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AbstrACt
Objectives We validate a machine learning-based 
sepsis-prediction algorithm (InSight) for the detection and 
prediction of three sepsis-related gold standards, using 
only six vital signs. We evaluate robustness to missing 
data, customisation to site-specific data using transfer 
learning and generalisability to new settings.
Design A machine-learning algorithm with gradient 
tree boosting. Features for prediction were created from 
combinations of six vital sign measurements and their 
changes over time.
setting A mixed-ward retrospective dataset from the 
University of California, San Francisco (UCSF) Medical 
Center (San Francisco, California, USA) as the primary 
source, an intensive care unit dataset from the Beth 
Israel Deaconess Medical Center (Boston, Massachusetts, 
USA) as a transfer-learning source and four additional 
institutions’ datasets to evaluate generalisability.
Participants 684 443 total encounters, with 90 353 
encounters from June 2011 to March 2016 at UCSF.
Interventions None.
Primary and secondary outcome measures Area under 
the receiver operating characteristic (AUROC) curve for 
detection and prediction of sepsis, severe sepsis and 
septic shock.
results For detection of sepsis and severe sepsis, InSight 
achieves an AUROC curve of 0.92 (95% CI 0.90 to 0.93) 
and 0.87 (95% CI 0.86 to 0.88), respectively. Four hours 
before onset, InSight predicts septic shock with an AUROC 
of 0.96 (95% CI 0.94 to 0.98) and severe sepsis with an 
AUROC of 0.85 (95% CI 0.79 to 0.91).
Conclusions  InSight outperforms existing sepsis scoring 
systems in identifying and predicting sepsis, severe sepsis 
and septic shock. This is the first sepsis screening system 
to exceed an AUROC of 0.90 using only vital sign inputs. 
InSight is robust to missing data, can be customised to 
novel hospital data using a small fraction of site data and 
retains strong discrimination across all institutions.

IntrODuCtIOn 
Sepsis is a major health crisis and one of 
the leading causes of death in the USA.1 
Approximately 750 000 hospitalised patients 

are diagnosed with severe sepsis in the USA 
annually, with an estimated mortality rate 
of up to one-third.2 3 The cost burden of 
sepsis is disproportionately high, with esti-
mated costs of US$20.3 billion annually, or 
US$55.6 million per day in US hospitals.4 
Additionally, the average hospital stay for 
sepsis is twice as expensive as other condi-
tions,5 and the average incidence of severe 
sepsis is increasing by approximately 13% 
per year.6 Early diagnosis and treatment have 
been shown to reduce mortality and associ-
ated costs.7–9 Despite clear benefits, early and 
accurate sepsis detection remains a difficult 
clinical problem.

Sepsis has been defined as a dysregulated 
host response to infection. In practice, sepsis 
can be challenging to recognise because of 
the heterogeneity of the host response to 
infection and the diversity of possible infec-
tious insult. Sepsis has been traditionally 
recognised as two or more systemic inflam-
matory response syndrome (SIRS)10 criteria 
together with a known or suspected infec-
tion; progressing to severe sepsis, in the event 
of organ dysfunction and finally to septic 
shock, which additionally includes refractory 

strengths and limitations of this study

 ► Machine learning is applied to the detection and 
prediction of three separate sepsis standards in the 
emergency department, general ward and intensive 
care settings.

 ► Only six commonly measured vital signs are used as 
input for the algorithm.

 ► The algorithm is robust to randomly missing data.
 ► Transfer learning successfully leverages large 
dataset information to a target dataset.

 ► The retrospective nature of the study does not 
predict clinician reaction to information.
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hypotension.10 However, ongoing debates over sepsis defi-
nitions and clinical criteria, as evidenced by the recent 
proposed redefinitions of sepsis,11 underscore a funda-
mental difficulty in the identification and accurate diag-
nosis of sepsis.

Various rule-based disease-severity scoring systems 
are widely used in hospitals in an attempt to identify 
patients with sepsis. These scores, such as the Modified 
Early Warning Score (MEWS),12 the SIRS criteria13 and 
the Sequential Organ Failure Assessment (SOFA),14 are 
manually tabulated at the bedside and lack accuracy in 
sepsis diagnosis. However, the increasing prevalence 
of electronic health records (EHRs) in clinical settings 
provides an opportunity for enhanced patient moni-
toring and increased early detection of sepsis.

This study validates a machine-learning algorithm, 
InSight, which uses only six vital signs taken directly from 
the EHR, in the detection and prediction of sepsis, severe 
sepsis and septic shock in a mixed-ward population at 
the University of California, San Francisco (UCSF). We 
investigate the effects of induced data sparsity on InSight 
performance and compare all results with other scores 
that are commonly used in the clinical setting for the 
detection and prediction of sepsis. We additionally train 
and test the algorithm for severe sepsis detection on data 
from Stanford Medical Center and three community 
hospitals in order to better estimate its expected clinical 
performance. Furthermore, we apply a transfer-learning 
scheme to customise a Multiparameter Intelligent Moni-
toring in Intensive Care (MIMIC)-III-trained algorithm to 
the UCSF patient population using a minimal amount of 
UCSF-specific data.

