BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Similarity of Chest X-ray and Thermal Imaging of Focal Pneumonia (short title: Thermal Imaging of Pneumonia)

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-017964
Article Type:	Research
Date Submitted by the Author:	01-Jun-2017
Complete List of Authors:	 Wang, Linda; Massachusetts General Hospital, Emergency Medicine and Pediatric Global Health Cleveland, Robert; Children's Hospital Boston, Radiology Binder, William; Brown University, Emergency Medicine Zwerdling, Robert; university of massachusetts, radiology Stamoulis, Caterina; children's hospital of boston, adolescent and young adult research Ptak, Thomas; Emory University Hospital, Radiology Sherman, Mindy; Massachusetts General Hospital, Emergency Medicine Haver, Kenan; Children's Hospital Boston, Pulmonary and Respiratory Diseases Sagar, Pallavi; Massachusetts General Hospital, Radiology Hibberd, Patricia; Boston Medical Center, Department of Global Health
Primary Subject Heading :	Radiology and imaging
Secondary Subject Heading:	Global health, Respiratory medicine, Infectious diseases, Paediatrics
Keywords:	Paediatric radiology < PAEDIATRICS, Chest imaging < RADIOLOGY & IMAGING, Respiratory infections < THORACIC MEDICINE, Diagnostic radiology < RADIOLOGY & IMAGING
	·

SCHOLARONE[™] Manuscripts

1	Similarity of Chest X-ray and Thermal Imaging of Focal Pneumonia
2	(short title: Thermal Imaging of Pneumonia)
3	
4	Linda T. Wang, M.D.1 (co-first author), Robert H. Cleveland, M.D.2 (co-first author),
5	William Binder M.D.8, Robert G. Zwerdling, M.D.3, Catherine Stamoulis, PhD4,
6	Thomas Ptak, M.D., PhD5, Mindy Sherman, M.D6, Kenan Haver M.D7, Pallavi Sagar,
7	M.D.9, Patricia Hibberd, M.D., PhD.10
8	
9	Massachusetts General Hospital, Boston, MA: 1, 6, 9
10	Boston Children's Hospital, Boston, MA: 2, 4, 7
11	University of Massachusetts Medical Center, Worchester, MA: 3 (deceased)
12	Emory University Hospital, Atlanta, GA: 5
13	Brown University Medical School, Providence, RI: 8
14	Boston University, Boston, MA: 10
15	
16	Corresponding authors:
17	
18	William Binder, MD
19	Department of Emergency Medicine
20	Alpert School of Medicine at Brown University
21	55 Claverick Street
22	Providence, RI 02903
23	Telephone: 401 741 2521
24	William_Binder@Brown.edu
25	
26	Robert H. Cleveland, MD
27	Department of Radiology and

Page Page 2017 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

Division of Respiratory Diseases

Boston Children's Hospital

Telephone: 617-355-3181

robert.cleveland@chldrens.harvard.edu

300 Longwood Avenue

Boston, MA 02115

Fax: 617-730-0573

2	
3	
4	
5	
6	
7	
8	
ă	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
50	
Э4 ГГ	
55	
56	
57	
58	
59	
60	

1

28

29

30

31

32

33

34

35

37	
38	ABSTRACT
39	
40	Objective: To determine the similarity of thermal imaging (TI) to chest x-ray (CXR)
41	in the setting of focal consolidative pneumonia.
42	
43	Setting: A large, 973 bed teaching hospital in Boston, Massachusetts
44	
45	Participants: 47 patients enrolled, 15 in a training set, 32 in a test set. Age range
46	10 minths – 82 years (media = 50 years)
47	
48	Materials and Methods: Subjects received CXR with subsequent TI within 4 hours of
49	each other. CXR and TI were assessed in blinded random order. Presence of focal
50	opacity (pneumonia) on CXR (the outcome parameter) was recorded. For TI,
51	presence of area(s) of increased heat (pneumonia) was recorded. Fisher's exact test
52	was used to assess the significance of the correlations of positive findings in the
53	same anatomic region.
54	
	For near review only - http://hmionen.hmi.com/site/about/guidelines.yhtml

55	Results: With TI compared to the CXR (the outcome parameter), sensitivity was
56	80.0% (Confidence intervals: [29.9%, 98.9%], specificity was 57.7% (Confidence
57	intervals: [37.2%, 76.0%]). Positive predictive value of TI was 26.7% (Confidence
58	intervals: [8.9%, 55.2%]) and its negative predictive value was 93.8% (Confidence
59	intervals: [67.7%, 99.7%]).
60	
61	Conclusions: This feasibility study confirms proof of concept that chest TI is
62	consistent with CXR in suggesting similarly localized focal pneumonia with high
63	sensitivity and negative predictive value. Further investigation of TI as a point of
64	care imaging modality is warranted.
65	
66	Strengths and Limitations:
67	
68	Strengths:
69	 Proof of concept suggesting that Thermal Imaging (TI) is a valid,
70	innovative, and inexpensive technology useful for diagnosing bacterial
71	pneumonia
72	 Proof of concept suggesting that Thermal Imaging (TI) is a rapid
73	means of diagnosing focal pneumonia in high throughput settings
74	• Proof of concept suggesting that Thermal Imaging (TI) is a valid and
75	innovative technology useful in diagnosing pneumonia in resource
76	limited regions of the world
77	
70	Limitational
/8	Limitations:

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright. Page

BMJ Open

As this is a proof of concept study, it does not have adequate power to
 be definitive and cannot replace chest xray for detecting focal
 pneumonia

 As this is a proof of concept study, limitations of the technology have not been fully discerned, and at present include adipose tissue and interpretation, but may include other concerns which will require higher numbers of patients enrolled.

86 Word Count: 2590

Data Sharing: There is no additional unpublished data from the study. Data is
available to any researcher who is interested in the data, and will be able to be
accessed through Dyad and/or through correspondence with the contributing
authors.

93 Introduction

This study investigates the degree to which thermal imaging (TI) and chest x-ray (CXR) agree in detecting similarly localized focal pneumonia. Often a clinically challenging diagnosis, bacterial pneumonia remains a major cause of morbidity and mortality worldwide, particularly in under-resourced environments (1-3). Expert panels, including the World Health Organization (WHO), have formulated algorithms to enhance clinical accuracy (4), typically focusing on aspects of the medical history and physical examination to determine the likelihood of bacterial pneumonia. Despite having these algorithms, CXR is generally performed to confirm the diagnosis in severe infections (5-16). If TI results are similar to CXR, it might substitute for CXR when CXR is not available. In resource-limited environments, where 2/3 of the

BMJ Open

105	world's population has no access to diagnostic imaging (17-18), the potential use of
106	TI in point of care screening could aid decision making to treat for pneumonia.
107	Point of care imaging utilizing ultrasonography to diagnose pneumonia is attracting
108	interest (19-20). However, ultrasonography requires costly equipment and specific
109	expertise for image acquisition and interpretation.
110	
111	Anecdotal reports suggest that TI has potential for detecting pneumonia (21-22).
112	These case reports and methodologies have not been subjected to systematic
113	blinded assessment. In this initial proof of concept investigation, we compared TI to
114	CXR in patients suspected of having acute pneumonia.
115	
116	With recent advances in infrared technology and increasing use assessing home heat
117	loss, low-cost thermal cameras have become available, currently costing as little as
118	\$200-\$300 (Flir.com). Installation of shielded radiographic rooms can cost hundreds
119	of thousands of dollars. Portable x-ray units capable of performing CXR can cost as
120	little as \$600-\$800 (dotmed.com). If uninsured, patient cost of a CXR in the US is
121	\$200-\$400 or, if insured, a co-pay of \$10-\$50 (23).
122	
123	For TI there are no additional costs beyond cost of the camera. TI cameras are
124	portable and operate with rechargeable batteries. TI is essentially identical to taking
125	a "snap and shoot" photograph and can be done in seconds during the primary
126	patient encounter without the camera physically contacting the patient. Digital
127	storage and transfer of TI is simple, utilizing a memory card in the TI device that can
128	be uploaded to a computer.
129	
130	This study presents a prospective comparison of TI to CXR using a commercially
131	available thermal camera to determine the similarity of TI and CXR in the setting of

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 possible focal pneumonia and thus proof of concept and feasibility of TI to detect focal pneumonia. Materials and Methods Subjects: Participants came from the Emergency Department of Massachusetts General Hospital (Boston, MA). On admission to the Emergency Department, adult patients and families of children who had CXR included for evaluation of pneumonia were approached to discuss study participation. Written informed consent and, when applicable, participant assent was obtained from all participants. Enrollment occurred Monday - Friday, 7:00am - 11:00pm when research staff was available. Partners Human Research Committee approved the HIPPA compliant study protocol (#2013P001247). In an initial Training Set, subjects were excluded if they had chronic lung disease, congestive heart failure, prior chest surgery or immunosuppression. In a subsequent TEST Set, these exclusions were not used. Patients had TI within 4 hours of CXR. Patients were male older than 28 days, or female older than 28 days and younger than 8 years. After age eight, only males were included because of concerns for modesty. Forty-seven patients were enrolled. The first 15, comprising the Training Set, were not included as a part of the study's statistical assessment. These 15 cases provided a spectrum of results with 10 concordant for focal pneumonia, 2 concordant for no focal pneumonia, and 3 discordant for pneumonia. The remaining 32 subjects comprised the TEST Set. Analysis of the TEST Set included 31 patients (28 males, 3 females), one patient had no usable thermal images. Patient age ranged from 10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

159	months - 82 years (median = 50.0 years, (25 th, 75 th) quartiles = (11.5 , 60.5
160	years), with 8 subjects \leq 18 years and 23 subjects > 18 years.
161	
162	Imaging and interpretation: The radiologist interpreting CXR and TI (RHC) is an
163	American Board of Radiology certified diagnostic radiologist and sub-certified
164	pediatric radiologist with 40 years experience.
165	
166	CXRs were assessed in random order blinded to TI. If focal opacities were found, the
167	lobe(s) were recorded (figure 1a). CXRs were taken in PA (posterior-anterior) and
168	lateral projections (N = 19). If PA and lateral imaging could not be performed, a
169	portable AP (anterior-posterior) image was acquired ($N = 12$).
170	
171	TI of the chest were taken from the neck down, similar to CXR, with posterior and
172	anterior views (N = 29). If only 1 view was obtainable, 1 patient had a posterior
173	view and 1 an anterior view. TI were acquired with the commercially available FLIR
174	i7 infrared thermal camera (flir.com). The subject was encompassed in the field of
175	view; a "snapshot" was obtained so the patient's chest filled the field of view with the
176	entire chest from side to side included from the level of the shoulders to bottom of
177	the chest (or below). Patient to camera distance varied based on patient size.
178	Subjects could be sitting or recumbent with the chest exposed. Clothing was
179	removed from the chest prior to TI acquisition.
180	
181	The camera used in this study has a resolution of 19,600 pixels detecting a
182	temperature range -4° Fahrenheit - 482° Fahrenheit (-20° Celsius - 250° Celsius)
183	with sensitivity to 0.1 degree Celsius. Images filled the 2.8 inch LCD TI screen. TI
184	were interpreted while displayed on a desk top computer at a size comparable to the
185	size of the CXR, filling roughly 50% of the computer monitor screen. TI image size

varies depending on the imaging device. TI stored in the camera's memory can be uploaded to a computer and displayed at whatever size preferred.

- TI were evaluated in random order blinded to CXR, recording any area(s) of
- increased heat as upper, mid or lower lung segment and which side (figures 1
- a,b,c). Following initial assessment of blinded TI and CXR, to shed light on possible
- causes for TI/CXR discrepancies, cases with disagreement were reviewed in non-

blinded fashion, using comparison CXR when available.

Page 9 of 49

Figure 1b: TI obtained shortly after the CXR (Figure 1a). The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with the CXR. Figure 1c: Same image as Figure 1b with the area of pneumonia (white area) encircled by an oval ring. TI is similar to nuclear medicine imaging in that it is not the precise size, configuration or margins that are of importance, but rather the temperature pattern with presence or absence of focal areas of increased heat, "hot spots," that is informative for focal pneumonia. Heat emanating from the patient's skin determines the TI image. Generalized skin temperature does not affect TI recognition of a hot spot. Since clothing recently removed from the chest might affect skin temperature globally but not focally, it is unlikely that previously removed clothing would affect recognition of a hot spot. Areas of symmetric increased heat were considered to represent normal variation in heat pattern and areas of increased heat over the neck, sternum, supraclavicular space, spine and axillae were determined to be normal on the initial 15 training cases. Abdominal heat pattern is similar to that of the chest without focal temperature changes relating to abdominal viscera. Unlike CXR, TI does not require that patients hold their breath. Therefore, minor patient motion will have minor, if any, effect on TI quality.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

248	
249	Statistical Methods: Paired data were constructed for each patient with CXR the
250	standard for disease and TI the test variable. Each image was dichotomized as
251	normal or showing focal pneumonia. TI sensitivity, specificity, positive predictive
252	value and negative predictive value and their respective confidence intervals were
253	estimated. Agreement between CXR and TI with patient age and sex was assessed
254	using simple logistic regression models, as well as 2X2 contingency tables with age
255	dichotomized as >18 years for adults and \leq 18 years for children. Fisher's exact test
256	was used to assess significance of correlation between age (or sex) and agreement
257	between CXR and TI. Significance level of 0.05 was assumed.
258	
259	Results
260	
261	This study compares results of TI to contemporaneously performed CXR. For the
262	overall cohort, five patients were identified as having focal pneumonia by CXR and
263	26 not. For the pediatric cohort, there were 2 with focal pneumonia, 6 without by
264	CXR.
265	
266	Eleven cases were TI positive and CXR negative (false positives). One case was TI
267	negative and CXR positive (false negative).
268	
269	Table 1 summarizes TI sensitivity compared to CXR. TI agreed with CXR with
270	pneumonia identified in the same anatomic location in 19 patients. Sensitivity,
271	specificity, positive predictive value, negative predictive values and their
272	corresponding confidence intervals (CI) are presented.

Page 13 o	f 49					BMJ Open			BMJ	
1 2 3									l Open: first pu	
4 5		True	True	False	False	Sensitivity	Specificity	Positive	Negative	
6 7 8		Positive	Negative	Positive	Negativ	(95% CI)	(95% CI)	Predictive	م Predictive Vapue	
9 10 11					е			Value	0.1136/br	
1 2 1 vs 13		4	15	11	1	80.0%	57.7%	26.7%	93.8% 	
14 15	CXR					(29.9%, 98.9%)	(37.2%,	(8.9%,	, (67.7%, 99. 2 %)	
16 17 +ve,	26 -						76.0%)	55.2%)	7-0179	
18 19 ^{e)}									964 on	
20 21	273								- 5 Jar	
22 23	274	Table 1	1: Sensitiv	ity analy	sis of TI a	assuming the CXR	as the outcor	ne parameter.	nuary 2	
24 25	275		2018.							
26 27	276								Downl	
28 29	277								oaded	
30 31	278	Relatio	onship betv	veen TI a	and CXR a	agreement with pa	itient demogra	aphics was	from	
 32 33 279 assessed using logistic regression models and simple contingency tables. There was 								http://t		
34 35	280	no sigr	nificant coi	relation	between	modality agreeme	nt and patien	t age (treated as	a ^{onj} op	
The significant contribution between modulity typeciment and patient uge (created us a result of the significant contribution between modulity typeciment and patient uge (created us a result of the significant contribution between modulity typeciment and patient uge (created us a result of the significant contribution between modulity typeciment and patient uge (created us a result of the significant contribution between modulity typeciment and patient uge (created us a result of the significant contribution between modulity typeciment and patient uge (created us a result of the significant contribution between modulity typeciment and patient uge (created us a result of the significant contribution between modulity typeciment and patient uge (created us a result of the significant contribution between modulity typeciment and patient uge (created us a result of the significant contribution between the significant contrinsities contribution between th							4, <u>,</u>			
							j.com/			
40 41 42	283	on De							on De	
42 43 44	284	Since t	:his is an e	explorato	ry proof o	of concept study th	ne sample size	e is not based on	cemb	
45 45 46 285 statistical power. In order to achieve a power of 0.80 with the conditions							Inditions	er 23,		
47 48	286	encour	ntered in t	his studv	, a power	calculation showe	ed 138 patient	s would be	2023	
49 50	287	require	ed.	,	,		p		by gue	
51 52	288								est. Pr	
53 54	289	To inve	estinate ca	uses for	TI/CXR d	iscrenancies case	s with disagre	ement were	otecte	
55 56	209	review	ed in a no	n-hlinder	l fashion	using prior and si	ubsequent CX	R (comparison	id by c	
57 58 59 60	270	. cview							:opyright.	

Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

1 2
3
4
5
6 7
8
9
10
11
12
14
15
16
17 18
19
20
21
22
24
25
26
27
29
30
31
32 33
34
35
36
37
39
40
41
42 43
44
45
46
47 48
49
50
51 52
5∠ 53
54
55
56 57
57 58
59
60

291	images were not included in the blinded, original CXR assessments).	This review of
292	discrepant cases is not included in the study's statistical analysis.	

294	For the 11	false positive	cases, comparison	CXRs were a	available in	three cases.
-----	------------	----------------	-------------------	-------------	--------------	--------------

- When CXR was reviewed with prior images, the interpretation was changed to focal
- pneumonia (figure 2a,b,c) concordant with TI (figure 2d,e) in each instance. Follow-
- up images provided no additional information. One case had diffuse changes of
- JI. Inges of cystic fibrosis, one with changes of chronic obstructive pulmonary disease and one
- with low lung volumes.

Figure 2A

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

6

350	
351	Legend
352	Figure 2a: Portable CXR taken in the Emergency Department during assessment for
353	acute pneumonia reveals low lung volumes and what was assumed to be resultant
354	crowding of pulmonary parenchyma in both lung bases medially. The interpretation
355	at that time was that there was no acute pneumonia.
56	
57	Figure 2b: This CXR was performed 5 days before the CXR in Figure 2a. The lung
58	volumes are comparably low, but the small opacity in the right infrahilar region on
59	Figure 2a is not present. This indicates that there was a pneumonia in the right lung
360	base on the CXR in Figure 2a rather than normal crowding of lung tissue.
861	
362	Figure 2c: Same image as figure 2a with the right infrahilar pneumonia indicated by
363	arrows.
364	
365	Figure 2d: TI obtained shortly after the CXR shown in Figure 2a. The image is taken
866	from the patient's back so that the patient's right is on the viewer's right. There is
367	an area of increased heat (white area) in the right lung base concordant with that
368	seen in Figure 2a.
69	
370	Figure 2e: Same image as Figure 2d with the area of pneumonia (white area)
371	encircled by an oval ring.
372	
373	
374	
375	
376	

1		
3	377	
5 6	378	With knowledge of TI results, the CXR of one case was changed to a faint opacity,
7 8	379	consistent with focal pneumonia and in one case, there was the question of a very
9 10	380	subtle opacity, both concordant with the TI images.
11 12	381	
13 14	382	Three CXR had what appeared to be atelectasis in regions of TI hot spots. In light of
15 16	383	the TI results, these may represent pneumonia. These opacities on CXR were, in one
17 18	384	case each, in the right upper lobe, left upper lobe and left lower lobe.
20	385	
21 22 23	386	Three cases had no change in CXR interpretation.
23 24 25	387	
26 27	388	The one false negative case had no change to TI or CXR interpretation.
28 29	389	
30 31	390	There were no tumors, pulmonary edema or other abnormalities identified on CXR
32 33	391	that might affect TI results.
34 35	392	
36 37	393	Non-blinded review produced no changes in interpretation of TI images.
38 39	394	
40 41	395	Discussion
42 43	396	
44 45 46	397	This study suggests that TI is sensitive and reasonably specific compared to the
47 48	398	outcome parameter of CXR in detecting focal pneumonia.
49 50	399	
51 52	400	It is focal increased heat that is the indicator of focal pneumonia on TI. Thus any
53 54	401	bacterial organism (which organism cannot be determined) may be the culprit. Viral
55 56	402	pneumonias are generally diffuse and do not typically generate a focal pneumonia.
57 58 59 60	403	Some atypical pneumonias, such as mycoplasma, may have a focal consolidative

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

component which might be detected as a hot spot. It has been reported in a case report that acute consolidative tuberculosis caused a TI hot spot but sub-acute tuberculosis did not (21). It is not the precise lobar distribution but rather presence or absence of a focal hot spot that is the informative aspect of TI. The purpose of this study is not to determine whether TI or CXR is superior in detecting pneumonia but to assess how well TI and CXR agree in detecting a focal consolidation. This is in the context of CXR being the most widely utilized standard for diagnosis of pneumonia (19, 20, 24-29), including studies assessing effectiveness of the WHO clinical diagnostic criteria (29). Ultrasound is the only other point of care imaging procedure widely studied for diagnosis of pneumonia and in virtually all of its validation studies it is compared to CXR (26-28). While clinical signs and symptoms have been utilized, collecting accurate data and correlation with the ultimate diagnosis of pneumonia is inconsistent (30). However, it is not the purpose of this study to assess the accuracy of imaging to detect pneumonia as compared to the clinical diagnosis. Ultimately, other methodologies such as inflammatory markers may play a role, but currently these are in relatively early stages of development. Accuracy of CXR in determining the presence of focal pneumonia will vary depending on quality of imaging and experience of the observer, as is true for TI. Although computerized tomography (CT) has greater accuracy in detecting pneumonia than CXR (31-32), CT cannot be used as routine imaging for pneumonia because of concerns of radiation exposure and cost (29). There was only one false negative in the cohort of 31 patients with 11 false positives (sensitivity = 0.80, specificity = 0.58). Thus the ability of TI to accurately detect focal pneumonia (as determined by CXR), in this cohort was high. For a screening

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 49

BMJ Open

test, this ability to not miss focal pneumonia is the most critical criterion. The higher rate of false positives would lead to either over treating or further testing in a limited number of patients, which, although important, is a less critical issue. The changes in CXR interpretation on non-blinded review of discrepant TI/CXR revealed the following. 1) TI had hot spots in cases where CXR findings were initially not definitive for focal pneumonia (N = 5). For two, CXR diagnosis was confounded by pre-existing chronic lung diseases and in one by shallow inflation. For two others, the suggestion of focal pneumonia on CXR was too subtle for definitive diagnosis. 2) TI revealed hot spots in cases where the blinded CXR suggested atelectasis (N = 3). This suggests that TI may be able to detect focal pneumonia in cases where pre-existing lung disease or imaging technique confound the diagnosis on CXR or when diagnosis on CXR is too subtle to be convincing (as possibly with early onset or resolving focal pneumonia). TI may be able to differentiate between focal pneumonia and atelectasis. These findings suggest TI may be comparable to CXR in recognizing focal pneumonia. Relatively low cost and portability of thermal cameras, some of which can be used with mobile phones, potentially enable TI as a point of care screening tool for focal pneumonia. Other advantages include minimal training to perform images, lack of ionizing radiation exposure, off-site interpretation of digitized images and possible software interpretation algorithms. Lack of physical contact with the patient enhances infection control. Possible additional uses include following progression of disease in combination with other modalities such as respiratory rate and oximetry. Limitations of TI include learning to interpret TI, presence of prior disease affecting TI and the possibility that increased adiposity may interfere with its accuracy.

