
	5 N042W	11	5	
	6 N043W	12	12	
	7 N044W	12	12	
	8 N048W	12	5	
	9 N049W	12	5	
	10 N050W	11	5	
	11 N053W	13	5	
	11 N055W 12 N054W	13	12	
	12 N054W 13 N055W	12	5	
	13 N055W 14 N056W	12		
			5	
	15 N057W	14	5	
	16 N058W	12	5	
	17 N061W	13	5	
	18 N062W	12	5	
	19 N064W	12	12	
	20 N065W	13	5	
	21 N066W	24	5	
	22 N071W	11	5	
-	23 N072W	12	5	
	24 N074W	13	13	
-	25 N075W	12	5	
	26 N076W	14	14	
	27 N077W	13	5	
-	28 N079W	12	5	
-	29 N081W	12	12	
	30 N083W	12	12	
	31 N085W	14	5	
	32 N086W	27	5	
	33 N088W	5	5	
	34 N093W	11	11	
	35 N094W	11	5	
	36 N096W	11	12	
	37 N098W	12	5	
	37 N098W 38 N100W	13	5	
	39 N103W	13	12	
	40 N104W	12	12 5	
	41 N106W	12	5	
	42 N107W	12	12	
	43 N111W	14	5	
4	44 N112W	15	15	

45 N113W	5	5	
46 N114W	13	5	
47 N115W	12	12	
48 N117W	13	13	
49 N119W	13	5	
50 N122W	5	5	
51 N124W	12	12	
52 N127W	12	12	
53 N128W	13	5	
54 N138W	5	5	
55 N142W	11	11	
56 N143W	5	5	
57 N146W	13	13	
58 N149W	12	12	
59 N150W	13	5	
60 N151W	13	5	
61 N152W	11	11	
62 N153W	11	11	
63 N154W	27	16	
64 N155W	13	5	
65 N156W	13	5	
66 N158W	13	5	
67 N161W	15	15	
68 N162W	13	5	
69 N163W	12	5	
70 N164W	12	15	
70 N164W 71 N166W	13	5	
71 N100W 72 N167W	12	12	
72 N167W	5	5	
74 N169W	15	5	
75 N170W 76 N172W	11 11	11 5	
76 N172W 77 N174W	11	5	
	12	5	
78 N175W	13 15		
79 N176W		15	
80 N180W	11	5	
81 N181W	12	5	
82 N182W	11	11	
83 N183W	13	13	
84 N184W	5	5	
85 N186W	23	14	
86 N187W	12	12	
87 N190W	12	12	
88 N194W	12	12	
89 N197W	11	11	
90 N200W	12	5	
91 N221W	12	12	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 $\begin{array}{r} 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$

1 2	92 N222W	11	11	
3	93 N224W	13	13	
4	94 N227W	15	5	
5 6 7	95 N237W	13	5	
6 7	96 C1	11	5	
8	97 C2	5	12	
9	98 C3	11	11	
10	99 C4	13	13	
11 12	100 C5	12	12	
13	101 C6	11	5	
14	102 C7	12	12	
15	103 C8	12	5	
16 17	104 C9	11	5	
18	105 C10	12	5	
19	106 C11	12	5	
20	107 C12	13	13	
21 22	108 C13	15	15	
23	109 C15	13	13	
24	110 C16	11	5	
25	111 C19	12	5	
26 27	112 C20	12	12	
28	113 C22	12	5	
29	114 C24	12	5	
30	115 C25	12	12	
31 32	116 C27	13	13	
33	117 C29	11	11	
34	118 C30	12	5	
35	119 C31	12	5	
36 27	120 C32	12	14	
37 38	120 C32 121 C33	12	12	
39	121 C33	12	12	
40	122 C34 123 C35	12	12	
41	123 C35 124 C36	5	5	
42 43	124 C30 125 C37	12	5	
44	125 C37 126 C38	12	5	
45	120 C38 127 C39	16	5	
46	127 037	10	5	

Page	30	of	39
------	----	----	----

1 2 3 4 5 6 7 8 9 10 11 12 13 4 5	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	
47 48 49 50 51 52 53 54 55 56 57 58 59 60	

No.

Code

1 I001

2 I005

3 I007

4 I008

5 I009

6 I010 7 I011

8 I012

9 I014

10 I015

11 I016

12 I017

13 I018

14 I019

15 I020

16 I021

17 I022

18 I023

19 I025

20 I026

21 I029

22 I030

23 I031

24 I032

25 I033

26 I034

27 I035

28 I036

29 I037

30 I038

31 I039

32 I040

33 I041

34 I042

35 I043

36 I044

37 I045

38 I046

39 I047

40 I048

41 I049

42 I050

43 I051

44 I052

Allele 1

Complete list of allele distribution in healthy individuals from the Indian subpopulation

Allele 2

1				
1 2	45 I053	14	5	
3	46 I055W	11	5	
4	47 I056W	12	5	
5 6	48 I057W	12	5	
0 7	49 I059W	12	5	
8	50 I060W	11	5	
9	51 I061W	5	5	
10	52 I062W	12	12	
11 12	53 I064W	12	12	
13	54 I066W	16	5	
14	55 I067W	12	5	
15	56 1067 W	10	10	
16	57 1069W	10	10	
17 18	57 1009 W	18	5	
19	59 I070W		5	
20		11		
21	60 I073W	11	11	
22	61 I074W	20	11	
23 24	62 I075W	11	11	
25	63 I077W	13	13	
26	64 I078W	12	12	
27	65 I079W	5	5	
28	66 I085W	12	12	
29 30	67 I086W	12	5	
31	68 I087W	11	5	
32	69 I088W	5	5	
33	70 I089W	5	5	
34	71 I090W	12	12	
35 36	72 I091W	11	11	
37	73 I093W	12	12	
38	74 I094W	23	11	
39	75 I095W	18	5	
40	76 I096W	12	12	
41 42	77 I097W	12	5	
42 43	78 I098W	29	12	
44	79 I099W	12	12	
45	80 I102W	12	12	
46	81 I103W	12	5	
47 48	81 1103 W 82 I104 W	25	5	
40 49	82 1104 w 83 1105 W	25 11	5	
50				
51	84 I106W	11	11	
52	85 I107W	11	5	
53 54	86 I108W	12	5	
54 55	87 I109W	13	13	
56	88 I110W	12	12	
57	89 I111W	12	5	
58	90 I112W	12	5	
59 60	91 I113	12	5	
00				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	02 1114	5	5	
2 3	92 I114	5	5 5	
4	93 I116	11		
5	94 I117	14	11	
5 6 7	95 I118	11	5	
	96 I119	5	5	
8 9	97 I120	11	5	
9 10	98 I121	13	13	
11	99 I123	12	12	
12	100 I124	19	12	
13	101 I125	12	12	
14	102 I126	18	11	
15 16	103 I127	13	5	
17	104 I129	12	12	
18	105 I130	12	5	
19	106 I131	19	11	
20	107 1133	12	12	
21	108 1135	12	12	
22 23	109 1137	5		
24			5	
25	110 I140	12	12	
26	111 I144	12	5	
27	112 I145	12	5	
28	113 I146	5	5	
29 30	114 I150	12	12	
31	115 I151	14	14	
32	116 I153	12	5	
33	117 I156	12	12	
34	118 I158	12	5	
35 36	119 I159	13	13	
37	120 I160	12	5	
38	121 I162	12	5	
39	122 I163	16	5	
40	123 I164	11	5	
41 42	124 1167	13	5	
42 43	125 I168	13	12	
44	125 1100	12	12	
45				

1
2
3 ⊿
3 4 5 6 7 8 9 10 11
6
7
8
9 10
11
12
13 14
12 13 14 15 16 17 18
16
17
19
20
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
22
23 24
25
26
27
20 29
30
31
32 33
34
35
36
37 38
39
40
41 42
42 43
44
45
46 47
48
49 50
50
51 52
52 53
54
50 51 52 53 54 55 56 57
56 57
58
59
60

No.	Reviewers' Comments	Response
1.	Please remove the research checklist from the submission- we do not feel that the checklist is very appropriate for this	Checklist removed
	kind of study	
	wer: 1	
1.	Although correlation between prevalence of CTG repeat >18 in DMPK gene and prevalence of DM1 is relatively well established, to conclude that prevalence of DM1 is low in Malaysia may be a bit over-claimed. The conclusions should be toned down.	Our conclusion states that the results show a low DM1 prevalence in Malaysia with the possibility of underdiagnosis. We also state that DM1 as a rare disease in Malaysia is only a prediction and acknowledge that a larger study is needed to verify these findings. Based on these justifications, we would like to keep our current conclusions.
2.	Since there were only 9 DM1 cases; sensitivity of TP-PCR might not be well tested.	We acknowledge that due to the small sample size the sensitivity of TP-PCR cannot be ascertained in our study. However, TP-PCR is an established method and is recommended as a molecular diagnostic test for DM1, hence the aim of our study was to determine its feasibility in the local healthcare setting rather than determining sensitivity.
3.	Did the authors allow healthy controls to be from the same family? If not, this point should be clarified in the methods.	The healthy controls were anonymous blood donors who were randomly selected. This point is now clarified in the methods section.
Revie	wer: 2	
1.	Santoro et al ever reported that the presence of CCG, CTC or GGC interruptions could potentially lead to the drop-out of the abnormal allele from TP-PCR. In order to rule out the false negative results due to these interruptions, TP-PCR is recommended to be repeated with a Hex labeled Reverse primer. Protocol can be founded from Santoro's work (2013) or Singh's work (2015).	The omission of this step is one of the limitations of this study. It is taken note of and will be incorporated in other future work.
2.	11 individuals were included as positive DM-1. Two of eleven were tested using PCR amplification without Southern Blot. The genotyping data should be provided to indicate the largest repeat length can be amplified by PCR.	All 11 with DM1-like symptoms were tested by Southern blot hybridisation. Two out of the 11 samples showed negative results for DM1.

