BMJ Open

Design and rationale of a matched cohort study to assess the effectiveness of a combined household-level piped water and sanitation intervention in rural Odisha, India

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012719
Article Type:	Protocol
Date Submitted by the Author:	19-May-2016
Complete List of Authors:	Reese, Heather; Emory University School of Public Health, Department of Environmental Health Routray, Parimita; London School of Hygiene and Tropical Medicine Torondel, Belen; London School of Hygiene and Tropical Medicine Sclar, Gloria; Emory University School of Public Health, Department of Environmental Health Delea, Maryann; Emory University School of Public Health; London School of Hygiene and Tropical Medicine Sinharoy, Sheela; Emory University Laney Graduate School, Nutrition and Health Sciences Program Zambrano, Laura; Emory University School of Public Health, Department of Environmental Health Caruso, Bethany; Emory University School of Public Health, Department of Environmental Health Mishra, Samir; KIIT University, School of Biotechnology Chang, Howard; Emory University, Department of Biostatistics and Bioinformatics Clasen, Thomas; London School of Hygiene & Tropical Medicine; Emory University School of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	sanitation, piped water supply, diarrheal diseases

SCHOLARONE[™] Manuscripts

2
3
4
5
0
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
23
24
27
25
26
27
28
29
30
24
31
32
33
34
35
36
27
57
38
39
40
41
42
43
11
44
45
46
47
48
49
50
50
51
52
53
54
55
56
50
57
58
59
60

1	Design and rationale of a matched cohort study to assess the effectiveness of a combined
2	household-level piped water and sanitation intervention in rural Odisha, India
3	
4	Heather Reese, ¹ Parimita Routray, ² Belen Torondel, ² Gloria Sclar, ¹ Maryann G. Delea, ^{1,2} Sheela
5	S. Sinharoy, ³ Laura Zambrano, ¹ Bethany Caruso, ¹ Samir R. Mishra, ⁴ Howard H. Chang, ⁵
6	Thomas Clasen ^{1,2}
7	
8	¹ Department of Environmental Health, Rollins School of Public Health, Emory University,
9	Atlanta, Georgia, United States of America
10	² London School of Hygiene and Tropical Medicine, London, United Kingdom
11	³ Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta,
12	Georgia, United States of America
13	⁴ School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
14	⁵ Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory
15	University, Atlanta, Georgia, United States of America
16	
17	Contact information for corresponding author, Heather Reese:
18	Department of Environmental Health, Rollins School of Public Health, Emory University
19	1518 Clifton Rd, Atlanta, GA 30322
20	Email: heather.e.reese@emory.edu, Phone: (619) 379-8963
21	Keywords: rural, piped water, sanitation
22	Word count: 4422

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

23	
24	ABSTRACT
25	Introduction: Government efforts to address massive shortfalls in rural water and sanitation in
26	India have centered on construction of community water sources and toilets for selected
27	households. However, deficiencies with water quality and quantity at the household level, and
28	community coverage and actual use of toilets has led Gram Vikas, a local NGO in Odisha, India,
29	to develop an approach that provides household-level piped water connections contingent on full
30	community-level toilet coverage.
31	Methods: This matched cohort study was designed to assess the impact of a combined piped
32	water and sanitation intervention. Households with children under five years in 45 randomly
33	selected intervention villages and 45 matched control villages will be followed over 16 months.
34	The primary outcome is prevalence of diarrheal diseases; secondary health outcomes include
35	soil-transmitted helminth infection, nutritional status, seroconversion to enteric pathogens,
36	urogenital infections, and environmental enteric dysfunction. In addition, intervention effects on
37	sanitation and water coverage, access and use, environmental fecal contamination, women's
38	empowerment, as well as collective efficacy, and intervention cost and cost-effectiveness will be
39	assessed.
40	Ethics and dissemination: The study protocol has been reviewed and approved by the ethics
41	boards of the London School of Hygiene and Tropical Medicine, U.K. and KIIT University,
42	Bhubaneswar, India. Findings will be disseminated via peer-reviewed literature and presentation
43	to stakeholders, government officials, implementers and researchers.
44	Trial registration identifier: NCT02441699
45	

1		
3 4	46	STRENGTHS AND LIMITATIONS OF THIS STUDY
5 6 7	47	• The study assesses a combined household-level piped water and sanitation intervention
8 9	48	that requires complete community-level compliance.
10 11	49	• The intervention was not randomly allocated; but, controls are selected through a
12 13 14	50	restriction process to limit possible partial exposure to the intervention through spillover,
15 16	51	and matched to intervention villages using pre-intervention data.
17 18 10	52	• The study uses a holistic definition of health to assess intervention impacts on physical,
20 21	53	mental and social well-being, including more novel outcomes such as seroconversion,
22 23	54	environmental enteric dysfunction, and sanitation insecurity. It also assesses intervention
24 25 26	55	coverage, cost-effectiveness, and collective efficacy.
27 28	56	• The time lapse between intervention completion and the beginning of the evaluation
29 30	57	process prevents baseline comparison or assessment of immediate intervention impacts.
31 32 33	58	However, it allows for a biologically plausible length of time for die-off of even the most
34 35	59	persistent pathogens in the environment, and provides time for children to have be born
36 37 38	60	into this environment.
39 40	61	
41 42	62	INTRODUCTION
43 44 45	63	Of the one billion people practicing open defecation worldwide, over half live in India[1]. While
46 47	64	international and national pressure on improving sanitation conditions in India has led to over
48 49 50	65	350 thousand people gaining access to improved toilets since 1990, it has barely kept up with
50 51 52	66	population growth[1,2]. Recent studies show that even in areas with access to household-level
53 54	67	improved sanitation, use of these toilets is low[3–5]. This may be due in part to a mismatch
55 56 57 58	68	between the culturally acceptable pour-flush toilets and the level of water access. Coverage of
59 60		3

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

improved water sources, usually community-level pumps or taps, is relatively high even in rural
areas in India, but it may not be sufficient for flushing purposes on top of other daily water
needs[1,6].

Although the effectiveness of water, sanitation and hygiene (WASH) interventions vary, meta-analyses have found that individual or combined WASH interventions decrease diarrheal disease prevalence by up to 48%[7–11]. While combined interventions would be expected to have a greater influence on multiple exposure pathways and thus a greater combined impact on health, there is limited evidence of additive benefits[12]. This may be due to poor uptake, inconsistent use, or an incomplete understanding of relevant pathways[8–10]. In India, a combined water and sanitation intervention may be more critical than just interrupting multiple transmission pathways for enteric infection; evidence suggests that household-level water access is integral to the use of improved sanitation in this context[13]. While the intent of improved sanitation facilities is to separate human feces from human contact, most of the focus is on constructing household toilets to increase improved sanitation coverage—the primary metric used in monitoring progress toward international targets. However, studies in India have further shown that toilet construction does not translate into toilet use in this context[5,14–16]. Moreover, with the interdependence between members of households and households within communities, safe water and sanitation is a community-level issue. There is growing emphasis on assessing health risk from poor water and sanitation conditions not simply due to individual or even household-level risk factors, but also from

conditions in the community environment[17]. There is evidence that even households withouttoilets, and households which do not filter drinking water, showed decreased health risk if they

91 live in communities with high levels of coverage and use[18-20].

BMJ Open

A main risk of poor WASH conditions is enteric infection, caused by a diverse array of bacteria, viruses, protozoa, and parasites, including soil-transmitted helminths. These infections may cause diarrhea, the second leading cause of mortality for children under five years worldwide and in India, a leading cause of mortality regardless of age[21,22]. There is also growing evidence that asymptomatic enteric infections may pose a similar risk, with repeat enteric infections contributing to chronic malnutrition, environmental enteric dysfunction, poor cognitive outcomes, and poor vaccine uptake [23–28]. Poor WASH conditions are also linked to increased risk of respiratory infection, the leading cause of mortality for children under five years worldwide [21,29,30]. Poor water and sanitation access can also affect the social, physical and mental well-being of women, acting through pathways ranging from unsafe menstrual hygiene management practices and increased risk of violence[31–33].

Description of the intervention

Over the past decades there has been a global commitment to determine water and sanitation interventions with demonstrated effectiveness, not just efficacy[34]. Gram Vikas, a nongovernmental organization based in Odisha, India (http://www.gramvikas.org/), has responded by implementing its MANTRA (Movement and Action Network for Transformation of Rural Areas) water and sanitation program in more than 1000 villages since 2002[35]. This approach includes both household-level piped water connections, and community-level mobilization for culturally appropriate household toilets. A previous interrupted time series analysis of the MANTRA intervention reported it to be protective against diarrheal diseases[36]. However, in addition to limitations of design, this study relied on outcome data collected and reported by

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open

Gram Vikas, the intervention implementer, and did not assess intervention coverage or impactson environmental fecal contamination.

The MANTRA water and sanitation intervention is rolled out in a three-phase process over an average three to five years (Figure 1). During the first, or Motivational, phase, representatives of Gram Vikas visit the identified village several times to assess village interest and progress towards a set of Gram Vikas requirements, including: 1) the commitment of every household to participate, 2) creation of a village corpus fund from contributions from every household, and 3) development of village guidelines for maintenance and use of facilities.

Once this set of requirements is achieved, the village progresses into the second, or Operational, phase of the intervention. Each household constructs a pour-flush toilet with two soak-pits and a separate bathing room. The households hire a local, skilled mason and provide their own unskilled labor and locally available materials to complete the superstructure. Gram Vikas provides external materials such as PVC pipes and porcelain pans. At the same time, a water tank, community meeting space, and piped water distribution system connected to every household, with taps in the toilet and bathing rooms and a separate tap in the kitchen, is constructed through a similar collaborative process.

All households must construct a toilet and bathing room for the village to progress into the final, or Completed, phase of the intervention, in which the water system is turned on. Notably, this three-phase process only allows each household access to piped water once every household in the village has a toilet and bathing room. This model contrasts with most previous water and sanitation interventions, including those implemented under India's Total Sanitation Campaign and other government programs, which do not require community-level sanitation compliance and do not provide a piped water supply at the household level[37].

1 2		
2 3 4	137	
5 6 7	138	Study aims
, 8 9	139	The primary objective of this study is to evaluate the effectiveness of the combined household-
10 11	140	level water supply and sanitation intervention, as implemented by Gram Vikas in Odisha, India.
12 13 14	141	Toward that objective, this study aims to:
15 16	142	1) Assess the effectiveness of the intervention in improving water and sanitation
17 18 10	143	infrastructure coverage, access, and use and to assess fecal sludge management practices
20 21	144	in intervention communities.
22 23	145	2) Assess the effectiveness of the intervention in reducing environmental fecal
24 25 26	146	contamination.
27 28	147	3) Assess the effectiveness of the intervention in improving health. This includes reported
29 30	148	diarrheal disease in children under 5 years (primary outcome), acute respiratory infection,
31 32 33	149	infection with soil-transmitted helminthes, nutritional status, environmental enteric
34 35	150	dysfunction, seroconversion for selected enteric pathogens, and urogenital diseases
36 37 38	151	associated with menstrual hygiene management practices. Mental and social well-being
39 40	152	will be explored through assessment of sanitation insecurity and women's empowerment.
41 42	153	4) Assess the cost and cost-effectiveness of the intervention.
43 44 45	154	5) Develop and assess a theoretically-grounded, empirically informed collective efficacy
46 47	155	scale; and determine the effect of collective efficacy on intervention effectiveness.
48 49 50	156	
50 51 52	157	METHODS
53 54	158	Setting
55 56 57		
58 59		
60		7

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

The study is located in Ganjam and Gajapati districts located in eastern Odisha, India (Figure 2). These two contiguous districts were a single district until 1992. Over 44% of the population in these districts is recognized by the Government of India as being below the poverty line (BPL)[38]. As of 2008, a majority of households in both districts had access to an improved, likely community-level, drinking water source, with over 23% of households in Ganjam having access to any sanitation facility, compared to only 8% of households in Gajapati[38]. The area is primarily rural and agrarian, and the climate is characterized by a monsoon season from June to September, with an average rainfall of ~1400 mms/year. **Study design** This study uses a matched cohort design with data collected across four study rounds from June 2015 to September 2016. As described below, control villages were matched to randomly selected intervention villages through a multi-step restriction, genetic matching, and exclusion process using the following eligibility criteria (Figure 3). **Eligibility criteria for villages** *I. Restriction.* Intervention villages were randomly selected from a list of Gram Vikas villages in Ganjam and Gajapati districts provided by the NGO, after restriction to villages with a Motivation phase start date between 2002-2006 and a Construction phase start date no earlier than 2003. Since the intervention process takes on average three to five years, the criteria for the Motivation start date helped to identify those villages with ongoing interventions at the same time. In addition, this allowed the use of the Government of India Census 2001 and the Below

Poverty Line (BPL) Survey 2002 data to characterize baseline characteristics in both interventionand control villages.

Eligible control villages include all villages without a Gram Vikas intervention within the study districts which: 1) are not within the same Gram Panchayat (a political subdivision with some administrative responsibility for water and sanitation) as a Gram Vikas village, or bordering a Gram Vikas village, and 2) had not received a Motivation visit from the Gram Vikas NGO. These criteria serve to limit the possibility of previous partial exposure to the intervention through spillover from adjacent villages or direct contact with the NGO. These criteria also increase strength of the counterfactual provided by the control villages, i.e. if they had received a motivation visit from Gram Vikas, the control villages would have been equally as likely as the intervention villages to demand the intervention.

In addition, to be eligible for inclusion both intervention and control villages must: 1) appear in the Government of India Census 2001 and the BPL Survey 2002, 2) have a population of at least 20 households, and 3) be within approximately three hours travel from the study office in Brahmapur, Ganjam District. This last criterion is due to logistical constraints.

196 2. Matching. After restriction, genetic matching was used to match potential control villages to 197 the randomly selected intervention villages without replacement[5,39,40]. Villages were exact 198 matched on district to limit any political or large scale geographic variation between district 199 populations, and were also matched on pre-intervention demographic, socioeconomic, sanitation, 200 and water access characteristics[5]. These village level matching variables were selected due to 201 their theorized association with the primary outcome, diarrheal diseases, as well as data 202 availability.

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

3. Exclusion. The field team visited matched potential control villages and intervention villages to assess suitability for the study through a rapid assessment interview with village leadership and to ensure accessibility. Villages were excluded if they are not within three hours travel of the field office in Brahmapur, had sustained major infrastructure damage due to a natural disaster, or if there was a current or planned sanitation or water intervention by an organization external to the village in the next 12 months. In addition, villages were excluded if there were fewer than three children under five years old. As villages were removed from the pool of prospective control villages, the matching and exclusion processes were repeated.

After matching and exclusion, covariate balance was assessed for all matching variables through examination of balance measures[41–43]. Matching resulted in an improvement in balance as assessed through comparison of several measures including q-q plots, Kolmogorov-Smirnov bootstrap p-values, and standardized differences. After matching, there were no significant differences between intervention and control groups (Table 1).

217 Eligibility criteria for households

Households within selected intervention and control villages will be eligible if they have at least one child under 5 years old at time of enrollment, verified with birth or immunization card, and expect to reside in the village for the duration of the study. If there are more than 40 eligible households within a village, 40 will be randomly selected to be enrolled. Informed consent will be obtained from the male and/or female head of the selected households. All children under five years within each enrolled household are eligible and will not age-out over the course of the

BMJ Open

Table 1. Pre-intervention characteristics and balance diagnostics before and after matching and

exclusion process.

	Variable	Intervention (n=45)	Control (all eligible) (n=1580)	Std Diff (all eligible)	Control (study) (n=45)	Std Diff (study)
	Number of households	157.9	215.5	0.37	148.1	0.06
	Population under 6 years (%)	16.2	16.9	0.19	16.3	0.02
	Household income score (x)	2.9	3.1**	0.26	2.9	0.01
	Household goods owned (x)	1.1	1.2^{*}	0.27	1.1	0.02
	Pucca house (%)	59.2	61.6	0.09	60.5	0.05
	≥ 2 meals a day (%)	57.7	63.7	0.19	57.8	0.01
	Scheduled caste (%)	11.5	18.7**	0.46	11.8	0.01
	Scheduled tribe (%)	33.4	19.1*	0.31	29.8	0.08
	Female literacy (%)	30.9	29.8	0.07	30.9	0.00
	Open defecation (%)	95.6	95.2 [*]	0.04	95.8	0.01
	Improved drinking water source [†] (%)	38.6	42.5	0.10	37.2	0.02
	Water source <500m and 50m elevation (%)	81.5	72.2	0.31	81.7	0.01
227 228 229 230	All eligible: villages that are e Std Diff (absolute standardize ‡ Ganjam villages only; no da Kolmogorov-Smirnov bootstr	eligible for the matc d difference): a val ta available for Gaj ap p-values: * <0.0	thing process after re ue greater than 0.1 is apati villages 05 ** <0.01	striction considered meanir	ngful imbalance	e [41]

study. Households with newborn children will be enrolled as they become eligible on an ongoing

basis throughout the study in villages with fewer than 40 enrolled households.

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

237 Sample Size

Sample size was determined through a simulation estimating the log odds of diarrheal disease (the primary outcome) through a multilevel random effects model and parameterized with data from a previous study in a neighboring district in Odisha[16]. Sample size estimates were also checked with G*Power[44]. The simulation assumes a longitudinal 7-day period prevalence for diarrhea of 8.8% in children under five years, a heterogeneity variance between villages of 0.07, a heterogeneity variance between households of 0.57, and four study rounds. An effect size of 0.20 was selected for public health importance and based on estimates of effect from systematic reviews of water and sanitation studies[45]. Assuming at least 80% power, 0.05 significance level, 10% for loss to follow up, and at least one child per household, we estimate a sample size of 45 villages per study arm and 26 households per village.

Outcome Measurement

Outcomes will be measured through surveys, interviews, or through the collection and analysis of environmental, stool or dried blood spot samples. All survey questions will be translated into the primary local language, Odia, and back-translated to confirm wording. Household surveys will be verbally administered by trained field workers to the mother or primary caregiver of the youngest child under five in each household, unless otherwise specified below. Community surveys will be verbally administered to the *sarpanch* (village head) or other member of village leadership. Survey data will be collected on mobile phones using Open Data Kit[46]. GPS coordinates for households, water sources and other relevant sites will be collected using Garmin eTrex 10 or 20 devices (Garmin Ltd., Olathe, KS, USA).

Diarrheal Diseases The primary outcome for this study is prevalence of diarrheal diseases, recorded as both daily point prevalence over the previous three days and seven-day period prevalence, for all household members in each of the four rounds. Although self-reported diarrhea is a subjective outcome with a well-established risk of bias, three-day recall reduces recall bias[47,48]. Diarrheal disease will be measured using the World Health Organization (WHO) definition of three or more loose stools in a 24-hour period, with or without the presence of blood. Field workers will use a simple calendar as a visual aid to help respondents with recall. Each household member will be asked to recall his or her own disease status and the mother or primary caregiver will be asked to report disease for children. **Respiratory** infection Prevalence of respiratory infections will be recorded as both daily point prevalence over the previous three days and seven-day period prevalence for all household members in each round. Respiratory infection is defined as the presence of cough and/or shortness of breath/difficulty breathing according to WHO's Integrated Management of Childhood Illness (IMCI)[49]. The full IMCI case definition for acute lower respiratory infection also includes measurement respiratory rate and observation of chest indrawing, stridor and other danger signs; these criteria were excluded from our definition as there is concern about the technical support required to

produce consistent and accurate data within this context[49]. Our definition will provide a broadassessment of respiratory illness burden.

3 281

282 Nutritional Status

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

Children's height and weight will be measured in all rounds using standard anthropometric measurement methods as established by WHO[50,51]. Field workers will be trained and standardized[51]. Weight will be measured for all children under five years of age using Seca 385 digital scales, with 20g increment for weight below 20kg and a 50g increment for weight between 20 and 50kg. Recumbent length will be measured for children less than two years of age using Seca 417 measuring boards with 1mm increment. Standing height will be measured for children two to five years of age using Seca 213 portable stadiometers with 1mm increment. Height and weight will be used to calculate height-for-age z-scores (HAZ) and weight-for-height z-scores (WHZ) based on WHO reference standards. A random subset of 10% of households will receive back check visits each day to repeat height/length measurements to ensure inter-observer reliability.

295 Soil-transmitted helminth infection

Stool samples will be collected in rounds 2 and 4 from all household members in a randomly selected subset of households, and used to assess the presence and intensity of soil-transmitted helminth (STH) infection. Formalin ether concentration and microscopy will be used to quantify worms and ova for hookworms, Ascaris lumbricoides, and Tricuris trichura[52]. Quality assurance will include independent duplicate assessment of all positive and 10% of negative samples. After stool collection, each participant will be offered a single dose of Albendazole, a broad-spectrum antihelmenthic drug recommended by the Ministry of Health and Family Welfare, Government of India. Stools collected in round 2 will allow for comparison of STH infection prevalence between intervention and control villages, while the stool samples collected approximately 8 months later in round 4 will provide a measure of re-infection rate.

306	
307	Environmental enteric dysfunction
308	Stools from randomly selected children under two years old, collected in rounds 2 and 4, will be
309	used to assess environmental enteric dysfunction (EED) through quantification of biomarkers of
310	intestinal inflammation and permeability. Fecal myeloperoxidase (MPO), alpha-1-antitrypsin
311	(AAT), and neopterin (NEO), markers for neutrophil activity, intestinal permeability and TH1
312	immune activation, respectively, were selected for this study based on evidence of association
313	with EED, subsequent linear growth deficits, and household environmental fecal
314	contamination[23,24,53].
315	
316	Seroconversion for enteric pathogens
317	Serological assays that assess antibody production against various enteric pathogens can provide
318	an objective measure of exposure to enteric infections[54]. Enrolling children aged 6 to 18
319	months will reduce the potential for interference from maternally acquired antibodies and permit
320	analysis of seroconversion data in a critical window for young children who experience higher
321	diarrheal disease morbidity and mortality before two years of age[55–60]. Children who are 6 to
322	12 months during round 2 will have capillary blood drawn by fingerstick or heelstick, as
323	appropriate, and will be visited again during round 4 for a second capillary blood sample. All
324	blood samples will be preserved on TropBio (Sydney, Australia) filter discs and stored within 7
325	days of collection at -20°C. Seroconversion against markers for norovirus, Giardia intestinalis,
326	Cryptosporidium parvum, Entamoeba histolytica, enterotoxigenic E. coli heat-labile enterotoxin
327	(ETEC-LT), Salmonella spp., Campylobacter jejuni, Vibrio cholera, and Toxoplasma spp. will
328	be compared using multiplex immunoassay technology on the Luminex xMAP platform[61].