458 Conclusions

> This feasibility study confirms proof of concept that TI can demonstrate focal pneumonia. Therefore, these findings support further investigation with larger trials of patients that will be adequately powered to robustly assess the similarity between TI and the outcome parameter. This technology is potentially most useful in resource-limited environments where pneumonia is the second most common cause of death in young children and where CXR equipment and expert readers are unavailable (33). It also could be of benefit in high throughput healthcare settings, such as emergency departments or busy doctors' offices and rural areas where access to CXR is limited.

1		
2		
3 4	470	
5 6	471	Funding: The Bacca Foundation and the Consortium for Affordable Medical
7 8	472	Technologies (CAMTech) (Fund # is 223707)
9 10	473	
11 12	474	Portions of this material were presented at RSNA 2016, Chicago, IL, December 1,
13 14	475	2016.
16 17	476	
18 19 20	477	Contributor ship Statement:
20 21 22	478	
23 24	479	Specific Contributions from each author
25 26 27	480	
28 29	481	Linda T. Wang, MD
30 31	482	Conception and design of the study, acquisition of data and analysis,
32 33	483	interpretation of data, and drafting the work and revising it critically
34	484	
35	485	Robert H. Cleveland MD
36	196	Conception and design of the study data analysis interpretation of data and
3/	400	drafting the work and revising it critically
30	48/	
<u>40</u>	488	
40	489	William Binder, MD
42	490	Design of the study, acquisition of data and analysis, interpretation of data,
43	491	drafting the work and revising it critically
44	492	
45	493	Thomas Ptak MD PhD
46	101	Data analysis interpretation of data, and drafting the work and revising it critically
47	494	Data analysis, interpretation of data, and drafting the work and revising it entically
48	495	
49 50	496	Catherine Stamoulis, PhD
51 52	497	Data analysis, interpretation of data, and drafting the work and revising it critically
53 54	498	
55 56 57 58 59 60	499	Mindy Sherman, MD

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
23	
24	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5U	
51	
ວ∠ 52	
53	
54	
55	
57	
58	
59	
60	
00	

500 Conception of the study, acquisition of data, interpretation of data, revising the 501 work critically

502

1 2 3

503 Kenan Haver, MD

504 Conception and design of the study, analysis of the data, interpretation of data, 505 and drafting the work and revising it critically.

506

- 507 Pallavi Sagar, MD
- 508 Analysis of the data, interpretation of data, drafting the work and revising it 509 critically

510

- 511 Robert G Zwerdling MD
- 512 Conception and design of the study, data analysis, interpretation of data, and
- 513 drafting the work and revising it critically.
- 514

518

- 515 Patricia Hibberd, MD, PhD
- 516 Conception and design of the study, interpretation of data, and drafting the work 517 and revising it critically
- 519 520
 - 521 Competing Interests
 - 522 None of the authors have conflicts of interest to report relating to this work

"All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and
declare: no support from any organisation for the submitted work; no financial relationships with any
organisations that might have an interest in the submitted work in the previous three years; no other
relationships or activities that could appear to have influenced the submitted work."

1 2		
3	528	
5 6	529	References
7 8	530	1) Gowraiah V, Awasthi S, Kapoor R, et al. Can we distinguish pneumonia from
9 10	531	wheezy diseases in tachypnoeic children under low-resource conditions? A
11 12	532	prospective observational study in four Indian hospitals. Arch Dis Child 2014;99:899-
13 14	533	906.
15 16	534	
17 18	535	2) McCollum, ED, Prcidis, GA, Malliwichi, M, et al. Performance Of The World Health
19 20	536	Organization Diagnostic Criteria For Pneumonia In Hospitalized Malawian Infants
21 22 23	537	With Exposure To Human Immunodeficiency Virus. Am J Respir Crit Care Med
23 24 25	538	2014;189:A1235.
26 27	539	
28 29	540	3) Revised WHO classification and treatment of pneumonia in children at health
30 31	541	facilities: evidence summaries. World Health Organization Web site
32 33	542	http://apps.who.int/iris/bitstream/10665/137319/1/9789241507813_eng.pdf.
34 35	543	Published 2014. Accessed 2/12/2015.
36 37	544	
38 39	545	4) Ginsburg AS, Sadruddin S, Klugman KP. Innovations in pneumonia diagnosis and
40 41	546	treatment: a call to action on World Pneumonia Day, 2013. Lancet Glob Health
42 43	547	2013;1:e326-327.
44 45 46	548	
40 47 48	549	5) Jain S, Williams DJ, Arnold SR, et al. Community-acquired pneumonia requiring
49 50	550	hospitalization among U.S. children. N Engl J Med 2015;372:835-845.
51 52	551	
53 54	552	6) Bradley JS, Byington CL, Shah SS, et al. The management of community-acquired
55 56	553	pneumonia in infants and children older than 3 months of age: clinical practice
57 58		
59 60		

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

1	
2	
3	
4	
5	
6	
07	
1	
8	
9	
10	
11	
12	
12	
10	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29 20	
30	
31	
32	
33	
34	
35	
36	
27	
0/ 20	
38	
39	
40	
41	
42	
43	
44	
45	
10	
40	
47	
48	
49	
50	
51	
52	
50	
23	
54	
55	
56	
57	
58	
50	
23	
nU.	

guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases
Society of America. *Clin Infect Dis* 2011;53:e25-76.

556

7) Bartlett JG, Dowell SF, Mandell LA, et al. Practice guidelines for the management
of community-acquired pneumonia in adults. Infectious Diseases Society of America. *Clin Infect Dis* 2000;31:347-382.

560

8) Niederman M, Mandell L, Anzueto A. American Thoracic Society. Guidelines for the
initial management of adults with community-acquired pneumonia. *Am J Resp Crit Care Med* 2001;163:1730-1754.

564

9) Wipf JE, Lipsky BA, Hirschmann JV, et al. Diagnosing pneumonia by physical
examination: relevant or relic? *Arch Intern Med* 1999;159:1082-1087.

567

568 10) Speets AM, Hoes AW, van der Graaf Y, et al. Chest radiography and pneumonia
569 in primary care: diagnostic yield and consequences for patient management. *Eur*570 *Respir J* 2006;28:933-938.

571

572 11) van Vugt SF, Verheij TJ, de Jong PA, et al. Diagnosing pneumonia in patients
573 with acute cough: clinical judgment compared to chest radiography. *Eur Respir J*574 2013; 42:1076-1082.

575

576 12) Diehr P, Wood RW, Bushyhead J, et al. Prediction of pneumonia in outpatients
577 with acute cough--a statistical approach. *J Chronic Dis* 1984;37:215-225.

_
ω
\leq
こ
\sim
2
ĕ
۳.
<u> </u>
="
Ň
<u>-</u>
2
F
≚
S
2
8
<u>u</u>
ĝ
S
<u> </u>
0
<u>`</u>
<u> </u>
ω
୍
σ
3
<u>–</u> .
 8
ŏ
5
r's
õ
1
7
5
Ľ
1
ö
ဂ္
4
0
⊐
σī
č
0
5
a
2
3
α
·
σ
Q
≤
5
ă
ăd
ade
aded
aded fr
aded fro
aded from
aded from h
aded from htt
aded from http
aded from http:/
aded from http://b
aded from http://bn
aded from http://bmj.
aded from http://bmjo
aded from http://bmjope
aded from http://bmjoper
aded from http://bmjopen.l
aded from http://bmjopen.br
aded from http://bmjopen.bm
aded from http://bmjopen.bmj.u
 aded from http://bmjopen.bmj.cc
aded from http://bmjopen.bmj.com
aded from http://bmjopen.bmj.com/
aded from http://bmjopen.bmj.com/ c
aded from http://bmjopen.bmj.com/ on
aded from http://bmjopen.bmj.com/ on I
aded from http://bmjopen.bmj.com/ on Du
 aded from http://bmjopen.bmj.com/ on Dec
 aded from http://bmjopen.bmj.com/ on Dece
aded from http://bmjopen.bmj.com/ on Decen
aded from http://bmjopen.bmj.com/ on Decemt
aded from http://bmjopen.bmj.com/ on Decembe
aded from http://bmjopen.bmj.com/ on December
aded from http://bmjopen.bmj.com/ on December 2
aded from http://bmjopen.bmj.com/ on December 23
aded from http://bmjopen.bmj.com/ on December 23, 2
aded from http://bmjopen.bmj.com/ on December 23, 20
aded from http://bmjopen.bmj.com/ on December 23, 202
aded from http://bmjopen.bmj.com/ on December 23, 2023
aded from http://bmjopen.bmj.com/ on December 23, 2023 t
aded from http://bmjopen.bmj.com/ on December 23, 2023 by
aded from http://bmjopen.bmj.com/ on December 23, 2023 by c
 aded from http://bmjopen.bmj.com/ on December 23, 2023 by gu
aded from http://bmjopen.bmj.com/ on December 23, 2023 by gue
aded from http://bmjopen.bmj.com/ on December 23, 2023 by gues:
aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest.
aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. P
aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Pro
aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Prot
aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Prote
aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protect
aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protecte
aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected
 aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected b
 aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by
 aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by c
aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by co
 aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by cop
 aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copy
 aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyric
 aded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyrigh

579	13) Emerman CL, Dawson N, Speroff T, et al. Comparison of physician judgment and
580	decision aids for ordering chest radiographs for pneumonia in outpatients. Ann
581	Emerg Med 1991;20:1215-1219.
582	
583	14) Claudius I, Keens T. Do all infants with apparent life-threatening events need to
584	be admitted? Pediatrics 2007;119:679-683.
585	
586	15) Self WH, Courtney DM, McNaughton CD, et al. High discordance of chest x-ray
587	and computed tomography for detection of pulmonary opacities in ED patients:
588	implications for diagnosing pneumonia. Am J Emerg Med 2013;31:401-405.
589	
590	16) Elemraid MA, Muller M, Spencer DA, et al. Accuracy of the interpretation of chest
591	radiographs for the diagnosis of paediatric pneumonia. PLoS One 2014;9:e106051.
592	
593	17) World Radiology Day: Two-Thirds of the World's Population has no Access to
594	Diagnostic Imaging. Pan American Health Organization Web site
595	http://www.paho.org/hq/index.php?option=com_content&view=article&id=7410%3A
596	2012-dia-radiografia-dos-tercios-poblacion-mundial-no-tiene-acceso-diagnostico-
597	imagen&catid=740%3Apress-releases&Itemid=1926⟨=en Published November
598	7, 2012. Accessed March 28, 2016.
599	
600	18) Baseline survey on Medical Devices, 2013 update. World Health Organization
601	Web site
602	http://gamapserver.who.int/gho/interactive_charts/health_technologies/medical_equ
603	ipment/atlas.html Accessed March 20, 2016.
604	

605	19) Reissig A, Copetti R, Mathis G, et al. Lung ultrasound in the diagnosis and follow-
606	up of community-acquired pneumonia: a prospective, multicenter, diagnostic
607	accuracy study. <i>Chest</i> 2012;142:965-972.
608	
609	20) Shah VP, Tunik MG, Tsung JW. Prospective evaluation of point-of-care
610	ultrasonography for the diagnosis of pneumonia in children and young adults. JAMA
611	<i>Pediatr</i> 2013;167:119-125.
612	
613	21) Potanin C. Thermographic patterns of pulmonary disease. Chest 1970;58:491-
614	496.
615	
616	22) Moiseenko MD, Dianova TV, Mus VF, et al. [Use of color contact thermography
617	for diagnosis of lung diseases]. Vestn Khir Im I I Grek 1976;117:16-18.
618	
619	23) How Much Does an Xray Cost? Costhelper Web site
620	http://health.costhelper.com/x-rays.html Accessed February 28, 2016.
621	
622	24) Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med
623	2014;371:1619-1628.
624	
625	25) Lynch T, Bialy L, Kellner JD, et al. A systematic review on the diagnosis of
626	pediatric bacterial pneumonia: when gold is bronze. PLoS One 2010;5:e11989.
627	
628	26) Nazerian P, Volpicelli G, Vanni S, et al. Accuracy of lung ultrasound for the
629	diagnosis of consolidations when compared to chest computed tomography. Am J
630	Emerg Med 2015;33:620-625.
631	

BMJ Open

27) Chavez MA, Shams N, Ellington LE, et al. Lung ultrasound for the diagnosis of
pneumonia in adults: a systematic review and meta-analysis. Respir Res
2014;15:50.
28) Hu QJ, Shen YC, Jia LQ, et al. Diagnostic performance of lung ultrasound in the
diagnosis of pneumonia: a bivariate meta-analysis. Int J Clin Exp Med 2014;7:115-
121.
29) Cardoso MR, Nascimento-Carvalho CM, Ferrero F, et al. Adding fever to WHO
criteria for diagnosing pneumonia enhances the ability to identify pneumonia cases
among wheezing children. Arch Dis Child 2011;96:58-61
30) Rambaud-Althaus C, Althaus F, Genton B, et al. Clinical features for diagnosis of
pneumonia in children younger than 5 years: a systematic review and meta-analysis.
Lancet Infect Dis 2015;15:439-450.
31) Syrjala H, Broas M, Suramo I, et al. High-resolution computed tomography for
the diagnosis of community-acquired pneumonia. Clin Infect Dis 1998;27:358-363.
32) Tanaka N, Matsumoto T, Kuramitsu T, et al. High resolution CT findings in
community-acquired pneumonia. <i>J Comput Assist Tomogr</i> 1996;20:600-608.
33) WHO Pneumonia. World Health Organization Web site
http://www.who.int/mediacentre/factsheets/fs331/en/. Updated November 2015,
Accessed December 7, 2015.

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

community-acquired pneumonia. J Comput Assist Tomogr 1996; 33) WHO | Pneumonia. World Health Organization Web site http://www.who.int/mediacentre/factsheets/fs331/en/. Updated Accessed December 7, 2015. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

660								
661								
	True	True	False	False	Sensitivity	Specificity	Positive	Negativ
	Positive	Negative	Positive	Negativ	(95% CI)	(95% CI)	Predictive	Predicti
				e			Value	
T vs	4	15	11	1	80.0%	57.7%	26.7%	93.8%
linded CXR					(29.9%, 98.9%)	(37.2%,	(8.9%,	(67.7%
5 +ve, 26 -						76.0%)	55.2%)	
ve)								
662				Q.				
(())								
663								
663 664 Ta	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	arameter.	
663 664 Ta 665	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	arameter.	
663 664 Ta 665	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	barameter.	
663 664 Ta 665	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	arameter.	
663 664 Ta 665	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
663 664 Ta 665	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
663 664 Ta 665	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
663 664 Ta 665	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
663 664 Ta 665	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
663 664 Ta 665	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
663 664 Ta 665	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
664 Ta	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
664 Ta 665	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
664 Ta 665	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
664 Ta 665	ıble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	ne outcome p	oarameter.	
Figure Legends

Figure 1a: CXR shows an opacity in the right lung base consistent with pneumonia.

Figure 1b: TI obtained shortly after the CXR (Figure 1a). The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with the CXR.

Figure 1c: Same image as Figure 1b with the area of pneumonia (white area) encircled by an oval ring.

Figure 2a: Portable CXR taken in the Emergency Department during assessment for acute pneumonia reveals low lung volumes and what was assumed to be resultant crowding of pulmonary parenchyma in both lung bases medially. The interpretation at that time was that there was no acute pneumonia.

Figure 2b: This CXR was performed 5 days before the CXR in Figure 2a. The lung volumes are comparably low, but the small opacity in the right infrahilar region on Figure 2a is not present. This indicates that there was a pneumonia in the right lung base on the CXR in Figure 2a rather than normal crowding of lung tissue.

Figure 2c: Same image as figure 2a with the right infrahilar pneumonia indicated by arrows.

Figure 2d: TI obtained shortly after the CXR shown in Figure 2a. The image is taken from the patient's back so that the patient's right is on the viewer's right. There is

BMJ Open

<text> an area of increased heat (white area) in the right lung base concordant with that

These are the figures 1 a, b, c

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

Legend:

Figure 1a: CXR shows an opacity in the right lung base consistent with pneumonia.

Figure 1b: TI obtained shortly after the CXR (Figure 1a). The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with the CXR.

Figure 1c: Same image as Figure 1b with the area of pneumonia (white area) encircled by an oval ring.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

Figure 2E

Legend

Figure 2a: Portable CXR taken in the Emergency Department during assessment for acute pneumonia reveals low lung volumes and what was assumed to be resultant crowding of pulmonary parenchyma in both lung bases medially. The interpretation at that time was that there was no acute pneumonia.

Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

Figure 2b: This CXR was performed 5 days before the CXR in Figure 2a. The lung volumes are comparably low, but the small opacity in the right infrahilar region on Figure 2a is not present. This indicates that there was a pneumonia in the right lung base on the CXR in Figure 2a rather than normal crowding of lung tissue.

Figure 2c: Same image as figure 2a with the right infrahilar pneumonia indicated by arrows.

Figure 2d: TI obtained shortly after the CXR shown in Figure 2a. The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with that seen in Figure 2a.

Figure 2e: Same image as Figure 2d with the area of pneumonia (white area) encircled by an oval ring.