1
2
3
4
5
6
7
8
ă
10
10
11
12
13
14
15
16
17
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 7 8 9 10 11 2 3 14 15 16 7 8 9 10 11 2 3 14 15 16 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 7 8 9 10 11 2 2 3 2 4 5 5 6 7 8 9 10 11 2 3 3 4 5 5 6 7 8 9 10 11 2 2 3 2 4 5 5 8 9 10 11 2 2 3 2 4 5 5 8 9 10 11 2 2 3 2 4 5 5 6 7 8 9 10 11 2 2 3 2 4 5 5 6 7 8 9 10 1 1 2 8 9 10 11 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
19
20
20
∠ I 20
22
23
24
25
26
27
28
29
30
31
32
33
24
34
35
36
37
38
39
10
41
42
43
44
45
43 46
40 47
48
49
50
51
52
53
54
55
56
57
58
50 59
09

		1
3.	The reference of the TP-PCR methodology part should be provided.	The methodology is now referenced to Singh et al, 2014
4.	Reference 29 was published in 2001 not 1998.	The year of publication is now corrected
Revie	wer: 3	
1.	Title. "Molecular detection of CTG repeat lengths in the DMPK gene in healthy individuals and diagnosis of myotonic dystrophy type 1 using triplet-primed PCR in Malaysia" is OK, but I don't consider the use of triplet- primed to be that significant and suggest instead: "Analysis of CTG repeat length variation in the DMPK gene in the general population and the molecular diagnosis of myotonic dystrophy type 1 in Malaysia".	Title changed as suggested
2.	Prevalence. At several points the authors talk about the "prevalence" of DM1 in Malaysia. However, they provide little data that directly address this question. For instance, having now identified 11 patients with DM1 it should be possible to provide a minimum point estimate of the countrywide prevalence of DM1 and to provide a better estimate based on the approximate catchment size of the hospital at which these patients were identified. Notably, the first section of the results is entitled "Estimation of DM1 prevalence" yet again this section contains no direct estimates of the actual prevalence of DM1 in Malaysia. This section would be far more accurately described as "Analysis of DMPK CTG repeat length variation in the general population". The authors go on to compare the proportion of alleles >18 CTG repeats that is observed in other populations. Such alleles are deemed to be the pool of alleles from which new disease causing expansions arise and the frequency of such alleles likely is correlated to the actual prevalence of DM1. In making these comparisons it would be useful for the reader to be provided with some indication of the actual prevalence that might be predicted from these population level comparisons and compare them with those directly observed. Inevitably, any such estimate from both of these approaches will be rather approximate, but in the absence of any other data it would be the useful for the authors to at least provide some insight into credible prevalence beyond the even more vague "low" that is currently reported.	The nine patients identified in this study were diagnosed in the years 2011 and 2012. During these two years, the number of patients who were seen at UMMC were 957,418 and 964,497 respectively, totaling to 1,921,915. Using these figures as guide, we estimate the prevalence of DM1 in Malaysia to be less than 1 in 200,000. This estimate is similar to estimates of DM1 prevalence in Thai and Taiwanese populations. Additionally, the prevalence of 1 in 200,000 is low when compared to the Finnish prevalence of 1 in 2,760 and that in the Quebec founder population at 1 in 500. The first section of the results is retitled as suggested.
3.	Repeat length estimates of non-disease associated alleles in the general population. The authors use conventional PCR to amplify the CTG repeat and resolve alleles by electrophoresis on 1.5% agarose gels. I am rather surprised that the resolution of such a system is sufficient to size alleles to one repeat accuracy, including the detection of	The separated products were cut out from the gel, purified using the QIAquick gel extraction kit (QIAGEN, Hilden, Germany) and sent to a service lab for sequencing to determine

	heterozygotes with closely spaced alleles. It would be useful for the authors to provide some indication as to whether they believe, and if so what evidence they have to support such a contention, that alleles were indeed sized with such an accuracy. The authors should also provide the genotyping data for each individual as a supplementary Excel file and confirm the genotypes match Hardy- Weinberg expectations.	the exact number of CTG repeats. The genotyping data for each individual is provided as a supplementary Excel file. The distribution of the allele frequency follows the bimoda distribution with the first peal contributed by the (CTG) ₅ alleles, and the second comprised of (CTG) ₁₁₋₁₃ alleles The bimodal allelic distributio is in alignment with patterns observed in other populations with low DM1 frequency.
4.	Southern blotting. In order to detect and size large expansions, the authors use Southern blot hybridisation of PCR amplified DM1 alleles. This they describe rather loosely as Southern blotting. Indeed their method does employ Southern blotting as part of the process. However, it must be made clear throughout that they have used Southern blot hybridisation of PCR amplified fragments. This must be done to ensure that this approach is clearly distinguished from the more traditional, but still gold standard method of DM1 diagnosis via the Southern blot hybridisation of restriction digested genomic DNA.	Southern blotting is now rephrased to Southern blot hybrisation of PCR amplified fragments
5.	The two cases of DM1 observed in African Americans most likely represents recent admixture as opposed to independent cases of DM1 in sub-Saharan Africa as is implied in the introduction.	The sentence is rephrased to reflect population admixture the probable cause of DM1 in the two cases of African Americans
6.	The authors should note the work of Morales et al., that refines the genotype-phenotype correlation in DM1. In this regard the authors should also make it clear how they have determined the number of CTG repeats reported in expanded alleles. Assuming this is derived from the middle of the smear, they should make it clear that the value reported is an estimate of the average repeat number and is age at sampling dependent.	The work of Morales et al is described by the following additions to the discussion: In their study on the somatic instability of expanded CTG repeats in DM1, Morales <i>et al</i> showed that there was no evidence to indicate that pathogenesis of the disease is constrained to threshold abov which repeat length does not contribute toward age at onse Additionally, they showed that age at onset is further modified by the level of somatic instability, which is a highly heritable trait.

		The estimation of the CTG repeat size in the expanded alleles was done as follows: The lengths of the 100 bp/1Kb size marker fragments were first converted into logarithmic values. These values were then graphed on the y axis against their migration distance on the y axis. Using linear regression, a line of best fit was drawn through these points and an equation describing that line was derived. The unknown fragment's migration distance derived from the most intense region of the expanded allele was placed into the equation for the regression line to determine a log value for the fragment's size. Taking the antilog of this value will yield the unknown fragment's size in bp. This value is an estimate of the average repeat number and is
7.	TP-PCR was not "recently" described. The First application of TP-PCR to DM1 diagnosis was reported by Warner et al., back in 1996.	dependent on age at sampling. The word 'recently' is now removed
8.	"While DM1 is not commonly seen in this country" would be better as "While DM1 has not been [previously or frequently?] diagnosed in this country"	Sentence changed as suggested
9.	"Reflex Southern blots"?	Reflex Southern blot tests refer to tests that are performed as a result of the PCR amplification falling outside the normal range
10.	"In addition, 11 patients displaying DM1 symptoms were recruited" would be better as "In addition, 11 patients displaying DM-like symptoms were recruited". Related to this, what was the phenotype of the two patients who were DM1 negative? Might they be DM2?	Sentence changed as suggested. Both patients displayed symptoms of myotonia, distal and proximal weakness. It is entirely possible that they may have DM2.
11.	What was the actual concentration of primers used for TP- PCR?	The final working concentration of the TP-PCR primers are now included.

BMJ Open

12.	"Southern Blotting was carried out in samples that only	The sentence is now amended
	showed single peaks in the electropherograms, which	to include 'homozygosity for a
	indicated a CTG expansion". A single peak is consistent with	non-expanded allele'.
	a large non-amplifiable expansion, but may also reflect	
	homozygosity for a non-expanded allele.	
13.	The authors need to provide details on how they detected	The probe was detected using
	their alkaline phosphatase labelled probe.	the CDP-Star Detection Reagen
14.	"The presence of smears as opposed to distinct bands in	The sentence is now revised to
	the autoradiogram confirmed that the samples analysed	Identification of DM1 positive
	were true DM1 patients." This is not true. The smear	samples were done by
	represents somatic mosaicism, but if the patients are	comparing the size of the band
	sampled early in life, or have relatively small expansions,	or smears obtained with DNA
	there will be no somatic mosaicism and expanded alleles	molecular weight markers
	my present as distinct bands. Critical in these analyses is	C C
	the size of the bands detected, not their compactness.	
15.	Figure 1 should be presented as a standalone properly	Figure 1 is changed as
	labelled histogram. The raw data on allele frequencies	suggested.
	(numbers, not percentages) should be presented as a	
	supplementary Excel file.	
16.	Figure 2. The X-axis does not represent CTG repeat size, but	The X-axis is labeled as fragme
10.	presumably fragment length in bases. However, the	length in base and the
	authors should indeed translate this scale into CTG repeat	electropherogram is cropped t
	number for both the TP-PCR and conventional PCR	show only up to 300 bases.
	products. The authors also need to provide a zoom of the	
	TP-PCR trace that convincingly shows that the 3 base	
	ladder does indeed extend beyond 50 CTG repeats.	
	Assuming the signal fades out not much after 50 repeats	
	there seems little point in showing the electropherogram	
	signal out to 500 bases. I am not convinced that the	
	electropherograms show alleles of 11 repeats. The repeat	
	primer contains 6 CAGs, thus the smallest fragment	
	observed should contain six repeats. Counting up from this	
47	I make the two "11" repeat alleles as 12.	Simon 2 is shan and as
17.	Figure 3. The autoradiographs should be better cropped	Figure 3 is changed as
	and informative labelling placed around the outside of	suggested.
	autoradiographs in black text. The size of the molecular	
	weight markers in base pairs and converted into CTG	
10	repeats should also be provided on the figure.	
18.	Figure 4. There is no need for the boxes around each	Figure 4 is changed as suggeste
	family. These families could also be better arranged into a	
	rectangular layout to avoid excessive white space.	
19.	'Healthy' and 'normal'. The authors refer to individuals as	Control individuals are now
	being either affected with myotonic dystrophy, or being	referred to as 'individuals not
	'healthy' or 'normal'. I am not sure that there are that	known to be affected by DM'
	many people who may be described as completely	
	'healthy' and even less who may be regarded as 'normal'.	
	In the absence of a clinical evaluation of these individuals,	