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

1 2 3		
4	329	
5 6 7	330	Environmental fecal contamination
, 8 9	331	Field workers will collect samples of household stored drinking water and source water from a
10 11	332	random subset of households in each village in all study rounds, and child hand rinses in rounds
12 13 14	333	2 and 4. All water and hand rinse samples will be stored on ice during transport and analyzed
15 16	334	within 6 hours of collection using membrane filtration. Three assays will be used: 1) plating on
17 18 10	335	m-Coli Blue 24 (Millipore, Billerica, MA) for <i>E.coli</i> according to EPA Method 10029, 2)
20 21	336	alkaline peptone water enrichment prior to plating on thiosulfate citrate bile salts sucrose agar
22 23	337	and slide agglutination serotyping for <i>V. cholerae</i> , and 3) plating on xylose lysine desoxycholate
24 25 26	338	agar, and slide agglutination serotyping for Shigella spp.[62-64]. Source and stored water
26 27 28 29 30	339	samples will be assayed for <i>E. coli</i> , <i>Vibrio cholerae</i> and <i>Shigella</i> spp., and hand rinse samples
	340	will be assayed for <i>E. coli</i> and <i>Shigella</i> spp. <i>E. coli</i> was selected as a standard non-human
31 32 33	341	specific indicator of fecal contamination, though the limitations of this indicator are well-
34 35	342	established[65–67]. In order to better characterize human fecal contamination of the household
36 37 28	343	environment, Vibrio cholerae and Shigella spp. were selected based on prevalence in southern
39 40	344	Asia, evidence of public health importance, and field laboratory limitations[68–70].
41 42	345	
43 44 45	346	Cost and cost-effectiveness
46 47	347	Costs and potential cost savings (i.e., averted costs) associated with the intervention will be
48 49	348	assessed through an economic costing approach that recognizes and quantifies costs and benefits
50 51 52	349	from a societal perspective[71]. Data on program and point-of-delivery inputs will be collected a
53 54	350	household, community, and implementer levels. Field workers will administer community
55 56 57 58 59 60	351	surveys to a village leader, and household surveys to the household decision-maker for toilet

BMJ Open

installation, in 20 randomly selected households in half of the intervention and control villages. Surveys will collect data on household- and village-level inputs related to materials and labor required to construct household toilets and wash rooms, the community water tank and distribution system, and household water connections; longer-term water supply and toilet maintenance costs; and financing required for this infrastructure as well as perceived benefits, including averted social opportunity costs. Implementer inputs from Gram Vikas will be collected through an enumeration exercise, interviews, and examination of the implementer's financial records.

361 Collective efficacy

Collective efficacy (CE) is a latent construct comprised of the structural and cognitive components that facilitate a community's shared belief in its ability to come together and execute actions related to a common goal[72]. A review of the literature and established conceptual frameworks will be performed to define the CE construct. A sequential exploratory mixed qualitative and quantitative design will be used to develop and refine a scale to measure CE and test hypotheses. Field workers will administer the refined, multi-item, Likert-type CE scale to one randomly selected household member aged 18 years or older in each household.

370 Women's empowerment

Four dimensions of women's empowerment will be measured: group participation, leadership,
decision-making and freedom of movement. Group participation and leadership will be measured
using modules from the Women's Empowerment in Agriculture Index, which has been tested in
South Asia[73]. Decision-making and freedom of movement will be measured using questions

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

from the women's status module of Demographic and Health Surveys. These measures were selected based on the importance of women's empowerment for child nutrition [74,75]. Women's empowerment is conceptualized as both an outcome and a potential mediator along the pathway between the Gram Vikas intervention and child health outcomes. Menstrual hygiene management Menstrual hygiene management practices vary worldwide and depend on personal preference, socioeconomic status, local traditions and beliefs, and access to water and sanitation resources[76]. Unhygienic washing practices are common in rural India and among women and girls in lower socioeconomic groups, and may increase risk of urogenital infection[77–79]. However, the link between access to water and sanitation, menstrual hygiene management and urogenital infections has been poorly studied. Household surveys will capture self-reported urogenital infection, defined as at least one of the following symptoms: 1) abnormal vaginal discharge (unusual texture and color/more abundant than normal), 2) burning or itching in the genitalia, 3) burning or itching when urinating, or 4) genital sores[78]. Sanitation Insecurity This study will assess the associations between sanitation access and sanitation insecurity with mental health among women. In previous research in Odisha, a contextually specific definition and measure for sanitation insecurity was developed, with associations between facets of sanitation insecurity and mental health independent of sanitation facility access[80]. This

1		
2		
3		
4		
5		
ວ ຈ		
6		
7		
8		
ň		
3	~	
1	0	
1	1	
1	2	
4	<u>م</u>	
1	3	
1	4	
1	5	
1	6	
	7	
1	1	
1	8	
1	9	
2	0	
	1	
2	1	
2	2	
2	3	
2	4	
- っ	5	
~	5	
2	6	
2	7	
2	8	
$\overline{2}$	ñ	
~	ອ	
3	0	
3	1	
3	2	
2 2	2	
3	3	
3	4	
3	5	
3	6	
ົ້	7	
С С	1	
3	8	
3	9	
4	0	
л	1	
4	1	
4	2	
4	3	
4	4	
Л	5	
4	2	
4	6	
4	7	
4	8	
л	õ	
4	9	
5	0	
5	1	
5	2	
5	2	
5	ں ار	
5	4	
5	5	
5	6	
5	7	
г	r c	
5	8	
_	^	

60

397 between intervention and control villages and how it may be associated with mental health outcomes, specifically well-being, anxiety, depression, and distress. 398 399 Fecal sludge management. 400 In sanitation systems where sewerage is not feasible, such as the household toilets constructed as 401 part of the MANTRA intervention, safe management of fecal waste is necessary. Although there 402 is growing emphasis on safe fecal sludge management (FSM), research has mainly focused on 403 urban settings[81,82]. Preliminary research in Odisha suggests that fecal sludge management in 404 this rural setting is a substantial challenge, and may impact household use of toilets. Household 405 surveys and spot checks of toilets in intervention villages will be used to assess toilet use and 406 fecal sludge management practices. 407 408 STATISTICAL ANALYSES 409

The effect of the intervention on infrastructure coverage, access, and use (aim 1), and the effect of the intervention on improving health (aim 3), will be analyzed using logistic, linear, or negative binomial multilevel regression depending on the outcome, to compare intervention versus control villages. The hierarchical structure of the data will be accounted for using random effects. Unadjusted models will be presented along with models adjusting for covariates.
Potential mediation will be assessed using structured equation modeling or regression, as appropriate.

The impact of intervention on reducing environmental fecal contamination (aim 2), will
be assessed through two methods. First, hierarchical logistic and negative binomial multilevel
regression will be used to compare intervention versus control villages. Unadjusted models will

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

Page 20 of 38

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open

be presented along with models adjusting for covariates. Second, a stochastic microbial risk
framework will be used to assess differential fecal environmental contamination between
intervention and control villages.

The cost and cost-effectiveness of the intervention (aim 4) will be assessed in two steps. Incremental intervention benefits will be ascertained by combining health benefit data, from analysis of health outcome data and established averted cost data, with other averted social opportunity costs. An incremental cost-effectiveness ratio, expressed in cost per disease-specific DALY, will be calculated by dividing the incremental intervention costs by the incremental intervention benefits.

The collective efficacy scale will be analyzed using factor and psychometric analyses to identify an appropriate factor solution. Once a CE factor solution is identified, multilevel regression will be used to assess the associations between CE and intervention effectiveness (aim 5).

DISCUSSION

This matched cohort study is one of the first to evaluate the effect of a rural combined household-level piped water and sanitation intervention, implemented at the community level, on a large scale. The matched design provides a rigorous means for estimating causal effects given that randomization was not feasible due to the several year implementation process[5]. By focusing on a completed intervention, it also avoids the risk presented by randomized controlled trials, where the intervention has little uptake, an especially important study challenge given interdependence of exposure and outcomes within communities, and a problem that has characterized previous trials of sanitation interventions in India[15,16].

Page 21 of 38

BMJ Open

A strength of this study is assessment of health impacts using the holistic WHO definition of health, including not just disease status, but also mental, social, and physical well-being[83]. Outcomes along the causal chain include standard, but more subjective measures, such as reported diarrheal diseases and respiratory infection, as well as more objective measures such as fecal environmental contamination, soil transmitted helminth infection, and anthropometry. Although there is risk of response bias for reported outcomes, it is unlikely to be differential by intervention status since the study team is not directly linked to Gram Vikas. Even though field workers may be aware of village intervention status, lab staff analyzing water, hand rinse, stool, and blood samples will be blinded. In addition, this study includes the more novel use of seroconversion for enteric pathogens, biomarkers of environmental enteric dysfunction, and measures of collective efficacy in an evaluation assessment. While there are limitations inherent to observational studies, the matched study design and multivariate modeling analysis plan reduces the potential for confounding. However, there is still the potential for residual unmeasured confounding.

Ethics and Dissemination. This study has been reviewed and approved by the Ethics Committee of the London School of Hygiene and Tropical Medicine, U.K (No. 9071) and Institute Ethics Committee of the Kalinga Institute of Medical Sciences of KIIT University, Bhubaneswar, India (KIMS/KIIT/IEC/053/2015). Efforts will be made to communicate the central findings and implications with study communities, the implementing organization and government officials in India. The results of this study will be submitted for publication in peer reviewed journals and presented at conferences. The data collected in the study will be publicly available, with personal

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open

identifiable data redacted, following the publication of the primary results within 24 months of the final data collection date. **Funding.** This study is supported by a grant from the Bill & Melinda Gates Foundation to the London School of Hygiene & Tropical Medicine (OPP1008048) and to Emory University. (OOP1125067). Competing Interests: None declared. Contributions from authors: TC, HR, PR, BT, and HC contributed to study design. HR, LZ and BT developed laboratory protocols. HR, BT, GS, MD, SS, LZ, and BC developed data collection tools. All authors contributed to editing and revising the manuscript. Figure 1. Description of the three phases of the Gram Vikas MANTRA water and sanitation intervention. Figure 2. Study sites in Ganjam and Gajapati districts, Odisha, India with intervention villages in black and control villages in white. Inset shows location of districts in India. Figure 3. Restriction, matching and exclusion process for selection of intervention and control villages (1), and timeline for study data collection (2).

1 2 2				
3	489	REF	ERENCES	
5 6 7 8 9	490	1	UNICEF, WHO. Progress and Sanitation and Drinking Water: 2015 Update and MDG	
	491		Assessment. 2015.	
10 11 12	492	2	Water and Sanitation Program. A Decade of the Total Sanitation Campaign: Rapid	
12 13 14	493		Assessment of Processes and Outcomes. 2010.	
15 16	494	3	Coffey D, Gupta A, Hathi P, et al. Culture and the health transition: Understanding	
17 18 10	495		sanitation behavior in rural north India. 2015.	
20 21	496	4	Clasen T, Pruss-Ustun A, Mathers CD, et al. Estimating the impact of unsafe water,	
22 23	497		sanitation and hygiene on the global burden of disease: evolving and alternative method	S.
24 25 26	498		<i>Trop Med Int Heal</i> 2014; 19 :884–93. doi:10.1111/tmi.12330	
27 28	499	5	Arnold BF, Khush RS, Ramaswamy P, et al. Causal inference methods to study	
29 30	500		nonrandomized, preexisting development interventions. Proc Natl Acad Sci USA	
31 32 33	501		2010;107:22605-10. doi:10.1073/pnas.1008944107	
34 35	502	6	Ercumen A, Arnold BF, Kumpel E, et al. Upgrading a Piped Water Supply from	
36 37 28	503		Intermittent to Continuous Delivery and Association with Waterborne Illness: A Matche	ed
30 39 40	504		Cohort Study in Urban India. PLOS Med 2015;12:e1001892.	
41 42	505		doi:10.1371/journal.pmed.1001892	
43 44 45	506	7	Fewtrell L, Kaufmann RB, Kay D, et al. Water, sanitation, and hygiene interventions to	
46 47	507		reduce diarrhoea in less developed countries: a systematic review and meta-analysis.	
48 49	508		Lancet Infect Dis 2005;5:42-52. doi:10.1016/S1473-3099(04)01253-8	
50 51 52	509	8	Engell RE, Lim SS. Does clean water matter? An updated meta-analysis of water supply	y
53 54	510		and sanitation interventions and diarrhoeal diseases. Lancet 2013;381:S44.	
55 56 57 58 59	511		doi:10.1016/S0140-6736(13)61298-2	_
60				23

1 2				
3 4 5 6 7 8 9	512	9	Clasen T, Bostoen K, Schmidt W, et al. Interventions to improve disposal of human	
	513		excreta for preventing diarrhoea. Cochrane database Syst Rev Published Online First:	
	514		2010.http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007180.pub2/pdf/standar	d
10 11	515		(accessed 4 Jan2015).	
12 13	516	10	Clasen T, Schmidt W-P, Rabie T, et al. Interventions to improve water quality for	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 32 33 34 35 36	517		preventing diarrhoea: systematic review and meta-analysis. BMJ 2007;334:782.	
	518		doi:10.1136/bmj.39118.489931.BE	
	519	11	Cairncross S, Hunt C, Boisson S, et al. Water, sanitation and hygiene for the prevention	of
	520		diarrhoea. Int J Epidemiol 2010;39 Suppl 1:i193–205. doi:10.1093/ije/dyq035	
	521	12	Clasen TF, Alexander KT, Sinclair D, et al. Interventions to improve water quality for	
	522		preventing diarrhoea. Cochrane database Syst Rev 2015;10:CD004794.	
	523		doi:10.1002/14651858.CD004794.pub3	
	524	13	Routray P, Schmidt W-P, Boisson S, et al. Socio-cultural and behavioural factors	
	525		constraining latrine adoption in rural coastal Odisha: an exploratory qualitative study.	
36 37	526		BMC Public Health 2015;15:880. doi:10.1186/s12889-015-2206-3	
38 39 40 41 42 43 44 45 46 47 48 9 51 52 53 54 55 57 82	527	14	Barnard S, Routray P, Majorin F, et al. Impact of Indian Total Sanitation Campaign on	
	528		Latrine Coverage and Use: A Cross-Sectional Study in Orissa Three Years following	
	529		Programme Implementation. PLoS One 2013;8. doi:10.1371/journal.pone.0071438	
	530	15	Patil SR, Arnold BF, Salvatore AL, et al. The effect of India's total sanitation campaign	l
	531		on defecation behaviors and child health in rural Madhya Pradesh: a cluster randomized	
	532		controlled trial. <i>PLoS Med</i> 2014; 11 :e1001709. doi:10.1371/journal.pmed.1001709	
	533	16	Clasen T, Boisson S, Routray P, et al. Effectiveness of a rural sanitation programme on	
	534		diarrhoea, soil-transmitted helminth infection, and child malnutrition in Odisha, India: a	*
59 60				24

1 2				
3 4	535		cluster-randomised trial. Lancet Glob Heal 2014;2:e645-53. doi:10.1016/S2214-	
5 6	536		109X(14)70307-9	
7 8 9	537	17	Eisenberg JNS, Trostle J, Sorensen RJD, et al. Towards a Systems Approach to Enteric	
10 11	538		Pathogen Transmission: From Individual Independence to Community Interdependence.	
12 13	539		Annu Rev Public Health 2013;33:239–57. doi:10.1016/j.micinf.2011.07.011.Innate	
14 15 16	540	18	Root GPM. Sanitation, Community Environments, and Childhoold Diarrhea in Rural	
17 18	541		Zimbabwe. J Heal Popul Nutr 2001;19:73–82.	
19 20 21	542	19	Bateman OM, Smith S. A Comparison of the Health Effects of Water Supply and	
21 22 23	543		Sanitation in Urban and Rural Guatemala. 1999.	
24 25	544	20	Huq A, Yunus M, Sohel SS, et al. Simple Sari Cloth Filtration of Water Is Sustainable an	d
26 27 28	545		Continues to Protect Villagers from Cholera in Matlab, Bangladesh. MBio 2010;1:1–5.	
29 30	546		doi:10.1128/mBio.00034-10.Invited	
31 32	547	21	UN Inter-agency Group for Child Mortality Estimation. Levels and trends in child	
33 34 35	548		mortality: Report 2015. 2015.	
36 37	549	22	World Health Organization. Estimated total deaths by cause, sex and WHO Member State	Э,
38 39	550		2008. Geneva, Switzerland: 2011.	
40 41 42	551	23	Lin A, Arnold BF, Afreen S, et al. Household environmental conditions are associated	
43 44	552		with enteropathy and impaired growth in rural Bangladesh. Am J Trop Med Hyg	
45 46 47	553		2013; 89 :130–7. doi:10.4269/ajtmh.12-0629	
48 49	554	24	Korpe PS, Petri WA. Environmental enteropathy: critical implications of a poorly	
50 51	555		understood condition. Trends Mol Med 2012;18:328-36.	
52 53 54	556		doi:10.1016/j.molmed.2012.04.007	
55 56 57	557	25	Guerrant RL, Oriá RB, Moore SR, et al. Malnutrition as an enteric infectious disease with	1
58 59 60			2	5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2				
3 4 5	558		long-term effects on child development. 2008;66:487-505. doi:10.1111/j.1753-	
5 6 7	559		4887.2008.00082.x.Malnutrition	
7 8 9	560	26	Crane RJ, Jones KDJ, Berkley JA. Environmental enteric dysfunction : An overview.	
10 11	561		2015; 36 :76–87.	
12 13	562	27	Humphrey JH. Child undernutrition, tropical enteropathy, toilets, and handwashing.	
14 15 16	563		Lancet 2009; 374 :1032–5. doi:10.1016/S0140-6736(09)60950-8	
17 18	564	28	Mbuya MNN, Humphrey JH. Preventing environmental enteric dysfunction through	
19 20 21	565		improved water, sanitation and hygiene: An opportunity for stunting reduction in	
22 23	566		developing countries. Matern Child Nutr 2015;12:1-15. doi:10.1111/mcn.12220	
24 25	567	29	Budge PJ, Griffin MR, Edwards KM, et al. Impact of home environment interventions on	
26 27 28 29 30 31 32 33	568		the risk of influenza-associated ARI in Andean children: observations from a prospective	
	569		household-based cohort study. PLoS One 2014;9:e91247.	
	570		doi:10.1371/journal.pone.0091247	
33 34 35	571	30	Aiello AE, Coulborn RM, Perez V, et al. Effect of hand hygiene on infectious disease risk	
36 37	572		in the community setting: a meta-analysis. Am J Public Health 2008;98:1372-81.	
38 39	573		doi:10.2105/AJPH.2007.124610	
40 41 42	574	31	Caruso BA, Sevilimedu V, Fung IC-H, et al. Gender disparities in water, sanitation, and	
43 44	575		global health. Lancet (London, England) 2015;386:650-1. doi:10.1016/S0140-	
45 46 47	576		6736(15)61497-0	
48 49	577	32	Sahoo KC, Hulland KR, Caruso B a., et al. Sanitation-related psychosocial stress: a	
50 51	578		grounded theory study of women across the life-course in Odisha, India. Soc Sci Med	
52 53 54	579		2015; 139 :80-9. doi:10.1016/j.socscimed.2015.06.031	
55 56	580	33	Hulland KRS, Chase RP, Caruso BA, et al. Sanitation, stress, and life stage: A systematic	
57 58				
60			26	;

1 2			
3 4	581		data collection study among women in Odisha, India. PLoS One 2015;10.
5 6 7	582		doi:10.1371/journal.pone.0141883
7 8 9	583	34	World Health Organization/The United Nations Children's Fund (UNICEF). Ending
10 11	584		Preventable Child Deaths from Pneumonia and Diarrhoea by 2025: The integrated Global
12 13 14 15 16 17 18	585		Action Plan for Pneumonia and Diarrhoea (GAPPD). 2013.
	586	35	Gram Vikas. Annual Report 2013-2014. 2014.
	587	36	Duflo E, Greenstone M, Guiteras R, et al. Toilets Can Work : Short and Medium Run
19 20 21	588		Health Impacts of Addressing Complementarities and Externalities in Water and
21 22 23 24 25 26 27 28 29 30	589		Sanitation.
	590	37	Rosa G, Clasen T. Estimating the scope of household water treatment in low- and
	591		medium-income countries. Am J Trop Med Hyg 2010;82:289–300.
	592		doi:10.4269/ajtmh.2010.09-0382
31 32	593	38	International Institute for Population Sciences (IIPS). District Level Household and
33 34 35	594		Facility Survey (DLHS-3), 2007-08: India, Orissa. Mumbai: 2010.
36 37	595	39	Brady H, Caughey D, Dehejia R, et al. Genetic Matching for Estimating Causal Effects :
38 39 40	596		2012.
41 42	597	40	Sekhon JS. "Multivariate and Propensity Score Matching Software. J Stat Softw
43 44	598		2011;42.http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Multivariate+a
45 46 47	599		nd+Propensity+Score+Matching#9 (accessed 30 May2014).
48 49	600	41	Austin PC. Balance diagnostics for comparing the distribution of baseline covariates
50 51 52 53 54 55 56 57 58 59 60	601		between treatment groups in propensity-score matched samples. Stat Med 2009;28:3083-
	602		107. doi:10.1002/sim
	603	42	Rubin DB. Using propensity scores to help design observational studies: Application to 27

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

BMJ Open

1

2				
3 4	604		the tobacco litigation. <i>Health Serv Outcomes Res Methodol</i> 2002;2:169-88.	
5 6 7 8 9	605	43	Harder VS, Stuart EA, Anthony JC. Propensity score techniques and the assessment of	
	606		measured covariate balance to test causal associations in psychological research. Psychol	!
10 11	607		Methods 2010;15:997-1003. doi:10.1016/j.biotechadv.2011.08.021.Secreted	
12 13	608	44	Faul F, Erdfelder E, Buchner A, et al. Statistical power analyses using G*Power 3.1: test	S
14 15 16	609		for correlation and regression analyses. Behav Res Methods 2009;41:1149-60.	
17 18	610		doi:10.3758/BRM.41.4.1149	
19 20 21	611	45	Wolf J, Prüss-Ustün A, Cumming O, et al. Systematic review: Assessing the impact of	
22 23	612		drinking water and sanitation on diarrhoeal disease in low- and middle-income settings:	
24 25 26 27 28 29 30	613		Systematic review and meta-regression. Trop Med Int Heal 2014;19:928-42.	
	614		doi:10.1111/tmi.12331	
	615	46	Carl Hartung YAWBALCTGB. Open Data Kit: Tools to Build Information Services for	
31 32 32	616		Developing Regions. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.176.8017	
34 35	617	47	Feikin DR, Audi a., Olack B, et al. Evaluation of the optimal recall period for disease	
35 36 37 38 39 40 41 42	618		symptoms in home-based morbidity surveillance in rural and urban Kenya. Int J	
	619		<i>Epidemiol</i> 2010; 39 :450–8. doi:10.1093/ije/dyp374	
	620	48	Arnold BF, Galiani S, Ram PK, et al. Optimal Recall Period for Caregiver-reported Illne	SS
43 44	621		in Risk Factor and Intervention Studies: A Multicountry Study. Am J Epidemiol	
45 46 47	622		2013; 177 :361–70. doi:10.1093/aje/kws281	
48 49	623	49	World Health Organization. Integrated Management of Childhood Illness: Chart Booklet	-
50 51	624	50	Cogill B. Anthropometric indicators measurement guide. Revised edition. Washington,	
52 53 54	625		DC, Acad Educ Dev [AED], Food Nutr Tech Assist Proj	
55 56	626		2003;:92.http://www.developmentgateway.org/download/202582/anthro_2003.pdf	
57 58				
59 60				28