Item	Description	Reported on					
		line number					
Title	Identification of the study as randomized	1					
Authors *	Contact details for the corresponding author	4 - 7					
Trial design	Trial design Description of the trial design (e.g. parallel, cluster, non- inferiority)						
Methods							
Participants	Eligibility criteria for participants and the settings where the data were collected	133, 142-147					
Interventions	Interventions intended for each group	149-151, 162- 172;					
Objective	Specific objective or hypothesis	91-92; 126- 129; 257					
Outcome	Clearly defined primary outcome for this report	185-189					
Randomization	How participants were allocated to interventions	133; 149					
Blinding (masking)	Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment	185-189					
Results							
Numbers randomized	Number of participants randomized to each group	149					
Recruitment	Trial status						
Numbers analysed	Number of participants analysed in each group	149					
Outcome	For the primary outcome, a result for each group and the estimated effect size and its precision	185, 265, 290					
Harms	Important adverse events or side effects						
Conclusions	General interpretation of the results	424-442					
Trial registration	Registration number and name of trial register	NA					
Funding	Source of funding	Funding: The Bacca Foundation and the Consortium for Affordable Medical Technologies (CAMTech) (Fund # is 223707)					
*this item is so	acific to conference abstracts						

Items to include when reporting a randomized trial in a journal or conference abstract

*this item is specific to conference abstracts

BMJ Open

Similarity of Chest X-ray and Thermal Imaging of Focal Pneumonia: A Randomized Proof of Concept Study at a Large Urban Teaching Hospital

Journal:	BMJ Open				
Manuscript ID	bmjopen-2017-017964.R1				
Article Type:	Research				
Date Submitted by the Author:	19-Aug-2017				
Complete List of Authors:	Wang, Linda; Massachusetts General Hospital, Emergency Medicine and Pediatric Global Health Cleveland, Robert; Children's Hospital Boston, Radiology Binder, William; Brown University, Emergency Medicine Zwerdling, Robert; university of massachusetts, radiology Stamoulis, Caterina; children's hospital of boston, adolescent and young adult research Ptak, Thomas; Emory University Hospital, Radiology Sherman, Mindy; Massachusetts General Hospital, Emergency Medicine Haver, Kenan; Children's Hospital Boston, Pulmonary and Respiratory Diseases Sagar, Pallavi; Massachusetts General Hospital, Radiology Hibberd, Patricia; Boston Medical Center, Department of Global Health				
Primary Subject Heading :	Radiology and imaging				
Secondary Subject Heading:	Global health, Respiratory medicine, Infectious diseases, Paediatrics				
Keywords:	Paediatric radiology < PAEDIATRICS, Chest imaging < RADIOLOGY & IMAGING, Respiratory infections < THORACIC MEDICINE, Diagnostic radiology < RADIOLOGY & IMAGING				

SCHOLARONE[™] Manuscripts

1	Similarity of Chest X-ray and Thermal Imaging of Focal Pneumonia: A randomized
2	proof of concept study at a large urban teaching hospital.
3	
2	Linda T. Wang, M.D.1 (co-first author), Robert H. Cleveland, M.D.2 (co-first author),
4	William Binder M.D.8, Robert G. Zwerdling, M.D.3, Catherine Stamoulis, PhD4,
(Thomas Ptak, M.D., PhD5, Mindy Sherman, M.D6, Kenan Haver M.D7, Pallavi Sagar,
	M.D.9, Patricia Hibberd, M.D., PhD.10
8	
9	Massachusetts General Hospital, Boston, MA: 1, 6, 9
10	Boston Children's Hospital, Boston, MA: 2, 4, 7
11	University of Massachusetts Medical Center, Worchester, MA: 3 (deceased)
12	Emory University Hospital, Atlanta, GA: 5
13	Brown University Medical School, Providence, RI: 8
14	Boston University, Boston, MA: 10
15	
10	Corresponding authors:
17	
18	William Binder, MD
19	Department of Emergency Medicine
20	Alpert School of Medicine at Brown University
21	55 Claverick Street
22	Providence, RI 02903
23	Telephone: 401 741 2521
24	William_Binder@Brown.edu
25	
20	Robert H. Cleveland, MD
27	Department of Radiology and

BA JU Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright. **Page**

Division of Respiratory Diseases

Boston Children's Hospital

28

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5U 51	
51	
52 52	
53	
54	
50	
57	
50	
50	
60 09	
00	

30	300 Longwood Avenue
31	Boston, MA 02115
32	Telephone: 617-355-3181
33	Fax: 617-730-0573
34	robert.cleveland@chldrens.harvard.edu
35	
36	
37	
38	ABSTRACT
39	
40	Objective: To determine the similarity of thermal imaging (TI) to chest x-ray (CXR)
41	in the setting of focal consolidative pneumonia.
42	
43	Setting: A large, 973 bed teaching hospital in Boston, Massachusetts
44	
45	Participants: 47 patients enrolled, 15 in a training set, 32 in a test set. Age range
46	10 months – 82 years (median = 50 years)
47	
48	Materials and Methods: Subjects received CXR with subsequent TI within 4 hours of
49	each other. CXR and TI were assessed in blinded random order. Presence of focal
50	opacity (pneumonia) on CXR, the outcome parameter, was recorded. For TI,
51	presence of area(s) of increased heat (pneumonia) was recorded. Fisher's exact test
52	was used to assess the significance of the correlations of positive findings in the
53	same anatomic region.
54	

55	Results: With TI compared to the CXR (the outcome parameter), sensitivity was
56	80.0% (Confidence intervals (CI): [29.9%, 98.9%], specificity was 57.7% (CI:
57	[37.2%, 76.0%]). Positive predictive value of TI was 26.7% (CI: [8.9%, 55.2%])
58	and its negative predictive value was 93.8% (CI: [67.7%, 99.7%]).
59	
60	Conclusions: This feasibility study confirms proof of concept that chest TI is
61	consistent with CXR in suggesting similarly localized focal pneumonia with high
62	sensitivity and negative predictive value. Further investigation of TI as a point of
63	care imaging modality is warranted.
64	
65	Strengths and Limitations:
66	
67	Strengths:
68	 Proof of concept suggesting that Thermal Imaging (TI) is a valid,
59	innovative, and inexpensive technology useful for diagnosing bacterial
70	pneumonia
71	 Proof of concept suggesting that Thermal Imaging (TI) is a rapid
72	means of diagnosing focal pneumonia in high throughput settings
73	 Proof of concept suggesting that Thermal Imaging (TI) is a valid and
74	innovative technology useful in diagnosing pneumonia in resource
75	limited regions of the world
76	
77	Limitations:
, ,	

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright. Page

BMJ Open

As this is a proof of concept study, it does not have adequate power to • be definitive and cannot replace chest xray for detecting focal pneumonia As this is a proof of concept study, limitations of the technology have not been fully discerned, and at present include adipose tissue and interpretation, but may include other concerns which will require higher numbers of patients enrolled. Word Count: 3116 Data Sharing: There are no additional unpublished data from the study. Data are 86• available to any researcher who is interested in the data, and will be able to be accessed through Dyad and/or through correspondence with the contributing

- 89 authors.90

92 Introduction

This study investigates the degree to which thermal imaging (TI) and chest x-ray (CXR) agree in detecting similarly localized focal pneumonia. Often a clinically challenging diagnosis, bacterial pneumonia remains a major cause of morbidity and mortality worldwide, particularly in under-resourced environments (1-3). Expert panels, including the World Health Organization (WHO), have formulated algorithms to enhance clinical accuracy (4), typically focusing on aspects of the medical history and physical examination to determine the likelihood of bacterial pneumonia. Despite having these algorithms, CXR is generally performed to confirm the diagnosis in severe infections (5-16). If TI results are similar to CXR, it might substitute for CXR when CXR is not available. In resource-limited environments, where 2/3 of the

BMJ Open

world's population has no access to diagnostic imaging (17-18), the potential use of						
TI in point of care screening could aid decision making to treat for pneumonia.						
Point of care imaging utilizing ultrasonography to diagnose pneumonia is attracting						
interest (19-20). However, ultrasonography requires costly equipment and specific						
expertise for image acquisition and interpretation.						
Anecdotal reports suggest that TI has potential for detecting pneumonia (21-22).						
These case reports and methodologies have not been subjected to systematic						
blinded assessment. In this initial proof of concept investigation, we compared TI to						
CXR in patients suspected of having acute pneumonia.						
With recent advances in infrared technology and increasing use assessing home heat						
loss, low-cost thermal cameras have become available, currently costing as little as						
\$200-\$300 (Flir.com). Installation of shielded radiographic rooms can cost hundreds						
of thousands of dollars. Portable x-ray units capable of performing CXR can cost as						
little as \$600-\$800 (dotmed.com). If uninsured, patient cost of a CXR in the US is						
\$200-\$400 or, if insured, a co-pay of \$10-\$50 (23).						
For TI there are no additional costs beyond cost of the camera. TI cameras are						
portable and operate with rechargeable batteries. TI is essentially identical to taking						
a "snap and shoot" photograph and can be done in seconds during the primary						
patient encounter without the camera physically contacting the patient. Digital						
storage and transfer of TI is simple, utilizing a memory card in the TI device that can						
be uploaded to a computer.						
This study presents a prospective comparison of TI to CXR using a commercially						
available thermal camera to determine the similarity of TI and CXR in the setting of						

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 possible focal pneumonia and thus proof of concept and feasibility of TI to detect focal pneumonia. Materials and Methods Subjects: Participants came from the Emergency Department of Massachusetts General Hospital (Boston, MA). On admission to the Emergency Department, adult patients and families of children who had CXR included for evaluation of pneumonia were approached to discuss study participation. Written informed consent and, when applicable, participant assent was obtained from all participants. Enrollment occurred Monday - Friday, 7:00am - 11:00pm when research staff was available. Partners Human Research Committee approved the HIPPA compliant study protocol (#2013P001247). In an initial Training Set, subjects were excluded if they had chronic lung disease, congestive heart failure, prior chest surgery or immunosuppression. In a subsequent TEST Set, these exclusions were not used. Patients had TI within 4 hours of CXR. Patients were male older than 28 days, or female older than 28 days and younger than 8 years. After age eight, only males were included because of concerns for modesty. Forty-seven patients were enrolled. The first 15, comprising the Training Set, were not included as a part of the study's statistical assessment. These 15 cases provided a spectrum of results with 10 concordant for focal pneumonia, 2 concordant for no focal pneumonia, and 3 discordant for pneumonia. The remaining 32 subjects comprised the TEST Set. Analysis of the TEST Set included 31 patients (28 males, 3 females), one patient had no usable thermal images. Patient age ranged from 10

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

158	months - 82 years (median = 50.0 years, (25th, 75th) quartiles = (11.5, 60.5
159	years), with 8 subjects \leq 18 years and 23 subjects > 18 years.
160	
161	Imaging and interpretation: The radiologist interpreting CXR and TI (RHC) is an
162	American Board of Radiology certified diagnostic radiologist and sub-certified
163	pediatric radiologist with 40 years experience.
164	
165	CXRs were assessed in random order blinded to TI. If focal opacities were found, the
166	lobe(s) were recorded (figure 1a). The lobes involved were precisely determined
167	with posterior-anterior (PA) and lateral examinations. When only a portable
168	anterior-posterior (AP) image could be obtained, the lobe(s) involved was
169	determined by lung zone and presence/absence of silhouetting of the mediastinum.
170	CXRs were taken in PA and lateral projections ($N = 19$). If PA and lateral imaging
171	could not be performed, because of clinical care requirements, a portable AP image
172	was acquired (N = 12).
173	
174	TI of the chest were taken from the neck down, similar to CXR, with both posterior
175	and anterior views whenever possible ($N = 29$). If a patient was too ill to be
176	positioned for two views only 1 view was obtained. Depending on the patients'
177	condition and preferred position, 1 patient had a posterior view and 1 an anterior
178	view. Oblique images were not obtained since TI interpretation depends on
179	assessment of asymmetric heat distribution. TI were acquired with the commercially
180	available FLIR i7 infrared thermal camera (flir.com). The subject was encompassed
181	in the field of view; a "snapshot" was obtained so the patient's chest filled the field of
182	view with the entire chest from side to side included from the level of the shoulders
183	to bottom of the chest (or below). Patient to camera distance varied based on patient

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
30	
30 27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52 52	
50	
54	
56	
57	
58	
59	
60	

184 size. Subjects could be sitting or recumbent with the chest exposed. Clothing was removed from the chest prior to TI acquisition. 185

186

1

The camera used in this study has a resolution of 19,600 pixels detecting a 187 temperature range -4° Fahrenheit - 482° Fahrenheit (-20° Celsius - 250° Celsius) 188 with sensitivity to 0.1 degree Celsius. Images filled the 2.8 inch LCD TI screen. TI 189 190 were interpreted while displayed on a desk top computer at a size comparable to the 191 size of the CXR, filling roughly 50% of the computer monitor screen. TI image size 192 varies depending on the imaging device. TI stored in the camera's memory can be 193 uploaded to a computer and displayed at whatever size preferred.

194

TI were evaluated in random order blinded to CXR. Any area(s) of increased heat 195 196 were recorded as upper, mid or lower lung zone, and identified as in the right or left 197 lung. (figures 1,2,3). Following initial assessment of blinded TI and CXR, to shed 198 light on possible causes for TI/CXR discrepancies, cases with disagreement were 199 reviewed in non-blinded fashion, using prior CXR when available.

- 200
- 201

203

204

205

206

207

208

209

210

202 (INSERT FIGURES 1, 2, 3)

211	
212	Legend
213	Figure 1: CXR shows an opacity in the right lung base consistent with pneumonia.
214	
215	Figure 2: TI obtained shortly after the CXR (Figure 1). The image is taken from the
216	patient's back so that the patient's right is on the viewer's right. There is an area of
217	increased heat (white area) in the right lung base concordant with the CXR.
218	
219	Figure 3: Same image as Figure 2 with the area of pneumonia (white area) encircled
220	by an oval ring.
221	
222	
223	
224	
225	
226	
227	
228	TI is similar to nuclear medicine imaging in that it is not the precise size,
229	configuration or margins that are of importance, but rather the temperature pattern
230	with presence or absence of focal areas of increased heat, "hot spots," that is
231	informative for focal pneumonia. Heat emanating from the patient's skin determines
232	the TI image. Generalized skin temperature does not affect TI recognition of a hot
233	spot. Since clothing recently removed from the chest might affect skin temperature
234	globally but not focally, it is unlikely that previously removed clothing would affect
235	recognition of a hot spot. Areas of symmetric increased heat were considered to
236	represent normal variation in heat pattern and areas of increased heat over the
237	neck, sternum, supraclavicular space, spine and axillae were determined to be

normal on the initial 15 training cases. Abdominal heat pattern is similar to that of

the chest without focal temperature changes relating to abdominal viscera. Unlike

CXR, TI does not require that patients hold their breath. Therefore, minor patient motion will have minor, if any, effect on TI quality. Statistical Methods: Paired data were constructed for each patient with CXR the standard for disease and TI the test variable. Each image was dichotomized as normal or showing focal pneumonia. TI sensitivity, specificity, positive predictive value and negative predictive value and their respective confidence intervals were estimated. Agreement between CXR and TI (modeled as a binary outcome with agreement = 1 and disagreement = 0) and as a function of with patient age and sex was assessed using simple logistic regression models, as well as 2X2 contingency tables with age dichotomized as >18 years for adults and \leq 18 years for children. Fisher's exact test was used to assess significance of correlation between age (or sex) and agreement between CXR and TI. A significance level of 0.05 was assumed. Results This study compares results of TI to contemporaneously performed CXR. For the overall cohort, five patients were identified as having focal pneumonia by CXR and 26 not. For the pediatric cohort, there were 2 with focal pneumonia, 6 without by CXR. Eleven cases were TI positive and CXR negative (false positives). One case was TI negative and CXR positive (false negative).

Page 11 o	of 39	39 BMJ Open						BMJ	
1 2 3									Open: first i
4 5	264	Table .	noumonia identified in the same anstarris lasation in 10 patients. Constituity						
6 7	265	pneum	pneumonia identified in the same anatomic location in 19 patients. Sensitivity,						
8 9	266	specificity, positive predictive value, negative predictive values and their $\overset{\circ}{\overset{\circ}{}}$						\$ 10.1	
10 11 12	267	corresponding confidence intervals (CI) are presented.							
13 14		True	True	False	False	Sensitivity	Specificity	Positive	Negative
15 16		Positive	Negative	Positive	Negativ	(95% CI)	(95% CI)	Predictive	Predictive Varue
17 18 19					е			Value	17964 on
20 21 vs		4	15	11	1	80.0%	57.7%	26.7%	93.8% ⁵ ar
22 2§linded	CXR					(29.9%, 98.9%)	(37.2%,	(8.9%,	(67.7%, 99.葇)
24 2 6 5 +ve,	26 -						76.0%)	55.2%)	2018.
26 2 7 /e)									Downl
28 29	268								oadec
30 31	269	Table 1	Table 1: Sensitivity analysis of TI assuming the CXR as the outcome parameter. 95%						
32 33	270	Confide	ence inter	vals (CI)	are inclu	ded for all parame	eters.		http://
34 35	271			()					bmjop
36 37	271								bn.bn
38 39	272	The rel	lationchin	hotwoon	TI and C	VD agroomont wit	h patient den	a araphica waa	nj.com
40 41	273			Detween					via a
42 43	274	assess			gression				
44 45	275	no sigr	nificant coi	rrelation	between	modality agreeme	ent and patier	it age (treated a	asa ber
46 47	276	continu	uous varia	ble or dio	chotomize	ed as adult versus	pediatric) or	sex (age: p = C).3 3, 202
48 49	277	(95%)	CI for the	regressic	on coeffic	ent = (-0.01, 0.00)	94)]; sex: p -	0.16 [95% CI	= ¹³ by (
50 51	278	(-0.16	(-0.16, 1.05)]).						
52 53	279								Prote
54 55	280	Since t	his is an e	explorato	ry proof o	of concept study t	he sample siz	e is not based o	in cted t
56 57 58 59 60	281	statisti	cal power.	. In orde	r to achi	eve a power of 0.8	80, with the c	onditions	yy copyright.

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

2	
3	
4	
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
20	
20	
28	
29	
30	
31	
32	
33	
34	
35	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
40 10	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

encountered in this study, a power calculation showed 138 patients would be required.

To investigate causes for TI/CXR discrepancies, cases with disagreement were reviewed in a non-blinded fashion, using prior and subsequent CXR (comparison images were not included in the blinded, original CXR assessments). This review of discrepant cases is not included in the study's statistical analysis.

For the 11 false positive TI cases, prior CXRs were available in only three cases. Each of these 3 cases had diffuse findings confounding CXR interpretation. One had diffuse changes of cystic fibrosis, one had changes of chronic obstructive pulmonary disease and one had low lung volumes. When CXR was reviewed with prior CXR, the CXR interpretation was changed to focal pneumonia (figure 4,5,6) concordant with TI (figure 7,8) in each instance. Follow-up images provided no additional information.

(INSERT FIGURES 4, 5, 6, 7, 8)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 39

309	
310	Legend
311	Figure 4: Portable CXR taken in the Emergency Department during assessment f
312	acute pneumonia reveals low lung volumes and what was assumed to be resultan
313	crowding of pulmonary parenchyma in both lung bases medially. The interpretati
314	at that time was that there was no acute pneumonia.
315	
316	Figure 5: This CXR was performed 5 days before the CXR in Figure 4. The lung
317	volumes are comparably low, but the small opacity in the right infrahilar region o
318	Figure 4 is not present. This indicates that there was a pneumonia in the right lur
319	base on the CXR in Figure 4 rather than normal crowding of lung tissue.
320	
321	Figure 6: Same image as figure 4 with the right infrahilar pneumonia indicated by
322	arrows.
323	
324	Figure 7: TI obtained shortly after the CXR shown in Figure 4. The image is taken
325	from the patient's back so that the patient's right is on the viewer's right. There
326	an area of increased heat (white area) in the right lung base concordant with that
327	seen in Figure 4.
328	
329	Figure 8: Same image as Figure 7 with the area of pneumonia (white area) encirc
330	by an oval ring.
331	
332	
333	For 2 other cases, knowledge of TI findings resulted in a change in the CXR

1	
2	
3	
4	
5	
6 7	
/ 0	
o a	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
56	
57	
58	
59	
60	

335	consistent with focal pneumonia and in one case, there was the question of a very
336	subtle opacity, both concordant with the TI images.
337	
338	Three other CXRs had what appeared to be atelectasis in regions of TI hot spots. In
339	light of the TI results, these areas of presumed atelectasis may actually represent
340	pneumonia. These opacities on CXR were, in one case each, in the right upper lobe,
341	left upper lobe and left lower lobe.
342	
343	Three of the 11 false positive TI cases had no change in CXR interpretation.
344	
345	The one false negative case had no change to TI or CXR interpretation.
346	
347	There were no tumors, pulmonary edema or other abnormalities identified on CXR
348	that might affect TI results.
349	
350	Non-blinded review produced no changes in interpretation of TI images.
351	
352	Discussion
353	
354	This study suggests that TI is sensitive and reasonably specific compared to the
355	outcome parameter of CXR in detecting focal pneumonia.
356	
357	There currently is no experimental data assessing the mechanism of increased focal
358	heat, as detected by TI, associated with focal pneumonia. The assumption is that
359	the focal hyperemia associated with focal inflammation, in this case pneumonia,
360	produces focally increased heat. It presumably is this increased heat radiating from
361	the site of pneumonia that is detected by TI. Consequently, an area of atelectasis

which is not associated with hyperemia, will not produce an area of focally increasedheat.

It is focal increased heat that is the indicator of focal pneumonia on TI. Thus any bacterial organism (which organism cannot be determined) may be the culprit. Viral pneumonias are generally diffuse and do not typically generate a focal pneumonia. Some atypical pneumonias, such as mycoplasma, may have a focal consolidative component which might be detected as a hot spot. It has been reported in a case report that acute consolidative tuberculosis caused a TI hot spot but sub-acute tuberculosis did not (21). It is not the precise lobar distribution but rather presence or absence of a focal hot spot that is the informative aspect of TI.

The purpose of this study is not to determine whether TI or CXR is superior in detecting pneumonia but to assess how well TI and CXR agree in detecting a focal consolidation. This is in the context of CXR being the most widely utilized standard for diagnosis of pneumonia (19, 20, 24-29), including studies assessing effectiveness of the WHO clinical diagnostic criteria (29). Ultrasound is the only other point of care imaging procedure widely studied for diagnosis of pneumonia and in virtually all of its validation studies it is compared to CXR (26-28). While clinical signs and symptoms have been utilized, collecting accurate data and correlation with the ultimate diagnosis of pneumonia is inconsistent (30). However, it is not the purpose of this study to assess the accuracy of imaging to detect pneumonia as compared to the clinical diagnosis. Ultimately, other methodologies such as inflammatory markers may play a role, but currently these are in relatively early stages of development.