1 2 3
2 3 4 5 6 7 8
7 8 9
10 11 12
12 13 14
15 16 17
18 19 20
0 9 10 11 12 13 14 15 15 16 17 18 18 19 20 21 223 24 25 26 27 28 20 31 33 34 35 36 378
24 25 26
27 28 29
30 31 32
33 34 35
36 37
40
42 43
44 45 46
47 48 49
50 51 52
53 54 55
56 57 58
59 60

	and to avoid pejorative implications of abnormality, control individuals are probably better described as 'unaffected [by myotonic dystrophy] individuals from the general population'. It should also be made clear if these individuals have been clinically assessed to be sure they do not display any symptoms of myotonic dystrophy, or whether they may better be described, as 'not known to be affected by myotonic dystrophy'.	
20.	Italics. Gene names and Latin text should be italicised (e.g. DMPK, dystrophia myotonica, et al., etc.). This includes in the references.	All mentions of DMPK and et al have been italicized
21.	Inappropriate capitalisation. Only proper nouns should be capitalised (e.g. Southern, as in Southern blot). Disease names (e.g. dystrophia myotonica) and other words such as 'blot', 'protein' are not proper nouns and should not be capitalised even when defining an abbreviation.	All inappropriate capitalisations have been corrected
24.	Space between a number and its unit. There should be a space between a number and its units, except for % and °C.	Corrected
25.	Inappropriate referencing. Many of the references are inappropriate. Using recent research papers to support background concepts in the introduction that are only themselves covered in the introduction of the reference is simply not acceptable. The authors should use either recent reviews, or better still, quote the original papers that actually demonstrate the point in question. For example, reference 9 contains no real data on the relative prevalence of DM1 in Japan and Europe relative the rest of the world.	All references have been rechecked and appropriately cited.
Review	wer: 4	
1.	Though the authors do mention that the severe neonatal or infantile form of myotonic dystrophy is more severe, they should emphasize more the much larger CTG expansion in this infantile form of the disease, and it would be useful also to discuss the clinical genetic phenomenon of "anticipation" in autosomal dominant traits, in which each successive generation is more severely involved, in this case because of increasing numbers of repeats in the genome.	The large CTG expansion in congenital DM1 and the phenomenon of anticipation is only briefly mentioned as the focus of the study was directed towards determining the prevalence of DM1 in Malaysia and studying the feasibility of the diagnostic techniques in the local healthcare setting.
2.	Neither the Materials and Methods section of the text, nor the Abstract, states that patients studied were adults. The age range should be stated. Table 3 is a tabular list of patients and distinguishes diagnosis in young vs. older adults and also lists one congenital case symptomatic at birth.	The materials and methods section has been revised to include the age of the patients
3.	The English grammar is generally satisfactory. A few items can be improved; for example, in the Introduction, on line	Corrected

1 2	
3 4 5 6 7 8 9	4, "which are inherited in an autosomal dominant manner," might better be stated, "which are inherited as an autosomal dominant trait," References are appropriate in number and selection. The tables are useful summaries for comparison with future studies. The Discussion is focussed and appropriate.
10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23 24 25 26 27 28	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

BMJ Open

Analysis of CTG repeat length variation in the DMPK gene in the general population and the molecular diagnosis of myotonic dystrophy type 1 in Malaysia

Journal:	BMJ Open
Manuscript ID	bmjopen-2015-010711.R2
Article Type:	Research
Date Submitted by the Author:	18-Aug-2016
Complete List of Authors:	Ambrose, Kathlin; University of Malaya, Department of Molecular Medicine Ishak, Taufik; University of Malaya, Paediatrics Lian, Lay; University of Malaya, Molecular Medicine Goh, Khean; University of Malaya, Medicine Wong, Kum; University of Malaya, Pathology Ahmad-Annuar, Azlina; University of Malaya, Biomedical Science Thong, Meow-Keong; University of Malaya, Paediatrics
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Genetics and genomics, Pathology
Keywords:	CTG repeats, genetic counselling, myotonic dystrophy type 1, molecular diagnosis, TP-PCR, prevalence

Title

Analysis of CTG repeat length variation in the *DMPK* gene in the general population and the molecular diagnosis of myotonic dystrophy type 1 in Malaysia

Authors

Kathlin K. Ambrose^{1*}, Ishak Taufik^{2*}, Lay H. Lian¹, Khean J. Goh³, Kum T. Wong⁴, Azlina Ahmad-Annuar⁵, Meow-Keong. Thong^{2*}

Author affiliations

Department of Molecular Medicine, 2. Department of Paediatrics, 3. Department of Medicine, 4.
 Department of Pathology, 5. Department of Biomedical Science, Faculty of Medicine, University of Malaya
 50603 Kuala Lumpur, Malaysia

*These authors contributed equally to the manuscript

Correspondence to

Professor Meow-Keong Thong; thongmk@um.edu.my

Abstract

Objective The lack of epidemiological data and molecular diagnostic services in Malaysia has hampered the setting-up of a comprehensive management plan for myotonic dystrophy type 1 (DM1) patients, leading to delayed diagnosis, treatment and support for patients and families. The aim of this study was to estimate the prevalence of DM1 in the three major ethnic groups in Malaysia and evaluate the feasibility of a single tube triplet-primed polymerase chain reaction (TP-PCR) method for diagnosis of DM1 in Malaysia.

Design, setting and participants We used PCR to determine the size of CTG repeats in 377 individuals not known to be affected by DM and 11 DM1 suspected patients, recruited from a tertiary hospital in Kuala Lumpur. Triplet-primed PCR was performed on selected samples, followed by Southern blot hybridisation of PCR amplified fragments to confirm and estimate the size of CTG expansion.

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright

Outcome measures The number of individuals not known to be affected by DM with (CTG)>18 was determined according to ethnic group and as a whole population. Chi-squared test was performed to compare the distribution of (CTG)_{>18} with 12 other populations. Additionally, the accuracy of TP-PCR in detecting CTG expansion in 11 DM1 patients was determined by comparing the results with that from Southern blot hybridisation.

Results Of the 754 chromosomes studied, (CTG)_{>18} frequency of 3.60%, 1.57% and 4.00% in the Malay, Chinese and Indian sub-populations respectively, was detected, showing similarities to data from Thai, Taiwanese and Kuwaiti populations. We also successfully detected CTG expansions in nine patients using the TP-PCR method followed by the estimation of CTG expansion size via Southern blot hybridisation.

Conclusions The results show a low DM1 prevalence in Malaysia with the possibility of underdiagnosis and demonstrates the feasibility of using a clinical and TP-PCR-based approach for rapid and cost effective DM1 diagnosis in developing countries.

Strengths and limitations of this study

- This is the first DM1 epidemiological study on individuals not known to be affected by DM from the three major ethnic groups in Malaysia.
- To date molecular diagnostic testing for DM1 is not performed in any hospital in Malaysia. This study describes the feasibility of a cost and time-effective TP-PCR based method for rapid screening and diagnosis of DM1.
- The genotyping data does not give allele size accurate to one trinucleotide repeat, but rather is a close approximation of the allele size.
- The number of DM1 samples analysed is small as DM1 is a rare disease in Malaysia.

Key Words

CTG repeats/genetic counselling/myotonic dystrophy type 1/molecular diagnosis/TP-PCR/prevalence

Introduction

The myotonic dystrophies (DM) are the most prevalent adult muscular dystrophy worldwide, with an estimated prevalence of 1 in 8000.¹ They are classified into two main sub-groups, myotonic dystrophy type 1 (DM1) and type 2 (DM2). These are caused by nucleotide repeat expansions, which are inherited as an autosomal dominant trait, and manifest as clinically heterogeneous diseases. DM1 is due to CTG nucleotide repeats beyond the normal length of five to 49, in the 3' untranslated region (UTR) of the *dystrophia myotonica* protein kinase (*DMPK*) gene, located on chromosome 19q 13.3.^{2. 3} It is a progressive disease and categorised into several subtypes. The congenital form of DM1 is maternally transmitted more frequently, although the disease occurs equally in males and females.^{1.4} The general consensus is that the larger the CTG repeat in an individual, the more severe the disease and the earlier the age of onset. It is however, difficult to classify individual DM1 cases into distinct categories based merely on the size of CTG repeats, as genotype-phenotype correlation often overlap and are not clearly defined. In addition, the repeat sizes have shown variation, both between tissues, and over time in the same tissue.^{5, 6} This has made disease prognosis difficult. The genetic phenomenon of anticipation can also be observed in the inheritance of the disease, resulting in a more severe form of the disease coupled with an earlier age of onset in subsequent generations.^{7, 8}

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright

The prevalence of DM1 varies greatly across populations—it is pre-dominantly seen amongst the Europeans and Japanese.^{9,10} A study also estimated a high disease frequency in the Finnish population.¹¹ In Quebec, Canada, a particularly high DM1 prevalence of 1 in 500 has been recorded due to founder effects.¹² In contrast, it is a rare disease amongst ethnic sub-Saharan populations,¹³ being almost unheard of with the exception of one case reported in Nigeria.¹⁴ Two more recent cases amongst African Americans have also been observed, most likely representing recent population admixture .¹⁵ In view of this disparity, a study was undertaken to determine the distribution of CTG repeats in normal African individuals. It was found that there was a highly significant difference in the distribution of normal CTG alleles larger than 18 between the African population and the European and Japanese populations.¹³ This reiterates a previous theory that CTG alleles between 19 and 30 act as a source of DM1 mutations in

 subsequent generations.¹⁶ These findings have formed the basis for the estimation of DM1 incidence within a population.^{17, 13, 18-6-27}