1

2				
3 4	627	51	de Onis M, Onyango AW, Van den Broeck J, et al. Measurement and standardization	
5 6	628		protocols for anthropometry used in the construction of a new international growth	
7 8 9	629		reference. Food Nutr Bull 2004;25:S27-36.	
10 11	630	52	Truant a. L, Elliott SH, Kelly MT, et al. Comparison of formalin-ethyl ether	
12 13	631		sedimentation, formalin-ethyl acetate sedimentation, and zinc sulfate flotation technique	es
14 15 16	632		for detection of intestinal parasites. J Clin Microbiol 1981;13:882-4.	
17 18	633	53	Kosek M, Haque R, Lima A, et al. Fecal markers of intestinal inflammation and	
19 20	634		permeability associated with the subsequent acquisition of linear growth deficits in	
21 22 23	635		infants. Am J Trop Med Hyg 2013;88:390–6. doi:10.4269/ajtmh.2012.12-0549	
24 25	636	54	Crump J a, Mendoza CE, Priest JW, et al. Comparing serologic response against enteric	;
26 27 28	637		pathogens with reported diarrhea to assess the impact of improved household drinking	
20 29 30	638		water quality. Am J Trop Med Hyg 2007;77:136–41.	
31 32	639	55	Steinberg EB, Mendoza CE, Glass R, et al. Prevalence of Infection with Waterbourne	
33 34 35	640		Pathogens: a Seroepidemiologic Study in Children 6-36 Months Old in San Juan	
36 37	641		Sacatepquez, Guatemala. 2004;70:83–8.	
38 39	642	56	Brussow H, Sidoti J, Link H, et al. Age-specific prevalence of antibody to enterotoxiger	nic
40 41 42	643		Escherichia coli in Ecuadorian and German children. J Infect Dis 1990;162:974–7.	
43 44	644	57	Khanna B, Cutler A, Israel N, et al. Use caution with serologic testing for Helicobacter	
45 46	645		pylori infection in children. J Infect Dis 1998;178:460–5.	
47 48 49	646	58	Lindkvist P, Asrat D, Nilsson I. Age at acquisition of Helicobacter pylori infection:	
50 51	647		comparison of a high and a low prevalence country. Scand J Infect Dis 1996;28:181-4.	
52 53	648	59	Ungar B, Gilman R, Lanata C, et al. Seroepidemiology of Cryptosporidium infection in	Ŀ
54 55 56	649		two Latin American populations. J Infect Dis 1988;157:551-6.	
57 58				
59 60				29

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

BMJ Open

1

2				
3 4	650	60	Vitral C, Yoshida C, Lemos E, et al. Age-specific prevalence of antibodies to hepatitis A	Ł
5 6 7 8 9	651		in children and adolescents from Rio de Janeiro, Brazil, 1978 and 1995: relationship of	
	652		prevalence to environmental factors. Mem Inst Oswaldo Cruz 1998;93:1-5.	
10 11	653	61	Lammie PJ, Moss DM, Brook Goodhew E, et al. Development of a new platform for	
12 13	654		neglected tropical disease surveillance. Int J Parasitol 2012;42:797-800.	
14 15 16	655		doi:10.1016/j.ijpara.2012.07.002	
17 18	656	62	Centers for Disease Control and Prevention. Laboratory Methods for the Diagnosis of	
19 20	657		Vibio cholerae. Atlanta, Georgia: 1999.	
21 22 23 24 25 26 27 28 29 30	658	63	Centers for Disease Control and Prevention. Isolation and Identification of Shigella.	
	659		Atlanta, Georgia:	
	660	64	United States Environmental Protection Agency. Coliforms—Total and E. coli, Membra	ne
	661		Filtration Method 10029. 1999.	
31 32	662	65	Gronewold AD, Borsuk ME, Wolpert RL, et al. An Assessment of Fecal Indicator	
33 34 35	663		Bacteria-Based Water Quality Standards. Environ Sci Technol 2008;42:4676-82.	
36 37	664		doi:10.1021/es703144k	
38 39	665	66	Gruber JS, Ercumen A, Colford JM. Coliform bacteria as indicators of diarrheal risk in	
40 41 42	666		household drinking water: systematic review and meta-analysis. PLoS One	
43 44	667		2014; 9 :e107429. doi:10.1371/journal.pone.0107429	
45 46	668	67	Levy K, Nelson KL, Hubbard A, et al. Rethinking indicators of microbial drinking water	r
47 48 49 50 51 52 53	669		quality for health studies in tropical developing countries: case study in northern coastal	
	670		Ecuador. Am J Trop Med Hyg 2012;86:499-507. doi:10.4269/ajtmh.2012.11-0263	
	671	68	Livio S, Strockbine N a, Panchalingam S, et al. Shigella Isolates From the Global Enterio	c
54 55 56	672		Multicenter Study Inform Vaccine Development. Clin Infect Dis 2014;59.	
57 58				
59 60				30

Page 31 of 38

	doi:10.1093/cid/ciu468
69	Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease
	in infants and young children in developing countries (the Global Enteric Multicenter
	Study, GEMS): a prospective, case-control study. Lancet 2013;382:209-22.
	doi:10.1016/S0140-6736(13)60844-2
70	Kanungo S, Sah BK, Lopez a. L, et al. Cholera in India: An analysis of reports, 1997-
	2006. Bull World Health Organ 2010;88:185–91. doi:10.2471/BLT.09.073460
71	Cellini SR, Kee JE. Cost-Effectiveness and Cost-Benefit Analysis. In: Wholey JS, Hatry
	HP, Newcomer KE, eds. Handbook of Practical Program Evaluation. San Francisco: :
	John Wiley & Sons, Inc. 2010.
72	Bandura A. Self-Efficacy: The Exercise of Control. Worth Publishers 1997.
73	Malapit HJ, Sproule K, Kovarik C, et al. Measuring progress toward empowerment
	Women's Empowerment in Agriculture Index: Baseline Report. IfpriOrg 2014;:1-60.
74	Black RE, Victora CG, Walker SP, et al. Maternal and child undernutrition and
	overweight in low-income and middle-income countries. Lancet 2013;382:427-51.
	doi:10.1016/S0140-6736(13)60937-X
75	Smith LC, Ramakrishnan U, Ndiaye A, et al. The Importance of Women's Status for
	Child Nutrition in Developing Countries. 2003.
	http://www.ifpri.org/publication/importance-womens-status-child-nutrition-developing-
	countries
76	Sumpter C, Torondel B. A Systematic Review of the Health and Social Effects of
	Menstrual Hygiene Management. PLoS One 2013;8:e62004.
	doi:10.1371/journal.pone.0062004
	31
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 32 of 38

BMJ Open

1 2			
3 4	696	77	Dasgupta A, Sarkar M. Menstrual Hygiene: How Hygienic is the Adolescent Girl? Indian
5 6	697		J Community Med 2008;33:77-80. doi:10.4103/0970-0218.40872
7 8 9	698	78	Das P, Baker KK, Dutta A, et al. Menstrual Hygiene Practices, WASH Access and the
10 11	699		Risk of Urogenital Infection in Women from Odisha, India. PLoS One 2015;10:e0130777.
12 13	700		doi:10.1371/journal.pone.0130777
14 15 16	701	79	van Eijk AM, Sivakami M, Thakkar MB, et al. Menstrual hygiene management among
17 18	702		adolescent girls in India: a systematic review and meta-analysis. BMJ Open
19 20	703		2016;6:e010290. doi:10.1136/bmjopen-2015-010290
21 22 23	704	80	Caruso B. Sanitation Insecurity: Definition, Measurement, and Associations with
24 25	705		Women's Mental Health in Rural Orissa, India.
26 27	706		2015.http://pid.emory.edu/ark:/25593/rfhnt
28 29 30	707	81	Peal A, Evans B, Blackett I, et al. Fecal sludge management (FSM): analytical tools for
31 32	708		assessing FSM in cities. J Water, Sanit Hyg Dev 2014;4:371.
33 34 35	709		doi:10.2166/washdev.2014.139
36 37	710	82	Peal A, Evans B, Blackett I, et al. Fecal Sludge Management: a comparative analysis of
38 39	711		12 cities. J Water, Sanit Hyg Dev 2014;4:563–75.
40 41 42	712	83	World Health Organization. WHO definition of health.
43 44	713		http://www.who.int/about/definition/en/print.html (accessed 26 Apr2016).
45 46	714		
47 48			
49 50			
51			
52			
53 54			
55			
56			

- 1. Gram Vikas establishes village contact through motivation visits and gauges interest of village leadership and households
- Village general body is established for all households 2.
- 3. A formal agreement between the village and Gram Vikas is established once there is 100% household participation in the general body
- 4. Elected and gender-balanced village executive committee and water and sanitation sub-committees are established to guide maintenance and use of facilities and related activities
- 5. Village corpus fund for maintenance is collected and deposited in a village bank account

2. Operational Phase

- 1. Households lay foundation for toilet/bathing room and identify locally available materials for
- construction; Gram Vikas assists with layout 2. Households hire skilled laborers to construct the toilet/bathing room using locally available materials, with external materials provided by Gram Vikas. Gram Vikas provides 1/2-1 day trainings on leadership development and self-help group activities, school and village-level sanitation and hygiene, pump operation, masonry, and reproductive health and menstrual hygiene management as requested by the village
- 3. Gram Vikas designs and provides skilled labor for village water distribution system and water tower with community meeting room construction
- 4. Households provide unskilled labor for village water distribution system construction and hire technicians for household-level connections to village system

3. Completed Phase

- 1. Village water distribution system is turned on once 100% of households have completed toilet and bathing room construction
- 2. Maintenance of and use guidelines for all systems is turned over to village executive, water, and sanitation committees

Figure 1. Description of the three phases of the Gram Vikas MANTRA water and sanitation intervention. Figure 1

254x190mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

Figure 1. Study sites in Ganjam and Gajapati districts, Odisha, India with intervention villages in black and control villages in white. Inset shows location of districts in India. Figure 1

215x279mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 3. Restriction, matching and exclusion process for selection of intervention and control villages (1), and timeline for study data collection (2).

Figure 3

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

254x190mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No.	Recommendation	Page No.	Relevant text fron manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	*
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5	
Objectives	3	State specific objectives, including any prespecified hypotheses	7	
Methods				
Study design	4	Present key elements of study design early in the paper	8	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	8	
Participants	6	(<i>a</i>) <i>Cohort study</i> —Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	8-11	
		Case-control study—Give the eligibility criteria, and the sources and methods of case		
		ascertainment and control selection. Give the rationale for the choice of cases and controls		
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of		
		participants		
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and	8-11	
		unexposed		
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of controls per case		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.	12-19	
		Give diagnostic criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment	12-19	
measurement		(measurement). Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias	NA	
Study size	10	Explain how the study size was arrived at	12	
Continued on next page				
		1		
		For peer review only - http://bmiopen.bmi.com/site/about/guidelines	s.xhtml	

 BMJ Open

Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which	NA	
variables		groupings were chosen and why		
Statistical	12	(a) Describe all statistical methods, including those used to control for confounding	NA	
methods			(overview	
			19-20)	
		(b) Describe any methods used to examine subgroups and interactions	NA	
		(c) Explain how missing data were addressed	NA	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	NA	
		Case-control study—If applicable, explain how matching of cases and controls was addressed		
		Cross-sectional study—If applicable, describe analytical methods taking account of sampling		
		strategy		
		(e) Describe any sensitivity analyses	NA	
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined	NA	
		for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	NA	
		(c) Consider use of a flow diagram	NA	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	NA	
		exposures and potential confounders		
		(b) Indicate number of participants with missing data for each variable of interest	NA	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	NA	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA	
		Case-control study—Report numbers in each exposure category, or summary measures of exposure		
		Cross-sectional study—Report numbers of outcome events or summary measures		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	NA	
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were		
		included		
		(b) Report category boundaries when continuous variables were categorized	NA	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	NA	
		period		
Continued on next page	e	•		
10				
		2		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	NA
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	20-21
		both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of	NA
		analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	NA
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	22
		original study on which the present article is based	
*Give informatio	n sep	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in	n cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

BMJ Open

Design and rationale of a matched cohort study to assess the effectiveness of a combined household-level piped water and sanitation intervention in rural Odisha, India

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012719.R1
Article Type:	Protocol
Date Submitted by the Author:	24-Aug-2016
Complete List of Authors:	Reese, Heather; Emory University School of Public Health, Department of Environmental Health Routray, Parimita; London School of Hygiene and Tropical Medicine Torondel, Belen; London School of Hygiene and Tropical Medicine Sclar, Gloria; Emory University School of Public Health, Department of Environmental Health Delea, Maryann; Emory University School of Public Health; London School of Hygiene and Tropical Medicine Sinharoy, Sheela; Emory University Laney Graduate School, Nutrition and Health Sciences Program Zambrano, Laura; Emory University School of Public Health, Department of Environmental Health Caruso, Bethany; Emory University School of Public Health, Department of Environmental Health Mishra, Samir; KIIT University, School of Biotechnology Chang, Howard; Emory University, Department of Biostatistics and Bioinformatics Clasen, Thomas; London School of Hygiene & Tropical Medicine; Emory University School of Public Health, Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	sanitation, piped water supply, diarrheal diseases

SCHOLARONE[™] Manuscripts Page 1 of 42

2
3
1
4
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
22
~~
23
24
25
26
20
27
28
29
30
24
31
32
33
34
25
30
36
37
38
30
40
40
41
42
43
11
44
45
46
47
10
40
49
50
51
52
52
53
54
55
56
50
5/
58
59
60
50

1	Design and rationale of a matched cohort study to assess the effectiveness of a combined
2	household-level piped water and sanitation intervention in rural Odisha, India
3	
4	Heather Reese, ¹ Parimita Routray, ² Belen Torondel, ² Gloria Sclar, ¹ Maryann G. Delea, ^{1,2} Sheela
5	S. Sinharoy, ³ Laura Zambrano, ¹ Bethany Caruso, ¹ Samir R. Mishra, ⁴ Howard H. Chang, ⁵
6	Thomas Clasen ^{1,2}
7	
8	¹ Department of Environmental Health, Rollins School of Public Health, Emory University,
9	Atlanta, Georgia, United States of America
10	² London School of Hygiene and Tropical Medicine, London, United Kingdom
11	³ Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta,
12	Georgia, United States of America
13	⁴ School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
14	⁵ Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory
15	University, Atlanta, Georgia, United States of America
16	
17	Contact information for corresponding author, Heather Reese:
18	Department of Environmental Health, Rollins School of Public Health, Emory University
19	1518 Clifton Rd, Atlanta, GA 30322
20	Email: heather.e.reese@emory.edu, Phone: (619) 379-8963
21	Keywords: rural, piped water, sanitation
22	Word count: 5442

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

23 ABSTRACT

Introduction: Government efforts to address massive shortfalls in rural water and sanitation in
India have centered on construction of community water sources and toilets for selected
households. However, deficiencies with water quality and quantity at the household level, and
community coverage and actual use of toilets has led Gram Vikas, a local NGO in Odisha, India,
to develop an approach that provides household-level piped water connections contingent on full
community-level toilet coverage.

Methods: This matched cohort study was designed to assess the effectiveness of a combined

31 piped water and sanitation intervention. Households with children under five years in 45

randomly selected intervention villages and 45 matched control villages will be followed over 17

33 months. The primary outcome is prevalence of diarrheal diseases; secondary health outcomes

34 include soil-transmitted helminth infection, nutritional status, seroconversion to enteric

35 pathogens, urogenital infections, and environmental enteric dysfunction. In addition, intervention

36 effects on sanitation and water coverage, access and use, environmental fecal contamination,

37 women's empowerment, as well as collective efficacy, and intervention cost and cost-

38 effectiveness will be assessed.

Ethics and dissemination: The study protocol has been reviewed and approved by the ethics
boards of the London School of Hygiene and Tropical Medicine, U.K. and KIIT University,

41 Bhubaneswar, India. Findings will be disseminated via peer-reviewed literature and presentation

42 to stakeholders, government officials, implementers and researchers.

43 Trial registration identifier: NCT02441699

60

1		
2 3 4	46	STRENGTHS AND LIMITATIONS OF THIS STUDY
5 6 7	47	• The study assesses a combined household-level piped water and sanitation intervention
8 9	48	that requires complete community-level compliance.
10 11	49	• The intervention was not randomly allocated; but, controls are selected through a
12 13 14	50	restriction process to limit possible partial exposure to the intervention through spillover,
15 16	51	and matched to intervention villages using pre-intervention data.
17 18 10	52	• The study uses a holistic definition of health to assess intervention impacts on physical,
20 21	53	mental and social well-being, including more novel outcomes such as seroconversion to
22 23	54	enteric pathogens, environmental enteric dysfunction, and sanitation insecurity. It also
24 25 26	55	assesses intervention coverage, cost-effectiveness, and collective efficacy.
27 28	56	• The time lapse between intervention completion and the beginning of the evaluation
29 30	57	process prevents baseline comparison or assessment of immediate intervention impacts.
32 33	58	However, it allows for a biologically plausible length of time for die-off of even the most
34 35	59	persistent pathogens in the environment, and provides time for children to have be born
36 37 38	60	into this environment.
39 40	61	
41 42	62	INTRODUCTION
43 44 45	63	Of the one billion people practicing open defecation worldwide, over half live in India[1]. While
46 47	64	international and national pressure on improving sanitation conditions in India has led to over
48 49 50	65	350 thousand people gaining access to improved toilets since 1990, it has barely kept up with
51 52	66	population growth[1,2]. Recent studies show that even in areas with access to household-level
53 54	67	improved sanitation, use of these toilets is low[3–5]. This may be due in part to a mismatch
55 56 57 58	68	between the culturally acceptable pour-flush toilets and the level of water access. Coverage of

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

improved water sources, usually community-level pumps or taps, is relatively high even in rural
areas in India, but it may not be sufficient for flushing purposes on top of other daily water
needs[1,6].

Although the effectiveness of water, sanitation and hygiene (WASH) interventions vary, meta-analyses have found that individual or combined WASH interventions decrease diarrheal disease prevalence by up to 48%[7–11]. While combined interventions would be expected to have a greater influence on multiple exposure pathways and thus a greater combined impact on health, there is limited evidence of additive benefits[12]. This may be due to poor uptake, inconsistent use, or an incomplete understanding of relevant pathways[8–10]. In India, combining water and sanitation interventions may be more critical than just interrupting multiple transmission pathways for enteric infection; evidence suggests that household-level water access is integral to the use of improved sanitation in this context[13]. While the intent of improved sanitation facilities is to separate human feces from human contact, most of the focus is on constructing household toilets to increase improved sanitation coverage—the primary metric used in monitoring progress toward international targets. However, studies in India have further shown that toilet construction does not translate into toilet use in this context[5,14–16]. Moreover, with the interdependence between members of households and households within communities, safe water and sanitation is a community-level issue. There is growing emphasis on assessing health risk from poor water and sanitation conditions not simply due to individual or even household-level risk factors, but also from conditions in the community environment[17]. There is evidence that even households without toilets, and households which do not filter drinking water, show decreased health risk if they live in communities with high levels of coverage and use[18–20].

BMJ Open

Moreover, the effectiveness of community interventions may be higher in communities with positive perceptions of their collective ability to come together to improve their conditions. Collective efficacy, a latent construct comprised of the structural and cognitive components that facilitate a community's shared belief in its ability to come together and execute actions related to a common goal, may explain some variance in intervention effectiveness across communities receiving WASH interventions[21]. A main risk of poor WASH conditions is enteric infection, caused by a diverse array of bacteria, viruses, protozoa, and parasites, including soil-transmitted helminths. These infections may cause diarrhea, the second leading cause of mortality for children under five years worldwide and in India, a leading cause of mortality regardless of age[22,23]. There is also growing evidence that asymptomatic enteric infections may pose a similar risk, with repeat enteric infections contributing to chronic malnutrition, environmental enteric dysfunction, poor cognitive outcomes, and poor vaccine uptake [24–29]. Poor WASH conditions are also linked to increased risk of respiratory infection, the leading cause of mortality for children under five years worldwide [22,30,31]. Poor water and sanitation access can also affect the social, physical and mental well-being of women, acting through pathways ranging from unsafe menstrual

Description of the intervention

Over the past decades there has been a global commitment to determine water and sanitation interventions with demonstrated effectiveness, not just efficacy[35]. Gram Vikas, a nongovernmental organization (NGO) based in Odisha, India (http://www.gramvikas.org/), has responded by implementing its MANTRA (Movement and Action Network for Transformation

hygiene management practices and increased risk of violence[32–34].

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

of Rural Areas) water and sanitation program in more than 1000 villages since 2002[36]. This
approach includes both household-level piped water connections, and community-level
mobilization for culturally appropriate household toilets. A previous interrupted time series
analysis of the MANTRA intervention reported it to be protective against diarrheal diseases[37].
However, in addition to limitations of design, this study relied on outcome data collected and
reported by Gram Vikas, the intervention implementer, and did not assess intervention coverage
or impacts on environmental fecal contamination.

The MANTRA water and sanitation intervention is rolled out in a three-phase process over an average three to five years (Figure 1). During the first, or Motivational, phase, representatives of Gram Vikas visit the identified village several times to assess village interest and progress towards a set of Gram Vikas requirements, including: 1) the commitment of every household to participate, 2) creation of a village corpus fund from contributions from every household, and 3) development of village guidelines for maintenance and use of facilities.

Once this set of requirements is achieved, the village progresses into the second, or Operational, phase of the intervention. Each household constructs a pour-flush toilet with two soak-pits and a separate bathing room. The households hire a local, skilled mason and provide their own unskilled labor and locally available materials to complete the superstructure. Gram Vikas provides external materials such as PVC pipes and porcelain pans. At the same time, a water tank, community meeting space, and piped water distribution system connected to every household, with taps in the toilet and bathing rooms and a separate tap in the kitchen, is constructed through a similar collaborative process.

All households must construct a toilet and bathing room for the village to progress intothe final, or Completed, phase of the intervention, in which the water system is turned on.

Page 7 of 42

1

60

2		
3 4	138	Notably, this three-phase process only allows each household access to piped water once every
5 6 7	139	household in the village has a toilet and bathing room. This model contrasts with most previous
7 8 9	140	water and sanitation interventions, including those implemented under India's Total Sanitation
10 11	141	Campaign and other government programs, which do not require community-level sanitation
12 13	142	compliance and do not provide a piped water supply at the household level[38].
14 15 16	143	
17 18	144	Study aims
19 20 21	145	The primary objective of this study is to evaluate the effectiveness of the combined household-
21 22 23	146	level water supply and sanitation intervention, as implemented by Gram Vikas in Odisha, India.
24 25	147	Toward that objective, this study aims to:
26 27 28	148	1) Assess the effectiveness of the intervention in improving water and sanitation
20 29 30	149	infrastructure coverage, access, and use, and to assess fecal sludge management practices
31 32	150	in intervention communities.
33 34 35	151	2) Assess the effectiveness of the intervention in reducing environmental fecal
36 37	152	contamination.
38 39	153	3) Assess the effectiveness of the intervention in improving health. This includes reported
40 41 42	154	diarrheal disease in children under 5 years (primary outcome), acute respiratory infection,
43 44	155	infection with soil-transmitted helminthes, nutritional status, environmental enteric
45 46 47	156	dysfunction, seroconversion for selected enteric pathogens, and urogenital diseases
47 48 49	157	associated with menstrual hygiene management practices. Mental and social well-being
50 51	158	will be explored through assessment of sanitation insecurity and women's empowerment.
52 53 54	159	4) Assess the cost and cost-effectiveness of the intervention.
55		
50 57		
58 59		

5) Develop and assess a theoretically-grounded, empirically informed collective efficacy scale; and determine the effect of collective efficacy on intervention effectiveness.

163 METHODS

164 Setting

The study is located in Ganjam and Gajapati districts located in eastern Odisha, India (Figure 2).
These two contiguous districts were a single district until 1992. Over 44% of the population in
these districts is recognized by the Government of India as being below the poverty line
(BPL)[39]. As of 2008, a majority of households in both districts had access to an improved,
likely community-level, drinking water source, with over 23% of households in Ganjam having
access to any sanitation facility, compared to only 8% of households in Gajapati[39]. The area is
primarily rural and agrarian, and the climate is characterized by a monsoon season from June to

172 September, with an average rainfall of \sim 1400 mms/year.

174 Study design

This study uses a matched cohort design to assess the effectiveness of a completed intervention with data collected across four study rounds from June 2015 to October 2016 (Figure 3). Data are collected continuously across all study rounds for diarrhea, acute respiratory infection, nutritional status, and stored and source water outcomes to assess seasonality. Data are collected in rounds 2 and 4 for environmental enteric dysfunction, seroconversion, and hand-rinses, and cross-sectionally in one or more rounds for the remaining outcomes. As described below, control villages were matched to randomly selected intervention villages through a multi-step restriction, genetic matching, and exclusion process using the following eligibility criteria.