Accuracy of CXR in determining the presence of focal pneumonia will vary depending
on quality of imaging and experience of the observer, as is true for TI. Although

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

computerized tomography (CT) has greater accuracy in detecting pneumonia than
 CXR (31-32), CT cannot be used as routine imaging for pneumonia because of
 concerns of radiation exposure and cost (29).

There was only one false negative in the cohort of 31 patients with 11 false positives (sensitivity = 0.80, specificity = 0.58). Thus the ability of TI to accurately detect focal pneumonia (as determined by CXR), in this cohort was high. For a screening test, this ability to not miss focal pneumonia is the most critical criterion. The higher rate of false positives would lead to either over treating or further testing in a limited number of patients, which, although important, is a less critical issue. The changes in CXR interpretation on non-blinded review of discrepant TI/CXR revealed the following. 1) TI had hot spots in cases where CXR findings were initially not definitive for focal pneumonia (N = 5). For two, CXR diagnosis was confounded by pre-existing chronic lung diseases and in one by shallow inflation. For two others, the suggestion of focal pneumonia on CXR was too subtle for definitive diagnosis. 2) TI revealed hot spots in cases where the blinded CXR suggested atelectasis (N = 3). This suggests that TI may be able to detect focal pneumonia in cases where pre-existing lung disease or imaging technique confound the diagnosis on CXR or when diagnosis on CXR is too subtle to be convincing (as possibly with early onset or resolving focal pneumonia). TI may be able to differentiate between focal

409 pneumonia and atelectasis.

These findings suggest TI may be comparable to CXR in recognizing focal
pneumonia. Relatively low cost and portability of thermal cameras, some of which
can be used with mobile phones, potentially enable TI as a point of care screening
tool for focal pneumonia. Other advantages include minimal training to perform
images, lack of ionizing radiation exposure, off-site interpretation of digitized images

and possible software interpretation algorithms. Lack of physical contact with the
patient enhances infection control. Possible additional uses include following
progression of disease in combination with other modalities such as respiratory rate
and oximetry.

Limitations of TI include learning to interpret TI, presence of prior disease affecting
TI and the possibility that increased adiposity may interfere with its accuracy.

424 Conclusions

This feasibility study confirms proof of concept that TI can demonstrate focal pneumonia. Therefore, these findings support further investigation with larger trials of patients that will be adequately powered to robustly assess the similarity between TI and the outcome parameter. This technology is potentially most useful in resource-limited environments where pneumonia is the second most common cause of death in young children and where CXR equipment and expert readers are unavailable (33). It also could be of benefit in high throughput healthcare settings, such as emergency departments or busy doctors' offices and rural areas where access to CXR is limited.

436	
437	Funding: The Bacca Foundation and the Consortium for Affordable Medical
438	Technologies (CAMTech) (Fund # is 223707)
439	
440	Portions of this material were presented at RSNA 2016, Chicago, IL, December 1,
441	2016.
442	
772	
443	Contributor ship Statement:
444	
445	Specific Contributions from each author
446	
447	Linda T. Wang, MD
448	Conception and design of the study, acquisition of data and analysis,
449	interpretation of data, and drafting the work and revising it critically
450	
451	Robert H. Cleveland, MD
452	Conception and design of the study, data analysis, interpretation of data, and
453	drafting the work and revising it critically.
454	
455	William Binder, MD Design of the study, acquisition of data and analysis, interpretation of data
450	drafting the work and revising it critically
458	
459	Thomas Ptak, MD, PhD
460	Data analysis, interpretation of data, and drafting the work and revising it critic
461	
462	Catherine Stamoulis, PhD
463	Data analysis, interpretation of data, and drafting the work and revising it critic
464	

466 467	Conception of the study, acquisition of data, interpretation of data, revising th work critically
468	
469	Kenan Haver, MD
470	Conception and design of the study, analysis of the data, interpretation of dat
471	and drafting the work and revising it critically.
472	
473	Pallavi Sagar, MD
474	Analysis of the data, interpretation of data, drafting the work and revising it
475	critically
476	
477	Robert G Zwerdling MD
478	Conception and design of the study, data analysis, interpretation of data, and
479	drafting the work and revising it critically.
480	
481	Patricia Hibberd, MD, PhD
482	Conception and design of the study, interpretation of data, and drafting the w
483	and revising it critically
484	
485	
486	
487	Competing Interests
488	None of the authors have conflicts of interest to report relating to this work
-00	None of the dutions have connets of interest to report relating to this work
489	"All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pd
490 401	deciare: no support from any organisation for the submitted work; no financial relationships with any
491	relationships or activities that could appear to have influenced the submitted work."
493	

494	
495	References
496	1) Gowraiah V, Awasthi S, Kapoor R, et al. Can we distinguish pneumonia from
497	wheezy diseases in tachypnoeic children under low-resource conditions? A
498	prospective observational study in four Indian hospitals. Arch Dis Child 2014;99:899-
499	906.
500	
501	2) McCollum, ED, Prcidis, GA, Malliwichi, M, et al. Performance Of The World Health
502	Organization Diagnostic Criteria For Pneumonia In Hospitalized Malawian Infants
503	With Exposure To Human Immunodeficiency Virus. Am J Respir Crit Care Med
504	2014;189:A1235.
505	
506	3) Revised WHO classification and treatment of pneumonia in children at health
507	facilities: evidence summaries. World Health Organization Web site
508	http://apps.who.int/iris/bitstream/10665/137319/1/9789241507813_eng.pdf.
509	Published 2014. Accessed 2/12/2015.
510	
511	4) Ginsburg AS, Sadruddin S, Klugman KP. Innovations in pneumonia diagnosis and
512	treatment: a call to action on World Pneumonia Day, 2013. Lancet Glob Health
513	2013;1:e326-327.
514	
515	5) Jain S, Williams DJ, Arnold SR, et al. Community-acquired pneumonia requiring
516	hospitalization among U.S. children. N Engl J Med 2015;372:835-845.
517	
518	6) Bradley JS, Byington CL, Shah SS, et al. The management of community-acquired
519	pneumonia in infants and children older than 3 months of age: clinical practice
520	guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases
-----	--
521	Society of America. Clin Infect Dis 2011;53:e25-76.
522	
523	7) Bartlett JG, Dowell SF, Mandell LA, et al. Practice guidelines for the management
524	of community-acquired pneumonia in adults. Infectious Diseases Society of America.
525	<i>Clin Infect Dis</i> 2000;31:347-382.
526	
527	8) Niederman M, Mandell L, Anzueto A. American Thoracic Society. Guidelines for the
528	initial management of adults with community-acquired pneumonia. Am J Resp Crit
529	Care Med 2001;163:1730-1754.
530	
531	9) Wipf JE, Lipsky BA, Hirschmann JV, et al. Diagnosing pneumonia by physical
532	examination: relevant or relic? Arch Intern Med 1999;159:1082-1087.
533	
534	10) Speets AM, Hoes AW, van der Graaf Y, et al. Chest radiography and pneumonia
535	in primary care: diagnostic yield and consequences for patient management. Eur
536	<i>Respir J</i> 2006;28:933-938.
537	
538	11) van Vugt SF, Verheij TJ, de Jong PA, et al. Diagnosing pneumonia in patients
539	with acute cough: clinical judgment compared to chest radiography. Eur Respir J
540	2013; 42:1076-1082.
541	
542	12) Diehr P. Wood RW. Bushyhead 1. et al. Prediction of pneumonia in outpatients
543	with acute cougha statistical approach. <i>1 Chronic Dis</i> 1984:37:215-225.
544	

545	13) Emerman CL, Dawson N, Speroff T, et al. Comparison of physician judgment and
546	decision aids for ordering chest radiographs for pneumonia in outpatients. Ann
547	Emerg Med 1991;20:1215-1219.
548	
549	14) Claudius I, Keens T. Do all infants with apparent life-threatening events need to
550	be admitted? Pediatrics 2007;119:679-683.
551	
552	15) Self WH, Courtney DM, McNaughton CD, et al. High discordance of chest x-ray
553	and computed tomography for detection of pulmonary opacities in ED patients:
554	implications for diagnosing pneumonia. Am J Emerg Med 2013;31:401-405.
555	
556	16) Elemraid MA, Muller M, Spencer DA, et al. Accuracy of the interpretation of chest
557	radiographs for the diagnosis of paediatric pneumonia. PLoS One 2014;9:e106051.
558	
559	17) World Radiology Day: Two-Thirds of the World's Population has no Access to
560	Diagnostic Imaging. Pan American Health Organization Web site
561	http://www.paho.org/hq/index.php?option=com_content&view=article&id=7410%3A
562	2012-dia-radiografia-dos-tercios-poblacion-mundial-no-tiene-acceso-diagnostico-
563	imagen&catid=740%3Apress-releases&Itemid=1926⟨=en Published November
564	7, 2012. Accessed March 28, 2016.
565	
566	18) Baseline survey on Medical Devices, 2013 update. World Health Organization
567	Web site
568	http://gamapserver.who.int/gho/interactive_charts/health_technologies/medical_equ
569	ipment/atlas.html Accessed March 20, 2016.
570	

Page 23 of 39

ω
₹
Q
ben
 ≣≏
st
put
olis
hec
ä
s 1
136
) br
Ъ.
pei
۲- 2-
017
5
179
64
on
сı
Jan
iua
N N
01
ð
n
oac
ĕd
frc
Ĕ
The second secon
<u>ă</u>
ð
en.l
<u>M</u>
8
ž
g
De
če
Ш
θŗ
3
20
23
ş
gue
est.
P
ote
cte
Ó D
м С
ob)
vrig
jht.

571	19) Reissig A, Copetti R, Mathis G, et al. Lung ultrasound in the diagnosis and follow-
572	up of community-acquired pneumonia: a prospective, multicenter, diagnostic
573	accuracy study. Chest 2012;142:965-972.
574	
575	20) Shah VP, Tunik MG, Tsung JW. Prospective evaluation of point-of-care
576	ultrasonography for the diagnosis of pneumonia in children and young adults. JAMA
577	<i>Pediatr</i> 2013;167:119-125.
578	
579	21) Potanin C. Thermographic patterns of pulmonary disease. Chest 1970;58:491-
580	496.
581	
582	22) Moiseenko MD, Dianova TV, Mus VF, et al. [Use of color contact thermography
583	for diagnosis of lung diseases]. Vestn Khir Im I I Grek 1976;117:16-18.
584	
585	23) How Much Does an Xray Cost? Costhelper Web site
586	http://health.costhelper.com/x-rays.html Accessed February 28, 2016.
587	
588	24) Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med
589	2014;371:1619-1628.
590	
591	25) Lynch T, Bialy L, Kellner JD, et al. A systematic review on the diagnosis of
592	pediatric bacterial pneumonia: when gold is bronze. PLoS One 2010;5:e11989.
593	
594	26) Nazerian P, Volpicelli G, Vanni S, et al. Accuracy of lung ultrasound for the
595	diagnosis of consolidations when compared to chest computed tomography. Am J
596	Emerg Med 2015;33:620-625.
597	

Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

2	
3	
4	
5	
6	
7	
8	
à	
3	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50	
00 57	
5/	
58	
59	
60	

598 27) Chavez MA, Shams N, Ellington LE, et al. Lung ultrasound for the diagnosis of
599 pneumonia in adults: a systematic review and meta-analysis. *Respir Res*600 2014;15:50.

601

1

402 28) Hu QJ, Shen YC, Jia LQ, et al. Diagnostic performance of lung ultrasound in the
diagnosis of pneumonia: a bivariate meta-analysis. *Int J Clin Exp Med* 2014;7:115121.

605

29) Cardoso MR, Nascimento-Carvalho CM, Ferrero F, et al. Adding fever to WHO
criteria for diagnosing pneumonia enhances the ability to identify pneumonia cases
among wheezing children. *Arch Dis Child* 2011;96:58-61

609

30) Rambaud-Althaus C, Althaus F, Genton B, et al. Clinical features for diagnosis of
pneumonia in children younger than 5 years: a systematic review and meta-analysis. *Lancet Infect Dis* 2015;15:439-450.

613

614 31) Syrjala H, Broas M, Suramo I, et al. High-resolution computed tomography for

the diagnosis of community-acquired pneumonia. *Clin Infect Dis* 1998;27:358-363.

616

617 32) Tanaka N, Matsumoto T, Kuramitsu T, et al. High resolution CT findings in

618 community-acquired pneumonia. *J Comput Assist Tomogr* 1996;20:600-608.

619

620 33) WHO | Pneumonia. World Health Organization Web site

621 http://www.who.int/mediacentre/factsheets/fs331/en/. Updated November 2015,

622 Accessed December 7, 2015.

623

				E	SMJ Open			
625 Ta	bles							
626								
020								
627			T					
	True	True	False	False	Sensitivity	Specificity	Positive	Negativ
	Positive	Negative	Positive	Negativ	(95% CI)	(95% CI)	Predictive	Predictiv
				e			Value	
TLVC	1	15	1 1	1	80.00/	EZ 70/	26 70/	02.80/
	4	15	11	T		J7.770	20.7 %	95.070
blinded CXR					(29.9%, 98.9%)	(37.2%,	(8.9%,	(67.7%)
(5 +ve, 26 -						76.0%)	55.2%)	
ve)								
628				N.				
629								
630 Ta	bla 1 · Sa	ncitivity a	nalveie o	f TI accu	ming the CVP as t	he outcome r	arameter	
630 Ta	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assui	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assui	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	
630 Ta 631	ble 1: Se	nsitivity a	nalysis o	f TI assu	ming the CXR as t	he outcome p	oarameter.	

Figure 1: CXR shows an opacity in the right lung base consistent with pneumonia.

Figure 2: TI obtained shortly after the CXR (Figure 1). The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with the CXR.

Figure 3: Same image as Figure 2 with the area of pneumonia (white area) encircled by an oval ring.

Figure 4: Portable CXR taken in the Emergency Department during assessment for acute pneumonia reveals low lung volumes and what was assumed to be resultant crowding of pulmonary parenchyma in both lung bases medially. The interpretation at that time was that there was no acute pneumonia.

Figure 5: This CXR was performed 5 days before the CXR in Figure 4. The lung volumes are comparably low, but the small opacity in the right infrahilar region on Figure 4 is not present. This indicates that there was a pneumonia in the right lung base on the CXR in Figure 4 rather than normal crowding of lung tissue.

Figure 6: Same image as figure 4 with the right infrahilar pneumonia indicated by arrows.

Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

Figure 7: TI obtained shortly after the CXR shown in Figure 4. The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with that seen in Figure 4.

Figure 8: Same image as Figure 7 with the area of pneumonia (white area) encircled by an oval ring.

. Figure 7 with the a

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

309x260mm (300 x 300 DPI)

Figure 2: TI obtained shortly after the CXR (Figure 1). The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with the CXR.

109x94mm (300 x 300 DPI)

Figure 3: Same image as Figure 2 with the area of pneumonia (white area) encircled by an oval ring.

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

111x94mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 4: Portable CXR taken in the Emergency Department during assessment for acute pneumonia reveals low lung volumes and what was assumed to be resultant crowding of pulmonary parenchyma in both lung bases medially. The interpretation at that time was that there was no acute pneumonia.

311x264mm (300 x 300 DPI)

Figure 5: This CXR was performed 5 days before the CXR in Figure 4. The lung volumes are comparably low, but the small opacity in the right infrahilar region on Figure 4 is not present. This indicates that there was a pneumonia in the right lung base on the CXR in Figure 4 rather than normal crowding of lung tissue.

50x54mm (300 x 300 DPI)

Figure 6: Same image as figure 4 with the right infrahilar pneumonia indicated by arrows.

24x22mm (300 x 300 DPI)

Figure 7: TI obtained shortly after the CXR shown in Figure 4. The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with that seen in Figure 4.

84x84mm (300 x 300 DPI)

24x22mm (300 x 300 DPI)

Item	Description	Reported on
Title	Identification of the study as randomized	1
Authors *	Contact details for the corresponding author	4 - 7
Trial design	Description of the trial design (e.g. parallel, cluster, non- inferiority)	132; 245
Methods		
Participants	Eligibility criteria for participants and the settings where the data were collected	139-153
Interventions	Interventions intended for each group	149-151, 168 188;
Objective	Specific objective or hypothesis	91-92; 126- 129; 257
Outcome	Clearly defined primary outcome for this report	185-189
Randomization	How participants were allocated to interventions	133; 149
Blinding (masking)	Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment	185-189
Results		
Numbers randomized	Number of participants randomized to each group	155
Recruitment	Trial status	
Numbers analysed	Number of participants analysed in each group	155-158
Outcome	For the primary outcome, a result for each group and the estimated effect size and its precision	258,291-297, 344
Harms	Important adverse events or side effects	
Conclusions	General interpretation of the results	427-435
Trial registration	Registration number and name of trial register	NA
Funding	Source of funding	Funding: The Bacca Foundation and the Consortium for Affordable Medical Technologies (CAMTech) (Fund # is 223707)

Items to include when reporting a randomized trial in a journal or conference abstract

*this item is specific to conference abstracts

BMJ Open

Similarity of Chest X-ray and Thermal Imaging of Focal Pneumonia: A Randomized Proof of Concept Study at a Large Urban Teaching Hospital

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-017964.R2
Article Type:	Research
Date Submitted by the Author:	17-Oct-2017
Complete List of Authors:	Wang, Linda; Massachusetts General Hospital, Emergency Medicine and Pediatric Global Health Cleveland, Robert; Children's Hospital Boston, Radiology Binder, William; Brown University, Emergency Medicine Zwerdling, Robert; university of massachusetts, radiology Stamoulis, Caterina; children's hospital of boston, adolescent and young adult research Ptak, Thomas; Emory University Hospital, Radiology Sherman, Mindy; Massachusetts General Hospital, Emergency Medicine Haver, Kenan; Children's Hospital Boston, Pulmonary and Respiratory Diseases Sagar, Pallavi; Massachusetts General Hospital, Radiology Hibberd, Patricia; Boston Medical Center, Department of Global Health
Primary Subject Heading :	Radiology and imaging
Secondary Subject Heading:	Global health, Respiratory medicine, Infectious diseases, Paediatrics
Keywords:	Paediatric radiology < PAEDIATRICS, Chest imaging < RADIOLOGY & IMAGING, Respiratory infections < THORACIC MEDICINE, Diagnostic radiology < RADIOLOGY & IMAGING

SCHOLARONE[™] Manuscripts

1	Similarity of Chest X-ray and Thermal Imaging of Focal Pneumonia: A randomized
2	proof of concept study at a large urban teaching hospital.
3	
4	Linda T. Wang, M.D.1 (co-first author), Robert H. Cleveland, M.D.2 (co-first author),
5	William Binder M.D.3, Robert G. Zwerdling, M.D.4, Catherine Stamoulis, PhD5,
6	Thomas Ptak, M.D., PhD6, Mindy Sherman, M.D7, Kenan Haver M.D8, Pallavi Sagar,
7	M.D.9, Patricia Hibberd, M.D., PhD.10
8	
9	Massachusetts General Hospital, Boston, MA: 1, 7, 9
10	Boston Children's Hospital, Boston, MA: 2, 5, 8
11	Alpert School of Medicine, Department of Emergency Medicine, Brown University,
12	Providence, RI: 3
13	University of Massachusetts Medical Center, Worchester, MA: 4 (deceased)
14	Emory University Hospital, Atlanta, GA: 6
15	Boston University, Boston, MA: 10
16	
17	Corresponding authors:
18	
19	William Binder, MD
20	Department of Emergency Medicine
21	Alpert School of Medicine at Brown University
22	55 Claverick Street
23	Providence, RI 02903
24	Telephone: 401 741 2521
25	William_Binder@Brown.edu
26	
27	Robert H. Cleveland, MD

40 BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright. Page

3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
25	
22	
30	
37	
38	
39	
40	
41	
42	
43	
11	
44	
40	
46	
47	
48	
49	
50	
51	
52	
53	
50	
J4	
55	
56	
57	
58	
59	
60	

1 2

> 28 Department of Radiology and **Division of Respiratory Diseases** 29 30 Boston Children's Hospital 31 300 Longwood Avenue 32 Boston, MA 02115 33 Telephone: 617-355-3181 34 Fax: 617-730-0573 robert.cleveland@chldrens.harvard.edu 35 36 37 38 39 ABSTRACT 40 Objective: To assess the diagnostic accuracy of thermal imaging (TI) in the setting 41 42 of focal consolidative pneumonia with chest x-ray (CXR) as the gold standard. 43 44 Setting: A large, 973 bed teaching hospital in Boston, Massachusetts 45 46 Participants: 47 patients enrolled, 15 in a training set, 32 in a test set. Age range 47 10 months - 82 years (median = 50 years) 48 49 Materials and Methods: Subjects received CXR with subsequent TI within 4 hours of each other. CXR and TI were assessed in blinded random order. Presence of focal 50 51 opacity (pneumonia) on CXR, the outcome parameter, was recorded. For TI, 52 presence of area(s) of increased heat (pneumonia) was recorded. Fisher's exact test 53 was used to assess the significance of the correlations of positive findings in the 54 same anatomic region.

= 1	Decultor With TI compared to the CVD (the extension restory) and ""
56	Results: With 11 compared to the CXR (the outcome parameter), sensitivity wa
57	80.0% (Confidence intervals (CI): [29.9%, 98.9%], specificity was 57.7% (CI:
58	[37.2%, 76.0%]). Positive predictive value of TI was 26.7% (CI: [8.9%, 55.2°
59	and its negative predictive value was 93.8% (CI: [67.7%, 99.7%]).
60	
61	Conclusions: This feasibility study confirms proof of concept that chest TI is
62	consistent with CXR in suggesting similarly localized focal pneumonia with high
63	sensitivity and negative predictive value. Further investigation of TI as a point
64	care imaging modality is warranted.
65	
66	Strengths and Limitations:
67	
68	Strengths:
69	• Proof of concept suggesting that Thermal Imaging (TI) is a valid, innova
70	and inexpensive technology useful for diagnosing bacterial pneumonia
71	• Proof of concept suggesting that Thermal Imaging (TI) is a rapid means
72	diagnosing focal pneumonia in high throughput settings
73	• Proof of concept suggesting that Thermal Imaging (TI) is a valid and
74	innovative technology useful in diagnosing pneumonia in resource limite
75	regions of the world
76	
77	Limitations:
78	• As this is a proof of concept study, it does not have adequate power to l
	definitive and cannot replace chest yray for detecting focal pneumonia

 As this is a proof of concept study, limitations of the technology have not been fully discerned, and at present include adipose tissue and interpretation, but may include other concerns which will require higher numbers of patients enrolled.

84 Word Count: 2849

Data Sharing: There are no additional unpublished data from the study. Data are available to any researcher who is interested in the data, and will be able to be accessed through Dyad and/or through correspondence with the contributing authors.

91 Introduction

This study investigates the degree to which thermal imaging (TI) and chest x-ray (CXR) are concordant in detecting similarly localized focal pneumonia. Often a clinically challenging diagnosis, bacterial pneumonia remains a major cause of morbidity and mortality worldwide, particularly in under-resourced environments (1-3). Expert panels, including the World Health Organization (WHO), have formulated algorithms to enhance clinical accuracy (4), typically focusing on aspects of the medical history and physical examination to determine the likelihood of bacterial pneumonia. Despite having these algorithms, CXR is generally performed to confirm the diagnosis in severe infections (5-16). If TI results are similar to CXR, it might substitute for CXR when CXR is not available. In resource-limited environments, where 2/3 of the world's population has no access to diagnostic imaging (17-18), the potential use of TI in point of care screening could aid decision making to treat for pneumonia.

106	Point of care imaging utilizing ultrasonography to diagnose pneumonia is attracting
107	interest (19-20). However, ultrasonography requires costly equipment and specific
108	expertise for image acquisition and interpretation.
109	
110	Anecdotal reports suggest that TI has potential for detecting pneumonia (21-22).
111	These case reports and methodologies have not been subjected to systematic
112	blinded assessment. In this initial proof of concept investigation, we compared TI to
113	CXR in patients suspected of having acute pneumonia.
114	
115	With recent advances in infrared technology and increasing use assessing home heat
116	loss, low-cost thermal cameras have become available, currently costing as little as
117	\$200-\$300 (Flir.com). Installation of shielded radiographic rooms can cost hundreds
118	of thousands of dollars. Portable x-ray units capable of performing CXR can cost as
119	little as \$600-\$800 (dotmed.com). If uninsured, patient cost of a CXR in the US is
120	\$200-\$400 or, if insured, a co-pay of \$10-\$50 (23).
121	
122	For TI there are no additional costs beyond cost of the camera. TI cameras are
123	portable and operate with rechargeable batteries. TI is essentially identical to taking
124	a "snap and shoot" photograph and can be done in seconds during the primary
125	patient encounter without the camera physically contacting the patient. Digital
126	storage and transfer of TI is simple, utilizing a memory card in the TI device that can
127	be uploaded to a computer.
128	
129	This study presents a prospective comparison of TI to CXR using a commercially
130	available thermal camera to determine the similarity of TI and CXR in the setting of
131	possible focal pneumonia and thus proof of concept and feasibility of TI to detect
132	focal pneumonia.

133	
134	Materials and Methods
135	
136	Subjects: Participants came from the Emergency Department of Massachusetts
137	General Hospital (Boston, MA). On admission to the Emergency Department, adult
138	patients and families of children who had CXR included for evaluation of pneumonia
139	were approached to discuss study participation. Written informed consent and, when
140	applicable, participant assent was obtained from all participants. Enrollment
141	occurred Monday - Friday, 7:00am - 11:00pm when research staff was available.
142	Partners Human Research Committee approved the HIPPA compliant study protocol
143	(#2013P001247).
144	
145	In an initial Training Set, subjects were excluded if they had chronic lung disease,
146	congestive heart failure, prior chest surgery or immunosuppression. In a subsequent
147	TEST Set, these exclusions were not used. Patients had TI within 4 hours of CXR.
148	Patients were male older than 28 days, or female older than 28 days and younger
149	than 8 years. After age eight, only males were included because of concerns for
150	modesty.
151	
152	Forty-seven patients were enrolled. The first 15, comprising the Training Set, were
153	not included as a part of the study's statistical assessment. These 15 cases provided
154	a spectrum of results with 10 concordant for focal pneumonia, 2 concordant for no
155	focal pneumonia, and 3 discordant for pneumonia. The remaining 32 subjects
156	comprised the TEST Set. Analysis of the TEST Set included 31 patients (28 males, 3
157	females), one patient had no usable thermal images. Patient age ranged from 10
158	months - 82 years (median = 50.0 years, (25th, 75th) quartiles = (11.5, 60.5
159	years), with 8 subjects \leq 18 years and 23 subjects > 18 years.

BMJ Open

160	
161	Imaging and interpretation: The radiologist interpreting CXR and TI (RHC) is an
162	American Board of Radiology certified diagnostic radiologist and sub-certified
163	pediatric radiologist with 40 years experience.
164	
165	CXRs were assessed in random order blinded to TI. If focal opacities were found, the
166	lobe(s) were recorded (figure 1a). The lobes involved were precisely determined
167	with posterior-anterior (PA) and lateral examinations. When only a portable
168	anterior-posterior (AP) image could be obtained, the lobe(s) involved was
169	determined by lung zone and presence/absence of silhouetting of the mediastinum.
170	CXRs were taken in PA and lateral projections ($N = 19$). If PA and lateral imaging
171	could not be performed, because of clinical care requirements, a portable AP image
172	was acquired (N = 12).
173	
174	TI of the chest were taken from the neck down, similar to CXR, with both posterior
175	and anterior views whenever possible ($N = 29$). If a patient was too ill to be
176	positioned for two views only 1 view was obtained. Depending on the patients'
177	condition and preferred position, 1 patient had a posterior view and 1 an anterior
178	view. Oblique images were not obtained since TI interpretation depends on
179	assessment of asymmetric heat distribution. TI were acquired with the commercially
180	available FLIR i7 infrared thermal camera (flir.com). The subject was encompassed
181	in the field of view; a "snapshot" was obtained so the patient's chest filled the field of
182	view with the entire chest from side to side included from the level of the shoulders
183	to bottom of the chest (or below). Patient to camera distance varied based on patient
184	size. Subjects could be sitting or recumbent with the chest exposed. Clothing was
185	removed from the chest prior to TI acquisition.

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

0	
2	
3	
٨	
4	
5	
6	
2	
1	
8	
õ	
9	
10	
11	
11	
12	
13	
10	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
21	
22	
23	
20	
24	
25	
20	
20	
27	
20	
20	
29	
30	
00	
31	
32	
20	
33	
34	
32	
00	
36	
37	
07	
38	
39	
10	
40	
41	
42	
40	
43	
44	
15	
40	
46	
47	
+/	
48	
49	
.0 E 0	
<u>э</u> 0	
51	
50	
52	
53	
54	
55	
56	
55	
57	
58	
50	
29	
60	

1

187 The camera used in this study has a resolution of 19,600 pixels detecting a temperature range -4° Fahrenheit - 482° Fahrenheit (-20° Celsius - 250° Celsius) 188 189 with sensitivity to 0.1 degree Celsius. Images filled the 2.8 inch LCD TI screen. TI were interpreted while displayed on a desk top computer at a size comparable to the 190 191 size of the CXR, filling roughly 50% of the computer monitor screen. TI image size varies depending on the imaging device. TI stored in the camera's memory can be 192 193 uploaded to a computer and displayed at whatever size preferred. 194 TI were evaluated in random order blinded to CXR. Any area(s) of increased heat 195 196 were recorded as upper, mid or lower lung zone, and identified as in the right or left lung. (figures 1,2,3). Following initial assessment of blinded TI and CXR, to shed 197 light on possible causes for TI/CXR discrepancies, cases with disagreement were 198 Χh 199 reviewed in non-blinded fashion, using prior CXR when available. 200 201 202 (INSERT FIGURES 1, 2, 3) 203 204 205 206 Legend 207 Figure 1: CXR shows an opacity in the right lung base consistent with pneumonia. 208 Figure 2: TI obtained shortly after the CXR (Figure 1). The image is taken from the 209 210 patient's back so that the patient's right is on the viewer's right. There is an area of 211 increased heat (white area) in the right lung base concordant with the CXR.

BMJ Open

213	Figure 3: Same image as Figure 2 with the area of pneumonia (white area) encircled
213	by an oval ring.
215	· · · · · · · · · · · · · · · · · · ·
216	
217	
218	
219	
220	
221	
222	TI is similar to nuclear medicine imaging in that it is not the precise size,
223	configuration or margins that are of importance, but rather the temperature pattern
24	with presence or absence of focal areas of increased heat, "hot spots," that is
25	informative for focal pneumonia. Heat emanating from the patient's skin determines
26	the TI image. Generalized skin temperature does not affect TI recognition of a hot
27	spot. Since clothing recently removed from the chest might affect skin temperature
8	globally but not focally, it is unlikely that previously removed clothing would affect
29	recognition of a hot spot. Areas of symmetric increased heat were considered to
30	represent normal variation in heat pattern and areas of increased heat over the
31	neck, sternum, supraclavicular space, spine and axillae were determined to be
32	normal on the initial 15 training cases. Abdominal heat pattern is similar to that of
33	the chest without focal temperature changes relating to abdominal viscera. Unlike
34	CXR, TI does not require that patients hold their breath. Therefore, minor patient
35	motion will have minor, if any, effect on TI quality.
36	
7	Statistical Methods: Paired data were constructed for each patient with CXR the

standard for disease and TI the test variable. Each image was dichotomized as
normal or showing focal pneumonia. TI sensitivity, specificity, positive predictive

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

2
3
4
5
6
7
, 8
å
3
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
<u>4</u> 0
50
50
51
52
53
54
55
56
57
58
50
22

60

1

240 value and negative predictive value and their respective confidence intervals were 241 estimated. Agreement between CXR and TI (modeled as a binary outcome with 242 agreement = 1 and disagreement = 0) and as a function of patient age and sex was 243 assessed using simple logistic regression models, as well as 2X2 contingency tables with age dichotomized as >18 years for adults and \leq 18 years for children. Fisher's 244 245 exact test was used to assess significance of correlation between age (or sex) and 246 similarity between CXR and TI. Finally, despite the small sample, Cohen's kappa was also used as an imperfect measure of agreement between the two modalities (24, 247 248 25). A significance level of 0.05 was assumed. 249 250 Results 251 This study assessed the diagnostic sensitivity and specificity of TI using the chest 252 253 CXR as the gold standard. . For the overall cohort, five patients were identified as 254 having focal pneumonia by CXR and 26 not. For the pediatric cohort, there were 2 255 with focal pneumonia, 6 without by CXR. 256 Eleven cases were TI positive and CXR negative (false positives). One case was TI 257 258 negative and CXR positive (false negative). 259 Table 1 summarizes the TI sensitivity, specificity, positive predictive value, negative 260 261 predictive values and their corresponding confidence intervals (CI). .

Page 11 of 40 BM				BMJ Open			BM		
1									Open
2 3									: first p
<u>4</u> 5		True	True	False	False	Sensitivity	Specificity	Positive	Negative
6 7		Positive	Negative	Positive	Negativ	(95% CI)	(95% CI)	Predictive	జ Predictive Valæ
8 9 10					e			Value	10.113
11 12 vc		٨	15	11	1	80.0%	57 70%	26 70%	
13	'VD	-	15	11	T		(37.7%)	(8.9%)	95.070 g p (67.7% QQ.7%)
15 16 positiv	.AN					(29.970, 90.970)	76 0%	55 20%)	
17 18 pogotiv	e,						70.0%)	55.2%)	17964
19 20	ve)								on 5
21 22	262								Januai
23 24	263	Table	1: Sensiti	vity anal	ysis of TI	assuming the CXI	R as the gold s	tandard. 95%	y 201
25 26	264	Confic	dence inte	rvals (CI)) are incl	uded for all param	eters.		8. Dov
27 28	265								vnloac
29 30	266								led fro
31 32	267	The re	elationship	betweer	n TI and (CXR agreement wi	th patient dem	nographics was	m http
33 34 25	268	asses	sed using	logistic r	egression	models and simp	le contingency	tables. There wa	as bnj
36 37	269	no sig	nificant a	ssociatior	ı betweeı	n modality agreem	ent and patier	nt age (treated a	s a open.t
38 39	270	contir	nuous vari	able or di	chotomiz	ed as adult versus	s pediatric) or	sex (age: p = 0.	3 ^m
40 41	271	(95%	CI for the	e regressi	on coeffi	cient = (-0.01, 0.0	04), odds ratio	o (OR) = 0.99, C	I = 9
42 43	272	(0.99	, 1.00)]; s	sex: p =0	.16 [95%	6 CI = (-0.16, 1.0	95), OR = 1.53	, CI = (0.85,	Decer
44 45	273	2.85)]. Similar	results w	ere obtai	ned when individu	al contingency	tables for sex (p) = nber N
46 47	274	0.54)	or dichoto	omized ag	ge (>18 v	versus ≤18 years;	p = 0.53) wer	e used. Despite	its
48 49	275	limita	tions in sr	nall samp	oles (24,	25), Cohen's kapp	a was also est	imated as an	13 by g
50 51	276	imper	fect meas	ure of ag	reement	between TI and C	XR [kappa = 0	.21, CI = (-0.14	21, guest
52 53	277	0.559	1)]. Even	when CX	Rs were	unblinded, kappa	= 0.48 [CI = (0.16, 0.79)]. The	Protec
54 55	278	wide o	confidence	e intervals	s are a fu	Irther indication of	the limitation	s of kappa to	cted by
56 57 58 59	279	quant	ify agreen	nent in sr	nall samı	ples.			/ copyright

280	
281	Since this is an exploratory proof of concept study the sample size is not based on
282	statistical power. In order to achieve a power of 0.80, with the conditions
283	encountered in this study, a power calculation showed 138 patients would be
284	required. Furthermore, the sample size required to detect even modest agreement
285	quantified by kappa is n \geq 40 patients.
286	
287	To investigate causes for TI/CXR discrepancies, cases with disagreement were
288	reviewed in a non-blinded fashion, using prior and subsequent CXR (comparison
289	images were not included in the blinded, original CXR assessments). This review of
290	discrepant cases is not included in the study's statistical analysis.
291	
292	For the 11 false positive TI cases, prior CXRs were available in only three cases.
293	Each of these 3 cases had diffuse findings confounding CXR interpretation. One had
294	diffuse changes of cystic fibrosis, one had changes of chronic obstructive pulmonary
295	disease and one had low lung volumes. When CXR was reviewed with prior CXR, the
296	CXR interpretation was changed to focal pneumonia (figure 4,5,6) concordant with TI
297	(figure 7,8) in each instance. Follow-up images provided no additional information.
298 299	(INSERT FIGURES 4, 5, 6, 7, 8)
300	
301	
302	
303	
304	
305	Legend

Page 13 of 40

306	Figure 4: Portable CXR taken in the Emergency Department during assessment for
307	acute pneumonia reveals low lung volumes and what was assumed to be resultant
308	crowding of pulmonary parenchyma in both lung bases medially. The interpretation
309	at that time was that there was no acute pneumonia.
310	
311	Figure 5: This CXR was performed 5 days before the CXR in Figure 4. The lung
312	volumes are comparably low, but the small opacity in the right infrahilar region on
313	Figure 4 is not present. This indicates that there was a pneumonia in the right lung
314	base on the CXR in Figure 4 rather than normal crowding of lung tissue.
315	
316	Figure 6: Same image as figure 4 with the right infrahilar pneumonia indicated by
317	arrows.
318	
319	Figure 7: TI obtained shortly after the CXR shown in Figure 4. The image is taken
320	from the patient's back so that the patient's right is on the viewer's right. There is
321	an area of increased heat (white area) in the right lung base concordant with that
322	seen in Figure 4.
323	
324	Figure 8: Same image as Figure 7 with the area of pneumonia (white area) encircled
325	by an oval ring.
326	
327	
328	For 2 other cases, knowledge of TI findings resulted in a change in the CXR
329	interpretation. For one case, the CXR interpretation was changed to a faint opacity,
330	consistent with focal pneumonia and in one case, there was the question of a very
331	subtle opacity, both concordant with the TI images.

333	Three other CXRs had what appeared to be atelectasis in regions of TI hot spots. In
334	light of the TI results, these areas of presumed atelectasis may actually represent
335	pneumonia. These opacities on CXR were, in one case each, in the right upper lobe,
336	left upper lobe and left lower lobe.
337	
338	Three of the 11 false positive TI cases had no change in CXR interpretation.
339	
340	The one false negative case had no change to TI or CXR interpretation.
341	
342	There were no tumors, pulmonary edema or other abnormalities identified on CXR
343	that might affect TI results.
344	
345	Non-blinded review produced no changes in interpretation of TI images.
346	
347	Discussion
348	
349	This study suggests that TI is sensitive and modestly specific compared to CXR in
350	detecting focal pneumonia.
351	
352	There currently is no experimental data assessing the mechanism of increased focal
353	heat, as detected by TI, associated with focal pneumonia. The assumption is that
354	the focal hyperemia associated with focal inflammation, in this case pneumonia,
355	produces focally increased heat. It presumably is this increased heat radiating from
356	the site of pneumonia that is detected by TI. Consequently, an area of atelectasis
357	which is not associated with hyperemia, will not produce an area of focally increased
358	heat.
359	

BMJ Open

It is focal increased heat that is the indicator of focal pneumonia on TI. Thus any bacterial organism (which organism cannot be determined) may be the culprit. Viral pneumonias are generally diffuse and do not typically generate a focal pneumonia. Some atypical pneumonias, such as mycoplasma, may have a focal consolidative component which might be detected as a hot spot. It has been reported in a case report that acute consolidative tuberculosis caused a TI hot spot but sub-acute tuberculosis did not (21). It is not the precise lobar distribution but rather presence or absence of a focal hot spot that is the informative aspect of TI. The purpose of this study was to assess the sensitivity and specificity of TI, in detecting a focal consolidation, using CXR as the gold standard given its wide use for diagnosis of pneumonia (19, 20, 26-31), including studies assessing effectiveness of the WHO clinical diagnostic criteria (31). Ultrasound is the only other point of care imaging procedure widely studied for diagnosis of pneumonia and in virtually all of its validation studies it is compared to CXR (28-30). While clinical signs and symptoms have been utilized, collecting accurate data and correlation with the ultimate diagnosis of pneumonia is inconsistent (32). However, it is not the purpose of this study to assess the accuracy of imaging to detect pneumonia as compared to the clinical diagnosis. Ultimately, other methodologies such as inflammatory markers may play a role, but currently these are in relatively early stages of development. Accuracy of CXR in determining the presence of focal pneumonia will vary depending on quality of imaging and experience of the observer, as is true for TI. Although

383 computerized tomography (CT) has greater accuracy in detecting pneumonia than
384 CXR (33-34), CT cannot be used as routine imaging for pneumonia because of

concerns of radiation exposure and cost (31).

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

There was only one false negative in the cohort of 31 patients with 11 false positives (sensitivity = 0.80, specificity = 0.58). Thus the ability of TI to accurately detect focal pneumonia (as determined by CXR), in this cohort was relatively high. For a screening test, this ability to not miss focal pneumonia is the most critical criterion. The higher rate of false positives would lead to either over-treating or further testing in a limited number of patients, which, although important, is a less critical issue. The changes in CXR interpretation on non-blinded review of discrepant TI/CXR revealed the following. 1) TI had hot spots in cases where CXR findings were initially not definitive for focal pneumonia (N = 5). For two, CXR diagnosis was confounded by pre-existing chronic lung diseases and in one by shallow inflation. For two others, the suggestion of focal pneumonia on CXR was too subtle for definitive diagnosis. 2) TI revealed hot spots in cases where the blinded CXR suggested atelectasis (N = 3). This suggests that TI may be able to detect focal pneumonia in cases where pre-existing lung disease or imaging technique confound the diagnosis on CXR or when diagnosis on CXR is too subtle to be convincing (as possibly with early onset or resolving focal pneumonia). TI may be able to differentiate between focal pneumonia and atelectasis.