Prior to the establishment of molecular diagnostic tests, DM1 was diagnosed in clinics mainly by observing clinical symptoms and conducting electromyography (EMG) tests, with confirmation by muscle biopsy.²⁸ At present, there are several molecular techniques that can be utilised in making a DM1 diagnosis, rendering little use for the invasive and painful EMG test and muscle biopsy.²⁹ However, a single test that is able to detect all ranges of expansion sizes is yet to be established. Laboratories often employ a combination of methods depending on mutation dynamics in the population and available equipment. Conventional PCR can detect the normal range of CTG repeats as well as premutated alleles. Optimised PCR conditions can detect alleles up to (CTG)₈₅, whereas those beyond that rely on Southern blot for detection. The TP-PCR method was developed to detect the presence of large expanded alleles, thus reducing the number of reflex Southern blot tests.³⁰

As a Southeast Asian country, Malaysia has a population consisting mainly of ethnic Malay, Chinese and Indian. There is also a large group of indigenous people belonging to various tribes. While DM1 has not been frequently diagnosed in this country, there is a possibility of underdiagnosis or misdiagnosis due to the lack of awareness about this condition with its diverse presentations. No study has been performed on the prevalence and incidence of the disease in the predominant ethnic groups, and to the best of our knowledge, diagnostic tests for this disease at the molecular level is not available anywhere in the country. Given the multisystemic and variable phenotypic manifestations in patients, it is therefore important for a simple standard confirmatory diagnostic test to be available, especially when trying to rule out different diagnoses. Here we report the use of PCR and Southern blot hybridisation methods for the molecular analysis of individuals not known to be affected by DM from the Malay, Chinese and Indian sub-populations, where we studied the length of the CTG alleles in order to predict the prevalence of DM1 in these subpopulations. We also describe the use of a single-tube TP-PCR method for the screening and confirmation of DM1 amongst Malaysian patients, with the aim of reducing the number of Southern blot tests that need to be performed.

Materials and Methods

Ethics statement

Ethical approval to conduct this study was obtained from the University of Malaya Medical Centre (UMMC) ethics committee (Reference numbers 577.17 & 800.6). The ethics board required that all human subjects recruited in the study were briefed on the nature of the study, and provided with an information sheet describing the study. Subjects were also assured that their privacy will be protected, and all personal information provided will be kept confidential. Participation in the study was on a voluntary basis, and had no bearing on the quality of care patients received at the hospital.

Sample collection

Blood samples from 377 randomly selected anonymous blood donors not known to be affected by DM of Malay, Chinese and Indian descent were obtained from the UMMC blood bank following oral consent to participate in the study. In addition, 11 patients displaying DM-like symptoms were recruited to this study. Written consent, clinical and familial history were obtained from these patients. The ethnicity of subjects was determined to be Malay, Chinese or Indian based on their own admission.

Molecular analysis

Genomic DNA was extracted from the blood samples using the QIAamp DNA Blood Mini kit according to manufacturer's protocol (QIAGEN, Hilden, Germany).

Conventional PCR

Analyses of the samples were carried out according to techniques described by Surh et al.³¹ PCR was performed in a final volume of 30μ L utilising the Perkin Elmer GeneAmp PCR system. The forward, 103, 5' – CCA GTT CAC AAA CCG CTC CGA GCG TG – 3' and reverse, 96, 5' – GGT GCG TGG AGG ATG GAA CAC GGA C – 3' primers were used. The PCR conditions were set as follows: initial denaturation at

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

96°C for 5 minutes, followed by 25 cycles of denaturation, annealing and extension at 96°C, 62°C and 72°C respectively, for a period of one minute for each step. Final extension was performed at 72°C for seven minutes. The PCR products were sized by gel electrophoresis on 1.5% agarose gel, at 100 V for 45 minutes. The separated products were cut out from the gel, purified using the QIAquick gel extraction kit (QIAGEN, Hilden, Germany) and sent to a service lab for sequencing to determine the exact number of CTG repeats.

Triplet-primed-PCR

Analysis of the samples were done according to techniques described by Singh et al.³² Thirteen samples were subjected to TP-PCR analysis—11 individuals with DM1 symptoms and two controls not known to be affected by DM. The subjects recruited were all adults between the ages of 30 and 60, and one child aged 5. Testing was performed with 100 ng of genomic DNA from blood samples in a reaction volume of 25 µl. The primers FAM-P1-Forward 5'FAM – GGG GCT CGA AGG GTC CTT GT – 3' and P2-Reverse 5' - GTG CGT GGA GGA TG AAC ACG - 3' flanked the CTG repeat region, with the forward primer labeled with FAM fluorescence. The third primer P3 5' - AGC GGA TAA CAA TTT CAC ACA GGA - 3' was designed to bind to the complement of the tail of the fourth primer P4-(CAG)₆ -Reverse 5' - AGC GGA TAA CAA TTT CAC ACA GGA CAG CAG CAG CAG CAG CAG - 3'. The primer combination was prepared in a ratio of FAM-P1-Forward: P4-(CAG)₆ -Reverse:P3:P2 = 1.5:1:1.5:1.5, with a final working concentration of 0.6 µM:0.4 µM:0.6 µM:0.6 µM. The TP-PCR conditions were set as follows: initial denaturation at 95°C for five minutes, followed by 10 cycles each of denaturation (97°C) for 35 seconds, annealing (65°C) for 35 seconds and extension (68°C) for four minutes. Subsequently, 20 cycles of denaturation, annealing and extension were performed, with the extension time increased by 20 seconds per cycle to allow for increased yield of PCR product. The products were separated on an ABI PRISM 3130 x 1 genetic analyser (Life Tech, New York, USA) and fragment size determined using GeneMarker V2.6 (Softgenetics, State College, USA).

Southern blot hybridisation of PCR amplified fragments

Page 7 of 33

BMJ Open

Southern blot hybridisation of amplified PCR fragments was carried out in samples that only showed single peaks in the electropherograms, which indicated a CTG expansion or homozygosity for a nonexpanded allele. The conventional PCR products were transferred overnight from the agarose gel to a positively charged nylon membrane by capillary transfer and fixing of the DNA to the membrane done via the UV cross-linking method. The membrane was hybridised overnight in a hybridisation buffer with the addition of 20 µl alkaline phosphatase-conjugated (CTG)₁₀ oligonucleotide at 50°C. The membrane was then removed and the excess liquid drained off, prior to being washed using pre-heated wash buffers. Following hybridisation and washing of the membrane, the CDP-Star Detection Reagent is applied and the development of the signals was subsequently carried out by exposing the blot to an autoradiography film. Identification of DM1 positive samples were done by comparing the size of the bands or smears obtained with DNA molecular weight markers. The size of the expansion was determined as the point of highest band intensity on the autoradiograph. To estimate the size of the expansion, the lengths of the 100 bp/1Kb size marker fragments were first converted into logarithmic values. These values were then graphed on the y axis against their migration distance on the x axis. Using linear regression, a line of best fit was drawn through these points and an equation describing that line was derived. The unknown fragment's migration distance derived from the most intense region of the expanded allele was placed into the equation for the regression line to determine a log value for the fragment's size. Taking the antilog of this value yielded the unknown fragment's size in base pairs. This value is an estimate of the average repeat number and is dependent on age at sampling.

Statistical analysis

The frequency of each of the allele present in the 754 chromosomes from the individuals not known to be affected by DM was calculated. Statistical analysis was performed by administering the chi-squared (χ^2) test with Yates' correction to compare the distribution of normal large repeats, (CTG)_{> 18}, with 12 other populations.

Results

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

Analysis of DMPK CTG repeat length variation in the general population

The distribution of $(CTG)_{>18}$ alleles in the Malay, Chinese and Indian sub-populations all point towards a low prevalence of DM1. Figure 1 shows the breakdown of all alleles present in the three sub-populations. (Individual genotyping data is provided in supplementary files 1–3) A bimodal allelic distribution was noted—this was in alignment with patterns observed in other populations with low DM1 frequencies. The first peak came from the $(CTG)_5$ alleles, which totaled to 33.7% of all alleles, while the second peak consisted of three alleles, 11 to 13 that accounted for a majority of 51.1% of the total alleles. The frequencies for $(CTG)_{>18}$ alleles were 9/250 = 3.60% (95% CI = 0.0166–0.0672) in the Malay subpopulation, 4/254 = 1.57% (95% CI = 0.0043–0.0398) in the Chinese subpopulation, and 10/250 = 4.00% (95% CI = 0.0193–0.0723) amongst the Indians. Heterozygosity was measured at 79.9%, 77.0%, and 76.2% in the three subpopulations, respectively, averaging at 77.7%. This result is aligned to those reported in other populations, which ranged from 73.0% in Europeans¹⁷ to 92% in Iranians.²⁶

Tables 1 and 2 show the comparison and χ^2 analysis of the frequency of $(CTG)_{>18}$ alleles in individuals not known to be affected by DM1 from the three subpopulations in this study, and in those from 12 worldwide populations, respectively. The $(CTG)_{>18}$ frequency for the Malay, Chinese and Indian subpopulations were significantly different when compared to frequencies in European, German and Chilean populations. All three Malaysian subpopulations showed frequencies similar to Thai,²² Taiwanese²³ and Kuwaiti²⁴ populations. It is also interesting to note that the Han-Chinese show similarity with the Malaysian Chinese, the population that the majority of Malaysian Chinese trace their ancestry to. This allows for our speculation that the DM1 frequency among Chinese Malaysians is low, similar to that observed in the Han-Chinese,²⁴ Taiwanese²³ and South African negroids.¹³

Diagnostic testing for DM1

Samples from 11 individuals with DM1-like symptoms and two controls not known to be affected by DM were analysed for CTG expansion using TP-PCR followed by confirmation by Southern blot hybridisation of PCR amplified fragments. Triplet-primed PCR testing showed single peaks in nine of the samples, and

double peaks in the remaining four. The samples with single peaks also showed a clear laddering pattern indicating the presence of CTG expansion (Figure 2). Southern blot hybridisation of PCR amplified fragments confirmed the diagnosis of DM1 in the nine samples, with the detection of expanded alleles ranging from a size of 97 to 690 CTG repeats, as shown in Figure 3. Table 3 shows a summary of the characteristics of the disease exhibited by each patient. Figure 4 shows the pedigree diagram and the CTG repeat size of the families and individuals we studied. It is important to note that apart from those diagnosed (dark squares/circles), none of the other family members were examined or tested for DM1. Hence, there is a possibility that there may be family members showing very mild symptoms who have not presented in our clinics, contributing to the apparent under transmission of the disease in the families.