BMJ Open

1		
2 3 4	183	
5 6 7	184	Eligibility criteria for villages
7 8 9	185	1. Restriction. Intervention villages were randomly selected from a list of Gram Vikas villages
10 11	186	in Ganjam and Gajapati districts provided by the NGO, after restriction to villages with a
12 13 14	187	Motivation phase start date between 2002-2006 and a Construction phase start date no earlier
15 16	188	than 2003. Since the intervention process takes on average three to five years, the criteria for the
17 18	189	Motivation start date helped to identify those villages with ongoing interventions at the same
19 20 21	190	time. In addition, this allowed the use of the Government of India Census 2001 and the Below
22 23	191	Poverty Line (BPL) Survey 2002 data to characterize baseline characteristics used in the
24 25	192	matching process in both intervention and control villages.
26 27 28	193	Eligible control villages include all villages without a Gram Vikas intervention within the
29 30	194	study districts which: 1) are not within the same Gram Panchayat (a political subdivision with
31 32	195	some administrative responsibility for water and sanitation comprised of several villages) as a
33 34 35	196	Gram Vikas village, or bordering a Gram Vikas village, and 2) had not received a Motivation
36 37	197	visit from the Gram Vikas NGO. These criteria serve to limit the possibility of previous partial
38 39	198	exposure to the intervention through spillover from adjacent villages or direct contact with the
40 41 42	199	NGO. These criteria also increase the strength of the comparison provided by the control
43 44	200	villages, i.e. it increases the likelihood that if they had received a motivation visit from Gram
45 46 47	201	Vikas, the control villages would have been equally as likely as the intervention villages to
48 49	202	demand the intervention.
50 51	203	In addition, to be eligible for inclusion both intervention and control villages must: 1)
52 53 54	204	appear in the Government of India Census 2001 and the BPL Survey 2002, 2) have a population

Page 10 of 42

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open

of at least 20 households, and 3) be within approximately three hours travel from the study office in Brahmapur, Ganjam District. This last criterion is due to logistical constraints. *2. Matching.* After restriction, genetic matching was used to match potential control villages to the randomly selected intervention villages without replacement[5,40,41]. Villages were exact matched on district to limit any political or large scale geographic variation between district populations, and were also matched on pre-intervention demographic, socioeconomic, sanitation, and water access characteristics listed in Table 1[5]. These village-level matching variables were selected due to their theorized association with the primary outcome, diarrheal diseases, as well as data availability. *3. Exclusion.* The field team visited matched potential control villages and intervention villages

to assess suitability for the study through a rapid assessment interview with village leadership and to ensure accessibility. Villages were excluded if they are not within three hours travel of the field office in Brahmapur, had sustained major infrastructure damage due to a natural disaster, or if there was a current or planned sanitation or water intervention by an organization external to the village in the next 12 months as determined through the rapid assessment interview with village leadership. In addition, villages were excluded if there were fewer than three households with children under five years old. As villages were removed from the pool of prospective control villages, the matching process was repeated for all intervention villages and remaining eligible control villages, and balance measures were assessed. The matching and exclusion processes were repeated as necessary.

After the iterative matching and exclusion process was complete, covariate balance was assessed for all matching variables for the final set of intervention and control villages through examination of balance measures[42–44]. Matching resulted in an improvement in balance as

228	assessed through comparison of several measures including q-q plots, Kolmogorov-Smirnov						
229	bootstrap p-values, and standardized differences. After matching, there were no significant						
230	differences between intervention and control groups (Table 1).						
231							
232	Eligibility criteria for households						
233	Households within selec	ted intervention	and control villag	es will be eligib	le if they ha	ve at least	
234	one child under 5 years of	old at time of en	ollment, verified	with birth or im	munization	card, and	
235	expect to reside in the vi	llage for the dura	ation of the study.	. If there are mo	re than 40 el	igible	
236	households within a villa	age, 40 will be ra	indomly selected	to be enrolled. I	nformed con	sent will	
237	be obtained from the ma	le and/or female	head of the select	ted households.	All children	under five	
238	years within each enrolle	ed household are	eligible and will	not age-out over	r the course	of the	
239							
240	Table 1. Pre-intervention	n characteristics	used in matching	, and balance dia	agnostics bet	fore and	
241	after matching and exclu	ision process.					
	Variable	Intervention	Control	Std Diff			
		(n=45)	(all eligible) (n=1580)	(all eligible)	(study) (n=45)	Std Diff (study)	
	Number of households	(n=45) 157.9	(all eligible) (n=1580) 215.5	(all eligible) 0.37	Control (study) (n=45) 148.1	Std Diff (study) 0.06	
	Number of households Population under 6 years (%)	(n=45) 157.9 16.2	(all eligible) (n=1580) 215.5 16.9	(all eligible) 0.37 0.19	Control (study) (n=45) 148.1 16.3	Std Diff (study) 0.06 0.02	
	Number of households Population under 6 years (%) Household income score (x)	(n=45) 157.9 16.2 2.9	(all eligible) (n=1580) 215.5 16.9 3.1**	(all eligible) 0.37 0.19 0.26	Control (study) (n=45) 148.1 16.3 2.9	Std Diff (study) 0.06 0.02 0.01	
	Number of households Population under 6 years (%) Household income score $(x \overline{)}$ Household goods owned $(x \overline{)}$	(n=45) 157.9 16.2 2.9 1.1	(all eligible) (n=1580) 215.5 16.9 3.1** 1.2*	(all eligible) 0.37 0.19 0.26 0.27	Control (study) (n=45) 148.1 16.3 2.9 1.1	Std Diff (study) 0.06 0.02 0.01 0.02	
	Number of households Population under 6 years (%) Household income score (x ⁻) Household goods owned (x ⁻) Pucca house (%)	(n=45) 157.9 16.2 2.9 1.1 59.2	(all eligible) (n=1580) 215.5 16.9 3.1** 1.2* 61.6	(all eligible) 0.37 0.19 0.26 0.27 0.09	Control (study) (n=45) 148.1 16.3 2.9 1.1 60.5	Std Diff (study) 0.06 0.02 0.01 0.02 0.05	
	Number of householdsPopulation under 6years (%)Household incomescore $(x \overline{)}$ Household goodsowned $(x \overline{)}$ Pucca house (%) ≥ 2 meals a day (%)	(n=45) 157.9 16.2 2.9 1.1 59.2 57.7	(all eligible) (n=1580) 215.5 16.9 3.1** 1.2* 61.6 63.7	(all eligible) 0.37 0.19 0.26 0.27 0.09 0.19	Control (study) (n=45) 148.1 16.3 2.9 1.1 60.5 57.8	Std Diff 0.06 0.02 0.01 0.02 0.01 0.05 0.01	

	Scheduled tribe (%)	33.4	19.1*	0.31	29.8	0.08
	Female literacy (%)	30.9	29.8	0.07	30.9	0.00
	Open defecation (%)	95.6	95.2 [*]	0.04	95.8	0.01
	Improved drinking water source [†] (%)	38.6	42.5	0.10	37.2	0.02
	Water source <500m and 50m elevation (%)	81.5	72.2	0.31	81.7	0.01
242 243 244 245 246	All eligible: all villages that are e Std Diff (absolute standardized di ‡ Ganjam villages only; no data a Kolmogorov-Smirnov bootstrap p	ligible for the m fference): a val vailable for Gaj -values: * <0.0	hatching process after ue greater than 0.1 is o japati villages 05 ** <0.01	restriction considered meaning	gful imbalance [42]
247	study. Households with new	born childre	n will be enrolled a	as they become	eligible on an	ongoing
248	basis throughout the study, i	n villages wi	ith fewer than 40 e	nrolled househo	olds.	
249						
250	Sample Size					
251	Sample size was determined	l through a si	mulation estimatin	ig the log odds	of diarrheal d	isease
252	(the primary outcome) throu	igh a multile	vel random effects	model and para	meterized wi	th data
253	from a previous study in a n	eighboring d	istrict in Odisha[1	6]. Sample size	estimates we	re also
254	checked with G*Power[45].	The simulat	ion assumes a long	gitudinal 7-day j	period prevale	ence for
255	diarrhea of 8.8% in children	under five y	ears, a heterogene	ity variance bet	ween villages	of 0.07,
256	a heterogeneity variance bet	ween househ	olds of 0.57, and f	Four study round	ls[16]. An eff	ect size
257	of 0.20 was selected for pub	lic health im	portance and based	d on estimates o	f effect from	
258	systematic reviews of water	and sanitatic	on studies[46]. Ass	uming at least 8	30% power, 0	.05
259	significance level, 10% for	oss to follow	up, and at least or	ne child per hou	sehold, we es	stimate a
260	sample size of 45 villages p	er study arm	and 26 households	s per village. Th	is estimate w	as the
261	most conservative compared	l to sample si	ize estimates for se	econdary outcor	nes, and was	therefore
262	used for the broader study p	opulation.				
						12

BMJ Open

1 2			
3 4	263		
5 6 7	264	Outcome Measurement	
7 8 9	265	Outcomes, and individual-, household-, and community-level risk factors, will be measured	
10 11	266	through surveys, interviews, or through the collection and analysis of environmental, stool or	
12 13 14	267	dried blood spot samples. All survey questions will be translated into the primary local language	,
15 16	268	Odia, and back-translated to confirm wording. Household surveys will be verbally administered	
17 18	269	by trained field workers to the mother or primary caregiver of the youngest child under five in	
20 21	270	each household, unless otherwise specified below. Community surveys will be verbally	
22 23	271	administered to the <i>sarpanch</i> (village head) or other member of village leadership. Survey data	
24 25 26	272	will be collected on mobile phones using Open Data Kit[47]. GPS coordinates for households,	
27 28	273	water sources and other relevant sites will be collected using Garmin eTrex 10 or 20 devices	
29 30	274	(Garmin Ltd., Olathe, KS, USA).	
31 32 33	275		
34 35	276	Coverage, access and use of sanitation, water and hygiene infrastructure	
36 37	277	Coverage, access and use of WASH infrastructure will be assessed in all four rounds. Presence	
39 40	278	of and access to toilets, water sources and hand-washing stations will be assessed through	
41 42	279	standard questions from the Demographic and Health Surveys and confirmed through spot	
43 44 45	280	observations. Spot observations of household toilets and hand-washing stations will be further	
46 47	281	used to assess indicators of functionality, maintenance, recent use. Reported water and sanitation	1
48 49	282	practices, including child feces disposal practices, will be captured through household survey	
50 51 52	283	questions.	
53 54	284		
55 56 57 58 59 60	285	Diarrheal Diseases	3

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

The primary outcome for this study is prevalence of diarrheal diseases, recorded as both daily point prevalence over the previous three days and seven-day period prevalence, for all household members in all four rounds. Although self-reported diarrhea is a subjective outcome with a well-established risk of bias, three-day recall reduces recall bias[48,49]. Diarrheal disease will be measured using the World Health Organization (WHO) definition of three or more loose stools in a 24-hour period, with or without the presence of blood. Field workers will use a simple calendar as a visual aid to help respondents with recall. Each household member will be asked to recall his or her own disease status and the mother or primary caregiver will be asked to report disease for children.

296 Respiratory infection

Prevalence of respiratory infections will be recorded as both daily point prevalence over the previous three days and seven-day period prevalence for all household members in all four rounds. Respiratory infection is defined as the presence of cough and/or shortness of breath/difficulty breathing according to WHO's Integrated Management of Childhood Illness (IMCI)[50]. The full IMCI case definition for acute lower respiratory infection also includes measurement of respiratory rate and observation of chest indrawing, stridor and other danger signs; these criteria were excluded from our definition as there is concern about the technical support required to produce consistent and accurate data within this context[50]. Our definition will provide a broad assessment of respiratory illness burden. Each household member will be asked to recall his or her own disease status and the mother or primary caregiver will be asked to report disease for children.

Page 15 of 42

BMJ Open

Nutritional Status Anthropometric data will be collected for children under age five in all four rounds using standard methods as established by WHO[51,52]. Field workers will be trained and standardized in line with WHO protocols to reduce measurement error [52]. Weight will be measured for all children under five years of age using Seca 385 digital scales, with 20g increment for weight below 20kg and a 50g increment for weight between 20 and 50kg. Recumbent length will be measured for children under two years of age using Seca 417 measuring boards with 1mm increment. Standing height will be measured for children two to five years of age using Seca 213 portable stadiometers with 1mm increment. Height and weight will be used to calculate height-for-age z-scores (HAZ) and weight-for-height z-scores (WHZ) based on WHO reference standards. A random subset of 10% of households will receive back check visits each day to repeat height/length measurements to ensure inter-observer reliability. Soil-transmitted helminth infection Stool samples will be collected in rounds 2 and 4 from all household members in a randomly selected subset of 500 households, and used to assess the presence and intensity of soil-transmitted helminth (STH) infection. Formalin ether concentration and microscopy will be used to quantify worms and ova for hookworms, *Ascaris lumbricoides*, and *Tricuris trichura*[53]. Quality assurance will include independent duplicate assessment of all positive and 10% of negative samples. After stool collection, each participant will be offered a single dose of Albendazole, a broad-spectrum antihelmenthic drug recommended by the Ministry of Health and Family Welfare, Government of India. Stools collected in round 2 will allow for comparison of

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open

STH infection prevalence between intervention and control villages, while the stool samples collected approximately 8 months later in round 4 will provide a measure of re-infection rate. Environmental enteric dysfunction Stools from a randomly selected subset of 200 children under two years old, collected in rounds 2 and 4, will be used to assess environmental enteric dysfunction (EED) through quantification of biomarkers of intestinal inflammation and permeability. Fecal myeloperoxidase (MPO), alpha-1-antitrypsin (AAT), and neopterin (NEO), markers for neutrophil activity, intestinal permeability and TH1 immune activation, respectively, were selected for this study based on evidence of association with EED, subsequent linear growth deficits, and household environmental fecal contamination[24,25,54]. Seroconversion for enteric pathogens Serological assays that assess antibody production against various enteric pathogens can provide an objective measure of exposure to enteric infections [55]. Enrolling children aged 6 to 18 months will reduce the potential for interference from maternally acquired antibodies and permit analysis of seroconversion data in a critical window for young children who experience higher diarrheal disease morbidity and mortality before two years of age[56–61]. Children who are 6 to 12 months during round 2 will have capillary blood drawn by fingerstick or heelstick, as appropriate, and will be visited again during round 4 for a second capillary blood sample. All blood samples will be preserved on TropBio (Sydney, Australia) filter discs and stored within 7 days of collection at -20°C. Seroconversion against markers for norovirus, Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, enterotoxigenic E. coli heat-labile enterotoxin

(ETEC-LT), *Salmonella* spp., *Campylobacter jejuni*, *Vibrio cholera*, and *Toxoplasma* spp. will
be assessed using multiplex immunoassay technology on the Luminex xMAP platform[62].

357 Environmental fecal contamination

Field workers will collect samples of household stored drinking water and source water from a random subset of 500 households in all four rounds, and child hand rinses in rounds 2 and 4. All water and hand rinse samples will be stored on ice during transport and analyzed within 6 hours of collection using membrane filtration. Three assays will be used: 1) plating on m-Coli Blue 24 (Millipore, Billerica, MA) for *E.coli* according to EPA Method 10029, 2) alkaline peptone water enrichment prior to plating on thiosulfate citrate bile salts sucrose agar and slide agglutination serotyping for V. cholerae, and 3) plating on xylose lysine desoxycholate agar, and slide agglutination serotyping for *Shigella* spp.[63–65]. Source and stored water samples will be assayed for *E. coli*, *Vibrio cholerae* and *Shigella* spp., and hand rinse samples will be assayed for E. coli and Shigella spp. E. coli was selected as a standard non-human specific indicator of fecal contamination, though the limitations of this indicator are well-established[66–68]. In order to better characterize human fecal contamination of the household environment, Vibrio cholerae and *Shigella* spp. were selected based on prevalence in southern Asia, evidence of public health importance, and field laboratory limitations[69-71].

373 Cost and cost-effectiveness

Costs and potential cost savings (i.e., averted costs) associated with the intervention will be
assessed through an economic costing approach that recognizes and quantifies costs and benefits
from a societal perspective[72]. Data on program and point-of-delivery inputs will be collected at

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

household, community, and implementer levels in round 3. Field workers will administer community surveys to a village leader, and household surveys to the household decision-maker for toilet installation, in 20 randomly selected households in half of the intervention and control villages. Given cost-effectiveness analyses require the effect of the intervention to be measured against a counterfactual, and the intervention of interest is a community-based intervention, cost and effectiveness measures will be summarized at the village level [73]. Surveys will collect data on household- and community-level inputs related to materials and labor required to construct household toilets and wash rooms, the community water tank and distribution system, and household water connections; longer-term water supply and toilet maintenance costs; and financing required for this infrastructure as well as perceived benefits, including averted social opportunity costs. Implementer inputs from Gram Vikas will be collected through an enumeration exercise, interviews, and examination of the implementer's financial records. Collective efficacy Collective efficacy (CE) is a latent construct comprised of the structural and cognitive components that facilitate a community's shared belief in its ability to come together and execute actions related to a common goal[21]. A review of the literature and established conceptual frameworks will be performed to define the CE construct. A sequential exploratory mixed qualitative and quantitative design will be used to develop and refine a scale to measure CE and test hypotheses. Field workers will administer the refined, multi-item, Likert-type CE scale to

one randomly selected household member aged 18 years or older in each household in round 3.

399 Women's empowerment

400	Four dimensions of women's empowerment will be measured in rounds 3 and 4: group
401	participation, leadership, decision-making and freedom of movement. Group participation and
402	leadership will be measured using modules from the Women's Empowerment in Agriculture
403	Index (WEAI), which has been tested in South Asia[74]. Decision-making will be measured
404	using questions from the women's status module of the Demographic and Health Surveys.
405	Freedom of movement will be measured using questions from the project-level Women's
406	Empowerment in Agriculture Index (pro-WEAI). These measures will be collected for the
407	primary female caregiver of the youngest child under 5, and were selected based on the
408	importance of women's empowerment for child nutrition[75,76]. Women's empowerment is
409	conceptualized as both an outcome and a potential mediator along the pathway between the
410	Gram Vikas intervention and child health outcomes.
411	
412	Menstrual hygiene management
413	Menstrual hygiene management practices vary worldwide and depend on personal preference

ual hygiene management practices vary worldwide and depend on personal preference, socioeconomic status, local traditions and beliefs, and access to water and sanitation resources[77]. Unhygienic washing practices are common in rural India and among women and girls in lower socioeconomic groups, and may increase risk of urogenital infection[78–80]. However, the link between access to water and sanitation, menstrual hygiene management and urogenital infections has been poorly studied. Household surveys will be administered in round 4 to a randomly selected woman aged 18 or older, in a subset of 800 households, and will capture self-reported urogenital infection, defined as at least one of the following symptoms: 1) abnormal vaginal discharge (unusual texture and color/more abundant than normal), 2) burning or itching in the genitalia, 3) burning or itching when urinating, or 4) genital sores[79].

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

423	
424	Sanitation Insecurity
425	This study will assess the associations between sanitation access and sanitation insecurity with
426	mental health among women. In previous research in Odisha, a contextually specific definition
427	and measure for sanitation insecurity was developed, with associations between facets of
428	sanitation insecurity and mental health independent of sanitation facility access[81]. This
429	previously developed measure will be used to determine if levels of sanitation insecurity differ
430	between intervention and control villages and how it may be associated with mental health
431	outcomes, specifically well-being, anxiety, depression, and distress. Household surveys will be
432	administered in round 4 to a randomly selected woman aged 18 or older, in a random subset of
433	800 households.
434	
435	Fecal sludge management.
436	In sanitation systems where sewerage is not feasible, such as the household toilets constructed as
437	part of the MANTRA intervention, safe management of fecal waste is necessary. Although there
438	is growing emphasis on safe fecal sludge management (FSM), research has mainly focused on
439	urban settings[82,83]. Preliminary research in Odisha suggests that fecal sludge management in
440	this rural setting is a substantial challenge, and may impact household use of toilets. In round 3,
441	household surveys and spot checks of toilets in intervention villages will be used to assess toilet
442	use and fecal sludge management practices.
443	

444 STATISTICAL ANALYSES

Page 21 of 42

BMJ Open

The effect of the intervention on infrastructure coverage, access, and use (aim 1), and the effect of the intervention on improving health (aim 3), will be analyzed using logistic, linear, log binomial, or negative binomial multilevel regression depending on the outcome, to compare intervention versus control villages. Prevalence of fecal sludge management practices in intervention communities will be assessed using multilevel regression (aim 1). For all models, the hierarchical structure of the data will be accounted for using random effects. Estimation of relative risks through Poisson regression or binary regression methods for binary outcomes will be considered to ensure robustness of results. Mediation of the potential association between intervention and nutritional status outcomes by women's empowerment will be assessed using multilevel structural equation modeling, and statistical approaches to reduce bias will be explored as needed[84].

The impact of intervention on reducing environmental fecal contamination (aim 2), will be assessed through two methods. First, logistic and negative binomial multilevel regression to estimate intervention effects on the relative scale will be used to compare intervention versus control villages. Estimation of relative risks through Poisson regression or binary regression methods for binary outcomes will be considered to ensure robustness of results. Second, a stochastic microbial risk framework will be used to assess differential fecal environmental contamination between intervention and control villages.

The cost and cost-effectiveness of the intervention (aim 4) will be assessed in two steps. Incremental intervention benefits will be ascertained by combining health benefit data, from analysis of health outcome data and established averted cost data, with other averted social opportunity costs. An incremental cost-effectiveness ratio, expressed in cost per disease-specific

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

467 DALY, will be calculated by dividing the incremental intervention costs by the incremental468 intervention benefits.

The collective efficacy scale will be analyzed using a psychometric approach in which factor analytics are employed to identify an appropriate factor solution and test the reliability and validity of the CE scores. Once a CE factor solution and an empirically derived multilevel data structure have been identified, the association between CE and intervention effectiveness will be analyzed using multilevel generalized linear mixed models to estimate relative risks (aim 5) [85,86].

For all outcomes, variables used in the matching process may be considered as covariates, as needed, in addition to individual-, household-, and community-level risk factors. Covariates that are statistically associated with outcomes of interest in bivariate analyses will be considered for inclusion in final multivariate models, following standard stepwise modelbuilding approaches. Secondary analyses may also evaluate models for effect modification as relevant, including exposure-mediator interaction for mediation models and cross-level interaction, by assessing changes in parameter values based on potential effect modifiers. Potential effect modifiers may include breastfeeding for seroconversion outcomes, and climate factors and population density for environmental fecal contamination and health outcomes. However, this study was not designed to assess effect modification and therefore is not specifically powered for these analyses. For all outcomes, unadjusted models will be presented along with models adjusting for covariates.

488 DISCUSSION

This matched cohort study is one of the first to evaluate the effect of a rural combined household-level piped water and sanitation intervention, implemented at the community level, on a large scale. The matched design provides a rigorous means for estimating causal effects given that randomization to intervention group was not feasible due to the several year implementation process[5]. By focusing on an intervention where the implementation process is complete, it also limits the risk presented by randomized controlled trials, where the intervention has little uptake, an especially important study challenge given interdependence of exposure and outcomes within communities, and a problem that has characterized previous trials of sanitation interventions in India[15,16].