MethODs
Datasets
We used a dataset provided by the UCSF Medical Center 
representing patient stays from June 2011 to March 2016 
in all experiments. The UCSF dataset contains 17 467 987 
hospital encounters, including inpatient and outpatient 
visits to all units within the UCSF medical system. The 
data were deidentified to comply with the Health Insur-
ance Portability and Accountability Act (HIPAA) Privacy 
Rule. For transfer learning, we used the MIMIC-III v1.3 
dataset, compiled from the Beth Israel Deaconess Medical 
Center (BIDMC) in Boston, Massachusetts, between 2001 
and 2012, composed of 61 532 intensive care unit (ICU) 
stays.15 This database is a publicly available database 
constructed by researchers at Massachusetts Institute of 
Technology’s Laboratory for Computational Physiology, 
and the data were also deidentified in compliance with 
HIPAA. Additionally, we trained and tested the algorithm 
for severe sepsis detection on data from Stanford Medical 
Center (Stanford, California, USA),16 Oroville Hospital 
(Oroville, California, USA), Bakersfield Heart Hospital 
(BHH; Bakersfield, California, USA) and Cape Regional 
Medical Center (CRMC; Cape May Courthouse, New 
Jersey, USA). Details on these datasets are included in 

the online supplementary tables 1 and 2. Data collection 
for all datasets did not impact patient safety. Therefore, 
this study constitutes non-human subjects research, which 
does not require institutional review board approval.

Data extraction and imputation
The data were provided in the form of comma-sep-
arated-value files and stored in a PostgreSQL17 data-
base. Custom Structure Query Language queries were 
written to extract measurements and patient outcomes 
of interest. The measurement files were then binned 
by hour for each patient. To be included, patients were 
required to have at least one of each type of measurement 
recorded during the encounter. If a patient did not have 
a measurement in a given hour, the missing measurement 
was filled in using carry-forward imputation. This impu-
tation method applied the patient’s last measured value 
to the following hour (a causal procedure). In the case 
of multiple measurements within an hour, the mean was 
calculated and used in place of an individual measure-
ment. After the data were processed and imputed in 
Python,18 they were used to train the InSight classifier and 
test its predictions at sepsis onset and at fixed time points 
prior to onset.

Gold standards
In this study, we tested InSight’s performance according 
to various gold standards (clinical indications). We inves-
tigated InSight’s ability to predict and detect sepsis, severe 
sepsis and septic shock. Further, we compared InSight’s 
performance to SIRS, MEWS and SOFA, for each of the 
following gold standards. For training and testing the 
algorithm, we conservatively identified each septic condi-
tion by requiring that the International Classification of 
Diseases (ICD) 9 code corresponding to the diagnosis 
was coded for each positive case, in addition to meeting 
the clinical requirements for the definition of each septic 
standard as defined below.

Sepsis
The sepsis gold standard was determined using the 2001 
consensus sepsis definition10 : 'the presence of two or 
more SIRS criteria paired with a suspicion of infection'. 
To identify a case as positive for sepsis, we required ICD-9 
code 995.91. The onset time was defined as the first time 
two or more SIRS criteria were met within the same hour. 
SIRS criteria are defined as:

 ► heart rate >90 beats per minute
 ► body temperature >38°C or <36°C
 ► respiratory rate >20 breaths/min or PaCO2 (alveolar 

carbon dioxide tension) <32 mm Hg
 ► white cell count >12 x 109 cells/L or <4 x 109 cells/L.10

Severe sepsis
The severe sepsis gold standard used the definition of 
severe sepsis as ‘organ dysfunction caused by sepsis’ which 
can be represented by one or more of the criteria below, 
and identified for patients with the severe sepsis ICD-9 
code 995.92. We assigned the severe sepsis onset time to 
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be the first instance during which two SIRS criteria, as 
described in the Sepsis section, and one of the following 
organ dysfunction criteria were met within the same hour:

 ► lactate >2 mmol/L
 ► systolic blood pressure <90 mm Hg
 ► urine output <0.5 mL/kg, over 2 hours, prior to organ 

dysfunction after fluid resuscitation
 ► creatinine >2 mg/dL without renal insufficiency or 

chronic dialysis
 ► bilirubin >2 mg/dL without having liver disease or 

cirrhosis
 ► platelet count <100 000 µL
 ► international normalised ratio >1.5
 ► arterial oxygen tension (PaO2)/fractional inspired 

oxygen (FiO2) <200 in addition to pneumonia, <250 
with acute kidney injury but without pneumonia.

Septic shock
We identified as positive cases for septic shock those 
patients who received the septic shock ICD-9 code 785.52 
and additionally demonstrated the following conditions:

 ► systolic blood pressure of <90 mm Hg, defined as 
hypotension, for at least 30 min and

 ► who were resuscitated with ≥20 mL/kg over a 24-hour 
period, or

 ► who received ≥1200 mL in total fluids.19

The onset time was defined as the first hour when 
either the hypotension or the fluid resuscitation criterion 
was met.