Discussion

In order to obtain a better understanding of the burden of DM1, we estimated the prevalence of the DM1 using the distribution of CTG alleles larger than 18 in the Malaysian population. The result of (CTG)_{>18} of 3.05% (23/754) was observed in the Malaysian population. By comparing with the results of studies performed in other populations, we predict that DM1 is a rare disease in Malaysia. A larger study is needed to verify these findings, due to the fact that the subjects in this study were recruited from a major hospital in the capital city of Malaysia, therefore may not be representative of the whole country. It is likely that DM1 in the local community is underdiagnosed due to a lack of awareness amongst the public and healthcare professionals. There are also other contributing factors such as social stigma, and reduced access to major hospitals where specialised consultation and testing are available.

Population studies done previously have showed evidence for the association of $(CTG)_{>18}$ allele frequency and DM1 prevalence. In European populations the frequency of DM1 is estimated to be 1 in 8000 which corresponded to $(CTG)_{>18}$ of approximately 10%. On the other end of the spectrum, DM1 has only been reported in one Southern African Negroid family where the prevalence of $(CTG)_{>18}$ is reported to be 0.7%. In the absence of epidemiological data on real cases of DM1, other populations such as the Brazilian, Mexican, Thai, Taiwanese and Han Chinese report the prevalence of DM1 as either higher or lower than populations with known prevalence.

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright

The nine patients identified in this study were diagnosed in the years 2011 and 2012. During these two years, the number of patients who were seen at UMMC were 957,418 and 964,497 respectively, totaling to 1,921,915. Using these figures as guide, we estimate the prevalence of DM1 in Malaysia to be less than 1 in 200,000. This estimate is similar to the low estimates of DM1 prevalence reported in Thai²²,Taiwanese²³ and Kuwaiti²⁵ populations, where the authors reported the observed frequencies of alleles >18 and correlated them to the prevalence of DM1 in their respective countries. This was also in concordance with the results of our χ^2 analysis.

It is interesting to note that the frequency of (CTG)_{>18} was the lowest in the Chinese subpopulation, although they account for the most number of DM1 patients seen in our hospital (including those not reported here). The Indians on the other hand show the highest frequency of (CTG)_{>18} in agreement with the findings that DM1 is highly prevalent in India³³. However, the number of Indian DM1 patients seen in our study was the lowest among the three subpopulations. This may reflect socio-economic and demographic reasons, as well as misdiagnosis/underdiagnosis of DM1 in the respective subpopulations.

Our study also provides for the first time, data on the (CTG)_{>18} allele frequency in a Malay population. The Malay ethnic group is genetically more similar to the Chinese compared to the Indians.³⁴ Comparison of the (CTG)_{>18} distribution of the three ethnic groups however, shows a closer similarity between the Malays and the Indians (p=0.8151) compared to the Chinese (p=0.249). It would be interesting to see this same analysis done on other modern Malay populations in the region, such as the Singapore Malays and the Indonesians, as well as the aboriginal Malays.

The usage of the single tube TP-PCR allows for the rapid identification of large pathogenic CTG repeats, thus reducing the need for Southern blot based approaches to detect or exclude the presence of a large expansion. Southern blot may require large amounts of DNA, the use of radioactive materials and is time consuming. In addition, this procedure is also less sensitive and may be difficult to replicate. Hence, any method that reduces the number of Southern blot that needs to be performed, while demonstrating high sensitivity and specificity is advantageous in a clinical setting. However, the TP-PCR test used requires a highly specialised equipment, the genetic analyser, which may not yet be widely available and is unable to estimate the size of CTG expansions beyond 85 repeats.

Page 11 of 33

BMJ Open

Genotype-phenotype correlation studies in DM1 patients have thus far given conflicting results, with various underlying mechanisms, associations and theories proposed³⁵⁻³⁸. In particular, in their study on the somatic instability of expanded CTG repeats in DM1. Morales et al³⁹ showed that there was no evidence to indicate that pathogenesis of the disease is constrained to a threshold above which repeat length does not contribute toward age at onset. Additionally, they showed that age at onset is further modified by the level of somatic instability, which is a highly heritable trait. In our study, a disparity in the genotype-phenotype correlation in the Chinese family was seen, whereby patient 3 is largely asymptomatic although she carries 350 repeats. Her disease status was only suspected and diagnosed following the birth of her children who exhibited symptoms. Both her children were congenitally affected, which is consistent with findings in previous studies that showed that the majority of congenital cases were maternally transmitted. Patients 2 and 7 on the other hand paternally inherited their pathogenic alleles, resulting in the classic/adult onset DM1. The same disease phenotype is seen in patients 8 and 9. We were not able to determine whether their diseases were inherited, as their parents have never been tested. However, these patients were given genetic counselling and in accordance with ethical principles, have the autonomy of deciding whether or not to disclose their disease status to family members at risk, for future counselling and testing. It was also observed that congenitally affected patient 5 showed a comparable expansion size to those who were classically affected. The only symptoms he has shown, however is neonatal hypotonia and a mild cognitive dysfunction. The comparable repeat size is most likely due to the younger age of patient 5 compared to the classically affected adults, and suggest that a larger repeat size would be observed, as the patient grows older. Apart from these disease dynamics, there have also been findings of contraction of allele sizes upon transmission reported elsewhere^{27,36}. All these factors point towards the high complexity of DM1 and illustrate the important need for genetic counselling services to be offered to affected families.

Molecular testing is generally established as the gold standard in diagnosing genetic disorders such as DM1. This is because a molecular test is rapidly able to eliminate differential diagnoses, confirm the DM1 diagnosis, and estimate the size of CTG expansion in a patient, thus avoiding the need for invasive procedures such as muscle biopsies. Hilbert *et al*⁴⁰ who studied a large cohort of DM patients enrolled in the US National Registry, explored their diagnostic journeys, which on average took seven years for a

correct DM1 diagnosis to be made. This delay brought about many implications to the patients and their families, ranging from lack of appropriate disease management to missed opportunities for genetic counselling. The situation in many developing countries is much similar or even worse as molecular diagnostic testing for DM1 is not easily available. Potentially, there could be a large number of patients who are undiagnosed/misdiagnosed, as well as those who have been unnecessarily subjected to various investigations for a definitive diagnosis to be made.

The findings from our preliminary study can aid the structuring of a rare disease management framework in Malaysia, using DM1 as a disease model. The data presented here adds to the scarce literature of DM1 in the Southeast Asian region. The information on CTG repeat lengths of the *DMPK* gene in individuals not known to be affected by DM, and DM1 patients, together with proper clinical assessment as well as a cost-effective molecular approach, carry implications for earlier diagnosis of DM1 and genetic counselling in a low resource setting.

Contributorship statement

All authors were involved in the conception and design of the work as well as the final approval of the submitted manuscript.

KA and TI were involved in the acquisition and analysis of data and KA, TI and MKT were involved in the drafting of the manuscript.

LLH, GKJ, KTW, AAA and MKT contributed to the critical evaluation of the manuscript.

Competing interests

The authors state no competing interests

Funding

This study was supported by grants from the Ministry of Higher Education, Malaysia (Fundamental Research Grant Scheme; grant number: FG029/2010A), and University of Malaya (Postgraduate Research Fund; grant number: PV126/2012A).

Data sharing statement

None available

Acknowledgements

The authors acknowledge the contributions of Ms. Juliana Lee who helped in providing genetic counseling and support to the patients and their families. We also want to thank the UMMC blood bank for blood samples of controls, as well as the DM1 patients for their participation in this study.

References

- 1. Harper PS. Myotonic dystrophy 3rd edn (WB Saunders, London, 2001)
- 2. Fu, YH, Pizzuti, A, Fenwick, R, King, J, Rajnarayan, S, Dunne, PW, *et al.* An unstable triplet repeat in a gene related to Myotonic Muscular Dystrophy. *Science* **255**, 1256-1258 (1992).
- Mahadevan, M, Tsilfidis, C, Sabourin, L, Shutler, G, Amemiya, C, Jansen, G, *et al.* Myotonic Dystrophy mutation: An unstable CTG repeat in the 3' untranslated region of the gene. *Science* 255, 1253-1255 (1992).
- 4. Turner C, Hilton-Jones D. The Myotonic Dystrophies: Diagnosis and management. *J. Neurol. Neurosurg. Psychiatry.* **81**, 358-367 (2008).
- 5. Wong, LJ, Ashizawa, T, Monckton, DG, Caskey, CT, Richards, CS. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. *Am. J. Hum. Genet.* **56**, 114-122 (1995).
- Anvret, M, Ahlberg, G, Grandell, U, Hedberg, B, Johnson, K, Edstrom L. Larger expansions of the CTG repeat in muscle compared to lymphocytes from patients with mytonic dystrophy. *Hum. Mol. Genet.* 2, 1397-1400 (1993).
- Ashizawa T, Harper PS. in *Genetic Instabilities and Neurological Diseases* (eds Wells RD, Ashizawa T.) 21-26 (Academic Press. 2011).
- 8. Harper PS, Harley HG, Reardon W, Shaw DJ. Anticipation in Myotonic Dystrophy: New light on an old problem. *Am. J. Hum. Genet.* **51**, 10-16 (1992).
- 9. Harper PS. Myotonic dystrophy 2nd edn (Saunders, Philadelphia, 1989)

10. Osame M, Furusho T. Genetic epidemiology of myotonic dystrophy in Kagoshima and Okinawa districts in Japan. *Clin Neurol.* **23**, 1067–1071 (1983).