A strength of this study is the assessment of health impacts using the holistic WHO definition of health, including not just disease status, but also mental, social, and physical well-being[87]. Outcomes along the causal chain include standard, but more subjective measures, such as reported diarrheal diseases and respiratory infection, as well as more objective measures such as fecal environmental contamination, soil transmitted helminth infection, and anthropometry. Although there is risk of response bias for reported outcomes, it is unlikely to be differential by intervention status since the study team is not directly linked to Gram Vikas. Even though field workers may be aware of village intervention status, lab staff analyzing water, hand rinse, stool, and blood samples will be blinded. In addition, this study includes the more novel use of seroconversion for enteric pathogens, biomarkers of environmental enteric dysfunction, and measures of collective efficacy in an evaluation assessment. While there are limitations inherent to observational studies, the matched study design and multivariate modeling analysis plan reduce the potential for confounding. However, there is still the potential for residual unmeasured confounding.

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

1 2			
2 3 4	512		
5 6 7	513	Ethics and Dissemination. This study has been reviewed and approved by the Ethics Committee	e
8 9	514	of the London School of Hygiene and Tropical Medicine, U.K (No. 9071) and Institute Ethics	
10 11	515	Committee of the Kalinga Institute of Medical Sciences of KIIT University, Bhubaneswar, India	1
12 13 14	516	(KIMS/KIIT/IEC/053/2015). Efforts will be made to communicate the central findings and	
15 16	517	implications with study communities, the implementing organization and government officials i	n
17 18 19	518	India. The results of this study will be submitted for publication in peer reviewed journals and	
20 21	519	presented at conferences. The data collected in the study will be publicly available, with persona	ıl
22 23	520	identifiable data redacted, following the publication of the primary results within 24 months of	
24 25 26	521	the final data collection date.	
27 28	522		
29 30	523	Funding. This study is supported by a grant from the Bill & Melinda Gates Foundation to the	
31 32 33	524	London School of Hygiene & Tropical Medicine (OPP1008048) and to Emory University.	
34 35	525	(OOP1125067).	
36 37 38	526		
39 40	527	Competing Interests: None declared.	
41 42	528		
43 44 45	529	Contributions from authors: TC, HR, PR, BT, and HC contributed to study design. HR, LZ	
46 47	530	and BT developed laboratory protocols. HR, BT, GS, MD, SS, LZ, and BC developed data	
48 49 50	531	collection tools. All authors contributed to editing and revising the manuscript.	
50 51 52	532		
53 54	533		
55 56 57 58	534		
59 60		2	24

1 2		
2 3 4	535	Figure 1. Description of the three phases of the Gram Vikas MANTRA water and sanitation
5 6 7	536	intervention.
7 8 9	537	
10 11	538	Figure 2. Study sites in Ganjam and Gajapati districts, Odisha, India with intervention villages
12 13 14	539	in black and control villages in white. Inset shows location of districts in India.
15 16	540	
17 18	541	Figure 3. Restriction, matching and exclusion process for selection of intervention and control
19 20	542	villages (1), and timeline for study rounds and outcome data collection (2).
22 23 24 26 7 89 31 23 34 56 78 90 12 34 56 77 890 12 34 56 78 90 12 34 56 78 90 12 34 56 78 90 12 34 56 78 90 12 34 56 78 90 12 34 56 75 55 55 55 55 55 55 55 55 55 55 55 55		

2 3 4	543	REI	FERENCES
5 6	544	1	UNICEF, WHO. Progress and Sanitation and Drinking Water: 2015 Update and MDG
7 8 9	545		Assessment. 2015.
10 11	546	2	Water and Sanitation Program. A Decade of the Total Sanitation Campaign: Rapid
12 13 14	547		Assessment of Processes and Outcomes. 2010.
15 16	548	3	Coffey D, Gupta A, Hathi P, et al. Culture and the health transition: Understanding
17 18	549		sanitation behavior in rural north India. 2015.
19 20 21	550	4	Clasen T, Pruss-Ustun A, Mathers CD, et al. Estimating the impact of unsafe water,
22 23	551		sanitation and hygiene on the global burden of disease: evolving and alternative methods.
24 25 26	552		Trop Med Int Heal 2014;19:884–93. doi:10.1111/tmi.12330
20 27 28	553	5	Arnold BF, Khush RS, Ramaswamy P, et al. Causal inference methods to study
29 30	554		nonrandomized, preexisting development interventions. Proc Natl Acad Sci US A
31 32 33	555		2010;107:22605-10. doi:10.1073/pnas.1008944107
34 35	556	6	Ercumen A, Arnold BF, Kumpel E, et al. Upgrading a Piped Water Supply from
36 37	557		Intermittent to Continuous Delivery and Association with Waterborne Illness: A Matched
38 39 40	558		Cohort Study in Urban India. <i>PLOS Med</i> 2015; 12 :e1001892.
41 42	559		doi:10.1371/journal.pmed.1001892
43 44 45	560	7	Fewtrell L, Kaufmann RB, Kay D, et al. Water, sanitation, and hygiene interventions to
45 46 47	561		reduce diarrhoea in less developed countries: a systematic review and meta-analysis.
48 49	562		Lancet Infect Dis 2005;5:42-52. doi:10.1016/S1473-3099(04)01253-8
50 51 52	563	8	Engell RE, Lim SS. Does clean water matter? An updated meta-analysis of water supply
53 54	564		and sanitation interventions and diarrhoeal diseases. Lancet 2013;381:S44.
55 56 57 58	565		doi:10.1016/S0140-6736(13)61298-2
59 60			2

1 2				
3 4	566	9	Clasen T, Bostoen K, Schmidt W, et al. Interventions to improve disposal of human	
5 6 7 8 9	567		excreta for preventing diarrhoea. Cochrane database Syst Rev Published Online First:	
	568		2010.http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007180.pub2/pdf/standar	rd
10 11	569		(accessed 4 Jan2015).	
12 13	570	10	Clasen T, Schmidt W-P, Rabie T, et al. Interventions to improve water quality for	
14 15 16	571		preventing diarrhoea: systematic review and meta-analysis. BMJ 2007;334:782.	
17 18	572		doi:10.1136/bmj.39118.489931.BE	
19 20 21	573	11	Cairneross S, Hunt C, Boisson S, et al. Water, sanitation and hygiene for the prevention	of
21 22 23	574		diarrhoea. Int J Epidemiol 2010;39 Suppl 1:i193–205. doi:10.1093/ije/dyq035	
24 25	575	12	Clasen TF, Alexander KT, Sinclair D, et al. Interventions to improve water quality for	
26 27 28	576		preventing diarrhoea. Cochrane database Syst Rev 2015;10:CD004794.	
29 30	577		doi:10.1002/14651858.CD004794.pub3	
31 32	578	13	Routray P, Schmidt W-P, Boisson S, et al. Socio-cultural and behavioural factors	
33 34 35	579		constraining latrine adoption in rural coastal Odisha: an exploratory qualitative study.	
36 37	580		BMC Public Health 2015;15:880. doi:10.1186/s12889-015-2206-3	
38 39 40	581	14	Barnard S, Routray P, Majorin F, et al. Impact of Indian Total Sanitation Campaign on	
40 41 42	582		Latrine Coverage and Use: A Cross-Sectional Study in Orissa Three Years following	
43 44	583		Programme Implementation. PLoS One 2013;8. doi:10.1371/journal.pone.0071438	
45 46 47 48 49	584	15	Patil SR, Arnold BF, Salvatore AL, et al. The effect of India's total sanitation campaign	1
	585		on defecation behaviors and child health in rural Madhya Pradesh: a cluster randomized	l
50 51	586		controlled trial. <i>PLoS Med</i> 2014; 11 :e1001709. doi:10.1371/journal.pmed.1001709	
52 53 54	587	16	Clasen T, Boisson S, Routray P, et al. Effectiveness of a rural sanitation programme on	
55 56	588		diarrhoea, soil-transmitted helminth infection, and child malnutrition in Odisha, India: a	L
57 58				
60				27

1 2				
3 4	589		cluster-randomised trial. Lancet Glob Heal 2014;2:e645-53. doi:10.1016/S2214-	
5 6	590		109X(14)70307-9	
7 8 9	591	17	Eisenberg JNS, Trostle J, Sorensen RJD, et al. Towards a Systems Approach to Enteric	
10 11	592		Pathogen Transmission: From Individual Independence to Community Interdependence	
12 13	593		Annu Rev Public Health 2013;33:239–57. doi:10.1016/j.micinf.2011.07.011.Innate	
14 15 16	594	18	Root GPM. Sanitation, Community Environments, and Childhoold Diarrhea in Rural	
17 18	595		Zimbabwe. J Heal Popul Nutr 2001;19:73–82.	
19 20 21	596	19	Bateman OM, Smith S. A Comparison of the Health Effects of Water Supply and	
21 22 23	597		Sanitation in Urban and Rural Guatemala. 1999.	
24 25	598	20	Huq A, Yunus M, Sohel SS, et al. Simple Sari Cloth Filtration of Water Is Sustainable a	nd
26 27 28	599		Continues to Protect Villagers from Cholera in Matlab, Bangladesh. <i>MBio</i> 2010;1:1–5.	
29 30	600		doi:10.1128/mBio.00034-10.Invited	
31 32	601	21	Bandura A. Self-Efficacy: The Exercise of Control. Worth Publishers 1997.	
33 34 35	602	22	UN Inter-agency Group for Child Mortality Estimation. Levels and trends in child	
36 37	603		mortality: Report 2015. 2015.	
38 39	604	23	World Health Organization. Estimated total deaths by cause, sex and WHO Member Sta	ıte,
40 41 42	605		2008. Geneva, Switzerland: 2011.	
43 44	606	24	Lin A, Arnold BF, Afreen S, et al. Household environmental conditions are associated	
45 46 47	607		with enteropathy and impaired growth in rural Bangladesh. Am J Trop Med Hyg	
47 48 49	608		2013; 89 :130–7. doi:10.4269/ajtmh.12-0629	
50 51	609	25	Korpe PS, Petri WA. Environmental enteropathy: critical implications of a poorly	
52 53 54	610		understood condition. Trends Mol Med 2012;18:328-36.	
55 56	611		doi:10.1016/j.molmed.2012.04.007	
57 58				
59 60				28

1 2				
3 4 5 6 7	612	26	Guerrant RL, Oriá RB, Moore SR, et al. Malnutrition as an enteric infectious disease w	/ith
	613		long-term effects on child development. 2008;66:487-505. doi:10.1111/j.1753-	
8 9	614		4887.2008.00082.x.Malnutrition	
10 11	615	27	Crane RJ, Jones KDJ, Berkley JA. Environmental enteric dysfunction : An overview.	
12 13	616		2015; 36 :76–87.	
14 15 16	617	28	Humphrey JH. Child undernutrition, tropical enteropathy, toilets, and handwashing.	
17 18	618		Lancet 2009; 374 :1032-5. doi:10.1016/S0140-6736(09)60950-8	
19 20 21	619	29	Mbuya MNN, Humphrey JH. Preventing environmental enteric dysfunction through	
21 22 23	620		improved water, sanitation and hygiene: An opportunity for stunting reduction in	
24 25	621		developing countries. Matern Child Nutr 2015;12:1-15. doi:10.1111/mcn.12220	
26 27 28	622	30	Budge PJ, Griffin MR, Edwards KM, et al. Impact of home environment interventions	on
29 30	623		the risk of influenza-associated ARI in Andean children: observations from a prospecti	ve
31 32 33 34 35	624		household-based cohort study. PLoS One 2014;9:e91247.	
	625		doi:10.1371/journal.pone.0091247	
36 37	626	31	Aiello AE, Coulborn RM, Perez V, et al. Effect of hand hygiene on infectious disease n	risk
38 39 40	627		in the community setting: a meta-analysis. Am J Public Health 2008;98:1372-81.	
40 41 42	628		doi:10.2105/AJPH.2007.124610	
43 44 45 46 47 48 49 50 51 52 53 54 55 56	629	32	Caruso BA, Sevilimedu V, Fung IC-H, et al. Gender disparities in water, sanitation, an	d
	630		global health. Lancet (London, England) 2015;386:650-1. doi:10.1016/S0140-	
	631		6736(15)61497-0	
	632	33	Sahoo KC, Hulland KR, Caruso B a., et al. Sanitation-related psychosocial stress: a	
	633		grounded theory study of women across the life-course in Odisha, India. Soc Sci Med	
	634		2015;139:80-9. doi:10.1016/j.socscimed.2015.06.031	
57 58 59				
60				29

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

BMJ Open

1 2			
3 4	635	34	Hulland KRS, Chase RP, Caruso BA, et al. Sanitation, stress, and life stage: A systematic
5 6 7	636		data collection study among women in Odisha, India. PLoS One 2015;10.
7 8 9	637		doi:10.1371/journal.pone.0141883
10 11	638	35	World Health Organization/The United Nations Children's Fund (UNICEF). Ending
12 13	639		Preventable Child Deaths from Pneumonia and Diarrhoea by 2025: The integrated Global
14 15 16	640		Action Plan for Pneumonia and Diarrhoea (GAPPD). 2013.
17 18	641	36	Gram Vikas. Annual Report 2013-2014. 2014.
19 20 21	642	37	Duflo E, Greenstone M, Guiteras R, et al. Toilets Can Work : Short and Medium Run
22 23	643		Health Impacts of Addressing Complementarities and Externalities in Water and
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	644		Sanitation.
	645	38	Rosa G, Clasen T. Estimating the scope of household water treatment in low- and
	646		medium-income countries. Am J Trop Med Hyg 2010;82:289–300.
	647		doi:10.4269/ajtmh.2010.09-0382
	648	39	International Institute for Population Sciences (IIPS). District Level Household and
	649		Facility Survey (DLHS-3), 2007-08: India, Orissa. Mumbai: 2010.
38 39 40	650	40	Brady H, Caughey D, Dehejia R, et al. Genetic Matching for Estimating Causal Effects :
40 41 42	651		2012.
43 44	652	41	Sekhon JS. "Multivariate and Propensity Score Matching Software. J Stat Softw
45 46 47	653		2011; 42 .http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Multivariate+a
48 49	654		nd+Propensity+Score+Matching#9 (accessed 30 May2014).
50 51 52	655	42	Austin PC. Balance diagnostics for comparing the distribution of baseline covariates
52 53 54	656		between treatment groups in propensity-score matched samples. Stat Med 2009;28:3083-
55 56	657		107. doi:10.1002/sim
57 58 59			

30

Page 31 of 42

60

BMJ Open

<u><u></u></u>	
٤	
g	
ĕn	
÷	
rst	
pu	
blis	
she	
ă	
s	
10	
36	
/br	
Ъ.	
pe	
, ,	
201	
ၐ	
ġ	
27	
19	
9	
ω	
2	
lar	
S	
20	
7	
õ	
n	
oa	
de	
~	
d fr	
d fron	
d from <mark>h</mark>	
d from http:	
d from http://b	
d from http://bmj	
d from http://bmjop	
d from http://bmjopen.	
d from http://bmjopen.bn	
d from http://bmjopen.bmj.c	
d from http://bmjopen.bmj.con	
d from http://bmjopen.bmj.com/ c	
d from http://bmjopen.bmj.com/ on	
d from http://bmjopen.bmj.com/ on Oc	
d from http://bmjopen.bmj.com/ on Octot	
d from http://bmjopen.bmj.com/ on October	
d from http://bmjopen.bmj.com/ on October 29	
d from http://bmjopen.bmj.com/ on October 29, 2	
d from http://bmjopen.bmj.com/ on October 29, 202	
d from http://bmjopen.bmj.com/ on October 29, 2024 t	
d from http://bmjopen.bmj.com/ on October 29, 2024 by (
d from http://bmjopen.bmj.com/ on October 29, 2024 by gue	
d from http://bmjopen.bmj.com/ on October 29, 2024 by guest.	
d from http://bmjopen.bmj.com/ on October 29, 2024 by guest. P	
d from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Prot	
d from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protect	
d from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected	
d from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by	
d from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by cc	
d from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copy	
d from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyrig	

1 2			
2 3 4	658	43	Rubin DB. Using propensity scores to help design observational studies: Application to
5 6 7	659		the tobacco litigation. Health Serv Outcomes Res Methodol 2002;2:169-88.
7 8 9	660	44	Harder VS, Stuart EA, Anthony JC. Propensity score techniques and the assessment of
10 11	661		measured covariate balance to test causal associations in psychological research. Psychol
12 13 14	662		Methods 2010;15:997–1003. doi:10.1016/j.biotechadv.2011.08.021.Secreted
14 15 16	663	45	Faul F, Erdfelder E, Buchner A, et al. Statistical power analyses using G*Power 3.1: tests
17 18	664		for correlation and regression analyses. Behav Res Methods 2009;41:1149-60.
19 20 21	665		doi:10.3758/BRM.41.4.1149
22 23	666	46	Wolf J, Prüss-Ustün A, Cumming O, et al. Systematic review: Assessing the impact of
24 25 26	667		drinking water and sanitation on diarrhoeal disease in low- and middle-income settings:
20 27 28	668		Systematic review and meta-regression. Trop Med Int Heal 2014;19:928-42.
29 30	669		doi:10.1111/tmi.12331
31 32 33	670	47	Carl Hartung YAWBALCTGB. Open Data Kit: Tools to Build Information Services for
34 35	671		Developing Regions. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.176.8017
36 37	672	48	Feikin DR, Audi a., Olack B, et al. Evaluation of the optimal recall period for disease
38 39 40	673		symptoms in home-based morbidity surveillance in rural and urban Kenya. Int J
41 42	674		<i>Epidemiol</i> 2010; 39 :450–8. doi:10.1093/ije/dyp374
43 44 45	675	49	Arnold BF, Galiani S, Ram PK, et al. Optimal Recall Period for Caregiver-reported Illness
45 46 47	676		in Risk Factor and Intervention Studies: A Multicountry Study. Am J Epidemiol
48 49	677		2013;177:361-70. doi:10.1093/aje/kws281
50 51 52	678	50	World Health Organization. Integrated Management of Childhood Illness: Chart Booklet.
53 54	679	51	Cogill B. Anthropometric indicators measurement guide. Revised edition. Washington,
55 56 57 58 59	680		DC, Acad Educ Dev [AED], Food Nutr Tech Assist Proj

1

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

2				
3 4	681		2003;:92.http://www.developmentgateway.org/download/202582/anthro_2003.pdf	
5 6 7	682	52	de Onis M, Onyango AW, Van den Broeck J, et al. Measurement and standardization	
7 8 9	683		protocols for anthropometry used in the construction of a new international growth	
10 11	684		reference. Food Nutr Bull 2004;25:S27-36.	
12 13	685	53	Truant a. L, Elliott SH, Kelly MT, et al. Comparison of formalin-ethyl ether	
14 15 16	686		sedimentation, formalin-ethyl acetate sedimentation, and zinc sulfate flotation techniqu	es
17 18	687		for detection of intestinal parasites. J Clin Microbiol 1981;13:882-4.	
19 20 21	688	54	Kosek M, Haque R, Lima A, et al. Fecal markers of intestinal inflammation and	
22 23	689		permeability associated with the subsequent acquisition of linear growth deficits in	
24 25	690		infants. <i>Am J Trop Med Hyg</i> 2013; 88 :390–6. doi:10.4269/ajtmh.2012.12-0549	
26 27 28	691	55	Crump J a, Mendoza CE, Priest JW, et al. Comparing serologic response against enterio	;
29 30	692		pathogens with reported diarrhea to assess the impact of improved household drinking	
31 32	693		water quality. Am J Trop Med Hyg 2007;77:136–41.	
33 34 35	694	56	Steinberg EB, Mendoza CE, Glass R, et al. Prevalence of Infection with Waterbourne	
36 37	695		Pathogens: a Seroepidemiologic Study in Children 6-36 Months Old in San Juan	
38 39	696		Sacatepquez, Guatemala. 2004;70:83–8.	
40 41 42	697	57	Brussow H, Sidoti J, Link H, et al. Age-specific prevalence of antibody to enterotoxige	nic
43 44	698		Escherichia coli in Ecuadorian and German children. J Infect Dis 1990;162:974–7.	
45 46	699	58	Khanna B, Cutler A, Israel N, et al. Use caution with serologic testing for Helicobacter	
47 48 49	700		pylori infection in children. J Infect Dis 1998;178:460-5.	
50 51	701	59	Lindkvist P, Asrat D, Nilsson I. Age at acquisition of Helicobacter pylori infection:	
52 53	702		comparison of a high and a low prevalence country. Scand J Infect Dis 1996;28:181-4.	
55 56	703	60	Ungar B, Gilman R, Lanata C, et al. Seroepidemiology of Cryptosporidium infection in	
57 58				
59 60				32
atitis A				

nip of				
for				
is of				
la.				
ſembrane				
r				
isk in				
g water				
coastal				
3				
Enteric				

Page 34 of 42

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

BMJ Open

2				
2 3 4	727		Multicenter Study Inform Vaccine Development. Clin Infect Dis 2014;59.	
5 6 7 8 9 10 11	728		doi:10.1093/cid/ciu468	
	729	70	Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal dise	ease
	730		in infants and young children in developing countries (the Global Enteric Multicenter	
12 13	731		Study, GEMS): a prospective, case-control study. Lancet 2013;382:209-22.	
14 15 16	732		doi:10.1016/S0140-6736(13)60844-2	
17 18	733	71	Kanungo S, Sah BK, Lopez a. L, et al. Cholera in India: An analysis of reports, 1997-	
19 20 21	734		2006. Bull World Health Organ 2010;88:185–91. doi:10.2471/BLT.09.073460	
22 23	735	72	Cellini SR, Kee JE. Cost-Effectiveness and Cost-Benefit Analysis. In: Wholey JS, Hat	ry
24 25	736		HP, Newcomer KE, eds. Handbook of Practical Program Evaluation. San Francisco: :	
26 27 28	737		John Wiley & Sons, Inc. 2010.	
29 30	738	73	Edejer TT, Baltussen R, Adam T, et al. Making Choices in Health: WHO Guide to Cos	st-
31 32	739		Effectiveness Analysis. 2003.	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	740	74	Malapit HJ, Sproule K, Kovarik C, et al. Measuring progress toward empowerment	
	741		Women's Empowerment in Agriculture Index: Baseline Report. IfpriOrg 2014;:1-60.	
	742	75	Black RE, Victora CG, Walker SP, et al. Maternal and child undernutrition and	
	743		overweight in low-income and middle-income countries. <i>Lancet</i> 2013; 382 :427–51.	
	744		doi:10.1016/S0140-6736(13)60937-X	
	745	76	Smith LC, Ramakrishnan U, Ndiaye A, et al. The Importance of Women's Status for	
	746		Child Nutrition in Developing Countries. 2003.	
	747		http://www.ifpri.org/publication/importance-womens-status-child-nutrition-developing	3-
	748		countries	
55 56	749	77	Sumpter C, Torondel B. A Systematic Review of the Health and Social Effects of	
57 58				
59 60				34