Calculating comparators
We compared InSight predictions for each gold standard 
to three common patient deterioration scoring systems: 
SIRS, SOFA and MEWS. Area under the receiver oper-
ating characteristic (AUROC) curve, sensitivity and spec-
ificity were compared across all prediction models. The 
SIRS criteria, as explained in the sepsis definition, were 
evaluated independently of the suspicion of infection. 
To calculate the SOFA score, we collected each patient’s 
PaO2/FiO2, Glasgow Coma Score, mean arterial blood 
pressure or administration of vasopressors, bilirubin 
level, platelet counts and creatinine level. Each of the 
listed measurements is associated with a SOFA score of 
1–4, based on severity level, as described by Vincent et al.14 
After receiving a score for each of the six organ dysfunc-
tion categories, the overall SOFA score was computed as 
the sum of the category scores and used as a comparator 
to InSight. Finally, the MEWS score, which ranges from 
0 (normal) to 14 (high risk of deterioration), was deter-
mined by tabulating subscores for heart rate, systolic blood 
pressure, respiratory rate, temperature and Glasgow 
Coma Score. We used the subscoring system presented in 
Fullerton et al20 to compute each patient’s MEWS score.

Measurements and patient inclusion
In order to generate InSight scores, patient data were 
analysed from each of the following six clinical vital sign 
measurements: systolic blood pressure, diastolic blood 

pressure, heart rate, respiratory rate, peripheral capillary 
oxygen saturation and temperature. We used only vital 
signs, which are frequently available and routinely taken 
in the ICU, emergency department (ED) and floor units. 
Patient data were used from the course of a patient’s 
hospital encounter, regardless of the unit the patient was 
in when the data were collected.

All patients over the age of 18 years were considered 
for this study. For a given encounter, if the patient was 
admitted to the hospital from the ED, the start of the ED 
visit is where the analysis began. Patients in our final data-
sets were required to have at least one measurement for 
each of the six vital signs. In order to ensure enough data 
to accurately characterise sepsis predictions at 4 hours 
preonset, we further limited the study group to exclude 
patients whose septic condition onset time was within 
7 hours after the start of their record, which was either 
the time of admission to the hospital or the start of their 
ED visit; the latter was applicable only if the patient was 
admitted through the ED. A smaller window to sepsis 
onset time would have resulted in insufficient testing data 
to make 4-hour prediction possible in some cases, which 
would inappropriately affect performance metrics such as 
sensitivity and specificity. Patients with sepsis onset after 
2000 hours postadmission were also excluded, to limit the 
data-analysis matrix size. The final UCSF dataset included 
90 353 patients (figure 1), and the MIMIC-III dataset 
contained 21 604 patients, following the same inclusion 
criteria. Inclusion criteria and final inclusion numbers 
for the Stanford, Oroville, BHH and CRMC datasets are 
included in online supplementary table 1.

After patient exclusion, our final group of UCSF 
patients was composed of 55% women and 45% men with 
a median age of 55 years. The median hospital length 
of stay was 4 days, IQR 2–6. Of the 90 353 patients, 1179 
were found to have sepsis (1.30%), 349 were identified as 
having severe sepsis without shock (0.39%) and 614 were 
determined to have septic shock (0.68%). The in-hospital 
mortality rate was 1.42%. Patient encounters spanned a 
variety of wards. The most common units represented in 
our study were perioperative care, the ED, the neurosci-
ences department and cardiovascular and thoracic transi-
tional care. In the MIMIC-III dataset, approximately 44% 
of patients were women and 56% were men. Stays were 
typically shorter in this dataset, since each encounter 
included only an ICU stay. The median length of stay was 
2 days. Furthermore, due to the nature of intensive care, 
there was a higher prevalence of sepsis (1.91%), severe 
sepsis (2.82%) and septic shock (4.36%). A full summary 
of baseline characteristics for both datasets is presented 
in table 1. Full demographic information for the Stan-
ford, Oroville, BHH and CRMC datasets is provided in 
online supplementary table 2.

Feature construction
We minimally processed raw vital sign data to generate 
features. Following EHR data extraction and imputa-
tion, we obtained 3-hourly values for each of the six 
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vital sign measurement channels from that hour, the 
hour prior and 2 hours prior. We also calculated two 
difference values between the current hour and the 
prior hour, and between the prior hour and the hour 
before that. We concatenated these five values from 
each vital sign into a causal feature vector x with 30 
elements (five values from each of the six measurement 
channels).