- Suominnen, T, Bachinski, LL, Auvinen, S, Hackman, P, Baggerly, KA, Angelini, C., *et al.* Population frequency of Myotonic Dystrophy: Higher than expected frequency of Myotonic Dystrophy type 2 (DM2) in Finland. *Eur. J. Hum. Genet.* **19**, 776-782 (2011).
- 12. Mathieu J, De Braekeleer M, Prevost C. Genealogical reconstruction of myotonic dystrophy in the Saguenay-Lac-Saint-Jean area (Quebec, Canada). *Neurology.* **56**, 328–335.
- Goldman A, Ramsay M, Jenkins T. Absence of Myotonic Dystrophy in Southern African Negroids is associated with a significantly lower number of CTG trinucleotide repeats. *J. Med. Genet.* **31**, 37-40 (1994).
- Krahe, R, Eckhart, M, Ogunniyi, AO, Osuntokun, BO, Siciliano, MJ, Ashizawa, T. De novo Myotonic Dystrophy mutation in a Nigerian kindred. *Am. J. Hum. Genet.* 56, 1067-1074 (1995).
- 15. Acton RT, Rivers CA, Watson B, Oh SJ. *DMPK*-associated Myotonic Dystrophy and CTG repeats in Alabama African Americans. *Clin. Genet.* **72**, 448-453 (2007).
- Imbert G, Kretz C, Johnson K, Mandel JL. Origin of the expansion mutation in Myotonic Dystrophy. *Nature Genet.* 4, 72-76 (1993).
- Davies J, Yamagata H, Shelbourne P, Buxton J, Ogihara T, Nokelainen P, *et al.* Comparison of the Myotonic Dystrophy associated CTG repeat in European and Japanese populations. *J. Med. Genet.* 29, 766–769 (1992).
- Deka, R, Majumder, PP, Shriver, MD, Stivers, DN, Zhong, Y, Yu, LM, *et al.* Distribution and evolution of CTG repeats at the myotonin protein kinase gene in human populations. *Genome Res.* 6, 142-154 (1996).
- Magaña, JJ, Cortés-Reynosa, P, Escobar-Cedillo, R, Gómez, R, Leyva-García, N, Cisneros, B. Distribution of CTG repeats at the *DMPK* gene in Myotonic Dystrophy patients and healthy individuals from the Mexican population. *Mol. Biol. Rep.* 38, 1341-1346 (2011).
- 20. Freitas SRS, Cabello PH, Moura-Neto RS, Duro LA. Analysis of the *DMPK* gene CTG repeats in healthy Brazilians. *Genet. Mol. Bio.* **30**, 14-16 (2007).

BMJ Open

21.	Amenabar F, Jorquera H, Acuna M, Cifuentes L. CTG repeats at the myotonic protein kinase
	in a healthy Chilean population sample. Acta Neurol. Scand. 119, 321-324 (2009).
22.	Theerasasawat S, Papsing C, Pulkes T. CTG repeat lengths of the DMPK gene in Myc
	Dystrophy patients compared to healthy controls in Thailand. J. Clin. Neurosci. 17, 1520-
	(2010).
23.	Pan H, Lin HM, Ku WY, Li TC, Li SY, Lin CC, Hsiao KM. Haplotype analysis of the Myc
	Dystrophy type 1 (DM1) locus in Taiwan: Implications for low prevalence and founder mutatio
	Taiwanese Myotonic Dystrophy type 1. <i>Eur. J. Hum. Genet.</i> 9 , 638-641 (2001).
24.	Zhang S, Wu H, Pan A, et al. Low incidence of Myotonic Dystrophy in Chinese Hans is assoc
	with a lower number of CTG trinucleotide repeats. Am. J. Med. Genet. 96, 425-428 (2000).
25.	Alfadhli S, Elshafey AE, Bastaki L, Al-Awadi S. CTG repeat number at the Myotonic Dystr
	locus in healthy Kuwaiti individuals. Arch. Neurol. 61, 895-898 (2004).
26.	Shojasaffar B, Moradin N, Kahrizi K, Cobo AM, Najmabadi H. CTG expansion and haple
	analysis of DM1 gene in healthy Iranian population. Can. J. Neurol. Sci. 35, 216-218 (2008).
27.	Kim SY, Kim JY, Kim GP, Sung JJ, Lim KS, Lee KW, et al. Molecular and clinical characterist
	Myotonic Dystrophy type 1 in Koreans. Korean J. Lab. Med. 28, 483-492 (2008).
28.	Magaña JJ, Cisneros B. in Muscular Dystrophy (ed Madhuri Hegde) 48-72 (InTech, 2012)
29.	Kamsteeg EJ, Kress W, Catalli C, Hertz JM, Witsch-Baumgartner M, Buckley MF, et al.
	practise guidelines and recommendations on the molecular diagnosis of Myotonic Dystrophy
	1 and 2. <i>Eur. J. Hum. Genet.</i> 20 , 1203-1208 (2012).
30.	Warner JP, Barron LH, Goudie D, Kelly K, Dow D, Fitzpatrick DR, et al. A general method for
	detection of large CAG repeat expansions by fluorescent PCR. J. Med. Genet. 33, 1022-
	(1996).
31.	Surh LC, Mahadevan M, Korneluk RG. Analysis of trinucleotide repeats in Myotonic Dystre
	<i>Curr. Prot. Hum. Genet.</i> 9.6.1-9.6.13 (2001).
32.	Singh S, Zhang A, Dlouhy S, et al. Detection of large expansions in myotonic dystrophy ty
	using triplet primed PCR. Front. Genet. 5, 94. doi: 10.3389/fgene.2014.00094 (2014).

- Basu, P, Majumder, P, Roychoudhury, S, Bhattacharyya, N. Haplotype analysis of genomic polymorphisms in and around the myotonic dystrophy locus in diverse populations of India. *Hum. Genet.* **108**, 310-317 (2001).
 - 34. Tan SG. Genetic relationships among sixteen ethnic groups from Malaysia and Southeast Asia (pp. 83–92). Singapore: World Scientific. (2001).
 - Kinoshita, M, Takahashi, R, Hasegawa, T, Komori, T, Nagasawa, R, Hirose, K, Tanabe, H. (CTG)_n expansions in various tissues from a Myotonic Dystrophy patient. *Muscle Nerve* **19**, 240-242 (1996).
 - 36. Gharehbaghi-Schnell, EB, Finsterer, J, Korschineck, I, Mamoli, B, Binder, BR. Genotype-phenotype correlation in myotonic dystrophy. *Clin. Genet.* **53**, 20-26 (1998).
 - Zatz, M, Passos-Bueno, MR, Cerqueira, A, Marie, SK, Vainzof, M, Pavanello, RC. Analysis of the CTG repeat in skeletal muscle of young and adult Myotonic Dystrophy patients: When does the expansion occur? *Hum. Mol. Genet.* 4, 401-406 (1995).
 - Savić, D, Rakočvić-Stojanović, V, Keckarević, D, Čuljković, B, Stojković, O, Mladenović, J, *et al.* 250 CTG repeats in *DMPK* is a threshold for correlation of expansion size and age at onset of juvenile–adult DM1. *Hum. Mut.* **19**, 131-139 (2002).
 - 39. Morales, F, Cuoto, JM, Higham, CF, Hogg, G, Cuenca, P, Braida C, *et al.* Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. *Hum. Mol. Genet.* dds 185 (2012).
 - 40. Hilbert, JE, Ashizawa, T, Day, JW, Luebbe, EA, Martens, WB, McDermott, MP, *et al.* Diagnostic odyssey of patients with Myotonic Dystrophy. *J. Neurol.* **260**, 2497-2504 (2013).

Figure Legends

Figure 1. Frequency of CTG repeats in individuals not known to be affected by DM from the Malay, Chinese and Indian sub-populations. The frequency for large normal alleles, $(CTG)_{>18}$ was 9/250 or 3.60% in the Malays, 4/254 or 1.57% in the Chinese, and 10/250 or 4.00% in the Indians. A bimodal allelic distribution was observed in the Malaysian population, in alignment with patterns observed in other

populations with low DM1 frequency. The most frequently seen allele was $(CTG)_5$ in all three subpopulations, whereas $(CTG)_{10-13}$ was the most common allele group. The genotyping data for each individual is provided in the supplementary files 1–3.

Figure 2. Electropherogram results of TP-PCR. The X-axis represents the size in base pairs and the Yaxis represents the allele peak height. (A) The electropherogram shows a DM1 patient sample with a single peak corresponding to (CTG)₁₁ and a laddering pattern indicating an expanded allele. (B) Two normal heterozygous alleles with sizes 5 and 12 and no laddering pattern observed.

Figure 3. Expanded CTG repeats of DM1 patients following Southern blot hybridisation of PCR amplified fragments as seen on an autoradiography film. *Expanded alleles in patients ranging from a size of 97 to 690 CTG repeats have been detected. A sample of the bands are shown here, ranging from 270 repeats (1045 bp) to 690 repeats (2305 bp). Normal alleles of four sizes were seen amongst the patients, 5 (332 bp), 11 (350 bp), 12(356 bp) and 13 (356 bp). Due to somatic heterogeneity, the expanded alleles usually appear as smears. A 1 Kb DNA ladder as well as samples from individuals not known to be affected by DM were run alongside patient samples as controls.*

Figure 4. Pedigree diagrams of DM1 patients studied including the size of their CTG alleles.Members of three families and two individuals had their CTG repeat size analyzed. The sizes of the allelepairs for each patient are as stated in the pedigree diagrams. The phenomenon of anticipation was clearlyobserved in the three families, whereby with the increased CTG expansion in successive generations, adecreasingageofonsetisnoted.