2				
3 4	750		Menstrual Hygiene Management. PLoS One 2013;8:e62004.	
5 6 7	751		doi:10.1371/journal.pone.0062004	
7 8 9	752	78	Dasgupta A, Sarkar M. Menstrual Hygiene: How Hygienic is the Adolescent Girl? India	n
9 10 11	753		J Community Med 2008;33:77-80. doi:10.4103/0970-0218.40872	
12 13	754	79	Das P, Baker KK, Dutta A, et al. Menstrual Hygiene Practices, WASH Access and the	
14 15 16	755		Risk of Urogenital Infection in Women from Odisha, India. PLoS One 2015;10:e013077	'7.
17 18	756		doi:10.1371/journal.pone.0130777	
19 20 21	757	80	van Eijk AM, Sivakami M, Thakkar MB, et al. Menstrual hygiene management among	
21 22 23	758		adolescent girls in India: a systematic review and meta-analysis. BMJ Open	
24 25	759		2016; 6 :e010290. doi:10.1136/bmjopen-2015-010290	
26 27 28	760	81	Caruso B. Sanitation Insecurity: Definition, Measurement, and Associations with	
29 30	761		Women's Mental Health in Rural Orissa, India.	
31 32	762		2015.http://pid.emory.edu/ark:/25593/rfhnt	
33 34 35	763	82	Peal A, Evans B, Blackett I, et al. Fecal sludge management (FSM): analytical tools for	
36 37	764		assessing FSM in cities. J Water, Sanit Hyg Dev 2014;4:371.	
38 39 40	765		doi:10.2166/washdev.2014.139	
40 41 42	766	83	Peal A, Evans B, Blackett I, et al. Fecal Sludge Management: a comparative analysis of	
43 44 45 46 47 48 49 50 51 52 53 54	767		12 cities. J Water, Sanit Hyg Dev 2014;4:563–75.	
	768	84	Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: Methods,	
	769		interpretation and bias. Int J Epidemiol 2013;42:1511-9. doi:10.1093/ije/dyt127	
	770	85	McNutt LA, Wu C, Xue X, et al. Estimating the relative risk in cohort studies and clinic	al
	771		trials of common outcomes. Am J Epidemiol 2003;157:940-3. doi:10.1093/aje/kwg074	
55 56 57 58	772	86	Thompson ML, Myers JE, Kriebel D. Prevalence odds ratio or prevalence ratio in the	
59 60				35

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open

2	
3	773
4	
5 6 7	774
7 8 9	775
10 11	776
12	
13 14	///
15	
16	
17	
18 19	
20	
21	
22	
24	
25	
26 27	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38 30	
40	
41	
42 43	
44	
45	
46 47	
48	
49	
50 51	
52	
53	
54 55	
56	
57	
58 50	
60	

- doi:10.1136/oem.55.4.272
- 775 87 World Health Organization. WHO definition of health.
 - http://www.who.int/about/definition/en/print.html (accessed 26 Apr2016). at

1. Motivational Phase

- 1. Gram Vikas establishes village contact through motivation visits and gauges interest of village leadership and households
- Village general body is established for all households 2.
- 3. A formal agreement between the village and Gram Vikas is established once there is 100% household participation in the general body
- 4. Elected and gender-balanced village executive committee and water and sanitation sub-committees are established to guide maintenance and use of facilities and related activities
- 5. Village corpus fund for maintenance is collected and deposited in a village bank account

2. Operational Phase

- 1. Households lay foundation for toilet/bathing room and identify locally available materials for
- construction; Gram Vikas assists with layout 2. Households hire skilled laborers to construct the toilet/bathing room using locally available materials, with external materials provided by Gram Vikas. Gram Vikas provides 1/2-1 day trainings on leadership development and self-help group activities, school and village-level sanitation and hygiene, pump operation, masonry, and reproductive health and menstrual hygiene management as requested by the village
- 3. Gram Vikas designs and provides skilled labor for village water distribution system and water tower with community meeting room construction
- 4. Households provide unskilled labor for village water distribution system construction and hire technicians for household-level connections to village system

3. Completed Phase

- 1. Village water distribution system is turned on once 100% of households have completed toilet and bathing room construction
- 2. Maintenance of and use guidelines for all systems is turned over to village executive, water, and sanitation committees

Figure 1. Description of the three phases of the Gram Vikas MANTRA water and sanitation intervention. Figure 1

254x190mm (300 x 300 DPI)

Figure 2. Study sites in Ganjam and Gajapati districts, Odisha, India with intervention villages in black and control villages in white. Inset shows location of districts in India. Figure 2

215x279mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

Figure 3. Restriction, matching and exclusion process for selection of intervention and control villages (1), and timeline for study rounds and outcome data collection (2).

Figure 3

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

254x190mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No.	Recommendation	Page No.	Relevant text fron manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	*
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5	
Objectives	3	State specific objectives, including any prespecified hypotheses	7	
Methods				
Study design	4	Present key elements of study design early in the paper	8	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	8	
Participants	6	(<i>a</i>) <i>Cohort study</i> —Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	8-11	
		Case-control study—Give the eligibility criteria, and the sources and methods of case		
		ascertainment and control selection. Give the rationale for the choice of cases and controls		
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of		
		participants		
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and	8-11	
		unexposed		
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of controls per case		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.	12-19	
		Give diagnostic criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment	12-19	
measurement		(measurement). Describe comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias	NA	
Study size	10	Explain how the study size was arrived at	12	
Continued on next page				
		1		
		For peer review only - http://bmiopen.bmi.com/site/about/guidelines	s.xhtml	

 BMJ Open

Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	NA	
Statistical	12	(a) Describe all statistical methods, including those used to control for confounding	NA	
methods			(overview	
			19-20)	
		(b) Describe any methods used to examine subgroups and interactions	NA	
		(c) Explain how missing data were addressed	NA	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	NA	
		Case-control study—If applicable, explain how matching of cases and controls was addressed		
		Cross-sectional study—If applicable, describe analytical methods taking account of sampling		
		strategy		
		(e) Describe any sensitivity analyses	NA	
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined	NA	
		for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	NA	
		(c) Consider use of a flow diagram	NA	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	NA	
		exposures and potential confounders		
		(b) Indicate number of participants with missing data for each variable of interest	NA	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA	
		Case-control study—Report numbers in each exposure category, or summary measures of exposure		
		Cross-sectional study—Report numbers of outcome events or summary measures		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	NA	
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included		
		(b) Report category boundaries when continuous variables were categorized	NA	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	NA	
		period		
Continued on next pag	e			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	NA
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	20-21
		both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of	NA
		analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	NA
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	22
		original study on which the present article is based	
*Give informatio	n sep	parately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in	n cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

BMJ Open

Design and rationale of a matched cohort study to assess the effectiveness of a combined household-level piped water and sanitation intervention in rural Odisha, India

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012719.R2
Article Type:	Protocol
Date Submitted by the Author:	25-Oct-2016
Complete List of Authors:	Reese, Heather; Emory University School of Public Health, Department of Environmental Health Routray, Parimita; London School of Hygiene and Tropical Medicine Torondel, Belen; London School of Hygiene and Tropical Medicine Sclar, Gloria; Emory University School of Public Health, Department of Environmental Health Delea, Maryann; Emory University School of Public Health; London School of Hygiene and Tropical Medicine Sinharoy, Sheela; Emory University Laney Graduate School, Nutrition and Health Sciences Program Zambrano, Laura; Emory University School of Public Health, Department of Environmental Health Caruso, Bethany; Emory University School of Public Health, Department of Environmental Health Mishra, Samir; KIIT University, School of Biotechnology Chang, Howard; Emory University, Department of Biostatistics and Bioinformatics Clasen, Thomas; London School of Hygiene & Tropical Medicine; Emory University School of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	sanitation, piped water supply, diarrheal diseases

SCHOLARONE[™] Manuscripts

2
3
4
5
0
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
23
21
24
25
26
27
28
29
30
24
31
32
33
34
35
36
27
57
38
39
40
41
42
43
11
44
45
46
47
48
49
50
50
51
52
53
54
55
56
50
ວ/
58
59
60

1	Design and rationale of a matched cohort study to assess the effectiveness of a combined
2	household-level piped water and sanitation intervention in rural Odisha, India
3	
4	Heather Reese, ¹ Parimita Routray, ² Belen Torondel, ² Gloria Sclar, ¹ Maryann G. Delea, ^{1,2} Sheela
5	S. Sinharoy, ³ Laura Zambrano, ¹ Bethany Caruso, ¹ Samir R. Mishra, ⁴ Howard H. Chang, ⁵
6	Thomas Clasen ^{1,2}
7	
8	¹ Department of Environmental Health, Rollins School of Public Health, Emory University,
9	Atlanta, Georgia, United States of America
10	² London School of Hygiene and Tropical Medicine, London, United Kingdom
11	³ Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta,
12	Georgia, United States of America
13	⁴ School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
14	⁵ Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory
15	University, Atlanta, Georgia, United States of America
16	
17	Contact information for corresponding author, Heather Reese:
18	Department of Environmental Health, Rollins School of Public Health, Emory University
19	1518 Clifton Rd, Atlanta, GA 30322
20	Email: heather.e.reese@emory.edu, Phone: (619) 379-8963
21	Keywords: rural, piped water, sanitation
22	Word count: 5442

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

23 ABSTRACT

Introduction: Government efforts to address massive shortfalls in rural water and sanitation in
India have centered on construction of community water sources and toilets for selected
households. However, deficiencies with water quality and quantity at the household level, and
community coverage and actual use of toilets has led Gram Vikas, a local NGO in Odisha, India,
to develop an approach that provides household-level piped water connections contingent on full
community-level toilet coverage.

30 Methods: This matched cohort study was designed to assess the effectiveness of a combined

31 piped water and sanitation intervention. Households with children under five years in 45

randomly selected intervention villages and 45 matched control villages will be followed over 17

33 months. The primary outcome is prevalence of diarrheal diseases; secondary health outcomes

34 include soil-transmitted helminth infection, nutritional status, seroconversion to enteric

35 pathogens, urogenital infections, and environmental enteric dysfunction. In addition, intervention

36 effects on sanitation and water coverage, access and use, environmental fecal contamination,

37 women's empowerment, as well as collective efficacy, and intervention cost and cost-

38 effectiveness will be assessed.

Ethics and dissemination: The study protocol has been reviewed and approved by the ethics
boards of the London School of Hygiene and Tropical Medicine, U.K. and KIIT University,

41 Bhubaneswar, India. Findings will be disseminated via peer-reviewed literature and presentation

42 to stakeholders, government officials, implementers and researchers.

43 Trial registration identifier: NCT02441699

60

BMJ Open

1		
2 3 4	46	STRENGTHS AND LIMITATIONS OF THIS STUDY
5 6 7	47	• The study assesses a combined household-level piped water and sanitation intervention
8 9	48	that requires complete community-level compliance.
10 11	49	• The intervention was not randomly allocated; but, controls are selected through a
12 13 14	50	restriction process to limit possible partial exposure to the intervention through spillover,
15 16	51	and matched to intervention villages using pre-intervention data.
17 18 10	52	• The study uses a holistic definition of health to assess intervention impacts on physical,
20 21	53	mental and social well-being, including more novel outcomes such as seroconversion to
22 23	54	enteric pathogens, environmental enteric dysfunction, and sanitation insecurity. It also
24 25 26	55	assesses intervention coverage, cost-effectiveness, and collective efficacy.
27 28	56	• The time lapse between intervention completion and the beginning of the evaluation
29 30	57	process prevents baseline comparison or assessment of immediate intervention impacts.
32 33	58	However, it allows for a biologically plausible length of time for die-off of even the most
34 35	59	persistent pathogens in the environment, and provides time for children to have be born
36 37 38	60	into this environment.
39 40	61	
41 42	62	INTRODUCTION
43 44 45	63	Of the one billion people practicing open defecation worldwide, over half live in India[1]. While
46 47	64	international and national pressure on improving sanitation conditions in India has led to over
48 49 50	65	350 thousand people gaining access to improved toilets since 1990, it has barely kept up with
51 52	66	population growth[1,2]. Recent studies show that even in areas with access to household-level
53 54	67	improved sanitation, use of these toilets is low[3–5]. This may be due in part to a mismatch
55 56 57 58	68	between the culturally acceptable pour-flush toilets and the level of water access. Coverage of

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

improved water sources, usually community-level pumps or taps, is relatively high even in rural
areas in India, but it may not be sufficient for flushing purposes on top of other daily water
needs[1,6].

Although the effectiveness of water, sanitation and hygiene (WASH) interventions vary, meta-analyses have found that individual or combined WASH interventions decrease diarrheal disease prevalence by up to 48%[7–11]. While combined interventions would be expected to have a greater influence on multiple exposure pathways and thus a greater combined impact on health, there is limited evidence of additive benefits[12]. This may be due to poor uptake, inconsistent use, or an incomplete understanding of relevant pathways[8–10]. In India, combining water and sanitation interventions may be more critical than just interrupting multiple transmission pathways for enteric infection; evidence suggests that household-level water access is integral to the use of improved sanitation in this context[13]. While the intent of improved sanitation facilities is to separate human feces from human contact, most of the focus is on constructing household toilets to increase improved sanitation coverage—the primary metric used in monitoring progress toward international targets. However, studies in India have further shown that toilet construction does not translate into toilet use in this context[5,14–16]. Moreover, with the interdependence between members of households and households within communities, safe water and sanitation is a community-level issue. There is growing emphasis on assessing health risk from poor water and sanitation conditions not simply due to individual or even household-level risk factors, but also from conditions in the community environment[17]. There is evidence that even households without toilets, and households which do not filter drinking water, showed decreased health risk if they live in communities with high levels of coverage and use[18–20].

BMJ Open

Moreover, the effectiveness of community interventions may be higher in communities with positive perceptions of their collective ability to come together to improve their conditions. Collective efficacy, a latent construct comprised of the structural and cognitive components that facilitate a community's shared belief in its ability to come together and execute actions related to a common goal, may explain some variance in intervention effectiveness across communities receiving WASH interventions[21]. A main risk of poor WASH conditions is enteric infection, caused by a diverse array of bacteria, viruses, protozoa, and parasites, including soil-transmitted helminths. These infections may cause diarrhea, the second leading cause of mortality for children under five years worldwide and in India, a leading cause of mortality regardless of age[22,23]. There is also growing evidence that asymptomatic enteric infections may pose a similar risk, with repeat enteric infections contributing to chronic malnutrition, environmental enteric dysfunction, poor cognitive outcomes, and poor vaccine uptake [24–29]. Poor WASH conditions are also linked to increased risk of respiratory infection, the leading cause of mortality for children under five years worldwide[22,30,31]. Poor water and sanitation access can also affect the social, physical and mental well-being of women, acting through pathways ranging from unsafe menstrual

Description of the intervention

Over the past decades there has been a global commitment to determine water and sanitation interventions with demonstrated effectiveness, not just efficacy[35]. Gram Vikas, a nongovernmental organization based in Odisha, India (http://www.gramvikas.org/), has responded by implementing its MANTRA (Movement and Action Network for Transformation of Rural

hygiene management practices and increased risk of violence[32–34].

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

Areas) water and sanitation program in more than 1000 villages since 2002[36]. This approach includes both household-level piped water connections, and community-level mobilization for culturally appropriate household toilets. A previous interrupted time series analysis of the MANTRA intervention reported it to be protective against diarrheal diseases[37]. However, in addition to limitations of design, this study relied on outcome data collected and reported by Gram Vikas, the intervention implementer, and did not assess intervention coverage or impacts on environmental fecal contamination.

The MANTRA water and sanitation intervention is rolled out in a three-phase process over an average of three years. During the first, or Motivational, phase (approximately 8-12 mo), representatives of Gram Vikas visit the identified village several times to assess village interest and progress towards a set of Gram Vikas requirements, including: 1) the commitment of every household to participate, 2) creation of a village corpus fund from contributions from every household, and 3) development of village guidelines for maintenance and use of facilities.

Once this set of requirements is achieved, the village progresses into the second, or Operational, phase of the intervention (approximately 17-35 mo). Each household constructs a pour-flush toilet with two soak-pits and a separate bathing room. The households hire a local, skilled mason and provide their own unskilled labor and locally available materials to complete the superstructure. Gram Vikas provides external materials such as PVC pipes and porcelain pans. At the same time, a water tank, community meeting space, and piped water distribution system connected to every household, with taps in the toilet and bathing rooms and a separate tap in the kitchen, is constructed through a similar collaborative process.

All households must construct a toilet and bathing room for the village to progress intothe final, or Completed, phase of the intervention, in which the water system is turned on.

Page 7 of 41

1

60

water once every
ith most previous
Total Sanitation
level sanitation
].
bined household-
s in Odisha, India.
nitation
nagement practices
fecal
ncludes reported
spiratory infection,
ental enteric
nital diseases
social well-being
en's empowerment.
1 r s s

5) Develop and assess a theoretically-grounded, empirically informed collective efficacy scale; and determine the effect of collective efficacy on intervention effectiveness. **METHODS** Setting The study is located in Ganjam and Gajapati districts in eastern Odisha, India (Figure 1). These two contiguous districts were a single district until 1992. Over 44% of the population in these districts is recognized by the Government of India as being below the poverty line (BPL)[39]. As of 2008, a majority of households in both districts had access to an improved, likely community-level, drinking water source, with over 23% of households in Ganjam having access to any sanitation facility, compared to only 8% of households in Gajapati[39]. The area is primarily rural and agrarian, and the climate is characterized by a monsoon season from June to September, with an average rainfall of ~1400 mms/year. **Study design** This study uses a matched cohort design to assess the effectiveness of a completed intervention with data collected across four study rounds from June 2015 to October 2016 (Figure 2). Data was collected in all study rounds for diarrhea, acute respiratory infection, nutritional status, and stored and source water outcomes to assess seasonality. Data was collected in rounds 2 and 4 for environmental enteric dysfunction, seroconversion, and hand-rinses, and cross-sectionally in one or more rounds for the remaining outcomes. As described below, control villages were matched to randomly selected intervention villages through a multi-step restriction, genetic matching, and exclusion process using the following eligibility criteria.

1 2		
- 3 4	183	
5 6	184	Eligibility criteria for villages
7 8 9	185	1. Restriction. Intervention villages were randomly selected from a list of Gram Vikas villages
10 11	186	in Ganjam and Gajapati districts provided by the NGO, after restriction to villages with a
12 13	187	Motivation phase start date between 2002-2006 and a Construction phase start date no earlier
14 15 16	188	than 2003. Since the intervention process takes on average three years, the criteria for the
17 18	189	Motivation start date helped to identify those villages with ongoing interventions at the same
19 20	190	time. In addition, this allowed the use of the Government of India Census 2001 and the Below
21 22 23	191	Poverty Line (BPL) Survey 2002 data to characterize baseline characteristics used in the
24 25	192	matching process in both intervention and control villages.
26 27 28	193	Eligible control villages include all villages without a Gram Vikas intervention within the
28 29 30	194	study districts which: 1) are not within the same Gram Panchayat (a political subdivision with
31 32	195	some administrative responsibility for water and sanitation comprised of several villages) as a
33 34 25	196	Gram Vikas village, or bordering a Gram Vikas village, and 2) had not received a Motivation
36 37	197	visit from the Gram Vikas NGO. These criteria serve to limit the possibility of previous partial
38 39	198	exposure to the intervention through spillover from adjacent villages or direct contact with the
40 41 42	199	NGO. These criteria also increase the strength of the comparison provided by the control
42 43 44	200	villages, i.e. it increases the likelihood that if they had received a motivation visit from Gram
45 46	201	Vikas, the control villages would have been equally as likely as the intervention villages to
47 48 49	202	demand the intervention.
50 51	203	In addition, to be eligible for inclusion both intervention and control villages must: 1)
52 53 54	204	appear in the Government of India Census 2001 and the BPL Survey 2002, 2) have a population

Page 10 of 41

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open

> of at least 20 households, and 3) be within approximately three hours travel from the study office in Brahmapur, Ganjam District. This last criterion is due to logistical constraints. 2. Matching. After restriction, genetic matching was used to match potential control villages to the randomly selected intervention villages without replacement [5,40,41]. Villages were exact matched on district to limit any political or large scale geographic variation between district populations, and were also matched on pre-intervention demographic, socioeconomic, sanitation, and water access characteristics listed in Table 1[5]. These village-level matching variables were selected due to their theorized association with the primary outcome, diarrheal diseases, as well as data availability. 3. Exclusion. The field team visited matched potential control villages and intervention villages to assess suitability for the study through a rapid assessment interview with village leadership and to ensure accessibility. Villages were excluded if they are not within three hours travel of the field office in Brahmapur, had sustained major infrastructure damage due to a natural disaster, or

if there was a current or planned sanitation or water intervention by an organization external to
the village in the next 12 months as determined through the rapid assessment interview with
village leadership. In addition, villages were excluded if there were fewer than three households
with children under five years old. As villages were removed from the pool of prospective
control villages, the matching process was repeated for all intervention villages and remaining
eligible control villages, and balance measures were assessed. The matching and exclusion
processes were repeated as necessary.

After the iterative matching and exclusion process was complete, covariate balance was assessed for all matching variables for the final set of intervention and control villages through examination of balance measures[42–44]. Matching resulted in an improvement in balance as

Scheduled caste (%)

BMJ Open

228	assessed through comparison of several measures including q-q plots, Kolmogorov-Smirnov					
229	bootstrap p-values, and standardized differences. After matching, there were no significant					
230	differences between inte	rvention and con	trol groups (Tabl	e 1).		
231						
232	Eligibility criteria for h	ouseholds				
233	Households within selec	ted intervention a	and control villag	ges were eligible	if they had a	at least one
234	child under 5 years old a	t time of enrollm	ent, verified with	n birth or immur	nization card,	and
235	expected to reside in the	village for the du	uration of the stu	dy. If there were	e more than 4	0 eligible
236	households within a villa	age, 40 were rand	lomly selected to	be enrolled. Inf	ormed conse	ent was be
237	obtained from the male a	and/or female hea	ad of the selected	households. All	l children un	der five
238	years within each enrolled household were eligible and do not age-out over the course of the					
239						
240	Table 1. Pre-intervention characteristics used in matching, and balance diagnostics before and					
241	after matching and exclusion process.					
	Variable	Intervention (n=45)	Control (all eligible) (n=1580)	Std Diff (all eligible)	Control (study) (n=45)	Std Diff (study)
	Number of households	157.9	215.5	0.37	148.1	0.06
	Population under 6 years (%)	16.2	16.9	0.19	16.3	0.02
	Household income score $(x \overline{)}$	2.9	3.1**	0.26	2.9	0.01
	Household goods owned $(x \overline{)}$	1.1	1.2*	0.27	1.1	0.02
	Pucca house (%)	59.2	61.6	0.09	60.5	0.05
	>2 mode a day (%)	57 7	63 7	0.19	57.8	0.01
	≥ 2 lifeals a day (70)	51.1	05.7	0.17	57.0	0.01

18.7**

0.46

11.5

0.01

11.8

2							
3 4 5		Scheduled tribe (%)	33.4	19.1*	0.31	29.8	0.08
6 7		Female literacy (%)	30.9	29.8	0.07	30.9	0.00
8 9 10		Open defecation (%)	95.6	95.2 [*]	0.04	95.8	0.01
10 11 12		Improved drinking water source ^{\dagger} (%)	38.6	42.5	0.10	37.2	0.02
13 14		Water source <500m and 50m elevation (%)	81.5	72.2	0.31	81.7	0.01
15 16 17 18 19 20	242 243 244 245 246	All eligible: all villages that are eligib Std Diff (absolute standardized differ ‡ Ganjam villages only; no data avail Kolmogorov-Smirnov bootstrap p-va	ble for the matching rence): a value great able for Gajapati vi lues: * <0.05 **	process after restric ter than 0.1 is conside llages <0.01	tion ered meaningful	imbalance [42]	
21 22 23	247	study. Households with newbo	rn children were	enrolled as they	became eligib	le on an ongo	oing
24 25	248	basis throughout the study, in v	villages with few	er than 40 enrolle	ed households.		
26 27 28	249						
20 29 30	250	Sample Size					
31 32	251	Sample size was determined th	rough a simulati	on estimating the	log odds of d	iarrheal disea	ise
33 34 35	252	(the primary outcome) through	a multilevel ran	dom effects mode	el and paramet	terized with o	lata
36 37	253	from a previous study in a neig	hboring district	in Odisha[16]. Sa	mple size esti	mates were a	lso
38 39	254	checked with G*Power[45]. The	ne simulation ass	sumes a longitudi	nal 7-day perio	od prevalenc	e for
40 41 42	255	diarrhea of 8.8% in children un	der five years, a	heterogeneity va	riance betwee	n villages of	0.07,
43 44	256	a heterogeneity variance betwe	en households o	f 0.57, and four s	tudy rounds[1	6]. An effect	size
45 46 47	257	of 0.20 was selected for public	health importan	ce and based on e	estimates of ef	fect from	
47 48 49	258	systematic reviews of water and	d sanitation stud	ies[46]. Assumin	g at least 80%	power, 0.05	
50 51	259	significance level, 10% for loss	s to follow up, a	nd at least one chi	ld per househ	old, we estin	nate a
52 53 54	260	sample size of 45 villages per s	tudy arm and 26	households per v	village. This e	stimate was t	he
55 56	261	most conservative compared to	sample size esti	imates for second	ary outcomes,	and was the	refore
57 58	262	used for the broader study popu	ulation.				
59 60							12

1		
2 3 4	263	
5 6	264	Outcome Measurement
7 8 9	265	Outcomes, and individual, household, and community-level risk factors, will be measured
10 11	266	through surveys, interviews, or through the collection and analysis of environmental, stool or
12 13 14	267	dried blood spot samples. All survey questions will be translated into the primary local language,
15 16	268	Odia, and back-translated to confirm wording. Household surveys include household and
17 18 10	269	individual factors and will be verbally administered by trained field workers to the mother or
20 21	270	primary caregiver of the youngest child under five in each household, unless otherwise specified
22 23	271	below. Community surveys will be verbally administered to the <i>sarpanch</i> (village head) or other
24 25 26	272	member of village leadership. Survey data will be collected on mobile phones using Open Data
27 28	273	Kit[47]. GPS coordinates for households, water sources and other relevant sites will be collected
29 30	274	using Garmin eTrex 10 or 20 devices (Garmin Ltd., Olathe, KS, USA).
31 32 33	275	
34 35	276	Coverage, access and use of sanitation, water and hygiene infrastructure
36 37	277	Coverage, access and use of WASH infrastructure will be assessed in all four rounds. Presence
38 39 40	278	of and access to toilets, water sources and hand-washing stations will be assessed through
41 42	279	standard questions from the Demographic and Health Surveys (DHS) and confirmed through
43 44 45	280	spot observations. Spot observations of household toilets and hand-washing stations will be
45 46 47	281	further used to assess indicators of functionality, maintenance, recent use. Reported water and
48 49	282	sanitation practices, including child feces disposal practices, will be captured through household
50 51 52	283	survey questions.
53 54	284	
55 56 57 58 59 60	285	Diarrheal Diseases

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

The primary outcome for this study is prevalence of diarrheal diseases, recorded as both daily point prevalence over the previous three days and seven-day period prevalence, for all household members in all four rounds. Although self-reported diarrhea is a subjective outcome with a well-established risk of bias, three-day recall reduces recall bias[48,49]. Diarrheal disease will be measured using the World Health Organization (WHO) definition of three or more loose stools in a 24-hour period, with or without the presence of blood. Field workers will use a simple calendar as a visual aid to help respondents with recall. Each household member will be asked to recall his or her own disease status and the mother or primary caregiver will be asked to report disease for children.