Machine learning
We used gradient tree boosting to construct our classi-
fier. Gradient tree boosting is an ensemble technique 
which combines the results from multiple weak deci-
sion trees in an iterative fashion. Each decision tree 
was built by discretising features into two categories. 
For example, one node of the decision tree might have 
stratified a patient based on whether their respiratory 
rate was greater than 20 breaths per minute, or not. 
Depending on the answer for a given patient, a second, 
third and so on, vital sign may be checked. A risk score 

was generated for the patient based on their path along 
the decision tree. We limited each tree to split no more 
than six times; no more than 1000 trees were aggre-
gated in the iteration through gradient boosting to 
generate a robust risk score. Training was performed 
separately for each distinct task and prediction window, 
and observations were accordingly labelled positive for 
model fitting for each specific prediction task. Patient 
measurements were not used after the onset of a posi-
tive clinical indication.

We performed 10-fold cross-validation to validate 
InSight’s performance and minimise potential model 
overfit. We randomly split the UCSF dataset into a 
training set, composed of 80% of UCSF’s encounters, 
and an independent test set with the remaining 20% of 
encounters. Of the training set, data were divided into 
10 groups, nine of which were used to train InSight, and 
one of which was used to validate. After cycling through 
all combinations of training and validation sets, we then 
tested each of the 10 models on the independent test 
set. Mean performance metrics were calculated based 
on these 10 models. For severe sepsis detection at the 
time of onset on each of Stanford, Oroville, BHH and 
CRMC datasets, we performed fourfold cross-validation 
of the model.

Additionally, we trained and validated InSight’s 
performance in identifying sepsis, severe sepsis and 
septic shock after removing all features which were used 
in our gold standard definitions for each condition. 
This resulted in the removal of vital sign SIRS criteria 
measurements for sepsis and severe sepsis predictions, 
and the removal of systolic and diastolic blood pressure 
measurements for septic shock. We also trained and 
validated the algorithm for each of the three gold stan-
dards for randomly selected, upsampled and downs-
ampled subpopulations with positive class prevalence 
between 0% and 100%.

Missing data
After assessing InSight’s performance on complete data-
sets, we used a random deletion process to simulate 
the algorithm’s robustness to missing measurements. 
Individual measurements from the test set were deleted 
according to a probability of deletion, P. We set P=(0, 
0.1, 0.2, 0.4 and 0.6) for each of our missing data exper-
iments and tested the InSight algorithm on the sparse 
datasets.

Transfer learning
To evaluate InSight’s performance on a minimal amount 
of UCSF data, we used a transfer-learning approach.21 
There are clear dissimilarities in patient demographics, 
clinical characteristics and average measurement 
frequencies between the UCSF and MIMIC-III data-
sets (see table 1). Partially this is because the UCSF 
data involves a variety of hospital wards, whereas the 
MIMIC-III dataset provides only measurements taken in 
the ICU. We sought to determine improved performance 

Figure 1 Patient inclusion flow diagram for the UCSF 
dataset. UCSF, University of California, San Francisco.

 on N
ovem

ber 3, 2023 by guest. P
rotected by copyright.

http://bm
jopen.bm

j.com
/

B
M

J O
pen: first published as 10.1136/bm

jopen-2017-017833 on 26 January 2018. D
ow

nloaded from
 

http://bmjopen.bmj.com/


 5Mao Q, et al. BMJ Open 2018;8:e017833. doi:10.1136/bmjopen-2017-017833

Open Access

metrics on the UCSF target dataset, when the algorithm 
is primarily trained on MIMIC-III. Using MIMIC-III 
data as the source, and UCSF as the target, we trained 
the InSight classifier according to the severe sepsis gold 
standard. Variable amounts of UCSF training data were 
incrementally added to the MIMIC-III training dataset, 
and the resulting model was then validated on the sepa-
rate UCSF test dataset. Specifically, we left 50% of the 
UCSF patients as test data, and we randomly selected 
different fractions of the remaining UCSF data and 
combined them with the entire MIMIC-III dataset as 
the training data. For each fraction used, we trained 

100 models with different random relative weights on 
the UCSF and MIMIC-III training data. Then, the mean 
and SD of AUROC values for each of these models were 
calculated on 20 randomly sampled sets, and the model 
with the highest mean AUROC value among these 100 
was used.

results
InSight’s performance on the UCSF data set with respect 
to MEWS, SOFA and SIRS is summarised in figure 2A–C. 
Figure 2A–C demonstrate InSight’s ability to accurately 

Figure 2 ROC curves for InSight and common scoring systems at the time of (A) sepsis onset, (B) severe sepsis onset and 
(C) 4 hours before septic shock onset. MEWS, Modified Early Warning Score; ROC, receiver operating characteristic; SIRS, 
systemic inflammatory response syndrome; SOFA, Sequential Organ Failure Assessment.