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

Tables

Table 1: Comparison and χ^2 analysis of the frequency of (CTG)_{>18} alleles in individuals not known to be affected by DM from the Malay, Chinese and Indian sub-populations.

Population	(CTG)>18	Comparison of	Comparison of	Comparison of
	alleles / Total alleles	Malay data with other populations χ^2	Chinese data with other populations χ^2	Indian data with 2 other populations χ ²
	analyzed (%		(p value)	(p value)
Malay	9/250			0.055 (0.8151)
walay		-	1.329 (0.249)	0.055 (0.8151)
	(3.60)			
Chinese	4/254	1.329 (0.249)	_	1.919 (0.166)
	(1.57)			
Indian	10/250	0.055 (0.8151)	1.919 (0.166)	-
	(4.00)			

BMJ Open

Population	(CTG)>18 alleles	Comparison of	Comparison of	Comparison of	
	/ Total alleles	Malay data with	Chinese data with	Indian data with	
	analyzed (%)	other populations	other populations	other populations	
		χ² (p value)	χ² (p value)	χ² (p value)	
^a European ¹⁷	15/130 (11.54)	7.817 (0.005**)	16.094 (<0.0001***)	6.729 (0.009**)	
German ¹⁸	22/104 (21.20)	26.17 (<0.0001***)	39.141 (<0.0001***)	24.239 (<0.0001***)	
Mexican ¹⁹	51/800 (6.38)	2.232 (0.135)	8.037 (0.005**)	1.553 (0.213)	
Brazilian ²⁰	24/312 (7.69)	3.497 (0.062)	9.88 (0.002**)	2.334 (0.127)	
Chilean ²¹	30/272 (11.00)	9.354 (0.002**)	17.887 (<0.0001***)	8.131 (0.004**)	
Japanese ¹⁷	9/106 (8.50)	2.760 (0.097)	8.386 (0.004**)	2.149 (0.143)	
Thai ²²	11/400 (2.75)	0.142 (0.706)	0.505 (0.477)	0.421 (0.516)	
Taiwanese ²³	7/499 (1.40)	2.867 (0.090)	0.018 (0.893)	3.962 (0.050)	
Han Chinese ²⁴	6/600 (1.00)	5.463 (0.019*)	0.134 (0.714)	7.052 (0.008**)	
Kuwaiti ²⁵	14/370 (3.78)	0.010 (0.920)	1.894 (0.169)	0.006 (0.938)	
Iranian ²⁶	29/400 (7.25)	3.090 (0.079)	9.292 (0.002**)	2.334 (0.127)	
South African ¹³	3/420 (0.71)	5.869 (0.015*)	0.457(0.499)	7.249 (0.007*)	

*P < .05 (significant); ** P < .01 (highly significant); *** P < .001(very highly significant)

^a Includes British, German, Belgian, Swedish and Finnish subjects

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 2: Comparison and χ^2 analysis of the frequency of (CTG)_{>18} alleles in individuals not known to be s.

2
2
3
4
5
6
7
8
à
10
10
11
12
13
14
15
16
17
-2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 8 19 20 12 23 24 5 26 7 8 9 30 11 2 33 34 5 6 7 8 9 10 11 2 13 14 5 16 17 8 19 20 12 23 24 5 26 7 28 29 30 13 23 33 43 5 6 7 8 39 40 10 10 10 10 10 10 10 10 10 10 10 10 10
10
19
20
21
22
23
24
25
26
27
20
28
29
30
31
32
33
34
35
36
27
31
38
39
41
42
43
44
45
47
48
49
50
51
51 52 53
53
54
55
55 56
00
57
58
59
60

1

Family	Patient	Gender	^a Age	^b Disease	^c Phenotype	CTG
				Onset		Repeat
						Size
1	1	Male	54	Late adult	Classical	330
	2	Male	30	Early adult	Classical	690
2	3	Female	30	Early adult	Mild	350
	4	Female	31	Early adult	Mild	97
	5	Male	5	Birth	Congenital	596
3	6	Male	60	Late adult	Classical	270
	7	Male	30	Early adult	Classical	570
4	8	Male	44	Early adult	Classical	550
5	9	Male	32	Early adult	Classical	520

Table 3: A summary of the disease characteristics exhibited by DM1 patients in this study

^a Age of patient at time of molecular testing

^b Early adulthood: 20 – 49 years old; Late adulthood: >50 years old

^c Phenotype classification as described by Kamsteeg *et al*

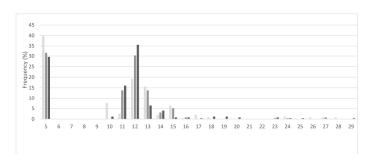


Figure 1. Frequency of CTG repeats in individuals not known to be affected by DM from the Malay, Chinese and Indian sub-populations. The frequency for large normal alleles, (CTG)>18 was 9/250 or 3.60% in the Malays, 4/254 or 1.57% in the Chinese, and 10/250 or 4.00% in the Indians. A bimodal allelic distribution was observed in the Malaysian population, in alignment with patterns observed in other populations with low DM1 frequency. The most frequently seen allele was (CTG)5 in all three sub-populations, whereas (CTG)10-13 was the most common allele group. The genotyping data for each individual is provided in the supplementary files 1–3. BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

215x166mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

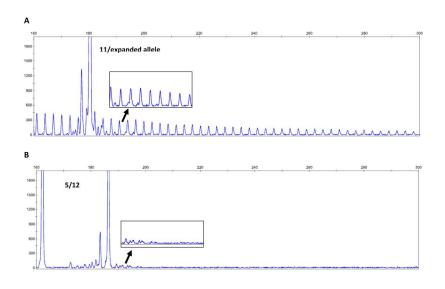


Figure 2. Electropherogram results of TP-PCR. The X-axis represents the size in base pairs and the Y-axis represents the allele peak height. (A) The electropherogram shows a DM1 patient sample with a single peak corresponding to (CTG)11 and a laddering pattern indicating an expanded allele. (B) Two normal heterozygous alleles with sizes 5 and 12 and no laddering pattern observed.

215x166mm (300 x 300 DPI)

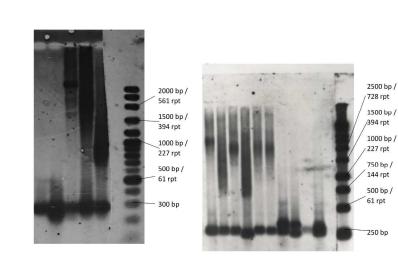


Figure 3. Expanded CTG repeats of DM1 patients following Southern blot hybridisation of PCR amplified fragments as seen on an autoradiography film. Expanded alleles in patients ranging from a size of 97 to 690 CTG repeats have been detected. A sample of the bands are shown here, ranging from 270 repeats (1045 bp) to 690 repeats (2305 bp). Normal alleles of four sizes were seen amongst the patients, 5 (332 bp), 11 (350 bp), 12(356 bp) and 13 (356 bp). Due to somatic heterogeneity, the expanded alleles usually appear as smears. A 1 Kb DNA ladder as well as samples from individuals not known to be affected by DM were run alongside patient samples as controls.

279x361mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

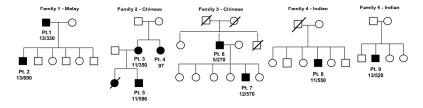


Figure 4. Pedigree diagrams of DM1 patients studied including the size of their CTG alleles. Members of three families and two individuals had their CTG repeat size analyzed. The sizes of the allele pairs for each patient are as stated in the pedigree diagrams. The phenomenon of anticipation was clearly observed in the three families, whereby with the increased CTG expansion in successive generations, a decreasing age of onset is noted.

215x166mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	Complete list of allele	distribution i	in healthy ir	ndividuals from the Malay subpopulation
3	No. Code	Allele 1	Allele 2	
4 5	1 N1	10	5	
6	2 N2	10	5	
7	3 N3	11	5	
8 9	4 N5	12	12	
9 10	5 N6	12	12	
11	6 N7	5	5	
12	7 N10	13	11	
13	8 N25	10	10	
14 15	9 N26	5	5	
16	10 N31	5	5	
17	11 N32	10	5	
18	12 N33	5	5	
19 20	13 N35	13	13	
20 21	14 N36	13	5	
22	15 N37	11	5	
23	16 N38	12	12	
24	17 N40	5	5	
25 26	18 N45	13	13	
27	19 N46	13	13	
28	20 N47	12	5	
29	21 N51	12	10	
30 31	22 N52	10	5	
32	23 N59	15	5	
33	24 N60	13	5	
34	25 N63	5	5	
35 36	26 N68	5	5	
30 37	27 N73	12	5	
38	27 N75 28 N78	12	5	
39	29 N80	5	5	
40	30 N82	13	5	
41 42	30 N82 31 N84	13	5	
43	32 N87	14	13	
44	32 N87 33 N89	15	13	
45	34 N90	11	5	
46 47	34 N90 35 N92	13	5	
48	36 N95	5	5	
49	30 N95 37 N97	28	11	
50	37 N97 38 N99	28 13	5	
51				
52 53	39 N101	24	5	
54	40 N105	13	13	
55	41 N108	12	12	
56 57	42 N110	13	13	
57 58	43 N116	14	5	
58 59	44 N118	18	5	
60				

1				
2	45 N120	13	13	
3	46 N125	5	5	
4 5	47 N130	12	12	
6	48 N132	12	12	
7	49 N133	10	5	
8	50 N134	12	5	
9	51 N137	5	5	
10	52 N139	15	5	
11 12	53 N144	10	5	
13	54 N147	10	5	
14	55 N148	13	5	
15	56 N148	13	5	
16				
17 18	57 N159	5	5	
19	58 N160	13	13	
20	59 N165	12	5	
21	60 N171	18	10	
22	61 N173	12	5	
23	62 N177	13	10	
24 25	63 N178	12	5	
26	64 N179	5	5	
27	65 N185	13	5	
28	66 N188	14	5	
29	67 N189	15	5	
30	68 N191	17	5	
31 32	69 N193	17	5	
33	70 N195	17	12	
34	71 N196	16	5	
35	72 N198	14	5	
36	73 N199	15	13	
37 38	74 N206	13	5	
39	74 N200 75 N207	17	5	
40	75 N207 76 N208	17	13	
41				
42 43	77 N209	16	5	
43 44	78 N211	28	12	
45	79 N212	27	12	
46	80 N213	17	12	
47	81 N214	5	10	
48	82 N215	13	5	
49 50	83 N217	15	5	
51	84 N218	26	10	
52	85 N219	13	5	
53	86 N220	13	5	
54 55	87 N223	15	12	
55 56	88 N228	5	15	
50 57	89 N229	24	24	
58	90 N230	5	5	
59	91 N232	12	5	
60				
	E/	or poor roviow only	http://k	mionon hmi.com/sita/ahout/quidalinas xhtml

1	92 N233	12	5	
2 3	93 N234	12	5	
4	94 N235	12	5	
4 5 6	95 N236	12	5	
6 7	96 N239	12	12	
8	97 N240	26	12	
9	98 N242	15	12	
10	99 N242	15	12	
11 12	100 N243	5	5	
13	100 N243	5	5	
14	101 N244 102 N245	13	13	
15	102 N243	13	13	
16 17	103 N247 104 M1	13	5	
17	104 MT 105 M2	5	5	
19	105 M2 106 M3	5	5	
20	100 M3 107 M4	3 12		
21			12	
22 23	108 M5	12	5	
23 24	109 B12	12	5	
25	110 B14	5	5	
26	111 B18	14	14	
27	112 B20	5	5	
28 29	113 B21	15	15	
29 30	114 B34	15	15	
31	115 B35	13	13	
32	116 B36	13	5	
33	117 B37	5	5	
34 35	118 B38	5	5	
36	119 B40	10	10	
37	120 B48	15	5	
38	121 B49	12	12	
39	122 B50	12	12	
40 41	123 B53	13	13	
41	124 B54	12	5	
43	125 B56	27	10	
44				

BMJ Open

Page	28	of	33
------	----	----	----

Complete list of allele distribution in healthy individuals from the Chinese subpopulationNo.CodeAllele 1Allele 21N024W1152N029W11113N039W135

4 N041W

5 N042W 6 N043W

7 N044W

8 N048W 9 N049W

10 N050W

11 N053W

12 N054W

13 N055W

14 N056W

15 N057W

16 N058W

17 N061W

18 N062W

19 N064W

20 N065W

21 N066W

22 N071W

23 N072W 24 N074W

25 N075W

26 N076W

27 N077W

28 N079W

29 N081W

30 N083W

31 N085W 32 N086W

33 N088W

34 N093W

35 N094W

36 N096W

37 N098W

38 N100W

39 N103W

40 N104W

41 N106W

42 N107W

43 N111W

44 N112W

BMJ Open: first published as 10.1136/bmjopen-2015-010711 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on November 1, 2024 by guest. Protected by copyright.

1				
2	45 N113W	5	5	
3	46 N114W	13	5	
4	47 N115W	12	12	
5	48 N117W	13	13	
6 7	49 N119W	13	5	
8	50 N122W	5	5	
9	51 N124W	12	12	
10	52 N127W	12		
11			12	
12 13	53 N128W	13	5	
13	54 N138W	5	5	
15	55 N142W	11	11	
16	56 N143W	5	5	
17	57 N146W	13	13	
18	58 N149W	12	12	
19 20	59 N150W	13	5	
20	60 N151W	13	5	
22	61 N152W	11	11	
23	62 N153W	11	11	
24	63 N154W	27	16	
25	64 N155W	13	5	
26 27	65 N156W	11	5	
28	66 N158W	13	5	
29	67 N161W	15	15	
30	68 N162W	13	5	
31	69 N163W	12	5	
32 33				
33 34	70 N164W	15	15	
35	71 N166W	12	5	
36	72 N167W	12	12	
37	73 N168W	5	5	
38	74 N169W	15	5	
39 40	75 N170W	11	11	
41	76 N172W	11	5	
42	77 N174W	12	5	
43	78 N175W	13	5	
44	79 N176W	15	15	
45 46	80 N180W	11	5	
40 47	81 N181W	12	5	
48	82 N182W	11	11	
49	83 N183W	13	13	
50	84 N184W	5	5	
51 52	85 N186W	23	14	
52 53	86 N187W	12	12	
54	87 N190W	12	12	
55	87 N190W 88 N194W	12	12	
56				
57	89 N197W	11	11	
58 59	90 N200W	12	5	
60	91 N221W	12	12	
	Ear par	er review only	- http://b	niono
	EOLDER		= 1111117/101	11111111

1				
2 3	92 N222W	11	11	
3	93 N224W	13	13	
4	94 N227W	15	5	
5 6	95 N237W	13	5	
7	96 C1	11	5	
8	97 C2	5	12	
9	98 C3	11	11	
10	99 C4	13	13	
11 12	100 C5	12	12	
13	100 C5 101 C6	11	5	
14	101 C0 102 C7	12	12	
15	102 C7 103 C8	12	5	
16				
17 18	104 C9	11	5	
19	105 C10	12	5	
20	106 C11	12	5	
21	107 C12	13	13	
22	108 C13	15	15	
23	109 C15	13	13	
24 25	110 C16	11	5	
26	111 C19	12	5	
27	112 C20	12	12	
28	113 C22	12	5	
29	114 C24	12	5	
30 31	115 C25	12	12	
32	116 C27	13	13	
33	117 C29	11	11	
34	118 C30	12	5	
35	119 C31	12	5	
36 27	120 C32	14	14	
37 38	120 C32 121 C33	14	14	
39	121 C33 122 C34	12	12	
40	122 C34 123 C35	12	12	
41				
42	124 C36	5	5	
43 44	125 C37	12	5	
44 45	126 C38	11	5	
46	127 C39	16	5	
· _ ·				

BMJ Open

Complete list of allele	e distribution i	in healthy ii
No. Code	Allele 1	Allele 2
1 I001	14	14
2 1005	5	5
3 1007	15	5
4 1008	11	11
5 1009	12	5
6 I010	5	5
7 I011	23	11
8 IO12	12	12
9 I014	11	5
10 I015	5	5
11 I016	13	13
12 I017	14	5
13 I018	11	11
14 I019	12	12
15 I020	24	12
16 I021	12	12
17 1022	12	12
18 I023	12	12
19 I025	12	5
20 I026	12	12
21 I029	20	12
22 I030	10	12
23 I031	12	12
24 I032	12	12
25 I033	14	14
26 I034	11	11
27 1035	15	11
28 1036	13	5
29 1037	19	11
30 I038	11	5
31 I039	12	12
32 I040	17	5
33 I041	11	5
34 I042	14	12
35 I043	12	5
36 I044	13	5
37 1045	5	5
38 1046	12	12
39 IO47	12	5
40 I048	11	11
41 I049	12	12
42 1050	12	12
43 I051	12	12
44 I052	5	5

Page	32	of	33
------	----	----	----

1 2	45 I053	14	5	
3	46 I055W	14	5	
4	40 1055 W 47 1056W	12	5	
5	48 I057W	12	5	
6 7	49 I059W	12	5	
8	50 I060W	12	5	
9	51 I061W	5	5	
10	52 I062W			
11		12	12	
12 13	53 I064W	12	12	
14	54 I066W	16	5	
15	55 I067W	12	5	
16	56 I068W	10	10	
17	57 I069W	11	11	
18 19	58 I070W	18	5	
20	59 I071W	11	5	
21	60 I073W	11	11	
22	61 I074W	20	11	
23	62 I075W	11	11	
24 25	63 I077W	13	13	
26	64 I078W	12	12	
27	65 I079W	5	5	
28	66 I085W	12	12	
29	67 I086W	12	5	
30 31	68 I087W	11	5	
32	69 I088W	5	5	
33	70 I089W	5	5	
34	71 I090W	12	12	
35 36	72 I091W	11	11	
37	73 I093W	12	12	
38	74 I094W	23	11	
39	75 I095W	18	5	
40	76 I096W	12	12	
41 42	77 I097W	12	5	
43	78 I098W	29	12	
44	79 I099W	12	12	
45	80 I102W	12	12	
46	81 I103W	12	5	
47 48	81 1105 W 82 I104W	25	5	
49	82 1104 W 83 I105W	11	5	
50				
51	84 I106W	11	11	
52 52	85 I107W	11	5	
53 54	86 I108W	12	5	
55	87 I109W	13	13	
56	88 I110W	12	12	
57	89 I111W	12	5	
58 50	90 I112W	12	5	
59 60	91 I113	12	5	
			la 64 va - 111	

1				
2 3	92 I114	5	5	
3 4	93 I116	11	5	
5	94 I117	14	11	
5 6 7	95 I118	11	5	
7	96 I119	5	5	
8	97 I120	11	5	
9 10	98 I121	13	13	
10	99 I123	12	12	
12	100 I124	19	12	
13	101 I125	12	12	
14	102 I126	18	11	
15	103 I127	13	5	
16 17	104 I129	12	12	
18	105 I130	12	5	
19	106 I131	19	11	
20	107 I133	12	12	
21 22	108 I137	12	13	
22	109 1138	5	5	
24	110 I140	12	12	
25	110 1140 111 I144	12		
26	111 1144 112 I145	12	5 5	
27 28				
28	113 I146	5	5	
30	114 I150	12	12	
31	115 I151	14	14	
32	116 I153	12	5	
33	117 I156	12	12	
34 35	118 I158	12	5	
36	119 I159	13	13	
37	120 I160	12	5	
38	121 I162	12	5	
39 40	122 I163	16	5	
40 41	123 I164	11	5	
41	124 I167	13	5	
43	125 I168	12	12	
44 45				
15				