296 Respiratory infection

Prevalence of respiratory infections will be recorded as both daily point prevalence over the previous three days and seven-day period prevalence for all household members in all four rounds. Respiratory infection is defined as the presence of cough and/or shortness of breath/difficulty breathing according to WHO's Integrated Management of Childhood Illness (IMCI)[50]. The full IMCI case definition for acute lower respiratory infection also includes measurement of respiratory rate and observation of chest indrawing, stridor and other danger signs; these criteria were excluded from our definition as there was concern about the technical support required to produce consistent and accurate data within this context[50]. Our definition provides a broad assessment of respiratory illness burden. Each household member will be asked to recall his or her own disease status and the mother or primary caregiver will be asked to report disease for children.

Page 15 of 41

309	Nutritional Status
310	Anthropometric data will be collected for children under age five in all four rounds using
311	standard methods as established by WHO[51,52]. Field workers will be trained and standardized
312	in line with WHO protocols to reduce measurement error [52]. Weight will be measured for all
313	children under five years of age using Seca 385 digital scales, with 20g increment for weight
314	below 20kg and a 50g increment for weight between 20 and 50kg. Recumbent length will be
315	measured for children under two years of age using Seca 417 measuring boards with 1mm
316	increment. Standing height will be measured for children two to five years of age using Seca 213
317	portable stadiometers with 1mm increment. Height and weight will be used to calculate height-
318	for-age z-scores (HAZ) and weight-for-height z-scores (WHZ) based on WHO reference
319	standards. A random subset of 10% of households will receive back check visits each day to
320	repeat height/length measurements to ensure inter-observer reliability.
321	
322	Soil-transmitted helminth infection
323	Stool samples will be collected in rounds 2 and 4 from all household members in a randomly
324	selected subset of 500 households, and used to assess the presence and intensity of soil-
325	transmitted helminth (STH) infection. Formalin ether concentration and microscopy will be used
326	to quantify worms and ova for hookworms, <i>Ascaris lumbricoides</i> , and <i>Tricuris trichura</i> [53].
327	Quality assurance includes independent duplicate assessment of all positive and 10% of negative
328	samples. After stool collection, each participant will be offered a single dose of Albendazole, a
329	broad-spectrum antihelmenthic drug recommended by the Ministry of Health and Family
330	Welfare, Government of India. Stools collected in round 2 will allow for comparison of STH

1		
2		
3 4 5	331	infection prevalence between intervention and control villages, while the stool samples collected
5 6 7	332	approximately 8 months later in round 4 will provide a measure of re-infection rate.
8 9	333	
10 11	334	Environmental enteric dysfunction
12 13 14	335	Stools from a randomly selected subset of 200 children under two years old, collected in rounds
15 16	336	2 and 4, will be used to assess environmental enteric dysfunction (EED) through quantification
17 18	337	of biomarkers of intestinal inflammation and permeability. Fecal myeloperoxidase (MPO),
19 20 21	338	alpha-1-antitrypsin (AAT), and neopterin (NEO), markers for neutrophil activity, intestinal
22 23	339	permeability and TH1 immune activation, respectively, were selected for this study based on
24 25 26	340	evidence of association with EED, subsequent linear growth deficits, and household
20 27 28	341	environmental fecal contamination[24,25,54].
29 30	342	
31 32 33	343	Seroconversion for enteric pathogens
34 35	344	Serological assays that assess antibody production against various enteric pathogens can provide
36 37	345	an objective measure of exposure to enteric infections[55]. Enrolling children aged 6 to 18
38 39 40	346	months will reduce the potential for interference from maternally acquired antibodies and permit
41 42	347	analysis of seroconversion data in a critical window for young children who experience higher
43 44 45	348	diarrheal disease morbidity and mortality before two years of age[56–61]. Children who are 6 to
46 47	349	12 months during round 2 will have capillary blood drawn by fingerstick or heelstick, as
48 49	350	appropriate, and will be visited again during round 4 for a second capillary blood sample. All
50 51 52	351	blood samples will be preserved on TropBio (Sydney, Australia) filter discs and stored within 7
53 54	352	days of collection at -20°C. Seroconversion against markers for norovirus, Giardia intestinalis,
55 56 57 58	353	Cryptosporidium parvum, Entamoeba histolytica, enterotoxigenic E. coli heat-labile enterotoxin

(ETEC-LT), Salmonella spp., Campylobacter jejuni, Vibrio cholera, and Toxoplasma spp. willbe assessed using multiplex immunoassay technology on the Luminex xMAP platform[62]. Environmental fecal contamination Field workers will collect samples of household stored drinking water and source water from a random subset of 500 households in all four rounds, and child hand rinses in rounds 2 and 4. All water and hand rinse samples will be stored on ice during transport and analyzed within 6 hours of collection using membrane filtration. Three assays will be used: 1) plating on m-Coli Blue 24 (Millipore, Billerica, MA) for *E.coli* according to EPA Method 10029, 2) alkaline peptone water enrichment prior to plating on thiosulfate citrate bile salts sucrose agar and slide agglutination serotyping for V. cholerae, and 3) plating on xylose lysine desoxycholate agar, and slide agglutination serotyping for *Shigella* spp.[63–65]. Source and stored water samples will be assayed for *E. coli*, *Vibrio cholerae* and *Shigella* spp., and hand rinse samples will be assayed for E. coli and Shigella spp. E. coli was selected as a standard non-human specific indicator of fecal contamination, though the limitations of this indicator are well-established[66–68]. In order to

and *Shigella* spp. were selected based on prevalence in southern Asia, evidence of public health

better characterize human fecal contamination of the household environment, Vibrio cholerae

- importance, and field laboratory limitations[69–71].

373 Cost and cost-effectiveness

Costs and potential cost savings (i.e., averted costs) associated with the intervention will be
assessed through an economic costing approach that recognizes and quantifies costs and benefits
from a societal perspective[72]. Data on program and point-of-delivery inputs will be collected at

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

household, community, and implementer levels in round 3. Field workers will administer community surveys to a village leader, and household surveys to the household decision-maker for toilet installation, in 20 randomly selected households in twenty matched intervention and control villages. Given cost-effectiveness analyses require the effect of the intervention to be measured against a counterfactual, and the intervention of interest is a community-based intervention, cost and effectiveness measures will be summarized at the village level [73]. Surveys will collect data on household- and community-level inputs related to materials and labor required to construct household toilets and wash rooms, the community water tank and distribution system, and household water connections; longer-term water supply and toilet maintenance costs; and financing required for this infrastructure as well as perceived benefits, including averted social opportunity costs. Implementer inputs from Gram Vikas will be collected through an enumeration exercise, interviews, and examination of the implementer's financial records.

391 Collective efficacy

Collective efficacy (CE) is a latent construct comprised of the structural and cognitive components that facilitate a community's shared belief in its ability to come together and execute actions related to a common goal[21]. A review of the literature and established conceptual frameworks will be performed to define the CE construct. A sequential exploratory mixed qualitative and quantitative design will be used to develop and refine a scale to measure CE and test hypotheses. Field workers will administer the refined, multi-item, Likert-type CE scale to one randomly selected household member aged 18 years or older in each household in round 3.

BMJ Open

400	Women's empowerment
401	Four dimensions of women's empowerment will be measured in rounds 3 and 4: group
402	participation, leadership, decision-making and freedom of movement. Group participation and
403	leadership will be measured using modules from the Women's Empowerment in Agriculture
404	Index (WEAI), which has been tested in South Asia[74]. Decision-making will be measured
405	using questions from the women's status module of Demographic and Health Surveys. Freedom
406	of movement will be measured using questions from the project-level Women's Empowerment
407	in Agriculture Index (pro-WEAI). These measures will be collected for the primary female
408	caregiver of the youngest child under 5, and were selected based on the importance of women's
409	empowerment for child nutrition[75,76]. Women's empowerment is conceptualized as both an
410	outcome and a potential mediator along the pathway between the Gram Vikas intervention and
411	child health outcomes.
412	

Menstrual hygiene management

Menstrual hygiene management practices vary worldwide and depend on personal preference, socioeconomic status, local traditions and beliefs, and access to water and sanitation resources[77]. Unhygienic washing practices are common in rural India and among women and girls in lower socioeconomic groups, and may increase risk of urogenital infection[78–80]. However, the link between access to water and sanitation, menstrual hygiene management and urogenital infections has been poorly studied. Household surveys will be administered in round 4 to a randomly selected woman aged 18 or older, in a subset of 800 households, and will capture self-reported urogenital infection, defined as at least one of the following symptoms: 1) abnormal

2		
3 4	422	vaginal discharge (unusual texture and color/more abundant than normal), 2) burning or itching
5 6 7	423	in the genitalia, 3) burning or itching when urinating, or 4) genital sores[79].
8 9	424	
10 11 12	425	Sanitation Insecurity
12 13 14	426	This study will assess the associations between sanitation access and sanitation insecurity with
15 16	427	mental health among women. In previous research in Odisha, a contextually specific definition
17 18 19	428	and measure for sanitation insecurity was developed, with associations between facets of
20 21	429	sanitation insecurity and mental health independent of sanitation facility access[81]. This
22 23	430	previously developed measure will be used to determine if levels of sanitation insecurity differ
24 25 26	431	between intervention and control villages and how it may be associated with mental health
27 28	432	outcomes, specifically well-being, anxiety, depression, and distress. Household surveys will be
29 30	433	administered in round 4 to a randomly selected woman aged 18 or older, in a random subset of
31 32 33	434	800 households.
34 35	435	
36 37 29	436	Fecal sludge management.
30 39 40	437	In sanitation systems where sewerage is not feasible, such as the household toilets constructed as
41 42	438	part of the MANTRA intervention, safe management of fecal waste is necessary. Although there
43 44 45	439	is growing emphasis on safe fecal sludge management (FSM), research has mainly focused on
45 46 47	440	urban settings[82,83]. Preliminary research in Odisha suggests that fecal sludge management in
48 49	441	this rural setting is a substantial challenge, and may impact household use of toilets. In round 3,
50 51 52	442	household surveys and spot checks of toilets in intervention villages will be used to assess toilet
52 53 54	443	use and fecal sludge management practices.
55 56 57	444	

445	STATISTICAL ANALYSES
446	The effect of the intervention on infrastructure coverage, access, and use (aim 1), and the effect
447	of the intervention on improving health (aim 3), will be analyzed using logistic, linear, log
448	binomial, or negative binomial multilevel regression depending on the outcome, to compare
449	intervention versus control villages. Prevalence of fecal sludge management practices in
450	intervention communities will be assessed using multilevel regression (aim 1). For all models,
451	the hierarchical structure of the data will be accounted for using random effects. Estimation of
452	relative risks through Poisson regression or binary regression methods for binary outcomes will
453	be considered to ensure robustness of results. Mediation of the potential association between
454	intervention and nutritional status outcomes by women's empowerment will be assessed using
455	multilevel structural equation modeling, and statistical approaches to reduce bias will be
456	explored as needed[84].
457	The impact of intervention on reducing environmental fecal contamination (aim 2), will
458	be assessed through two methods. First, hierarchical logistic and negative binomial multilevel
459	regression to estimate intervention effects on the relative scale will be used to compare
460	intervention versus control villages. Estimation of relative risks through Poisson regression or
461	binary regression methods for binary outcomes will be considered to ensure robustness of results.
462	Second, a stochastic microbial risk framework will be used to assess differential fecal
463	environmental contamination between intervention and control villages.

The cost and cost-effectiveness of the intervention (aim 4) will be assessed in two steps. Incremental intervention benefits will be ascertained by combining health benefit data, from analysis of health outcome data and established averted cost data, with other averted social opportunity costs. An incremental cost-effectiveness ratio, expressed in cost per disease-specific BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

468 DALY, will be calculated by dividing the incremental intervention costs by the incremental469 intervention benefits.

The collective efficacy scale will be analyzed using a psychometric approach in which factor analytics are employed to identify an appropriate factor solution and test the reliability and validity of the CE scores. Once a CE factor solution and an empirically derived multilevel data structure have been identified, the association between CE and intervention effectiveness will be analyzed using multilevel generalized linear mixed models to estimate relative risks[85,86]. (aim 5). For all outcomes, variables used in the matching process may be considered as covariates, as needed, in addition to individual, household, and community-level risk factors. Covariates that are statistically associated with outcomes of interest in bivariate analyses will be considered for inclusion in final multivariable models, following standard stepwise model-building approaches. Secondary analyses may also evaluate models for effect modification as relevant, including exposure-mediator interaction for mediation models and cross-level interaction, by assessing changes in parameter values based on potential effect modifiers. Potential effect modifiers may include breastfeeding for seroconversion outcomes, and climate factors and population density for environmental fecal contamination and health outcomes. However, this study was not designed to assess effect modification and therefore is not specifically powered for these analyses. For all outcomes, unadjusted models will be presented along with models adjusting for covariates.

488 DISCUSSION

This matched cohort study is one of the first to evaluate the effect of a rural combinedhousehold-level piped water and sanitation intervention, implemented at the community level, on

a large scale. The matched design provides a rigorous means for estimating causal effects given
that randomization to intervention group was not feasible due to the several year implementation
process[5]. By focusing on an intervention where the implementation process is complete, it also
limits the risk presented by randomized controlled trials, where the intervention has little uptake,
an especially important study challenge given interdependence of exposure and outcomes within
communities, and a problem that has characterized previous trials of sanitation interventions in
India[15,16].

A strength of this study is the assessment of health impacts using the holistic WHO definition of health, including not just disease status, but also mental, social, and physical wellbeing[87]. Outcomes along the causal chain include standard, but more subjective measures, such as reported diarrheal diseases and respiratory infection, as well as more objective measures such as fecal environmental contamination, soil transmitted helminth infection, and anthropometry. Although there is risk of response bias for reported outcomes, it is unlikely to be differential by intervention status since the study team is not directly linked to Gram Vikas. Even though field workers may be aware of village intervention status, lab staff analyzing water, hand rinse, stool, and blood samples will be blinded. In addition, this study includes the more novel use of seroconversion for enteric pathogens, biomarkers of environmental enteric dysfunction, and measures of collective efficacy in an evaluation assessment. While there are limitations inherent to observational studies, the matched study design and multivariable modeling analysis plan reduce the potential for confounding. However, there is still the potential for residual unmeasured confounding.

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

513	Ethics and Dissemination. This study has been reviewed and approved by the Ethics Committee
514	of the London School of Hygiene and Tropical Medicine, U.K (No. 9071) and Institute Ethics
515	Committee of the Kalinga Institute of Medical Sciences of KIIT University, Bhubaneswar, India
516	(KIMS/KIIT/IEC/053/2015). Efforts will be made to communicate the central findings and
517	implications with study communities, the implementing organization and government officials in
518	India. The results of this study will be submitted for publication in peer reviewed journals and
519	presented at conferences. The data collected in the study will be publicly available, with personal
520	identifiable data redacted, following the publication of the primary results within 24 months of
521	the final data collection date.
522	
523	Funding. This study is supported by a grant from the Bill & Melinda Gates Foundation to the
524	London School of Hygiene & Tropical Medicine (OPP1008048) and to Emory University.
525	(OOP1125067).
526	
527	Competing Interests: None declared.
528	
529	Contributions from authors: TC, HR, PR, BT, and HC contributed to study design. HR, LZ
530	and BT developed laboratory protocols. HR, BT, GS, MD, SS, LZ, and BC developed data
531	collection tools. All authors contributed to editing and revising the manuscript.
532	
533	
534	
535	

Ę	
9	
ĕr	
∷ fi	
rst	
pu	
blic	
she	
ă	
sc	
10.	
1	
36/	
br	
jo	
per	
٦- د-	
2	
ဓု	
22	
271	
90	
Ŋ	
<u>3</u>	
Ň	
arc	
5 C	
01	
.7	
D	
Ň	
lo	
ade	
be	
fro	
В	
¹	
0://	
br	
jġ	
oer	
с.	
<u>, 3</u> ,	
8	
ъ	
P	
Q	
sto	
σ	
Ð	
er 2	
er 29, 2	
er 29, 202	
er 29, 2024 I	
er 29, 2024 by	
er 29, 2024 by gu	
er 29, 2024 by guest	
er 29, 2024 by guest. P	
er 29, 2024 by guest. Prot	
er 29, 2024 by guest. Protec	
er 29, 2024 by guest. Protected	
er 29, 2024 by guest. Protected by	
er 29, 2024 by guest. Protected by cc	
er 29, 2024 by guest. Protected by copy	
er 29, 2024 by guest. Protected by copyrig	

1			
2 3 4	536	Figure 1. Study sites in Ganjam and Gajapati districts, Odisha, India with intervention villages	
5 6	537	in black and control villages in white. Inset shows location of districts in India.	
7 8 0	538		
9 10 11	539	Figure 2. Restriction, matching and exclusion process for selection of intervention and control	
- 12 11 11 11 11 11 11 11 11 11 11 12 12 22 2	540	villages (1), and timeline for study rounds and outcome data collection (2).	
72			
1 2			
-----------------------	-----	-----	---
3 4	541	REF	TERENCES
5 6 7 8 9	542	1	UNICEF, WHO. Progress and Sanitation and Drinking Water: 2015 Update and MDG
	543		Assessment. 2015.
10 11	544	2	Water and Sanitation Program. A Decade of the Total Sanitation Campaign: Rapid
12 13 14	545		Assessment of Processes and Outcomes. 2010.
15 16	546	3	Coffey D, Gupta A, Hathi P, et al. Culture and the health transition: Understanding
17 18	547		sanitation behavior in rural north India. 2015.
19 20 21	548	4	Clasen T, Pruss-Ustun A, Mathers CD, et al. Estimating the impact of unsafe water,
22 23	549		sanitation and hygiene on the global burden of disease: evolving and alternative methods.
24 25 26	550		<i>Trop Med Int Heal</i> 2014; 19 :884–93. doi:10.1111/tmi.12330
27 28	551	5	Arnold BF, Khush RS, Ramaswamy P, et al. Causal inference methods to study
29 30	552		nonrandomized, preexisting development interventions. Proc Natl Acad Sci USA
31 32 33	553		2010; 107 :22605–10. doi:10.1073/pnas.1008944107
34 35	554	6	Ercumen A, Arnold BF, Kumpel E, et al. Upgrading a Piped Water Supply from
36 37	555		Intermittent to Continuous Delivery and Association with Waterborne Illness: A Matched
38 39 40	556		Cohort Study in Urban India. PLOS Med 2015;12:e1001892.
41 42	557		doi:10.1371/journal.pmed.1001892
43 44 45	558	7	Fewtrell L, Kaufmann RB, Kay D, et al. Water, sanitation, and hygiene interventions to
46 47	559		reduce diarrhoea in less developed countries: a systematic review and meta-analysis.
48 49	560		Lancet Infect Dis 2005;5:42–52. doi:10.1016/S1473-3099(04)01253-8
50 51 52	561	8	Engell RE, Lim SS. Does clean water matter? An updated meta-analysis of water supply
53 54	562		and sanitation interventions and diarrhoeal diseases. Lancet 2013;381:S44.
55 56	563		doi:10.1016/S0140-6736(13)61298-2
57 58 59			

26

Page 27 of 41

1 2				
3 4	564	9	Clasen T, Bostoen K, Schmidt W, et al. Interventions to improve disposal of human	
5 6 7 8 9 10 11	565		excreta for preventing diarrhoea. Cochrane database Syst Rev Published Online First:	
	566		2010.http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007180.pub2/pdf/standar	rd
	567		(accessed 4 Jan2015).	
12 13	568	10	Clasen T, Schmidt W-P, Rabie T, et al. Interventions to improve water quality for	
14 15 16	569		preventing diarrhoea: systematic review and meta-analysis. BMJ 2007;334:782.	
17 18	570		doi:10.1136/bmj.39118.489931.BE	
19 20 21	571	11	Cairncross S, Hunt C, Boisson S, et al. Water, sanitation and hygiene for the prevention	ı of
22 23	572		diarrhoea. Int J Epidemiol 2010;39 Suppl 1:i193–205. doi:10.1093/ije/dyq035	
24 25	573	12	Clasen TF, Alexander KT, Sinclair D, et al. Interventions to improve water quality for	
26 27 28	574		preventing diarrhoea. Cochrane database Syst Rev 2015;10:CD004794.	
20 29 30	575		doi:10.1002/14651858.CD004794.pub3	
31 32 32	576	13	Routray P, Schmidt W-P, Boisson S, et al. Socio-cultural and behavioural factors	
33 34 35	577		constraining latrine adoption in rural coastal Odisha: an exploratory qualitative study.	
36 37	578		BMC Public Health 2015;15:880. doi:10.1186/s12889-015-2206-3	
38 39 40	579	14	Barnard S, Routray P, Majorin F, et al. Impact of Indian Total Sanitation Campaign on	
40 41 42	580		Latrine Coverage and Use: A Cross-Sectional Study in Orissa Three Years following	
43 44	581		Programme Implementation. PLoS One 2013;8. doi:10.1371/journal.pone.0071438	
45 46 47 48 49 50 51 52 53 54	582	15	Patil SR, Arnold BF, Salvatore AL, et al. The effect of India's total sanitation campaigr	1
	583		on defecation behaviors and child health in rural Madhya Pradesh: a cluster randomized	l
	584		controlled trial. <i>PLoS Med</i> 2014; 11 :e1001709. doi:10.1371/journal.pmed.1001709	
	585	16	Clasen T, Boisson S, Routray P, et al. Effectiveness of a rural sanitation programme on	
55 56	586		diarrhoea, soil-transmitted helminth infection, and child malnutrition in Odisha, India: a	ì
57 58 50				
60				27