Table 1 Demographic and clinical characteristics for UCSF patient population analysed (n=90 353) and MIMIC-III patient 
population analysed (n=21 604)

Demographic overview Characteristic

UCSF MIMIC-III

Count (%) Count (%)

Gender Female 49 763 (55.08) 9499 (43.97)

Male 40 590 (44.92) 12 105 (56.03)

Age
UCSF: median 55, IQR 38–67
MIMIC-III: median 65, IQR 53–77

18–29 10 652 (11.79) 978 (4.53)

30–39 14 202 (15.72) 1114 (5.16)

40–49 11 888 (13.16) 2112 (9.78)

50–59 16 856 (18.66) 3880 (17.96)

60–69 19 056 (21.09) 4906 (22.71)

70+ 17 699 (19.59) 8614 (39.87)

Length of stay (days)
UCSF: median 4, IQR 2–6
MIMIC-III: median 2, IQR 2–4

0–2 28 258 (31.26) 11 054 (51.17)

3–5 35 128 (38.88) 7004 (32.42)

6–8 12 664 (14.02) 1673 (7.74)

9–11 4934 (5.46) 734 (3.40)

12+ 9369 (10.37) 1139 (5.27)

Death during hospital stay Yes 1279 (1.42) 1328 (6.15)

No 89 074 (98.58) 20 276 (93.85)

ICD-9 code Sepsis 1179 (1.30) 413 (1.91)

Severe Sepsis 349 (0.39) 609 (2.82)

Septic Shock 614 (0.68) 943 (4.36)

ICD, International Classification of Diseases; IQR, Interquartile Range; MIMIC, Multiparameter Intelligent Monitoring in Intensive Care; UCSF, 
University of California, San Francisco. 
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detect the onset of sepsis and severe sepsis, and to 
accurately predict septic shock 4 hours prior to onset, 
compared with the performance of common sepsis 
scoring systems. Each figure presents InSight’s receiver 
operating characteristic (ROC) curve together with the 
ROC curves for MEWS, SOFA and SIRS. InSight achieves 
an AUROC curve for sepsis onset of 0.92 (95% CI 0.90 to 
0.93), for severe sepsis onset of 0.87 (95% CI 0.86 to 0.88) 
and for septic shock of 0.99 (95% CI 0.9991 to 0.9994) 
compared with SIRS, which demonstrates an AUROC of 
0.75, 0.72 and 0.84, respectively. Even when all gold stan-
dard involved measurements were removed from model 
training, InSight continued to demonstrate improved 
accuracy over SIRS, MEWS and SOFA, with AUROC 
values of 0.84 (95% CI 0.83 to 0.85) for sepsis onset, 0.80 
(95% CI 0.79 to 0.81) for severe sepsis onset and 0.96 
(95% CI 0.96 to 0.97) for septic shock onset.

Comparing InSight’s performance across the three 
sepsis-related gold standards, it is clear that the septic 
shock criteria are relatively less challenging to anticipate, 
as its 4-hour prediction metrics are stronger than those 
for the detection of both sepsis and severe sepsis. Accord-
ingly, we display the 4 hours prior to onset prediction case 
for septic shock (figure 2C), where existing tools fail to 
adequately meet prediction standards relevant for sound 
clinical use. Four hours in advance of septic shock onset, 
InSight achieved an AUROC of 0.96 (95% CI 0.94 to 0.98). 
The resulting confusion matrix from the 10-fold cross-val-
idation of InSight can be found in online supplementary 
tables 3 and 4.

Additional comparison metrics at the time of detec-
tion for each gold standard are available in table 2. In 
order to compare the specificities from each gold stan-
dard, we fixed sensitivities near 0.80; that is, we fixed a 
point on the ROC curve (ie, set a specific threshold) 
after model development and tested algorithm perfor-
mance under the chosen conditions in order to present 
data as consistently as possible. We similarly fixed 

specificities near 0.80 in order to compare sensitivities. 
Across all gold standards, a sensitivity of 0.80 results in a 
high specificity for InSight; however, the sensitivities for 
MEWS, SOFA and SIRS are significantly lower. Notably, 
at 0.80 sensitivity, InSight achieves a specificity of 0.95 
for sepsis, 0.84 for severe sepsis and 0.99 for septic 
shock detection.

In addition to InSight’s ability to detect sepsis, severe 
sepsis and septic shock, figure 3A illustrates the ROC of 
severe sepsis detection and prediction 4 hours prior to 
severe sepsis onset. Even 4 hours in advance, the InSight 
severe sepsis AUROC is 0.85 (95% CI 0.79 to 0.91), which 
is significantly higher than the onset time SIRS AUROC 
of 0.75 AUROC. Figure 3B summarises InSight’s predic-
tive advantage, using the severe sepsis gold standard, 
over MEWS, SOFA and SIRS at the same time points in 
the hours leading up to onset. InSight maintains a high 
AUROC in the continuum up to 4 hours preceding severe 
sepsis onset. InSight’s predictions 4 hours in advance 
produce a sensitivity and specificity that are greater than 
the at-onset time sensitivity and specificity of each MEWS, 
SOFA and SIRS (table 2, figure 3B).

In order to determine the generalisability of the algo-
rithm to different settings, we tested InSight on additional 
patient datasets from four distinct hospitals. For severe 
sepsis detection at the time of onset, InSight achieved 
AUROC over 0.92 on patients from Stanford, Oroville 
Hospital, Bakersfield Heart Health and CRMC (table 3). 
ROC curves and comparisons to alternate sepsis classifica-
tion systems on these datasets are presented in the online 
supplementary tables 5–8 and figures 1 and 2). InSight 
AUROC values exceed those of the MEWS, SIRS, quick 
SOFA (qSOFA) and SOFA scores on the same datasets for 
severe sepsis detection at the time of onset.

We ranked feature importance for the classifiers devel-
oped in this experiment and determined that systolic 
blood pressure at the time of prediction was consistently 
the most important feature in making accurate model 

Table 2 Performance metrics for three sepsis gold standards at the time of onset (0 hour), with sensitivities fixed at or near 
0.80 in the first instance and specificities fixed at or near 0.80 in the second instance

Gold standard InSight (95% CI)

InSight, label 
definitions removed 
(95% CI) MEWS SOFA SIRS

Sepsis 0.92 (0.90 to 0.93) 0.84 (0.83 to 0.85) 0.76 0.63 0.75

AUROC Severe sepsis 0.87 (0.86 to 0.88) 0.80 (0.79 to 0.81) 0.77 0.65 0.72

Septic shock 0.9992 (0.9991 to 0.9994) 0.963 (0.959 to 0.968) 0.94 0.86 0.82

Sensitivity
(specificity fixed near 0.80)

Sepsis 0.98 (0.96 to 1.00) 0.99 (0.97 to 1.00) 0.98 0.82 0.82

Severe sepsis 0.996 (0.989 to 1.000) 1.00 (1.00 to 1.00) 0.98 0.90 0.81

Septic shock 1.00 (1.00 to 1.00) 0.994 (0.992 to 0.997) 1.00 0.99 0.91

Specificity
(sensitivity fixed near 0.80)

Sepsis 0.95 (0.93 to 0.97) 0.75 (0.73 to 0.77) 0.72 0.32 0.51

Severe sepsis 0.85 (0.84 to 0.86) 0.68 (0.62 to 0.75) 0.72 0.37 0.50

Septic shock 0.9990 (0.9987 to 0.9993) 0.95 (0.94 to 0.96) 0.91 0.58 0.49

AUROC, area under the receiver operating characteristic; CI, Confidence Interval; MEWS, Modified Early Warning Score; SIRS, systemic 
inflammatory response syndrome; SOFA, Sequential Organ Failure Assessment. 
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predictions. The relative importance of other features 
varied significantly based on the specific prediction task.

In our second set of experiments, we validated InSight’s 
performance in the presence of missing data. We tested 
InSight’s ability to detect severe sepsis at the time of onset 
with various rates of data dropout. Table 4 presents the 
results of these experiments. After randomly deleting 
data from the test set with a probability of 0.10, InSight’s 
AUROC for severe sepsis detection is 0.82. Dropping 
approximately 60% of the test set measurements results 
in an AUROC of 0.75, demonstrating InSight’s robustness 
to missing data. Of note, the AUROC of InSight at 60% 
data dropout achieves slightly better performance than 
SIRS with no missing data. Further, our experiments on 
applying InSight to upsampled and downsampled sets 
showed that AUROC was largest when the set was chosen 
such that around half the patients met the gold standard. 
Moving lower on prevalence from 50% down to 0%, 
the AUROC values were only slightly lower while they 
dropped steeply when moving higher on prevalence from 
50% up to 100% (a clinically unrealistic range).

transfer learning
InSight is flexible by design and can be easily trained on 
an appropriate retrospective dataset before being applied 

to a new patient population. However, sufficient historical 
patient data are not always available for training on the 
target population. We evaluated InSight’s performance 
when trained on a mixture of the MIMIC-III data together 
with increasing amounts of UCSF training data, and then 
tested on a separate hold-out UCSF patient population 
using transfer learning. In figure 4, we show that the 
performance of the algorithm improves as the fraction of 
UCSF target population data used in training increases.

Feature importance was quite stable across trans-
fer-learning experiments, with systolic blood pressure 
measurements consistently playing an important role. 
Systolic blood pressure at 2 hours before onset, at the 
time of onset and at 1 hour before onset, in that order, 
were the most important features for accurate prediction 
in all tasks. Heart rate and diastolic blood pressure at the 
time of onset were consistently the fourth and fifth most 
important features, though order of importance of the 
two features varied between tasks.

DIsCussIOn
We have validated the machine-learning algorithm, 
InSight, on the mixed-ward data of UCSF, which includes 
patients from the ED and floor units as well as the ICU, with 

Figure 3 (A) ROC detection (0 hour, blue) and prediction (4 hours prior to onset, red) curves using InSight and ROC detection 
(0 hour, green) curve for SIRS, with the severe sepsis gold standard. (B) Predictive performance of InSight and comparators, 
using the severe sepsis gold standard, as a function of time prior to onset. AUROC, area under the receiver operating 
characteristic; ROC, receiver operating characteristic; MEWS, Modified Early Warning Score; SIRS, systemic inflammatory 
response syndrome; SOFA, Sequential Organ Failure Assessment. 

Table 3 Algorithm performance for severe sepsis detection at the time of onset

Stanford Oroville BHH CRMC

AUROC (95% CI) 0.924 (0.9202 to 0.9278) 0.983 (0.9804 to 0.9856) 0.945 (0.921 to 0.969) 0.960 (0.954 to 0.966)

Sensitivity 0.798 0.806 0.875 0.802

Specificity 0.901 0.989 0.940 0.946

Accuracy 0.900 0.971 0.963 0.931

LR+ 8.253 77.92 58.94 16.85

LR− 0.224 0.197 0.129 0.210

AUROC, area under the receiver operating characteristic; BHH, Bakersfield Heart Hospital; CI, Confidence Interval; CRMC, Cape Regional 
Medical Center; LR, likelihood  ratio. 
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varying types and frequencies of patient measurements. 
InSight outperformed commonly used disease severity 
scores such as SIRS, MEWS and SOFA for the screening 
of sepsis, severe sepsis and septic shock (figure 2). These 
results, shown in table 2, confirm InSight’s strength in 
predicting these sepsis-related gold-standard outcomes. 
The algorithm’s strong performance across the academic 
and community hospital data used in this study suggests 
potential strong performance in a variety of future clin-
ical settings.

To the authors’ knowledge, InSight is the first sepsis 
screening system to meet or exceed an AUROC of 0.90 
using only vital sign inputs, on each of the sepsis gold stan-
dards evaluated in this study. Additionally, InSight provides 
predictive capabilities in advance of sepsis onset, aided by 
the analysis of trends and correlations between vital sign 
measurements. This advantage is apparent in the compar-
ison with SIRS made in figure 3A. Up to 4 hours prior 
to severe sepsis onset, InSight maintains a high AUROC 
above 0.85 (figure 3). This advance warning of patients 

trending towards severe sepsis could extend the window 
for meaningful clinical intervention.

InSight uses only six common vital signs derived from a 
patient’s EHR to detect sepsis onset, as well as to predict 
those patients who are most at risk for developing sepsis. 
The decreased performance of InSight for recognition of 
severe sepsis relative to sepsis onset may be in part because 
the organ failure characteristic of severe sepsis is more 
easily recognisable through laboratory tests for organ 
function. Because we have not incorporated metabolic 
function panels in this validation of InSight, the detection 
of organ failure using only six common vital signs may be 
more difficult. In practice, InSight is adaptable to different 
inputs and is able to incorporate laboratory results as 
they become available. Inclusion of these results may well 
increase the performance of InSight for the detection and 
prediction of severe sepsis. However, in this work, we have 
chosen to benchmark the performance of InSight using 
only six commonly measured vital signs. The ordering of 
metabolic panel laboratory tests are often predicated on 
clinician suspicion of severe sepsis, and therefore, early 
or developing cases may be missed. Additionally, because 
these vital sign inputs do not require time-dependent 
laboratory results or additional manual data entry, surveil-
lance by InSight is frequent, and as a result, sepsis condi-
tions are detected in a more timely manner. Minimal data 
requirements also lighten the burden of implementation 
in a clinical setting and broaden the potential clinical 
applications of InSight.

Although InSight uses only a handful of clinical vari-
ables, it maintains a high level of performance in exper-
iments with randomly missing data. We demonstrate in 
table 4 that for the detection of severe sepsis, even with 
up to 60% of randomised test patient data missing, InSight 
still achieves slightly better performance to SIRS calcu-
lated with complete data availability.

Additionally, we have investigated the customis-
ability of InSight to local hospital demographics and 
measurements. The incorporation of site-specific data 
into the training set using transfer learning improves 
performance on test sets, over that of a training set 
composed entirely of an independent population. 
This indicates that it may be possible to adequately 
train InSight for use in a new clinical setting, while 
still predominantly using existing retrospective data 
from other institutions. Further, the results of our 

Table 4 InSight’s severe sepsis screening performance at the time of onset in the presence of data sparsity compared with 
SIRS with a full data complement

Data missing (%)

InSight SIRS

0 10 20 40 60 0

AUROC 0.90 0.82 0.79 0.76 0.75 0.72

Sensitivity 0.80 0.80 0.80 0.80 0.80 0.80

Specificity 0.84 0.66 0.57 0.50 0.49 0.51

AUROC, area under the receiver operating characteristic; SIRS, systemic inflammatory response syndrome. 

Figure 4 Learning curves (mean AUROC on the UCSF 
target dataset) with increasing number of target training 
examples. Error bars represent the Standard Deviation. When 
data availability of the target set is low, target-only training 
exhibits lower AUROC values and high variability. AUROC, 
area under the receiver operating characteristic; UCSF, 
University of California, San Francisco. 
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upsampling and downsampling experiments indicate 
that InSight is likely to only be slightly less effective 
(in AUROC terms) in settings with lower prevalence 
of sepsis, severe sepsis or septic shock, than UCSF or 
slightly more effective if the prevalence is higher than 
UCSF.

Our previous studies, performed on earlier versions 
of the model, have investigated InSight applied to 
individual sepsis standards such as the SIRS standard 
for sepsis,22 severe sepsis23 and septic shock,24 on the 
MIMIC retrospective datasets. We have also devel-
oped a related algorithm to detect patient stability25 
and predict mortality.26 27 However, this study, which 
evaluates a significantly improved algorithm, is the 
first to apply InSight to all three standard sepsis defi-
nitions simultaneously, and to validate the algorithm 
on a mixed ward population, including ED, ICU and 
floor wards from UCSF. This study is also the first to 
use only six minimal vital signs, without using a mental 
status evaluation such as Glasgow Coma Score, or even 
age, in the detection and prediction of those sepsis 
standards.

The separate models trained for each gold standard 
and prediction window in this study further demonstrate 
the potential clinical utility of machine-learning methods. 
In addition to training on a specific patient population, 
machine-learning methods can allow for the develop-
ment of prediction models which are tailored to a hospi-
tal’s unique needs, data availability and existing workflow 
practices. Any one of the models developed in this study 
could be independently deployed in a clinical setting; 
choice of model deployment would be contingent on the 
needs of a particular hospital, and the expected trade-off 
in performance for different model choices. Additionally, 
this study demonstrates the adaptability of the machine-
learning algorithm to an entirely new patient dataset with 
markedly different demographics and outcomes through 
both site-specific retraining and transfer-learning 
techniques.

limitations
While we incorporated data from multiple institu-
tions, we cannot claim generalisability of our results 
to other populations on the basis of this study alone. 
However, we are aided by the minimality of data used 
to make predictions. As InSight requires only six of 
the most basic and widely available clinical measure-
ments, it is likely that it will perform similarly in other 
settings if vital sign data is available. The gold stan-
dard references we use to determine sepsis, severe 
sepsis and septic shock rely on ICD-9 codes from the 
hospital database. This standard potentially limits our 
ability to capture all patients with sepsis in the dataset, 
should any have been undiagnosed or improperly 
recorded. The administrative coding procedures may 
vary by hospital and do not always precisely reproduce 
results from manual chart review for sepsis diagnosis, 
although ICD-9 codes have been previously validated 

for accuracy in the detection of severe sepsis.28 The 
vital sign measurements abstracted from the EHR 
are basic measurements routinely collected from all 
patients regardless of the diagnosis and independent 
of physician judgement, and therefore this input to 
InSight is not dependent on the time of clinical diag-
nosis. However, the ordering of laboratory tests is 
contingent on physician suspicion, and the timing of 
these inputs may reflect clinician judgement rather 
than true onset time, potentially limiting the accuracy 
of our analysis.

While the imputation and averaging performed 
before feature construction eliminated some informa-
tion about sampling frequency, these methods do not 
remove all non-physiological information inherent to 
our system. Further, imputation of the most recently 
available past measurement may artificially alter the 
rate of the temporal changes in patient vital signs that 
we incorporate into feature vectors, which may in turn 
affect risk predictions. Averaging multiple patient 
measurements may similarly remove informative varia-
tion in vital signs.

It is important to note that we designed the study as 
a classification task rather than a time-to-event model-
ling experiment because the former is significantly 
more common in the literature.29–32 The alternative 
would not allow for the use of an established, stan-
dard set of performance metrics such as AUROC and 
specificity without custom modification, and would 
make it more difficult to compare the present study 
to prior work in the field. This study was conducted 
retrospectively, and so we are unable to make claims 
regarding performance in a prospective setting, which 
involves the interpretation and use of InSight’s predic-
tions by clinicians. Additionally, our inclusion criteria 
requiring at least 7 hours of patient data preceding 
sepsis onset also limit generalisability to a clinical 
setting where the predictor would receive data in real 
time. Algorithm performance in a clinical setting may 
reasonably be expected to be lower than its retrospec-
tive performance in this study. Finally, our random 
deletion of data is not necessarily representative of data 
scarcity as it would occur in clinical settings where the 
rate of missing measurements would depend on the 
standard rate of data collection, which can vary widely, 
especially between the ED, general ward and ICU. We 
intend to evaluate these algorithms in prospective clin-
ical studies in future work.

COnClusIOns
We have validated the machine-learning algorithm, 
InSight, in a multicentre study including a mixed-ward 
population from UCSF and an ICU population from 
BIDMC. InSight provides high sensitivity and specificity for 
the detection and prediction of sepsis, severe sepsis and 
septic shock using the analysis of only six common vital 
signs taken from the EHR. InSight outperforms scoring 
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systems in current use for the detection of sepsis, is robust 
to a significant amount of missing patient data and can 
be customised to novel sites using a limited amount of 
site-specific data. Our results indicate that InSight outper-
forms tools currently used for sepsis detection and predic-
tion which may lead to improvements in sepsis-related 
patient outcomes.
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