These findings suggest TI may be comparable to CXR in recognizing focal pneumonia. Relatively low cost and portability of thermal cameras, some of which can be used with mobile phones, potentially enable TI as a point of care screening tool for focal pneumonia. Other advantages include minimal training to perform images, lack of ionizing radiation exposure, off-site interpretation of digitized images and possible software interpretation algorithms. Lack of physical contact with the patient enhances infection control. Possible additional uses include following progression of disease in combination with other modalities such as respiratory rate and oximetry.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
1		
2 3	414	
4	117	
6 ²	415	Limitations of TI include learning to interpret TI, presence of prior disease affecting
/ 8 0	416	TI and the possibility that increased adiposity may interfere with its accuracy.
9 10 ²	417	
11 12 ⁴	418	Conclusions
13 14 ⁴	419	
15 16 ⁴	420	This feasibility study confirms proof of concept that TI can demonstrate focal
17 18 4	421	pneumonia. Therefore, these findings support further investigation with larger trials
20 4 21	422	of patients that will be adequately powered to robustly assess the similarity between
22 4 23	423	TI and the outcome parameter. This technology is potentially most useful in
24 ₂	424	resource-limited environments where pneumonia is the second most common cause
26 <u>2</u> 7	425	of death in young children and where CXR equipment and expert readers are
28 29	426	unavailable (35). It also could be of benefit in high throughput healthcare settings,
30 31	427	such as emergency departments or busy doctors' offices and rural areas where
32 33	428	access to CXR is limited.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	429	

430	
431	Funding: The Bacca Foundation and the Consortium for Affordable Medical
432	Technologies (CAMTech) (Fund # is 223707)
433	
434	Portions of this material were presented at RSNA 2016, Chicago, IL, December 1,
435	2016.
436	
437	Contributor ship Statement:
438	
439	Specific Contributions from each author
440	
441	Linda T. Wang, MD
442	Conception and design of the study, acquisition of data and analysis,
443	interpretation of data, and drafting the work and revising it critically
444	
445	Robert H. Cleveland, MD
446	Conception and design of the study, data analysis, interpretation of data, and
447	drafting the work and revising it critically.
448	
449	William Binder, MD
450	Design of the study, acquisition of data and analysis, interpretation of data,
451	drafting the work and revising it critically
452	
453	I nomas Ptak, MD, PhD
454	Data analysis, interpretation of data, and drafting the work and revising it childany
455 456	Catherine Stamoulis, PhD
457	Data analysis, interpretation of data, and drafting the work and revising it critically
458	

460 461	Conception of the study, acquisition of data, interpretation of data, revising the work critically
462	
463	Kenan Haver, MD
464	Conception and design of the study, analysis of the data, interpretation of dat
465	and drafting the work and revising it critically.
466	
467	Pallavi Sagar, MD
468	Analysis of the data, interpretation of data, drafting the work and revising it
469	critically
470	
471	Robert G Zwerdling MD
472	Conception and design of the study, data analysis, interpretation of data, and
473	drafting the work and revising it critically.
474	
475	Patricia Hibberd, MD, PhD
476	Conception and design of the study, interpretation of data, and drafting the w
477	and revising it critically
478	
479	
480	
481	Competing Interests
482	None of the authors have conflicts of interest to report relating to this work
483	"All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi disclosure.pd
484	declare: no support from any organisation for the submitted work; no financial relationships with any
485	organisations that might have an interest in the submitted work in the previous three years; no other
486	relationships or activities that could appear to have influenced the submitted work."
487	

488	
489	References
490	1) Gowraiah V, Awasthi S, Kapoor R, et al. Can we distinguish pneumonia from
491	wheezy diseases in tachypnoeic children under low-resource conditions? A
492	prospective observational study in four Indian hospitals. Arch Dis Child 2014;99:899-
493	906.
494	
495	2) McCollum, ED, Prcidis, GA, Malliwichi, M, et al. Performance Of The World Health
496	Organization Diagnostic Criteria For Pneumonia In Hospitalized Malawian Infants
497	With Exposure To Human Immunodeficiency Virus. Am J Respir Crit Care Med
498	2014;189:A1235.
499	
500	3) Revised WHO classification and treatment of pneumonia in children at health
501	facilities: evidence summaries. World Health Organization Web site
502	http://apps.who.int/iris/bitstream/10665/137319/1/9789241507813_eng.pdf.
503	Published 2014. Accessed 2/12/2015.
504	
505	4) Ginsburg AS, Sadruddin S, Klugman KP. Innovations in pneumonia diagnosis and
506	treatment: a call to action on World Pneumonia Day, 2013. Lancet Glob Health
507	2013;1:e326-327.
508	
509	5) Jain S, Williams DJ, Arnold SR, et al. Community-acquired pneumonia requiring
510	hospitalization among U.S. children. N Engl J Med 2015;372:835-845.
511	
512	6) Bradley JS, Byington CL, Shah SS, et al. The management of community-acquired
513	pneumonia in infants and children older than 3 months of age: clinical practice

BMJ Open

guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases
Society of America. <i>Clin Infect Dis</i> 2011;53:e25-76.
7) Bartlett JG, Dowell SF, Mandell LA, et al. Practice guidelines for the management
of community-acquired pneumonia in adults. Infectious Diseases Society of America.
Clin Infect Dis 2000;31:347-382.
8) Niederman M, Mandell L, Anzueto A. American Thoracic Society. Guidelines for the
initial management of adults with community-acquired pneumonia. Am J Resp Crit
Care Med 2001;163:1730-1754.
9) Wipf JE, Lipsky BA, Hirschmann JV, et al. Diagnosing pneumonia by physical
examination: relevant or relic? Arch Intern Med 1999;159:1082-1087.
10) Speets AM. Hoes AW. van der Graaf Y. et al. Chest radiography and pneumonia
in primary care: diagnostic yield and consequences for patient management. <i>Fur</i>
Respir J 2006;28:933-938.
11) van Vugt SF, Verheij TJ, de Jong PA, et al. Diagnosing pneumonia in patients
with acute cough: clinical judgment compared to chest radiography. Eur Respir J
2013; 42:1076-1082.
12) Diehr P, Wood RW, Bushyhead J, et al. Prediction of pneumonia in outpatients
with acute cougha statistical approach. J Chronic Dis 1984;37:215-225.

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

539	13) Emerman CL, Dawson N, Speroff T, et al. Comparison of physician judgment and
540	decision aids for ordering chest radiographs for pneumonia in outpatients. Ann
541	Emerg Med 1991;20:1215-1219.
542	
543	14) Claudius I, Keens T. Do all infants with apparent life-threatening events need to
544	be admitted? Pediatrics 2007;119:679-683.
545	
546	15) Self WH, Courtney DM, McNaughton CD, et al. High discordance of chest x-ray
547	and computed tomography for detection of pulmonary opacities in ED patients:
548	implications for diagnosing pneumonia. Am J Emerg Med 2013;31:401-405.
549	
550	16) Elemraid MA, Muller M, Spencer DA, et al. Accuracy of the interpretation of chest
551	radiographs for the diagnosis of paediatric pneumonia. <i>PLoS One</i> 2014;9:e106051.
552	
553	17) World Radiology Day: Two-Thirds of the World's Population has no Access to
554	Diagnostic Imaging. Pan American Health Organization Web site
555	http://www.paho.org/hq/index.php?option=com_content&view=article&id=7410%3A
556	2012-dia-radiografia-dos-tercios-poblacion-mundial-no-tiene-acceso-diagnostico-
557	imagen&catid=740%3Apress-releases&Itemid=1926⟨=en Published November
558	7, 2012. Accessed March 28, 2016.
559	
560	18) Baseline survey on Medical Devices, 2013 update. World Health Organization
561	Web site
562	http://gamapserver.who.int/gho/interactive_charts/health_technologies/medical_equ
563	ipment/atlas.html Accessed March 20, 2016.
564	
	 539 540 541 542 543 544 545 546 547 548 549 550 551 552 556 557 558 559 560 561 562 563 564

Page 23 of 40

	-
	₽
	2
	0
-	ğ
	۳
	÷
	S
-	÷
	Ĕ
	<u>⊳</u>
	ŝ
	ē
	0
	S
	2
	0
	1
	ω
	š
	ž
•	<u>–</u>
	ğ
	Ť
	ż
	2
	4
	Ó
	17
	90.
	4
	0
	Ωī
	Ъ
	Z
	a
•	2
	2
	2
	œ
	σ
	õ
	ŝ
	⋶
	à
	ĕ
	<u>_</u>
	ວັ
	Ξ.
	7
	₹.
	š.
	ਰੂ
	₫.
	8
	ğ
	÷
	ĭ
	Ť
	8
	Ĵ.
	0
	ĭ
	ð
	e
	ĕ
	Ц
	ĕ
	~
	μ
	N
	Ő.
	ω
	δ
)	\sim
C	Ĕ
	SG
	÷
	P
	ġ
	ğ
	볶
	ŏ
	Š
	b√ c
	by cop
	by copy
-	by copyrig
	by copyright

565	19) Reissig A, Copetti R, Mathis G, et al. Lung ultrasound in the diagnosis and follow-
566	up of community-acquired pneumonia: a prospective, multicenter, diagnostic
567	accuracy study. Chest 2012;142:965-972.
568	
569	20) Shah VP, Tunik MG, Tsung JW. Prospective evaluation of point-of-care
570	ultrasonography for the diagnosis of pneumonia in children and young adults. JAMA
571	Pediatr 2013;167:119-125.
572	
573	21) Potanin C. Thermographic patterns of pulmonary disease. Chest 1970;58:491-
574	496.
575	
576	22) Moiseenko MD, Dianova TV, Mus VF, et al. [Use of color contact thermography
577	for diagnosis of lung diseases]. Vestn Khir Im I I Grek 1976;117:16-18.
578	
579	23) How Much Does an Xray Cost? Costhelper Web site
580	http://health.costhelper.com/x-rays.html Accessed February 28, 2016.
581	
582	24) Cantor AB. Sample-size calculations for Cohen's kappa. Psychological Methods
583	1996;1:150-153.
584	
585	25 McHugh ML. Interrater reliability: the kappa statistic. Biochem Med 2012;22:276-
586	282.
587	
588	26) Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med
589	2014;371:1619-1628.
590	

U Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

3	
1	
5	
о С	
6	
7	
8	
9	
10	
44	
11	
12	
13	
14	
15	
16	
17	
11	
18	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
20	
23	
30	
31	
32	
33	
34	
25 25	
20 26	
30	
37	
38	
39	
40	
41	
エコ イク	
42	
43	
44	
45	
46	
47	
⊿ <u>∧</u>	
40	
49	
50	
51	
52	
53	
50	
54	
25	
56	
57	
58	
59	
60	

1 2

591 27) Lynch T, Bialy L, Kellner JD, et al. A systematic review on the diagnosis of
592 pediatric bacterial pneumonia: when gold is bronze. *PLoS One* 2010;5:e11989.
593
594 28) Nazerian P, Volpicelli G, Vanni S, et al. Accuracy of lung ultrasound for the

diagnosis of consolidations when compared to chest computed tomography. *Am J Emerg Med* 2015;33:620-625.

597

598 29) Chavez MA, Shams N, Ellington LE, et al. Lung ultrasound for the diagnosis of
 599 pneumonia in adults: a systematic review and meta-analysis. *Respir Res*

600 2014;15:50.

601

30) Hu QJ, Shen YC, Jia LQ, et al. Diagnostic performance of lung ultrasound in the
diagnosis of pneumonia: a bivariate meta-analysis. *Int J Clin Exp Med* 2014;7:115121.

605

606 31) Cardoso MR, Nascimento-Carvalho CM, Ferrero F, et al. Adding fever to WHO
607 criteria for diagnosing pneumonia enhances the ability to identify pneumonia cases
608 among wheezing children. *Arch Dis Child* 2011;96:58-61

609

32) Rambaud-Althaus C, Althaus F, Genton B, et al. Clinical features for diagnosis of
pneumonia in children younger than 5 years: a systematic review and meta-analysis. *Lancet Infect Dis* 2015;15:439-450.

613

614 33) Syrjala H, Broas M, Suramo I, et al. High-resolution computed tomography for 615 the diagnosis of community-acquired pneumonia. *Clin Infect Dis* 1998;27:358-363.

BMJ Open

34) Tanaka N, Matsumoto T, Kuramitsu T, et al. High resolution CT findings in community-acquired pneumonia. J Comput Assist Tomogr 1996;20:600-608. 35) WHO | Pneumonia. World Health Organization Web site http://www.who.int/mediacentre/factsheets/fs331/en/. Updated November 2015, Accessed December 7, 2015.

1										pen: 1
2 3	625									first p
4 5	626	Tables								ublish
6 7	620	Tables								ned as
8 9	627									s 10.1
10	628									136/b
12		True	True	False	False	Sensitivity	Specificity	Positive	Negative Pre	jictive
13		Positive	Negative	Positive	Negativ	(95% CI)	(95% CI)	Predictive	Value	en-20
15 16					e			Value		17-01
17 18										7964
19TI 20	vs blinded	4	15	11	1	80.0%	57.7%	26.7%	93.8%	on 5
21C) 22	KR					(29.9%, 98.9%)	(37.2%,	(8.9%,	(67.7%, 99.	25%)
23(5	positive, 26	5					76.0%)	55.2%)		ary 20
25 _{ne}	egative)									18. D
20 27	(20)									ownl
28 29	629									oadeo
30 31	630									d from
32 33	631	Table 1: Se	ensitivity a	analysis o	f TI assui	ming the CXR as t	he outcome pa	rameter.) http:
34 25	632									//bmj
36										open.
37 38										bmj.c
39 40										om/ c
41 42										on De
43										cemb
45										er 23
46 47										, 202
48 49										3 by (
50 51										guest
52 52										Prot
53 54										ectec
55 56										1 by c
57 58										opyriį
59 60										ght.
00										

$\begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 30 \\ 13 \\ 23 \\ 34 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 41 \\ 42 \\ 34 \\ 45 \\ 6 \\ 47 \\ 48 \\ 9 \\ 51 \\ 53 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 41 \\ 42 \\ 34 \\ 45 \\ 6 \\ 47 \\ 48 \\ 9 \\ 51 \\ 53 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 41 \\ 42 \\ 34 \\ 45 \\ 6 \\ 47 \\ 48 \\ 9 \\ 51 \\ 53 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 41 \\ 42 \\ 34 \\ 45 \\ 6 \\ 47 \\ 48 \\ 9 \\ 51 \\ 53 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 41 \\ 42 \\ 34 \\ 45 \\ 6 \\ 47 \\ 48 \\ 9 \\ 51 \\ 53 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 41 \\ 42 \\ 34 \\ 45 \\ 6 \\ 47 \\ 48 \\ 9 \\ 51 \\ 53 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 41 \\ 42 \\ 34 \\ 45 \\ 6 \\ 47 \\ 48 \\ 9 \\ 51 \\ 53 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 41 \\ 42 \\ 34 \\ 45 \\ 6 \\ 7 \\ 8 \\ 9 \\ 51 \\ 53 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 41 \\ 45 \\ 6 \\ 7 \\ 8 \\ 9 \\ 51 \\ 53 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 6 \\ 7 \\ 8 \\ 9 \\ 51 \\ 53 \\ 8 \\ 9 \\ 51 \\ 53 \\ 8 \\ 9 \\ 51 \\ 53 \\ 51 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 51 \\ 53 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51$	633		
48 49 50 51 52 53 54 55 56 57 58 59 60			

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
58 59 60	

637	Figure Legends
638	
639	
640	Figure 1: CXR shows an opacity in the right lung base consistent with pneumonia.
641	
642	Figure 2: TI obtained shortly after the CXR (Figure 1). The image is taken from the
643	patient's back so that the patient's right is on the viewer's right. There is an area of
644	increased heat (white area) in the right lung base concordant with the CXR.
645	
646	Figure 3: Same image as Figure 2 with the area of pneumonia (white area) encircled
647	by an oval ring.
648	
649	
650	Figure 4: Portable CXR taken in the Emergency Department during assessment for
651	acute pneumonia reveals low lung volumes and what was assumed to be resultant
652	crowding of pulmonary parenchyma in both lung bases medially. The interpretation
653	at that time was that there was no acute pneumonia.
654	
655	Figure 5: This CXR was performed 5 days before the CXR in Figure 4. The lung
656	volumes are comparably low, but the small opacity in the right infrahilar region on
657	Figure 4 is not present. This indicates that there was a pneumonia in the right lung
658	base on the CXR in Figure 4 rather than normal crowding of lung tissue.
659	
660	Figure 6: Same image as figure 4 with the right infrahilar pneumonia indicated by
661	arrows.

1		
2 3 4	663	Figure 7: TI obtained shortly after the CXR shown in Figure 4. The image is taken
5 6	664	from the patient's back so that the patient's right is on the viewer's right. There is
7 8	665	an area of increased heat (white area) in the right lung base concordant with that
9 10	666	seen in Figure 4.
11 12	667	
13 14	668	Figure 8: Same image as Figure 7 with the area of pneumonia (white area) encircled
15 16 17	669	by an oval ring.
17 18 19	670	
20 21	671	
22		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
55 54		
55 56		
57 58		
59 60		
		For peer review only - http://bmiopen.bmi.com/site/about/guidelines xhtml

309x260mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2: TI obtained shortly after the CXR (Figure 1). The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with the CXR.

109x94mm (300 x 300 DPI)

Figure 3: Same image as Figure 2 with the area of pneumonia (white area) encircled by an oval ring.

111x94mm (300 x 300 DPI)

Figure 4: Portable CXR taken in the Emergency Department during assessment for acute pneumonia reveals low lung volumes and what was assumed to be resultant crowding of pulmonary parenchyma in both lung bases medially. The interpretation at that time was that there was no acute pneumonia.

311x264mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

Figure 5: This CXR was performed 5 days before the CXR in Figure 4. The lung volumes are comparably low, but the small opacity in the right infrahilar region on Figure 4 is not present. This indicates that there was a pneumonia in the right lung base on the CXR in Figure 4 rather than normal crowding of lung tissue.

50x54mm (300 x 300 DPI)

Figure 6: Same image as figure 4 with the right infrahilar pneumonia indicated by arrows.

24x22mm (300 x 300 DPI)

Figure 7: TI obtained shortly after the CXR shown in Figure 4. The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with that seen in Figure 4.

84x84mm (300 x 300 DPI)

24x22mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

Item	Description	Reported on
··		line number
Title	Identification of the study as randomized	1
Authors *	Contact details for the corresponding author	4 - 7
Trial design	Description of the trial design (e.g. parallel, cluster, non-inferiority)	132; 245
Methods		
Participants	Eligibility criteria for participants and the settings where the data were collected	139-153
Interventions	Interventions intended for each group	149-151, 168 188;
Objective	Specific objective or hypothesis	91-92; 126- 129; 257
Outcome	Clearly defined primary outcome for this report	185-189
Randomization	How participants were allocated to interventions	133; 149
Blinding (masking)	Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment	185-189
Results		
Numbers randomized	Number of participants randomized to each group	155
Recruitment	Trial status	
Numbers analysed	Number of participants analysed in each group	155-158
Outcome	For the primary outcome, a result for each group and the estimated effect size and its precision	258,291-297, 344
Harms	Important adverse events or side effects	
Conclusions	General interpretation of the results	427-435
Trial registration	Registration number and name of trial register	NA
Funding	Source of funding	Funding: The Bacca Foundation and the Consortium for Affordable Medical Technologies (CAMTech) (Fund # is 223707)
*this item is spec	sific to conference abstracts	

*this item is specific to conference abstracts

BMJ Open

Similarity of Chest X-ray and Thermal Imaging of Focal Pneumonia: A Randomized Proof of Concept Study at a Large Urban Teaching Hospital

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-017964.R3
Article Type:	Research
Date Submitted by the Author:	30-Oct-2017
Complete List of Authors:	Wang, Linda; Massachusetts General Hospital, Emergency Medicine and Pediatric Global Health Cleveland, Robert; Children's Hospital Boston, Radiology Binder, William; Brown University, Emergency Medicine Zwerdling, Robert; university of massachusetts, radiology Stamoulis, Caterina; children's hospital of boston, adolescent and young adult research Ptak, Thomas; Emory University Hospital, Radiology Sherman, Mindy; Massachusetts General Hospital, Emergency Medicine Haver, Kenan; Children's Hospital Boston, Pulmonary and Respiratory Diseases Sagar, Pallavi; Massachusetts General Hospital, Radiology Hibberd, Patricia; Boston Medical Center, Department of Global Health
Primary Subject Heading :	Radiology and imaging
Secondary Subject Heading:	Global health, Respiratory medicine, Infectious diseases, Paediatrics
Keywords:	Paediatric radiology < PAEDIATRICS, Chest imaging < RADIOLOGY & IMAGING, Respiratory infections < THORACIC MEDICINE, Diagnostic radiology < RADIOLOGY & IMAGING

SCHOLARONE[™] Manuscripts

1	Similarity of Chest X-ray and Thermal Imaging of Focal Pneumonia: A randomized
2	proof of concept study at a large urban teaching hospital.
3	
4	Linda T. Wang, M.D.1 (co-first author), Robert H. Cleveland, M.D.2 (co-first author),
5	William Binder M.D.3, Robert G. Zwerdling, M.D.4, Catherine Stamoulis, PhD5,
6	Thomas Ptak, M.D., PhD6, Mindy Sherman, M.D7, Kenan Haver M.D8, Pallavi Sagar,
7	M.D.9, Patricia Hibberd, M.D., PhD.10
8	
9	Massachusetts General Hospital, Boston, MA: 1, 7, 9
10	Boston Children's Hospital, Boston, MA: 2, 5, 8
11	Alpert School of Medicine, Department of Emergency Medicine, Brown University,
12	Providence, RI: 3
13	University of Massachusetts Medical Center, Worchester, MA: 4 (deceased)
14	Emory University Hospital, Atlanta, GA: 6
15	Boston University, Boston, MA: 10
16	
17	Corresponding authors:
18	
19	William Binder, MD
20	Department of Emergency Medicine
21	Alpert School of Medicine at Brown University
22	55 Claverick Street
23	Providence, RI 02903
24	Telephone: 401 741 2521
25	William_Binder@Brown.edu
26	
27	Robert H. Cleveland, MD

40 BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright. Page

3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
25	
22	
30	
37	
38	
39	
40	
41	
42	
43	
11	
44	
40	
46	
47	
48	
49	
50	
51	
52	
53	
50	
J4	
55	
56	
57	
58	
59	
60	

1 2

> 28 Department of Radiology and **Division of Respiratory Diseases** 29 30 Boston Children's Hospital 31 300 Longwood Avenue 32 Boston, MA 02115 33 Telephone: 617-355-3181 34 Fax: 617-730-0573 robert.cleveland@chldrens.harvard.edu 35 36 37 38 39 ABSTRACT 40 Objective: To assess the diagnostic accuracy of thermal imaging (TI) in the setting 41 42 of focal consolidative pneumonia with chest x-ray (CXR) as the gold standard. 43 44 Setting: A large, 973 bed teaching hospital in Boston, Massachusetts 45 46 Participants: 47 patients enrolled, 15 in a training set, 32 in a test set. Age range 47 10 months - 82 years (median = 50 years) 48 49 Materials and Methods: Subjects received CXR with subsequent TI within 4 hours of each other. CXR and TI were assessed in blinded random order. Presence of focal 50 51 opacity (pneumonia) on CXR, the outcome parameter, was recorded. For TI, 52 presence of area(s) of increased heat (pneumonia) was recorded. Fisher's exact test 53 was used to assess the significance of the correlations of positive findings in the 54 same anatomic region.

55	
56	Results: With TI compared to the CXR (the outcome parameter), sensitivity was
57	80.0% (95% Confidence intervals (95% CI): [29.9%, 98.9%], specificity was 57.
58	(95% CI: [37.2%, 76.0%]). Positive predictive value of TI was 26.7% (95% CI:
59	[8.9%, 55.2%]) and its negative predictive value was 93.8% (95% CI: [67.7%,
60	99.7%]).
61	
62	Conclusions: This feasibility study confirms proof of concept that chest TI is
63	consistent with CXR in suggesting similarly localized focal pneumonia with high
64	sensitivity and negative predictive value. Further investigation of TI as a point of
65	care imaging modality is warranted.
66	
67	Strengths and Limitations:
68	
69	Strengths:
70	• Proof of concept suggesting that Thermal Imaging (TI) is a valid, innovative
71	and inexpensive technology useful for diagnosing bacterial pneumonia
72	• Proof of concept suggesting that Thermal Imaging (TI) is a rapid means of
73	diagnosing focal pneumonia in high throughput settings
74	• Proof of concept suggesting that Thermal Imaging (TI) is a valid and
75	innovative technology useful in diagnosing pneumonia in resource limited
76	regions of the world
77	
78	Limitations:
79	• As this is a proof of concept study, it does not have adequate power to be
	definitive and cannot replace chest xray for detecting focal pneumonia

 As this is a proof of concept study, limitations of the technology have not been fully discerned, and at present include adipose tissue and interpretation, but may include other concerns which will require higher numbers of patients enrolled.

85 Word Count: 2849

Data Sharing: There are no additional unpublished data from the study. Data are available to any researcher who is interested in the data, and will be able to be accessed through Dyad and/or through correspondence with the contributing authors.

92 Introduction

This study investigates the degree to which thermal imaging (TI) and chest x-ray (CXR) are concordant in detecting similarly localized focal pneumonia. Often a clinically challenging diagnosis, bacterial pneumonia remains a major cause of morbidity and mortality worldwide, particularly in under-resourced environments (1-3). Expert panels, including the World Health Organization (WHO), have formulated algorithms to enhance clinical accuracy (4), typically focusing on aspects of the medical history and physical examination to determine the likelihood of bacterial pneumonia. Despite having these algorithms, CXR is generally performed to confirm the diagnosis in severe infections (5-16). If TI results are similar to CXR, it might substitute for CXR when CXR is not available. In resource-limited environments, where 2/3 of the world's population has no access to diagnostic imaging (17-18), the potential use of TI in point of care screening could aid decision making to treat for pneumonia.

107	Point of care imaging utilizing ultrasonography to diagnose pneumonia is attracting
108	interest (19-20). However, ultrasonography requires costly equipment and specific
109	expertise for image acquisition and interpretation.
110	
111	Anecdotal reports suggest that TI has potential for detecting pneumonia (21-22).
112	These case reports and methodologies have not been subjected to systematic
113	blinded assessment. In this initial proof of concept investigation, we compared TI to
114	CXR in patients suspected of having acute pneumonia.
115	
116	With recent advances in infrared technology and increasing use assessing home heat
117	loss, low-cost thermal cameras have become available, currently costing as little as
118	\$200-\$300 (Flir.com). Installation of shielded radiographic rooms can cost hundreds
119	of thousands of dollars. Portable x-ray units capable of performing CXR can cost as
120	little as \$600-\$800 (dotmed.com). If uninsured, patient cost of a CXR in the US is
121	\$200-\$400 or, if insured, a co-pay of \$10-\$50 (23).
122	
123	For TI there are no additional costs beyond cost of the camera. TI cameras are
124	portable and operate with rechargeable batteries. TI is essentially identical to taking
125	a "snap and shoot" photograph and can be done in seconds during the primary
126	patient encounter without the camera physically contacting the patient. Digital
127	storage and transfer of TI is simple, utilizing a memory card in the TI device that can
128	be uploaded to a computer.
129	
130	This study presents a prospective comparison of TI to CXR using a commercially
131	available thermal camera to determine the similarity of TI and CXR in the setting of
132	possible focal pneumonia and thus proof of concept and feasibility of TI to detect
133	focal pneumonia.

134	
135	Materials and Methods
136	
137	Subjects: Participants came from the Emergency Department of Massachusetts
138	General Hospital (Boston, MA). On admission to the Emergency Department, adult
139	patients and families of children who had CXR included for evaluation of pneumonia
140	were approached to discuss study participation. Written informed consent and, when
141	applicable, participant assent was obtained from all participants. Enrollment
142	occurred Monday - Friday, 7:00am - 11:00pm when research staff was available.
143	Partners Human Research Committee approved the HIPPA compliant study protocol
144	(#2013P001247).
145	
146	In an initial Training Set, subjects were excluded if they had chronic lung disease,
147	congestive heart failure, prior chest surgery or immunosuppression. In a subsequent
148	TEST Set, these exclusions were not used. Patients had TI within 4 hours of CXR.
149	Patients were male older than 28 days, or female older than 28 days and younger
150	than 8 years. After age eight, only males were included because of concerns for
151	modesty.
152	
153	Forty-seven patients were enrolled. The first 15, comprising the Training Set, were
154	not included as a part of the study's statistical assessment. These 15 cases provided
155	a spectrum of results with 10 concordant for focal pneumonia, 2 concordant for no
156	focal pneumonia, and 3 discordant for pneumonia. The remaining 32 subjects
157	comprised the TEST Set. Analysis of the TEST Set included 31 patients (28 males, 3
158	females), one patient had no usable thermal images. Patient age ranged from 10
159	months - 82 years (median = 50.0 years, (25th, 75th) quartiles = (11.5, 60.5
160	years), with 8 subjects \leq 18 years and 23 subjects > 18 years.

BMJ Open

161	
162	Imaging and interpretation: The radiologist interpreting CXR and TI (RHC) is an
163	American Board of Radiology certified diagnostic radiologist and sub-certified
164	pediatric radiologist with 40 years experience.
165	
166	CXRs were assessed in random order blinded to TI. If focal opacities were found, the
167	lobe(s) were recorded. The lobes involved were precisely determined with posterior-
168	anterior (PA) and lateral examinations. When only a portable anterior-posterior (AP)
169	image could be obtained, the lobe(s) involved was determined by lung zone and
170	presence/absence of silhouetting of the mediastinum. CXRs were taken in PA and
171	lateral projections (N = 19). If PA and lateral imaging could not be performed,
172	because of clinical care requirements, a portable AP image was acquired (N = 12).
173	
174	TI of the chest were taken from the neck down, similar to CXR, with both posterior
175	and anterior views whenever possible ($N = 29$). If a patient was too ill to be
176	positioned for two views only 1 view was obtained. Depending on the patients'
177	condition and preferred position, 1 patient had a posterior view and 1 an anterior
178	view. Oblique images were not obtained since TI interpretation depends on
179	assessment of asymmetric heat distribution. TI were acquired with the commercially
180	available FLIR i7 infrared thermal camera (flir.com). The subject was encompassed
181	in the field of view; a "snapshot" was obtained so the patient's chest filled the field of
182	view with the entire chest from side to side included from the level of the shoulders
183	to bottom of the chest (or below). Patient to camera distance varied based on patient
184	size. Subjects could be sitting or recumbent with the chest exposed. Clothing was
185	removed from the chest prior to TI acquisition.
186	

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

0	
2	
3	
٨	
4	
5	
6	
2	
1	
8	
õ	
9	
10	
11	
11	
12	
13	
10	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
21	
22	
23	
20	
24	
25	
00	
20	
27	
20	
20	
29	
30	
00	
31	
32	
20	
33	
34	
32	
00	
36	
37	
07	
38	
39	
10	
40	
41	
42	
40	
43	
44	
15	
40	
46	
47	
+/	
48	
49	
.0 E 0	
<u>э</u> 0	
51	
50	
52	
53	
54	
55	
56	
55	
57	
58	
50	
29	
60	

1

187 The camera used in this study has a resolution of 19,600 pixels detecting a temperature range -4° Fahrenheit - 482° Fahrenheit (-20° Celsius - 250° Celsius) 188 189 with sensitivity to 0.1 degree Celsius. Images filled the 2.8 inch LCD TI screen. TI were interpreted while displayed on a desk top computer at a size comparable to the 190 191 size of the CXR, filling roughly 50% of the computer monitor screen. TI image size varies depending on the imaging device. TI stored in the camera's memory can be 192 193 uploaded to a computer and displayed at whatever size preferred. 194 TI were evaluated in random order blinded to CXR. Any area(s) of increased heat 195 196 were recorded as upper, mid or lower lung zone, and identified as in the right or left lung. (figures 1,2,3). Following initial assessment of blinded TI and CXR, to shed 197 light on possible causes for TI/CXR discrepancies, cases with disagreement were 198 Χh 199 reviewed in non-blinded fashion, using prior CXR when available. 200 201 202 (INSERT FIGURES 1, 2, 3) 203 204 205 206 Legend 207 Figure 1: CXR shows an opacity in the right lung base consistent with pneumonia. 208 Figure 2: TI obtained shortly after the CXR (Figure 1). The image is taken from the 209 210 patient's back so that the patient's right is on the viewer's right. There is an area of 211 increased heat (white area) in the right lung base concordant with the CXR.

BMJ Open

213	Figure 3: Same image as Figure 2 with the area of pneumonia (white area) encircled
213	by an oval ring.
215	
216	
217	
218	
219	
220	
221	
222	TI is similar to nuclear medicine imaging in that it is not the precise size,
23	configuration or margins that are of importance, but rather the temperature pattern
24	with presence or absence of focal areas of increased heat, "hot spots," that is
25	informative for focal pneumonia. Heat emanating from the patient's skin determines
26	the TI image. Generalized skin temperature does not affect TI recognition of a hot
7	spot. Since clothing recently removed from the chest might affect skin temperature
8	globally but not focally, it is unlikely that previously removed clothing would affect
29	recognition of a hot spot. Areas of symmetric increased heat were considered to
0	represent normal variation in heat pattern and areas of increased heat over the
31	neck, sternum, supraclavicular space, spine and axillae were determined to be
32	normal on the initial 15 training cases. Abdominal heat pattern is similar to that of
33	the chest without focal temperature changes relating to abdominal viscera. Unlike
34	CXR, TI does not require that patients hold their breath. Therefore, minor patient
35	motion will have minor, if any, effect on TI quality.
86	
7	Statistical Methods: Paired data were constructed for each patient with CXR the

standard for disease and TI the test variable. Each image was dichotomized as
normal or showing focal pneumonia. TI sensitivity, specificity, positive predictive

Page 10^{MJ} Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

BMJ Open

240	value and negative predictive value and their respective 95% confidence intervals
241	were estimated. Agreement between CXR and TI (modeled as a binary outcome with
242	agreement $= 1$ and disagreement $= 0$) and as a function of patient age and sex was
243	assessed using simple logistic regression models, as well as 2X2 contingency tables
244	with age dichotomized as >18 years for adults and \leq 18 years for children. Fisher's
245	exact test was used to assess significance of correlation between age (or sex) and
246	similarity between CXR and TI. Finally, despite the small sample, Cohen's kappa was
247	also used as an imperfect measure of agreement between the two modalities (24,
248	25). A significance level of 0.05 was assumed.
249	
250	Results
251	
252	This study assessed the diagnostic sensitivity and specificity of TI using the chest
253	CXR as the gold standard For the overall cohort, five patients were identified as
254	having focal pneumonia by CXR and 26 not. For the pediatric cohort, there were 2
255	with focal pneumonia, 6 without by CXR.
256	
257	Eleven cases were TI positive and CXR negative (false positives). One case was TI
258	negative and CXR positive (false negative).
259	
260	Table 1 summarizes the TI sensitivity, specificity, positive predictive value, negative
261	predictive values and their corresponding 95% confidence intervals (95% CI)

1 2 3											
4 5 2	True	True	False	False	Sensitivity	Specificity	Positive	Negative			
o 7 0	Positive	Negative	Positive	Negativ	(95% CI)	(95% CI)	Predictive	Predictive Valu			
8 9 10 11				е			Value				
12 vs 13	4	15	11	1	80.0%	57.7%	26.7%	93.8%			
bfinded CXR					(29.9%, 98.9%)	(37.2%,	(8.9%,	(67.7%, 99.7%			
15 positive,						76.0%)	55.2%)				
18 26negative) 19 20											
21 26 22 26	2	Janua									
23 24 26	3 Table	Table 1: Sensitivity analysis of TI assuming the CXR as the gold standard. 95%									
25 26 26	4 Confi	Confidence intervals (95% CI) are included for all parameters.									
7 8 26	5										
9 0 26	6	ded fro									
2 26	7 The r	The relationship between TI and CXR agreement with patient demographics was									
3 4 26 5	8 asses	assessed using logistic regression models and simple contingency tables. There was									
6 26 7	9 no si <u>c</u>	no significant association between modality agreement and patient age (treated as a									
8 27 9	0 contir	continuous variable or dichotomized as adult versus pediatric) or sex (age: $p = 0.3$									
0 27 1	1 (95%	(95% CI for the regression coefficient = (-0.01, 0.004), odds ratio (OR) = 0.99, 95% g									
2 ₂₇ 3	2 CI =	CI = (0.99, 1.00)]; sex: p =0.16 [95% CI = (-0.16, 1.05), OR = 1.53, 95% CI =									
4 27 5	3 (0.85	(0.85, 2.85)]. Similar results were obtained when individual contingency tables for									
46 47 274 sex (p = 0.54) or dichotomized age (>18 versus ≤ 18 years; p = 0.53) were use											
8 9 27	5 Despi	Despite its limitations in small samples (24, 25), Cohen's kappa was also estimated ${\mathfrak S}$									
0 1 27	6 as an	as an imperfect measure of agreement between TI and CXR [kappa = 0.21, 95% CI $\frac{6}{2}$									
2 3 27	7 = (-0	ून् (-0.1421, 0.5591)]. Even when CXRs were unblinded, kappa = 0.48 [95% CI = क्रि									
5 27	8 (0.16	(0.16, 0.79)]. The wide 95% confidence intervals are a further indication of the									
56 57 27 58 59	9 limita	limitations of kappa to quantify agreement in small samples.									
280											
------------	--										
281	Since this is an exploratory proof of concept study the sample size is not based on										
282	statistical power. In order to achieve a power of 0.80, with the conditions										
283	encountered in this study, a power calculation showed 138 patients would be										
284	required. Furthermore, the sample size required to detect even modest agreement										
285	quantified by kappa is n \geq 40 patients.										
286											
287	To investigate causes for TI/CXR discrepancies, cases with disagreement were										
288	reviewed in a non-blinded fashion, using prior and subsequent CXR (comparison										
289	images were not included in the blinded, original CXR assessments). This review of										
290	discrepant cases is not included in the study's statistical analysis.										
291											
292	For the 11 false positive TI cases, prior CXRs were available in only three cases.										
293	Each of these 3 cases had diffuse findings confounding CXR interpretation. One had										
294	diffuse changes of cystic fibrosis, one had changes of chronic obstructive pulmonary										
295	disease and one had low lung volumes. When CXR was reviewed with prior CXR, the										
296	CXR interpretation was changed to focal pneumonia (figure 4,5,6) concordant with TI										
297	(figure 7,8) in each instance. Follow-up images provided no additional information.										
298 299	(INSERT FIGURES 4, 5, 6, 7, 8)										
300											
301											
302											
303											
304											
305	Legend										

Page 13 of 40

306	Figure 4: Portable CXR taken in the Emergency Department during assessment for
307	acute pneumonia reveals low lung volumes and what was assumed to be resultant
308	crowding of pulmonary parenchyma in both lung bases medially. The interpretation
309	at that time was that there was no acute pneumonia.
310	
311	Figure 5: This CXR was performed 5 days before the CXR in Figure 4. The lung
312	volumes are comparably low, but the small opacity in the right infrahilar region on
313	Figure 4 is not present. This indicates that there was a pneumonia in the right lung
314	base on the CXR in Figure 4 rather than normal crowding of lung tissue.
315	
316	Figure 6: Same image as figure 4 with the right infrahilar pneumonia indicated by
317	arrows.
318	
319	Figure 7: TI obtained shortly after the CXR shown in Figure 4. The image is taken
320	from the patient's back so that the patient's right is on the viewer's right. There is
321	an area of increased heat (white area) in the right lung base concordant with that
322	seen in Figure 4.
323	
324	Figure 8: Same image as Figure 7 with the area of pneumonia (white area) encircled
325	by an oval ring.
326	
327	
328	For 2 other cases, knowledge of TI findings resulted in a change in the CXR
329	interpretation. For one case, the CXR interpretation was changed to a faint opacity,
330	consistent with focal pneumonia and in one case, there was the question of a very
331	subtle opacity, both concordant with the TI images.

333	Three other CXRs had what appeared to be atelectasis in regions of TI hot spots. In
334	light of the TI results, these areas of presumed atelectasis may actually represent
335	pneumonia. These opacities on CXR were, in one case each, in the right upper lobe,
336	left upper lobe and left lower lobe.
337	
338	Three of the 11 false positive TI cases had no change in CXR interpretation.
339	
340	The one false negative case had no change to TI or CXR interpretation.
341	
342	There were no tumors, pulmonary edema or other abnormalities identified on CXR
343	that might affect TI results.
344	
345	Non-blinded review produced no changes in interpretation of TI images.
346	
347	Discussion
348	
349	This study suggests that TI is sensitive and modestly specific compared to CXR in
350	detecting focal pneumonia.
351	
352	There currently is no experimental data assessing the mechanism of increased focal
353	heat, as detected by TI, associated with focal pneumonia. The assumption is that
354	the focal hyperemia associated with focal inflammation, in this case pneumonia,
355	produces focally increased heat. It presumably is this increased heat radiating from
356	the site of pneumonia that is detected by TI. Consequently, an area of atelectasis
357	which is not associated with hyperemia, will not produce an area of focally increased
358	heat.
359	

BMJ Open

It is focal increased heat that is the indicator of focal pneumonia on TI. Thus any bacterial organism (which organism cannot be determined) may be the culprit. Viral pneumonias are generally diffuse and do not typically generate a focal pneumonia. Some atypical pneumonias, such as mycoplasma, may have a focal consolidative component which might be detected as a hot spot. It has been reported in a case report that acute consolidative tuberculosis caused a TI hot spot but sub-acute tuberculosis did not (21). It is not the precise lobar distribution but rather presence or absence of a focal hot spot that is the informative aspect of TI. The purpose of this study was to assess the sensitivity and specificity of TI, in detecting a focal consolidation, using CXR as the gold standard given its wide use for diagnosis of pneumonia (19, 20, 26-31), including studies assessing effectiveness of the WHO clinical diagnostic criteria (31). Ultrasound is the only other point of care imaging procedure widely studied for diagnosis of pneumonia and in virtually all of its validation studies it is compared to CXR (28-30). While clinical signs and symptoms have been utilized, collecting accurate data and correlation with the ultimate diagnosis of pneumonia is inconsistent (32). However, it is not the purpose of this study to assess the accuracy of imaging to detect pneumonia as compared to the clinical diagnosis. Ultimately, other methodologies such as inflammatory markers may play a role, but currently these are in relatively early stages of development. Accuracy of CXR in determining the presence of focal pneumonia will vary depending on quality of imaging and experience of the observer, as is true for TI. Although

383 computerized tomography (CT) has greater accuracy in detecting pneumonia than
384 CXR (33-34), CT cannot be used as routine imaging for pneumonia because of

concerns of radiation exposure and cost (31).

1 Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

There was only one false negative in the cohort of 31 patients with 11 false positives (sensitivity = 0.80, specificity = 0.58). Thus the ability of TI to accurately detect focal pneumonia (as determined by CXR), in this cohort was relatively high. For a screening test, this ability to not miss focal pneumonia is the most critical criterion. The higher rate of false positives would lead to either over-treating or further testing in a limited number of patients, which, although important, is a less critical issue. The changes in CXR interpretation on non-blinded review of discrepant TI/CXR revealed the following. 1) TI had hot spots in cases where CXR findings were initially not definitive for focal pneumonia (N = 5). For two, CXR diagnosis was confounded by pre-existing chronic lung diseases and in one by shallow inflation. For two others, the suggestion of focal pneumonia on CXR was too subtle for definitive diagnosis. 2) TI revealed hot spots in cases where the blinded CXR suggested atelectasis (N = 3). This suggests that TI may be able to detect focal pneumonia in cases where pre-existing lung disease or imaging technique confound the diagnosis on CXR or when diagnosis on CXR is too subtle to be convincing (as possibly with early onset or resolving focal pneumonia). TI may be able to differentiate between focal pneumonia and atelectasis.

These findings suggest TI may be comparable to CXR in recognizing focal pneumonia. Relatively low cost and portability of thermal cameras, some of which can be used with mobile phones, potentially enable TI as a point of care screening tool for focal pneumonia. Other advantages include minimal training to perform images, lack of ionizing radiation exposure, off-site interpretation of digitized images and possible software interpretation algorithms. Lack of physical contact with the patient enhances infection control. Possible additional uses include following progression of disease in combination with other modalities such as respiratory rate and oximetry.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	414	
4	117	
6 ²	415	Limitations of TI include learning to interpret TI, presence of prior disease affecting
/ 8 0	416	TI and the possibility that increased adiposity may interfere with its accuracy.
9 10 ²	417	
11 12 ⁴	418	Conclusions
13 14 ⁴	419	
15 16 ⁴	420	This feasibility study confirms proof of concept that TI can demonstrate focal
17 18 4	421	pneumonia. Therefore, these findings support further investigation with larger trials
20 4 21	422	of patients that will be adequately powered to robustly assess the similarity between
22 4 23	423	TI and the outcome parameter. This technology is potentially most useful in
24 ₂	424	resource-limited environments where pneumonia is the second most common cause
26 <u>2</u> 7	425	of death in young children and where CXR equipment and expert readers are
28 29	426	unavailable (35). It also could be of benefit in high throughput healthcare settings,
30 31	427	such as emergency departments or busy doctors' offices and rural areas where
32 33	428	access to CXR is limited.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	429	

430	
431	Funding: The Bacca Foundation and the Consortium for Affordable Medical
432	Technologies (CAMTech) (Fund # is 223707)
433	
434	Portions of this material were presented at RSNA 2016, Chicago, IL, December 1,
435	2016.
436	
437	Contributor ship Statement:
438	
439	Specific Contributions from each author
440	
441	Linda T. Wang, MD
442	Conception and design of the study, acquisition of data and analysis,
443	interpretation of data, and drafting the work and revising it critically
444	
445	Robert H. Cleveland, MD
446	Conception and design of the study, data analysis, interpretation of data, and
447	drafting the work and revising it critically.
448	
449	William Binder, MD
450	Design of the study, acquisition of data and analysis, interpretation of data,
451	drafting the work and revising it critically
452	
453	I nomas Ptak, MD, PhD
454	Data analysis, interpretation of data, and drafting the work and revising it childany
455 456	Catherine Stamoulis, PhD
457	Data analysis, interpretation of data, and drafting the work and revising it critically
458	

460 461	Conception of the study, acquisition of data, interpretation of data, revising the work critically
462	
463	Kenan Haver, MD
464	Conception and design of the study, analysis of the data, interpretation of dat
465	and drafting the work and revising it critically.
466	
467	Pallavi Sagar, MD
468	Analysis of the data, interpretation of data, drafting the work and revising it
469	critically
470	
471	Robert G Zwerdling MD
472	Conception and design of the study, data analysis, interpretation of data, and
473	drafting the work and revising it critically.
474	
475	Patricia Hibberd, MD, PhD
476	Conception and design of the study, interpretation of data, and drafting the w
477	and revising it critically
478	
479	
480	
481	Competing Interests
482	None of the authors have conflicts of interest to report relating to this work
483	"All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi disclosure.pd
484	declare: no support from any organisation for the submitted work; no financial relationships with any
485	organisations that might have an interest in the submitted work in the previous three years; no other
486	relationships or activities that could appear to have influenced the submitted work."
487	

488	
489	References
490	1) Gowraiah V, Awasthi S, Kapoor R, et al. Can we distinguish pneumonia from
491	wheezy diseases in tachypnoeic children under low-resource conditions? A
492	prospective observational study in four Indian hospitals. Arch Dis Child 2014;99:899-
493	906.
494	
495	2) McCollum, ED, Prcidis, GA, Malliwichi, M, et al. Performance Of The World Health
496	Organization Diagnostic Criteria For Pneumonia In Hospitalized Malawian Infants
497	With Exposure To Human Immunodeficiency Virus. Am J Respir Crit Care Med
498	2014;189:A1235.
499	
500	3) Revised WHO classification and treatment of pneumonia in children at health
501	facilities: evidence summaries. World Health Organization Web site
502	http://apps.who.int/iris/bitstream/10665/137319/1/9789241507813_eng.pdf.
503	Published 2014. Accessed 2/12/2015.
504	
505	4) Ginsburg AS, Sadruddin S, Klugman KP. Innovations in pneumonia diagnosis and
506	treatment: a call to action on World Pneumonia Day, 2013. Lancet Glob Health
507	2013;1:e326-327.
508	
509	5) Jain S, Williams DJ, Arnold SR, et al. Community-acquired pneumonia requiring
510	hospitalization among U.S. children. N Engl J Med 2015;372:835-845.
511	
512	6) Bradley JS, Byington CL, Shah SS, et al. The management of community-acquired
513	pneumonia in infants and children older than 3 months of age: clinical practice

BMJ Open

guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases
Society of America. <i>Clin Infect Dis</i> 2011;53:e25-76.
7) Bartlett JG, Dowell SF, Mandell LA, et al. Practice guidelines for the management
of community-acquired pneumonia in adults. Infectious Diseases Society of America.
Clin Infect Dis 2000;31:347-382.
8) Niederman M, Mandell L, Anzueto A. American Thoracic Society. Guidelines for the
initial management of adults with community-acquired pneumonia. Am J Resp Crit
Care Med 2001;163:1730-1754.
9) Wipf JE, Lipsky BA, Hirschmann JV, et al. Diagnosing pneumonia by physical
examination: relevant or relic? Arch Intern Med 1999;159:1082-1087.
10) Speets AM. Hoes AW. van der Graaf Y. et al. Chest radiography and pneumonia
in primary care: diagnostic yield and consequences for patient management. <i>Fur</i>
Respir J 2006;28:933-938.
11) van Vugt SF, Verheij TJ, de Jong PA, et al. Diagnosing pneumonia in patients
with acute cough: clinical judgment compared to chest radiography. Eur Respir J
2013; 42:1076-1082.
12) Diehr P, Wood RW, Bushyhead J, et al. Prediction of pneumonia in outpatients
with acute cougha statistical approach. J Chronic Dis 1984;37:215-225.

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

539	13) Emerman CL, Dawson N, Speroff T, et al. Comparison of physician judgment and
540	decision aids for ordering chest radiographs for pneumonia in outpatients. Ann
541	Emerg Med 1991;20:1215-1219.
542	
543	14) Claudius I, Keens T. Do all infants with apparent life-threatening events need to
544	be admitted? Pediatrics 2007;119:679-683.
545	
546	15) Self WH, Courtney DM, McNaughton CD, et al. High discordance of chest x-ray
547	and computed tomography for detection of pulmonary opacities in ED patients:
548	implications for diagnosing pneumonia. Am J Emerg Med 2013;31:401-405.
549	
550	16) Elemraid MA, Muller M, Spencer DA, et al. Accuracy of the interpretation of chest
551	radiographs for the diagnosis of paediatric pneumonia. <i>PLoS One</i> 2014;9:e106051.
552	
553	17) World Radiology Day: Two-Thirds of the World's Population has no Access to
554	Diagnostic Imaging. Pan American Health Organization Web site
555	http://www.paho.org/hq/index.php?option=com_content&view=article&id=7410%3A
556	2012-dia-radiografia-dos-tercios-poblacion-mundial-no-tiene-acceso-diagnostico-
557	imagen&catid=740%3Apress-releases&Itemid=1926⟨=en Published November
558	7, 2012. Accessed March 28, 2016.
559	
560	18) Baseline survey on Medical Devices, 2013 update. World Health Organization
561	Web site
562	http://gamapserver.who.int/gho/interactive_charts/health_technologies/medical_equ
563	ipment/atlas.html Accessed March 20, 2016.
564	
	 539 540 541 542 543 544 545 546 547 548 549 550 551 552 556 557 558 559 560 561 562 563 564

Page 23 of 40

	-
	₽
	2
	0
-	ğ
	۳
	÷
	S
-	÷
	Ĕ
	<u>⊳</u>
	ŝ
	ē
	0
	S
	2
	0
	1
	ω
	š
	ž
•	<u>–</u>
	ğ
	Ť
	ż
	2
	4
	Ó
	17
	90.
	4
	0
	Ωī
	Ъ
	Z
	a
•	2
	2
	2
	œ
	σ
	õ
	ŝ
	⋶
	à
	ĕ
	<u>_</u>
	ວັ
	Ξ.
	7
	₹.
	š.
	ਰੂ
	₫.
	8
	ğ
	÷
	ĭ
	Ť
	8
	Ĵ.
	0
	ĭ
	ð
	e
	ĕ
	Ц
	ĕ
	~
	μ
	N
	Ő.
	ω
	δ
)	\sim
C	Ĕ
	SG
	÷
	P
	ġ
	ğ
	볶
	ŏ
	Š
	b√ c
	by cop
	by copy
-	by copyrig
	by copyright

565	19) Reissig A, Copetti R, Mathis G, et al. Lung ultrasound in the diagnosis and follow-
566	up of community-acquired pneumonia: a prospective, multicenter, diagnostic
567	accuracy study. Chest 2012;142:965-972.
568	
569	20) Shah VP, Tunik MG, Tsung JW. Prospective evaluation of point-of-care
570	ultrasonography for the diagnosis of pneumonia in children and young adults. JAMA
571	Pediatr 2013;167:119-125.
572	
573	21) Potanin C. Thermographic patterns of pulmonary disease. Chest 1970;58:491-
574	496.
575	
576	22) Moiseenko MD, Dianova TV, Mus VF, et al. [Use of color contact thermography
577	for diagnosis of lung diseases]. Vestn Khir Im I I Grek 1976;117:16-18.
578	
579	23) How Much Does an Xray Cost? Costhelper Web site
580	http://health.costhelper.com/x-rays.html Accessed February 28, 2016.
581	
582	24) Cantor AB. Sample-size calculations for Cohen's kappa. Psychological Methods
583	1996;1:150-153.
584	
585	25 McHugh ML. Interrater reliability: the kappa statistic. Biochem Med 2012;22:276-
586	282.
587	
588	26) Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med
589	2014;371:1619-1628.
590	

U Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

3	
1	
5	
о С	
6	
7	
8	
9	
10	
44	
11	
12	
13	
14	
15	
16	
17	
11	
18	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
20	
23	
30	
31	
32	
33	
34	
25 25	
20 26	
30	
37	
38	
39	
40	
41	
エコ イク	
42	
43	
44	
45	
46	
47	
۰. ۵۷	
40	
49	
50	
51	
52	
53	
50	
54	
25	
56	
57	
58	
59	
60	

1 2

591 27) Lynch T, Bialy L, Kellner JD, et al. A systematic review on the diagnosis of
592 pediatric bacterial pneumonia: when gold is bronze. *PLoS One* 2010;5:e11989.
593
594 28) Nazerian P, Volpicelli G, Vanni S, et al. Accuracy of lung ultrasound for the

diagnosis of consolidations when compared to chest computed tomography. *Am J Emerg Med* 2015;33:620-625.

597

598 29) Chavez MA, Shams N, Ellington LE, et al. Lung ultrasound for the diagnosis of
 599 pneumonia in adults: a systematic review and meta-analysis. *Respir Res*

600 2014;15:50.

601

30) Hu QJ, Shen YC, Jia LQ, et al. Diagnostic performance of lung ultrasound in the
diagnosis of pneumonia: a bivariate meta-analysis. *Int J Clin Exp Med* 2014;7:115121.

605

606 31) Cardoso MR, Nascimento-Carvalho CM, Ferrero F, et al. Adding fever to WHO
607 criteria for diagnosing pneumonia enhances the ability to identify pneumonia cases
608 among wheezing children. *Arch Dis Child* 2011;96:58-61

609

32) Rambaud-Althaus C, Althaus F, Genton B, et al. Clinical features for diagnosis of
pneumonia in children younger than 5 years: a systematic review and meta-analysis. *Lancet Infect Dis* 2015;15:439-450.

613

614 33) Syrjala H, Broas M, Suramo I, et al. High-resolution computed tomography for 615 the diagnosis of community-acquired pneumonia. *Clin Infect Dis* 1998;27:358-363.

BMJ Open

34) Tanaka N, Matsumoto T, Kuramitsu T, et al. High resolution CT findings in community-acquired pneumonia. J Comput Assist Tomogr 1996;20:600-608. 35) WHO | Pneumonia. World Health Organization Web site http://www.who.int/mediacentre/factsheets/fs331/en/. Updated November 2015, Accessed December 7, 2015.

1										pen: 1
2 3	625									first p
4 5	626	Tables								ublish
6 7	620	Tables								ned as
8 9	627									s 10.1
10	628									136/b
12		True	True	False	False	Sensitivity	Specificity	Positive	Negative Pre	jictive
13		Positive	Negative	Positive	Negativ	(95% CI)	(95% CI)	Predictive	Value	en-20
15 16					e			Value		17-01
17 18										7964
19TI 20	vs blinded	4	15	11	1	80.0%	57.7%	26.7%	93.8%	on 5
21C) 22	KR					(29.9%, 98.9%)	(37.2%,	(8.9%,	(67.7%, 99.	25%)
23(5	positive, 26	5					76.0%)	55.2%)		ary 20
25 _{ne}	egative)									18. D
20 27	(20)									ownl
28 29	629									oadec
30 31	630									d from
32 33	631	Table 1: Se	ensitivity a	analysis o	f TI assui	ming the CXR as t	he outcome pa	rameter.) http:
34 25	632									//bmj
36										open.
37 38										bmj.c
39 40										om/ c
41 42										on De
43										cemb
45										er 23
46 47										, 202
48 49										3 by (
50 51										guest
52 52										Prot
53 54										ectec
55 56										d by c
57 58										opyriį
59 60										ght.
00										

$\begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 30 \\ 13 \\ 23 \\ 34 \\ 35 \\ 37 \\ 38 \\ 9 \\ 41 \\ 42 \\ 34 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 53 \\ 51 \\ 51$	633		
48 49 50 51 52 53 54 55 56 57 58 59 60			

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
58 59 60	

637	Figure Legends
638	
639	
640	Figure 1: CXR shows an opacity in the right lung base consistent with pneumonia.
641	
642	Figure 2: TI obtained shortly after the CXR (Figure 1). The image is taken from the
643	patient's back so that the patient's right is on the viewer's right. There is an area of
644	increased heat (white area) in the right lung base concordant with the CXR.
645	
646	Figure 3: Same image as Figure 2 with the area of pneumonia (white area) encircled
647	by an oval ring.
648	
649	
650	Figure 4: Portable CXR taken in the Emergency Department during assessment for
651	acute pneumonia reveals low lung volumes and what was assumed to be resultant
652	crowding of pulmonary parenchyma in both lung bases medially. The interpretation
653	at that time was that there was no acute pneumonia.
654	
655	Figure 5: This CXR was performed 5 days before the CXR in Figure 4. The lung
656	volumes are comparably low, but the small opacity in the right infrahilar region on
657	Figure 4 is not present. This indicates that there was a pneumonia in the right lung
658	base on the CXR in Figure 4 rather than normal crowding of lung tissue.
659	
660	Figure 6: Same image as figure 4 with the right infrahilar pneumonia indicated by
661	arrows.

1		
2 3 4	663	Figure 7: TI obtained shortly after the CXR shown in Figure 4. The image is taken
5 6	664	from the patient's back so that the patient's right is on the viewer's right. There is
7 8	665	an area of increased heat (white area) in the right lung base concordant with that
9 10	666	seen in Figure 4.
11 12	667	
13 14	668	Figure 8: Same image as Figure 7 with the area of pneumonia (white area) encircled
15 16 17	669	by an oval ring.
17 18 19	670	
20 21	671	
22		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
55 54		
55 56		
57 58		
59 60		
		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

309x260mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2: TI obtained shortly after the CXR (Figure 1). The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with the CXR.

109x94mm (300 x 300 DPI)

Figure 3: Same image as Figure 2 with the area of pneumonia (white area) encircled by an oval ring.

111x94mm (300 x 300 DPI)

Figure 4: Portable CXR taken in the Emergency Department during assessment for acute pneumonia reveals low lung volumes and what was assumed to be resultant crowding of pulmonary parenchyma in both lung bases medially. The interpretation at that time was that there was no acute pneumonia.

311x264mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

Figure 5: This CXR was performed 5 days before the CXR in Figure 4. The lung volumes are comparably low, but the small opacity in the right infrahilar region on Figure 4 is not present. This indicates that there was a pneumonia in the right lung base on the CXR in Figure 4 rather than normal crowding of lung tissue.

50x54mm (300 x 300 DPI)

Figure 6: Same image as figure 4 with the right infrahilar pneumonia indicated by arrows.

24x22mm (300 x 300 DPI)

Figure 7: TI obtained shortly after the CXR shown in Figure 4. The image is taken from the patient's back so that the patient's right is on the viewer's right. There is an area of increased heat (white area) in the right lung base concordant with that seen in Figure 4.

84x84mm (300 x 300 DPI)

24x22mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2017-017964 on 5 January 2018. Downloaded from http://bmjopen.bmj.com/ on December 23, 2023 by guest. Protected by copyright.

Item	Description	Reported on
		line number
Title	Identification of the study as randomized	1
Authors *	Contact details for the corresponding author	4 - 7
Trial design	Description of the trial design (e.g. parallel, cluster, non-inferiority)	132; 245
Methods		
Participants	Eligibility criteria for participants and the settings where the data were collected	139-153
Interventions	Interventions intended for each group	149-151, 168 188;
Objective	Specific objective or hypothesis	91-92; 126- 129; 257
Outcome	Clearly defined primary outcome for this report	185-189
Randomization	How participants were allocated to interventions	133; 149
Blinding (masking)	Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment	185-189
Results	Ŧ	
Numbers randomized	Number of participants randomized to each group	155
Recruitment	Trial status	
Numbers analysed	Number of participants analysed in each group	155-158
Outcome	For the primary outcome, a result for each group and the estimated effect size and its precision	258,291-297, 344
Harms	Important adverse events or side effects	
Conclusions	General interpretation of the results	427-435
Trial registration	Registration number and name of trial register	NA
Funding	Source of funding	Funding: The Bacca Foundation and the Consortium for Affordable Medical Technologies (CAMTech) (Fund # is 223707)
*this item is sner		

^{*}this item is specific to conference abstracts