1

2				
3 4	587		cluster-randomised trial. Lancet Glob Heal 2014;2:e645-53. doi:10.1016/S2214-	
5 6 7	588		109X(14)70307-9	
7 8 9	589	17	Eisenberg JNS, Trostle J, Sorensen RJD, et al. Towards a Systems Approach to Enteric	
10 11	590		Pathogen Transmission: From Individual Independence to Community Interdependence.	
12 13	591		Annu Rev Public Health 2013;33:239-57. doi:10.1016/j.micinf.2011.07.011.Innate	
14 15 16	592	18	Root GPM. Sanitation, Community Environments, and Childhoold Diarrhea in Rural	
17 18	593		Zimbabwe. J Heal Popul Nutr 2001;19:73–82.	
19 20	594	19	Bateman OM, Smith S. A Comparison of the Health Effects of Water Supply and	
21 22 23	595		Sanitation in Urban and Rural Guatemala. 1999.	
24 25	596	20	Huq A, Yunus M, Sohel SS, et al. Simple Sari Cloth Filtration of Water Is Sustainable and	nd
26 27 28	597		Continues to Protect Villagers from Cholera in Matlab, Bangladesh. <i>MBio</i> 2010;1:1–5.	
29 30	598		doi:10.1128/mBio.00034-10.Invited	
31 32	599	21	Bandura A. Self-Efficacy: The Exercise of Control. Worth Publishers 1997.	
33 34 35	600	22	UN Inter-agency Group for Child Mortality Estimation. Levels and trends in child	
36 37	601		mortality: Report 2015. 2015.	
38 39	602	23	World Health Organization. Estimated total deaths by cause, sex and WHO Member Star	te,
40 41 42	603		2008. Geneva, Switzerland: 2011.	
43 44	604	24	Lin A, Arnold BF, Afreen S, et al. Household environmental conditions are associated	
45 46	605		with enteropathy and impaired growth in rural Bangladesh. Am J Trop Med Hyg	
47 48 49	606		2013; 89 :130-7. doi:10.4269/ajtmh.12-0629	
50 51	607	25	Korpe PS, Petri WA. Environmental enteropathy: critical implications of a poorly	
52 53	608		understood condition. Trends Mol Med 2012;18:328-36.	
55 56	609		doi:10.1016/j.molmed.2012.04.007	
57 58				
59 60				28

1 2				
3 4	610	26	Guerrant RL, Oriá RB, Moore SR, et al. Malnutrition as an enteric infectious disease	with
5 6 7 8 9 10 11 12 13 14 15 16	611		long-term effects on child development. 2008;66:487-505. doi:10.1111/j.1753-	
	612		4887.2008.00082.x.Malnutrition	
	613	27	Crane RJ, Jones KDJ, Berkley JA. Environmental enteric dysfunction : An overview.	
	614		2015; 36 :76–87.	
14 15 16	615	28	Humphrey JH. Child undernutrition, tropical enteropathy, toilets, and handwashing.	
17 18 19 20 21 22 23 24 25 26 27 28	616		Lancet 2009; 374 :1032–5. doi:10.1016/S0140-6736(09)60950-8	
	617	29	Mbuya MNN, Humphrey JH. Preventing environmental enteric dysfunction through	
	618		improved water, sanitation and hygiene: An opportunity for stunting reduction in	
	619		developing countries. Matern Child Nutr 2015;12:1-15. doi:10.1111/mcn.12220	
	620	30	Budge PJ, Griffin MR, Edwards KM, et al. Impact of home environment intervention	s on
29 30	621		the risk of influenza-associated ARI in Andean children: observations from a prospec	tive
31 32 33 34 35	622		household-based cohort study. PLoS One 2014;9:e91247.	
	623		doi:10.1371/journal.pone.0091247	
36 37	624	31	Aiello AE, Coulborn RM, Perez V, et al. Effect of hand hygiene on infectious disease	risk :
38 39	625		in the community setting: a meta-analysis. Am J Public Health 2008;98:1372–81.	
40 41 42	626		doi:10.2105/AJPH.2007.124610	
42 43 44 45 46 47 48 49	627	32	Caruso BA, Sevilimedu V, Fung IC-H, et al. Gender disparities in water, sanitation, a	nd
	628		global health. Lancet (London, England) 2015;386:650-1. doi:10.1016/S0140-	
	629		6736(15)61497-0	
50 51 52	630	33	Sahoo KC, Hulland KR, Caruso B a., et al. Sanitation-related psychosocial stress: a	
52 53 54	631		grounded theory study of women across the life-course in Odisha, India. Soc Sci Med	
55 56	632		2015; 139 :80-9. doi:10.1016/j.socscimed.2015.06.031	
57 58 59				
60				2

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

1 2				
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 21	633	34	Hulland KRS, Chase RP, Caruso BA, et al. Sanitation, stress, and life stage: A systematic	tic
	634		data collection study among women in Odisha, India. PLoS One 2015;10.	
	635		doi:10.1371/journal.pone.0141883	
	636	35	World Health Organization/The United Nations Children's Fund (UNICEF). Ending	
	637		Preventable Child Deaths from Pneumonia and Diarrhoea by 2025: The integrated Glob	oal
	638		Action Plan for Pneumonia and Diarrhoea (GAPPD). 2013.	
	639	36	Gram Vikas. Annual Report 2013-2014. 2014.	
	640	37	Duflo E, Greenstone M, Guiteras R, et al. Toilets Can Work : Short and Medium Run	
22 23	641		Health Impacts of Addressing Complementarities and Externalities in Water and	
24 25 26 27 28	642		Sanitation.	
	643	38	Rosa G, Clasen T. Estimating the scope of household water treatment in low- and	
29 30	644		medium-income countries. Am J Trop Med Hyg 2010;82:289–300.	
31 32 33	645		doi:10.4269/ajtmh.2010.09-0382	
33 34 35	646	39	International Institute for Population Sciences (IIPS). District Level Household and	
36 37	647		Facility Survey (DLHS-3), 2007-08: India, Orissa. Mumbai: 2010.	
38 39 40	648	40	Brady H, Caughey D, Dehejia R, et al. Genetic Matching for Estimating Causal Effects	:
41 42	649		2012.	
43 44 45	650	41	Sekhon JS. "Multivariate and Propensity Score Matching Software. J Stat Softw	
45 46 47	651		2011;42.http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Multivariate	;+a
48 49	652		nd+Propensity+Score+Matching#9 (accessed 30 May2014).	
50 51 52	653	42	Austin PC. Balance diagnostics for comparing the distribution of baseline covariates	
53 54	654		between treatment groups in propensity-score matched samples. Stat Med 2009;28:3083	3–
55 56	655		107. doi:10.1002/sim	
57 58 59				
60				30

Page 31 of 41

BMJ Open

망	
ج	
မှ	
en:	
fire	
st p	
du	
lish	
led	
as	
10	
136	
br	
ŋj	
pe	
- -2	
2	
6-0	
12	
71	
00	
 ധ	
≤a	
<u>c</u>	
20	
710	
Ň	
nlo	
ad	
ed	
fro	
В	
ŧ	
<u> </u>	
B	
en.	
bm	
j.c	
m	
0	
0	
otc	
be	
Ň	
29, 2	
29, 202	
29, 2024 t	
· 29, 2024 by (
. 29, 2024 by gu∈	
[.] 29, 2024 by guest.	
[.] 29, 2024 by guest. Pr	
29, 2024 by guest. Prote	
29, 2024 by guest. Protecte	
29, 2024 by guest. Protected t	
29, 2024 by guest. Protected by c	
29, 2024 by guest. Protected by cop	
29, 2024 by guest. Protected by copyrit	
29, 2024 by guest. Protected by copyright	

1 2				
3 4	656	43	Rubin DB. Using propensity scores to help design observational studies: Application to	
5 6 7	657		the tobacco litigation. Health Serv Outcomes Res Methodol 2002;2:169-88.	
7 8 9	658	44	Harder VS, Stuart EA, Anthony JC. Propensity score techniques and the assessment of	
10 11	659		measured covariate balance to test causal associations in psychological research. Psychol	ļ
12 13	660		Methods 2010;15:997-1003. doi:10.1016/j.biotechadv.2011.08.021.Secreted	
14 15 16	661	45	Faul F, Erdfelder E, Buchner A, et al. Statistical power analyses using G*Power 3.1: tests	s
17 18	662		for correlation and regression analyses. Behav Res Methods 2009;41:1149-60.	
19 20	663		doi:10.3758/BRM.41.4.1149	
21 22 23	664	46	Wolf J, Prüss-Ustün A, Cumming O, et al. Systematic review: Assessing the impact of	
24 25	665		drinking water and sanitation on diarrhoeal disease in low- and middle-income settings:	
26 27 28	666		Systematic review and meta-regression. Trop Med Int Heal 2014;19:928-42.	
29 30	667		doi:10.1111/tmi.12331	
31 32	668	47	Carl Hartung YAWBALCTGB. Open Data Kit: Tools to Build Information Services for	
33 34 35	669		Developing Regions. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.176.8017	
36 37	670	48	Feikin DR, Audi a., Olack B, et al. Evaluation of the optimal recall period for disease	
38 39	671		symptoms in home-based morbidity surveillance in rural and urban Kenya. Int J	
40 41 42	672		<i>Epidemiol</i> 2010; 39 :450–8. doi:10.1093/ije/dyp374	
43 44	673	49	Arnold BF, Galiani S, Ram PK, et al. Optimal Recall Period for Caregiver-reported Illnes	SS
45 46 47	674		in Risk Factor and Intervention Studies: A Multicountry Study. Am J Epidemiol	
48 49	675		2013; 177 :361-70. doi:10.1093/aje/kws281	
50 51	676	50	World Health Organization. Integrated Management of Childhood Illness: Chart Booklet	•
52 53 54	677	51	Cogill B. Anthropometric indicators measurement guide. Revised edition. Washington,	
55 56	678		DC, Acad Educ Dev [AED], Food Nutr Tech Assist Proj	
57 58 50				
60				31

BMJ Open: first pu
blished as 10.1136/k
mjopen-2016-01271
9 on 31 March 2017
 Downloaded from
http://bmjopen.bmj.
com/ on October 29
9, 2024 by guest. Pr
otected by copyrigh

1 2				
- 3 4	679		2003;:92.http://www.developmentgateway.org/download/202582/anthro_2003.pdf	
5 6 7	680	52	de Onis M, Onyango AW, Van den Broeck J, et al. Measurement and standardization	
7 8 9	681		protocols for anthropometry used in the construction of a new international growth	
10 11	682		reference. Food Nutr Bull 2004;25:S27–36.	
12 13	683	53	Truant a. L, Elliott SH, Kelly MT, et al. Comparison of formalin-ethyl ether	
14 15 16	684		sedimentation, formalin-ethyl acetate sedimentation, and zinc sulfate flotation technique	S
17 18	685		for detection of intestinal parasites. J Clin Microbiol 1981;13:882-4.	
19 20	686	54	Kosek M, Haque R, Lima A, et al. Fecal markers of intestinal inflammation and	
21 22 23	687		permeability associated with the subsequent acquisition of linear growth deficits in	
24 25	688		infants. Am J Trop Med Hyg 2013;88:390–6. doi:10.4269/ajtmh.2012.12-0549	
26 27 28	689	55	Crump J a, Mendoza CE, Priest JW, et al. Comparing serologic response against enteric	
29 30	690		pathogens with reported diarrhea to assess the impact of improved household drinking	
31 32	691		water quality. Am J Trop Med Hyg 2007;77:136–41.	
33 34 35	692	56	Steinberg EB, Mendoza CE, Glass R, et al. Prevalence of Infection with Waterbourne	
36 37	693		Pathogens: a Seroepidemiologic Study in Children 6-36 Months Old in San Juan	
38 39 40	694		Sacatepquez, Guatemala. 2004;70:83–8.	
40 41 42	695	57	Brussow H, Sidoti J, Link H, et al. Age-specific prevalence of antibody to enterotoxigen	ic
43 44	696		Escherichia coli in Ecuadorian and German children. J Infect Dis 1990;162:974–7.	
45 46 47	697	58	Khanna B, Cutler A, Israel N, et al. Use caution with serologic testing for Helicobacter	
48 49	698		pylori infection in children. J Infect Dis 1998;178:460-5.	
50 51	699	59	Lindkvist P, Asrat D, Nilsson I. Age at acquisition of Helicobacter pylori infection:	
52 53 54	700		comparison of a high and a low prevalence country. <i>Scand J Infect Dis</i> 1996; 28 :181–4.	
55 56	701	60	Ungar B, Gilman R, Lanata C, et al. Seroepidemiology of Cryptosporidium infection in	
57 58 50				
60				32

1 2				
3 4	702		two Latin American populations. J Infect Dis 1988;157:551-6.	
5 6 7	703	61	Vitral C, Yoshida C, Lemos E, et al. Age-specific prevalence of antibodies to hepatitis A	L
7 8 9	704		in children and adolescents from Rio de Janeiro, Brazil, 1978 and 1995: relationship of	
10 11	705		prevalence to environmental factors. Mem Inst Oswaldo Cruz 1998;93:1-5.	
12 13	706	62	Lammie PJ, Moss DM, Brook Goodhew E, et al. Development of a new platform for	
14 15 16	707		neglected tropical disease surveillance. Int J Parasitol 2012;42:797-800.	
17 18	708		doi:10.1016/j.ijpara.2012.07.002	
19 20	709	63	Centers for Disease Control and Prevention. Laboratory Methods for the Diagnosis of	
21 22 23	710		Vibio cholerae. Atlanta, Georgia: 1999.	
24 25	711	64	Centers for Disease Control and Prevention. Isolation and Identification of Shigella.	
26 27 28	712		Atlanta, Georgia:	
29 30	713	65	United States Environmental Protection Agency. Coliforms—Total and E. coli, Membra	ne
31 32	714		Filtration Method 10029. 1999.	
33 34 35	715	66	Gronewold AD, Borsuk ME, Wolpert RL, et al. An Assessment of Fecal Indicator	
36 37	716		Bacteria-Based Water Quality Standards. Environ Sci Technol 2008;42:4676-82.	
38 39	717		doi:10.1021/es703144k	
40 41 42	718	67	Gruber JS, Ercumen A, Colford JM. Coliform bacteria as indicators of diarrheal risk in	
43 44	719		household drinking water: systematic review and meta-analysis. PLoS One	
45 46 47	720		2014; 9 :e107429. doi:10.1371/journal.pone.0107429	
48 49	721	68	Levy K, Nelson KL, Hubbard A, et al. Rethinking indicators of microbial drinking water	•
50 51	722		quality for health studies in tropical developing countries: case study in northern coastal	
52 53 54	723		Ecuador. Am J Trop Med Hyg 2012;86:499-507. doi:10.4269/ajtmh.2012.11-0263	
55 56 57 58 59	724	69	Livio S, Strockbine N a, Panchalingam S, et al. Shigella Isolates From the Global Enterio	с
60				33

Page 34 of 41

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

BMJ Open

2				
3 4	725		Multicenter Study Inform Vaccine Development. Clin Infect Dis 2014;59.	
5 6	726		doi:10.1093/cid/ciu468	
7 8 9	727	70	Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal dise	ease
10 11	728		in infants and young children in developing countries (the Global Enteric Multicenter	
12 13	729		Study, GEMS): a prospective, case-control study. Lancet 2013;382:209-22.	
14 15 16	730		doi:10.1016/S0140-6736(13)60844-2	
17 18	731	71	Kanungo S, Sah BK, Lopez a. L, et al. Cholera in India: An analysis of reports, 1997-	
19 20	732		2006. Bull World Health Organ 2010;88:185-91. doi:10.2471/BLT.09.073460	
21 22 23	733	72	Cellini SR, Kee JE. Cost-Effectiveness and Cost-Benefit Analysis. In: Wholey JS, Hat	ry
24 25	734		HP, Newcomer KE, eds. Handbook of Practical Program Evaluation. San Francisco: :	
26 27	735		John Wiley & Sons, Inc. 2010.	
28 29 30	736	73	Edejer TT, Baltussen R, Adam T, et al. Making Choices in Health: WHO Guide to Cos	st-
31 32	737		Effectiveness Analysis. 2003.	
33 34	738	74	Malapit HJ, Sproule K, Kovarik C, et al. Measuring progress toward empowerment	
35 36 37	739		Women's Empowerment in Agriculture Index: Baseline Report. <i>IfpriOrg</i> 2014;:1–60.	
38 39	740	75	Black RE, Victora CG, Walker SP, et al. Maternal and child undernutrition and	
40 41 42	741		overweight in low-income and middle-income countries. Lancet 2013;382:427–51.	
42 43 44	742		doi:10.1016/S0140-6736(13)60937-X	
45 46	743	76	Smith LC, Ramakrishnan U, Ndiaye A, et al. The Importance of Women's Status for	
47 48 40	744		Child Nutrition in Developing Countries. 2003.	
49 50 51	745		http://www.ifpri.org/publication/importance-womens-status-child-nutrition-developing	<u>g</u> -
52 53	746		countries	
54 55	747	77	Sumpter C, Torondel B. A Systematic Review of the Health and Social Effects of	
วง 57 58				
59 60				34

2				
3 4	748		Menstrual Hygiene Management. PLoS One 2013;8:e62004.	
5 6 7	749		doi:10.1371/journal.pone.0062004	
7 8 9	750	78	Dasgupta A, Sarkar M. Menstrual Hygiene: How Hygienic is the Adolescent Girl? India	an
10 11	751		J Community Med 2008;33:77-80. doi:10.4103/0970-0218.40872	
12 13	752	79	Das P, Baker KK, Dutta A, et al. Menstrual Hygiene Practices, WASH Access and the	
14 15 16	753		Risk of Urogenital Infection in Women from Odisha, India. PLoS One 2015;10:e01307	77.
17 18	754		doi:10.1371/journal.pone.0130777	
19 20 21	755	80	van Eijk AM, Sivakami M, Thakkar MB, et al. Menstrual hygiene management among	
21 22 23	756		adolescent girls in India: a systematic review and meta-analysis. BMJ Open	
24 25	757		2016;6:e010290. doi:10.1136/bmjopen-2015-010290	
26 27 28	758	81	Caruso B. Sanitation Insecurity: Definition, Measurement, and Associations with	
29 30	759		Women's Mental Health in Rural Orissa, India.	
31 32	760		2015.http://pid.emory.edu/ark:/25593/rfhnt	
33 34 35	761	82	Peal A, Evans B, Blackett I, et al. Fecal sludge management (FSM): analytical tools for	
36 37	762		assessing FSM in cities. J Water, Sanit Hyg Dev 2014;4:371.	
38 39	763		doi:10.2166/washdev.2014.139	
40 41 42	764	83	Peal A, Evans B, Blackett I, et al. Fecal Sludge Management: a comparative analysis of	Ĩ
43 44	765		12 cities. J Water, Sanit Hyg Dev 2014;4:563–75.	
45 46 47	766	84	Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: Methods,	
47 48 49	767		interpretation and bias. Int J Epidemiol 2013;42:1511-9. doi:10.1093/ije/dyt127	
50 51	768	85	McNutt LA, Wu C, Xue X, et al. Estimating the relative risk in cohort studies and clinic	cal
52 53 54	769		trials of common outcomes. Am J Epidemiol 2003;157:940-3. doi:10.1093/aje/kwg074	
55 56 57 58	770	86	Thompson ML, Myers JE, Kriebel D. Prevalence odds ratio or prevalence ratio in the	
59 60				35

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

BMJ Open

2	
3	771
4 5	
6	772
7	
8	773
9 10	
10	774
12	
13	775
14	
15	
17	
18	
19	
20	
21	
23	
24	
25	
20 27	
28	
29	
30	
31	
33	
34	
35	
36 27	
38	
39	
40	
41	
42 43	
44	
45	
46	
47 48	
49	
50	
51	
52 53	
53 54	
55	
56	
57 59	
50 59	
60	

- analysis of cross sectional data: what is to be done? *Occup Environ Med* 1998;**55**:272–7.
- doi:10.1136/oem.55.4.272
- 773 87 World Health Organization. WHO definition of health.
 - http://www.who.int/about/definition/en/print.html (accessed 26 Apr2016). at

Figure 1. Study sites in Ganjam and Gajapati districts, Odisha, India with intervention villages in black and control villages in white. Inset shows location of districts in India. Figure 1

215x279mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2016-012719 on 31 March 2017. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

Figure 2. Restriction, matching and exclusion process for selection of intervention and control villages (1), and timeline for study rounds and outcome data collection (2).

Figure 2

254x190mm (300 x 300 DPI)

⊿0

BMJ Open

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was	2	
		found		
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5	
Objectives	3	State specific objectives, including any prespecified hypotheses	7	
Methods				
Study design	4	Present key elements of study design early in the paper	8	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure,	8	
		follow-up, and data collection		
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of	8-11	
		participants. Describe methods of follow-up		
		Case-control study—Give the eligibility criteria, and the sources and methods of case		
		ascertainment and control selection. Give the rationale for the choice of cases and controls		
		Cross-sectional study-Give the eligibility criteria, and the sources and methods of selection of		
		participants		
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and	8-11	
		unexposed		
		Case-control study—For matched studies, give matching criteria and the number of controls per		
		case		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers.	12-19	
		Give diagnostic criteria, if applicable		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment	12-19	
measurement		(measurement). Describe comparability of assessment methods if there is more than one group		
Diag	9	Describe any efforts to address potential sources of bias	NA	
Blas				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	NA
Statistical	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	NA
methods			(overview
			19-20)
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	NA
		Case-control study—If applicable, explain how matching of cases and controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	NA
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	NA
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) <i>Cohort study</i> —Summarise follow-up time (eg. average and total amount)	NA
Outcome data	15*	<i>Cohort study</i> —Report numbers of outcome events or summary measures over time	NA
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision	NA
		(eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time	NA
		period	
Continued on next pag	je	•	
		_	
		2	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

iscussion ey results			INA
ey results			
	18	Summarise key results with reference to study objectives	NA
imitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss	20-21
		both direction and magnitude of any potential bias	
terpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of	NA
		analyses, results from similar studies, and other relevant evidence	
eneralisability	21	Discuss the generalisability (external validity) of the study results	NA
ther informat	ion		
unding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the	22
		original study on which the present article is based	
ote: An Explan necklist is best ntp://www.anna	nation used i ls.org	and Elaboration article discusses each checklist item and gives methodological background and published on conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedi , and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at ww	examples of transparent reporting. The STROBE icine.org/, Annals of Internal Medicine at vw.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml