BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Can doctors and patients correctly estimate cardiovascular risk? A cross sectional study in primary care

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-017711
Article Type:	Research
Date Submitted by the Author:	16-May-2017
Complete List of Authors:	Liew, Su May; University of Malaya, Department of Primary Care Medicine, Faculty of Medicine Liew, Su-May; University of Malaya, Primary Care Medicine Lee, Wai Khew; Luyang Health Clinic Khoo, Ee Ming; University of Malaya, Department of Primary Care Medicine, Faculty of Medicine, Ismail, Irmi Zarina; University Putra Malaysia, Department of Family Medicine, Faculty of Medicine and Health Sciences Ambigapathy, Subashini ; Family Health Development Division, Ministry of Health Malaysia Omar, Mimi; Family Health Development Division, Ministry of Health Malaysia Suleiman, Siti Zaleha; Family Health Development Division, Ministry of Health Malaysia Saaban, Juwita ; University of Science Malaysia, Department of Family Medicine, School of Medical Sciences Mohd Zaidi, Nur Farhana; University of Malaya, Department of Primary Care Medicine, Faculty of Medicine Yusoff, Harmy; Universiti Sultan Zainal Abidin
Primary Subject Heading :	General practice / Family practice
Secondary Subject Heading:	Epidemiology, Cardiovascular medicine, Communication, Patient-centred medicine
Keywords:	cardiovascular risk assessment, communication, shared decision making, consultation, family medicine

BMJ Open

Can doctors and patients correctly estimate cardiovascular risk? A cross sectional study in primary care

Su May Liew¹, Wai Khew Lee², Ee Ming Khoo¹, Irmi Zarina³, Subashini Ambigapathy⁴, Mimi Omar⁴, Siti Zaleha Suleiman⁴, Juwita Saaban⁵, Nurfarhana Mohd Zaidi¹, Harmy Yusoff⁶

Author affiliations

¹Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

²Luyang Health Clinic, Ministry of Health Malaysia, Kota Kinabalu, Malaysia.

³Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.

⁴Family Health Development Division, Ministry of Health Malaysia, Putrajaya, Malaysia.

⁵Department of Family Medicine, School of Medical Sciences, University of Science Malaysia, Kubang Kerian, Malaysia.

⁶Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia

Correspondence to

Associate Prof Dr. Liew Su May, Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Jalan Universiti 50603 Kuala Lumpur, Malaysia; <u>su_mayliew@um.edu.my</u>; Tel: +603-79492626

Keywords: Cardiac risk assessment, communication, shared decision making, consultation, family medicine

Word count 2016 words

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

Abstract

Objective Accurate cardiovascular risk estimations by patients and doctors are important as these affect health behaviour and medical decision-making. We aimed to determine if doctors and patients were accurately estimating the absolute cardiovascular risk of patients in primary care.

Methods A cross-sectional study was carried out in primary care clinics in Malaysia in 2014. Patients aged 35 years and above without known cardiovascular diseases were included. Face-to-face interviews with a structured questionnaire were used to collect sociodemographic and clinical data as well as patients' perception and doctors' estimate of the patients' CVD risk. Associations were tested using chi-square, correlation and independent T tests.

Results We recruited 1094 patients and 57 doctors. Using the FRS score alone, 508 patients (46.4%) were in the high-risk group. When diabetes was included as high-risk, the number increased to 776 (70.9%). Only 34.4% of patients and 55.7% of doctors correctly estimated the patient's CVD risk.

Of the high-risk patients, 664 (85.6%) underestimated their CV risk. Factors associated with underestimation by patients included not having family history of CVD [AOR: 2.705, CI:(1.538, 4.757)], higher waist circumference [AOR:0.980;(0.960, 0.999)] and ethnicity. Doctors underestimated risk in 59.8% of the high-risk group. Factors associated with underestimation by doctors patients factors such as being were female, [AOR:0.403;CI:0.302,0.711], younger age [AOR:1.099;CI:1.072,1.127, non-hypertensive [AOR:0.576;CI:0.354, 0.936], non-diabetic [AOR:0.491;CI: 0.282, 0.854], higher HDL levels [AOR:0.281;CI:0.160,0.494, lower LDL level [AOR:1.387;CI:1.009, 1.907, lower systolic BP [AOR:1.032;CI:1.019, 1.045, non-smoker [AOR:0.469;CI:0.282, 0.780] and ethnicity.

BMJ Open

Conclusions Consultations are being informed by inaccurate cardiovascular risk estimation mainly due to underestimation of patients' CVD risks.

Article summary

Strengths and limitations of this study

- This was a large prospective study that took place in 9 different clinics and covered over a thousand patient consultations.
- It captured the perceptions and practice occurring in actual consultations in primary care settings where medical decisions were being made.
- Participants' behaviour may have been affected due to awareness of the research being undertaken

Background

Despite international efforts, cardiovascular disease (CVD) remains the leading cause of death worldwide, killing more than 17 million people a year.¹ Affordable, feasible and effective global actions capable of averting millions of deaths from non-communicable diseases have been identified to tackle this continuing crisis.² Yet, the rate of non-communicable diseases, of which CVD is a major contributor, is increasing and this increase is disproportionately greater in developing countries.³ Out of five interventions identified as priority actions for the non-communicable disease crisis,² only one addressed individual clinical services that is, access of essential drugs and technologies. This was deemed essential especially for those identified to be at high risk of CVD.

People at high risk of CVD can be identified using tools such as cardiovascular risk scores. These were designed to calculate an individual's risk of developing a cardiovascular (CV) event from risk factors obtained from history, physical examination or investigations. Most

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

guidelines recommend the use of risk scores to predict global risk rather than focusing on single risk modification. The majority advocates the use of Framingham risk scores or scores that have been calibrated from the Framingham study data.⁴⁻⁶ A systematic review identified 21 risk scores for use in adults with no history of previous cardiovascular disease.⁷ However, the use of the risk score is surprisingly limited. Studies have reported rates of use ranging from 17-65%.⁸⁻¹⁰ Patients have also been found to be inaccurate in estimating their own CV risk.⁸ About 40% of the general population underestimates their CV risk and 20% overestimated it.¹¹⁻¹³ In studies on those at established high CV risk, only about 40% were aware of their increased risk.¹⁴ Higher CV risk perception has been shown to be associated with better acceptance towards medical management regardless of whether the perception accurately reflected actual CV risk or not.¹⁵

Accurate estimations of CV risk by both patients and doctors are important as these affect health behaviour and medical decision-making. The proliferations of mobile health technology including online risk calculators and guidelines have shown potential in increasing awareness and use of CV risk scores in clinical consultations.¹⁶ But has this led to a corresponding improvement in the use of CV risk scores in practice? Our study aimed to determine if doctors and patients were able to accurately estimate the absolute cardiovascular risk of patients in a primary care health setting.

Methodology

This was a cross sectional study carried out in nine public primary care clinics in Malaysia in 2014 with the period of recruitment from the 1st to the 30th November 2014. The nine clinics were chosen conveniently from five regions of Malaysia: two clinics each from the northern (Ipoh), southern (Melaka) and western regions (Klang Valley), and one clinic from the eastern region (Kelantan) of Peninsular Malaysia and two clinics from East Malaysia (Sabah). All patients attending these clinics aged 35 years and above with cardiovascular (CV) risks assessments done within the past year were included. Patients with known cardiovascular diseases (CVD) were excluded.

Based on a study, which found that 40-52% of patients correctly estimated their CV risk, we used 50% to calculate the sample size, giving a total of 384 participants.¹² After stratifying by regions, and taking into account a 30% non-responder rate, a sample size of 998 was needed. About 200 patients were recruited from each region.

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

A face to face interview was conducted using a structured questionnaire to collect patients' data on socio-demography, CV risk factors including age, gender, family history of CVD, and perception of their own CV risk. The doctors then filled in patients' data on smoking status in the last one month, history of diabetes and hypertension, lipid profile within the last one year, statin and antiplatelet use, and estimated patients' CVD risk as per usual practice. Measurements were also taken for weight, height, waist circumference, and blood pressure using a validated digital blood pressure machine (OMRON HEM-7121). Doctors were also asked to fill up a questionnaire on their socio-demography, years of practice, and the methods they used to estimate patients' CV risks, if any.

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

We used the D'Agostino 2008 Framingham General CVD Score (FRS) as the reference CVD risk.¹⁷ This has been validated for use in Malaysia. (18) The 10-year CVD risk is classified into low (<10%), moderate (10-20%) and high (>20%) risk. In this study, high CVD risk group was defined as FRS >20% and/or presence of diabetes mellitus (DM).

Analysis

Data were entered and analysed using Statistical Program for Social Sciences (SPSS) version 22.0 (SPSS Inc., 20). Complete-case analysis was used meaning those with missing values were excluded. Frequencies were reported using percentages and proportions. Associations between categorical data were tested using chi-square tests while continuous data were tested using independent T test and correlation test. Kappa value were calculated to determine the agreement between CV risks estimated by patient and actual risk, and CV risks estimated by doctors and actual risk..

Ethical approval

This study was registered in the National Medical Research Registry, Malaysia. (NMRR-13-962-17898) and approved by the Malaysian Research Ethics Committee.

Results

Out of the 1107 patients approached, 7 refused to participate and 6 did not fulfil the inclusion criteria, giving a total of 1094 patients recruited. The mean age was 57.2 years (SD 9.8) with a range of 35 to 86 years. There were 62.6% females, 60.8% had diabetes and 76.9% had hypertension (Table 1). A total of 57 doctors participated in the study. The mean age of the doctors was 32.3 years (SD 5.5) with a mean duration of work experience of 6.5 years (SD 3.8). Women comprise 63.4% of the doctors.

BMJ Open

Using the FRS score alone, 508 patients (46.4%) were in the high risk group. When diabetes was included, the number increased to 776 (70.9%). Of all the consultations, only 34.4% of patients and 55.7% of doctors correctly estimated the patient's CVD risk group.

Patients' estimation

Table 2 shows patients' estimation of their CV risks. Among patients in high CV risk group, only 112 (14.4%) correctly estimated their risks. The remaining 664 (85.6%) underestimated their CV risk. The correlation between patients' perceived CV risk and their actual risk was Kappa = -0.016. Factors associated with underestimation of high CV risk by patients included not having family history of CVD [AOR: 2.705, CI:(1.538, 4.757)], higher waist circumference [AOR:0.980;(0.960, 0.999)] and ethnicity [Malay; AOR: 7.729, (CI:4.252,14.050). Chinese; AOR: 10.320, CI: (4.612, 23.093). Indian; AOR: 9.676, CI:(4.272, 21.917)]. (Table 3)

Doctors' estimation

Table 4 shows doctors' estimation of patients' CV risks. Among patients in high CV risk group, doctors correctly estimated 40.2% and underestimated 59.8%. The correlation between doctors' estimation of patient's CV risk versus patient's actual CV risk was Kappa = -0.084. Factors associated with underestimation of high CV risk by doctors were patients factors such as being female, [AOR:0.403;CI:0.302,0.711], younger age [AOR:1.099;CI:1.072,1.127, non-hypertensive [AOR:0.576;CI:0.354, 0.936], non-diabetic [AOR:0.491;CI: 0.282, 0.854], higher HDL levels [AOR:0.281;CI:0.160,0.494, lower LDL level [AOR:1.387;CI:1.009, 1.907, lower systolic BP [AOR:1.032;CI:1.019, 1.045, non-smoker [AOR:0.469;CI:0.282,

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

0.780] and ethnicity [Malay; AOR:2.562, CI:1.373,4.780, Chinese; AOR: 2.851, CI:1.397, 5.818, Indian; AOR: 6.048, CI: 2.824, 12.954]. (Table 5)

Table 6 summarises the methods used by doctors to estimate patients' CV risk. About half used online risk calculators while a quarter each used risk factor counting or manual calculation. Risk scores used included Framingham, QRISK and ACC-AHA risk scores.

Discussion

Our findings indicate that both patients and doctors were underestimating the patient's cardiovascular risk. Of those at high CV risk, only 1 in 7 patients could identify themselves as being at high risk. More worryingly, only 2 out of 5 doctors seeing these high CV risk patients could correctly identify them. This implies that medical decision-making during these consultations were poorly informed due to inaccurate CV risk estimation.

How can this occur with the easy availability of online risk calculators and guidelines recommending use of risk estimation? It is likely that risk estimation for CVD is still poorly understood. Many CVD risk scores recommended using baseline levels of risk factors for risk calculation prior to the initiation of medication. For some risk scores such as the ATP-III risk calculator and the Pooled Cohort Risk score, diabetes is automatically taken as high CV risk without the need for calculation. However, new risk calculators such as QRISK and D'Agostino now consider the effect of treatment and incorporate variables such as present use of antihypertensive or antihyperlipidemia agents into the calculation.^{17, 19} Differences in the methods used by different risk scores and over time have led to misunderstandings, confusion and uncertainty by users.

A study that explored general practitioners' use of cardiovascular risk scores found that doctors had great uncertainty over the use of CVD scores in treated patients.²⁰ Use of patient's risk factor levels when patient is on treatment would lead to an under-estimation of the true CVD risk. Prolonged exposure to previous high levels and the presence of established chronic changes would mean that maximal reduction may take longer than 5 years and may never reach the level of a treatment naïve patient. However, doctors find it difficult to obtain pre-treatment levels and over-estimation would occur if the patient's risk factor had been controlled over a long period of time.

Shared medical decision-making through proper risk communication ensures patients and doctors are able to weigh the risk and benefits of treatment options. The underestimation of risk as seen in this study population is likely to have significant impact on their management. Overoptimism has also been noted in other studies which described the tendency for people to be unrealistically optimistic about future life events.²¹ His research showed that subjects tended to be optimistic of their chances for negative events when the event is perceived to be controllable. This appears to mirror our finding where patients and doctors perceived the risk for CVD as being low because of the availability of treatment and behavioural lifestyle modification steps that can be taken. The mainstay of treatment of risk factors is to prevent progression of disease. Yet, patients and doctors must understand that residual risk remains and that treatment should be continued for most despite normalisation of risk factor levels. This understanding is potentially jeopardised by optimism bias as adherence to medication and preventive behaviour have been shown to be associated with higher risk perception.²²⁻²⁴

The findings also suggest that patients and doctors estimated risk by risk factor profile or risk factor counting as opposed to absolute risk calculation. It appears that there is good

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

awareness of some of the risk factors for cardiovascular disease as risk perception was found to be associated with these factors. However, focusing on individual risk factors or risk factor counting tends to underestimate risk in those who may have slightly elevated levels of multiple risk factors that synergistically increased the overall absolute CV risk.²⁵ This is why most cardiovascular disease guidelines advocate the use of risk calculators to estimate individual risk.^{5, 6, 26, 27}

Strengths and limitations of the study

This is a prospective study that examined the risk perceptions of individual patients by both the patients and the doctors seeing these patients. The study design allowed us to capture the perceptions and practice occurring in actual consultations in primary care settings where decisions on institution of management for cardiovascular disease prevention and treatment are made. This study took place in 9 different clinics and covered over a thousand patient consultations.

It is possible that the doctors involved in this study may have been prompted to assess patients CV risk due to awareness of the research being undertaken as informed consent was obtained from all participants. However, we believe that this would only have prompted them to look up cardiovascular assessment. If knowledge of this study had introduced bias to the results, it would likely that the direction of the bias would be towards more accurate estimation of risk. Hence the rate of inaccurate risk estimation may actually be greater than was found.

Recommendations

BMJ Open

In view of these findings, future studies should look at developing interventional strategies to implement formal CVD risk calculation into consultation and testing the strategies in actual consultations. Examples are system processes that incorporate risk calculators into electronic medical records or simple displays of risk charts on clinic desks.²⁵ Accurate risk estimations should then be conveyed to patients to allow them to be fully informed when making decisions regarding their management in clinical practice.

Conclusion

The majority of consultations occurring between doctors and patients are being informed by inaccurate cardiovascular risk estimation. Inaccuracy is mainly due to underestimation of patients' CVD risks. Interventions are required to improve CVD risk estimation in order to inform shared decision-making in primary care consultations.

Acknowledgement

We would like to thank the DG of Health for approving the publication of this paper. We would also like to thank the director of CRC, MOH Dr Goh Pik Pin for providing the platform for this research. We would also like to thank Dr Zukry from Klinik Kesihatan Ketereh and all the clinics. The project was funded by the National Institute of Health, Malaysia. All authors declare no conflict of interests No additional data available.

Contributorship statement

SML- Liew Su May, WKL- Lee Wai Khew, EMK- Khoo Ee Ming, IZ- Irmi Zarina Ismail, SA- Subashini Ambigapathy, MO- Mimi Omar, SZ- Siti Zaleha Suleiman, JS- Juwita Saaban, NZ- Nurfarhana Zaidi, HY-Harmy Yussof

<text> The study was conceived by SML, WKL, EMK, IZ and HY. SML, WKL, EMK, IZ, SA, MO,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References:

- 1. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014 May;11(5):276-89
- 2. Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, et al. Priority actions for the non-communicable disease crisis. Lancet. 2011 Apr 23;377(9775):1438-47
- 3. Heneghan C, Blacklock C, Perera R, Davis R, Banerjee A, Gill P, Liew S, Chamas L, Hernandez J, Mahtani K, Hayward G. Evidence for non-communicable diseases: analysis of Cochrane reviews and randomised trials by World Bank classification. BMJ open. 2013 Jul 1;3(7):e003298.
- 4. National Institute for Health and Clinical Excellence. Change to lipid modification guideline CG67, 2010. Available at <u>http://www.nice.org.uk/newsroom/news/ChangeToLipidModificationGuidelineCG67.jsp</u>. Accessed August 15, 2011.
- Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003 Dec;42(6):1206-52
- 6. Tonkin A, Barter P, Best J, Boyden A, Furler J, Hossack K, et al. National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand: position statement on lipid management--2005. Heart Lung Circ. 2005 Dec;14(4):275-91
- 7. Liew SM, Doust J, Glasziou P. Cardiovascular risk scores do not account for the effect of treatment: a review. Heart. 2011 May;97(9):689-97
- 8. Webster R, Heeley E. Perceptions of risk: understanding cardiovascular disease. Risk Manag Healthc Policy. 2010;3:49-60
- 9. Sposito AC, Ramires JAF, Jukema JW, Molina JC, Silva PMd, Ghadanfar MM, et al. Physicians' attitudes and adherence to use of risk scores for primary prevention of cardiovascular disease: cross-sectional survey in three world regions. Curr Med Res Opin. 2009; 25(5):1171-1178.
- 10. Dallongeville J, Banegas JR, Tubach F, Guallar E, Borghi C, De Backer G, et al. Survey of physicians' practices in the control of cardiovascular risk factors: the EURIKA study. Eur J Cardiovasc Prev Rehabil. 2012; 19(3):541-550
- 11. Montgomery AA, Fahey T, MacKintosh C, Sharp DJ, Peters TJ. Estimation of cardiovascular risk in hypertensive patients in primary care. Br J Gen Pract. 2000; 50(451):127-128.
- 12. Avis NE, Smith KW, McKinlay JB. Accuracy of perceptions of heart attack risk: what influences perceptions and can they be changed? Am J Public Health. 1989;79(12):1608–1612.

13. Marteau TM, Kinmonth AL, Pyke S, Thompson SG. Readiness for lifestyle advice: selfassessments of coronary risk prior to screening in the British family heart study. Family Heart Study Group. Br J Gen Pract. 1995;45(390):5–8

- 14. Niknian M, McKinlay SM, Rakowski W, Carleton RA. A comparison of perceived and objective CVD risk in a general population. Am J Public Health. 1989;79(12):1653–1654.
- 15. Samsa GP, Cohen SJ, Goldstein LB, Bonita AJ, Duncan PW, Enarson C, et al. Knowledge of risk among patients at increased risk for stroke. Stroke. 1997;28(5):916–921.
- 16. Bonner C, Jansen J, McKinn S, Irwig L, Doust J, Glasziou P, et al. How do general practitioners and patients make decisions about cardiovascular disease risk? Health Psychol. 2015 Mar;34(3):253-61. doi: 10.1037/hea0000122. Epub 2014 Aug 18
- 17. Neubeck L, Lowres N, Benjamin EJ, Freedman SB, Coorey G, Redfern J. The mobile revolution [mdash] using smartphone apps to prevent cardiovascular disease. Nature Reviews Cardiology. 2015 Jun 1;12(6):350-60.
- 18. D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General Cardiovascular Risk Profile for Use in Primary Care The Framingham Heart Study. General Cardiovascular Risk Profile for Use in Primary Care. The Framingham Heart Study
- 19. Selvarajah S, Kaur G, Jamaiyah H, Kee CT, Tee GH, Van der Graaf Y, et al. Comparison of the Framingham Risk Score, SCORE and WHO/ISH cardiovascular risk prediction models in an Asian population. International Journal of Cardiology 176 (2014) 211–218.
- 20. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. Bmj. 2007 Jul 19;335(7611):136.
- 21. Liew SM, Blacklock C, Hislop J, Glasziou P, Mant D. Cardiovascular risk scores: qualitative study of how primary care practitioners understand and use them. Br J Gen Pract. 2013 Jun 1;63(611):e401-7.
- 22. Weinstein ND. Unrealistic optimism about future life events. Journal of personality and social psychology. 1980 Nov;39(5):806.
- 23. Corneli A, Wang M, Agot K, Ahmed K, Lombaard J, Van Damme L, et al. Perception of HIV risk and adherence to a daily, investigational pill for HIV prevention in FEM-PrEP. J Acquir Immune Defic Syndr. 2014 Dec15;67(5):555-63
- 24. Brewer NT, Chapman GB, Gibbons FX, Gerrard M, McCaul KD, Weinstein ND. Metaanalysis of the relationship between risk perception and health behavior: the example of vaccination. Health Psychol. 2007 Mar;26(2):136-45
- 25. Everett B, Salamonson Y, Rolley JX, Davidson PM. Underestimation of risk perception in patients at risk of heart disease. Eur J Cardiovasc Nurs. 2014 Oct 21

BMJ Open

- 26. Cooney MT, Dudina AL, Graham IM. Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol. 2009; 54(14):1209-1227.]
- 27. Stone, N. J., Robinson, J. G., Lichtenstein, A. H., Bairey Merz, C. N., Blum, C. B., Eckel, R. H, et al. (2014). 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults. *Journal of the American College of Cardiology*, 63(25), 2889-2934. doi:10.1016/j.jacc.2013.11.002
- 28. Mancia, G, Fagard, R, Narkiewicz, K, Redon, J, Zanchetti, A, Bohm, M, et al. (2013). 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J, 34(28), 2159-2219. y http://www.secondersec doi:10.1093/eurheartj/eht151

3
4
5
6
7
0
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
∠ I 20
22
23
24
25
26
27
20
20
29
30
31
32
33
34
25
30
30
37
38
39
40
41
12
42 40
43
44
45
46
47
48
<u>10</u>
50
51
52
53
54
55
56
50
5/ 50
58
59
60

Table 1: Socio-demography and	profile of the respondents
-------------------------------	----------------------------

Demograph	ic data and profile	Frequency (%)
Mean Age ±	SD (years)	57.23 ± 9.81
Mean incom	\pm SD (RM)	1824.34 ± 2112.09
Mean body	mass index ± SD (kg/m ²)	28.02 ± 13.17
Gender	Female	685 (62.6)
Ethnicity	Malay	559 (51.1)
	Chinese	234 (21.4)
	Indian	161 (14.7)
	Bumiputera	112 (10.2)
	Other	28 (2.6)
Smoker		185 (16.9)
Diabetes		665 (60.8)
Hypertensi	DN	840 (76.8)
Family hist	ory of Stroke	165 (15.1)
Family hist	ory of Cardiovascular Disease	158 (14.4)

1	
2	
~	
3	
4	
F	
5	
6	
7	
1	
8	
9	
40	
10	
11	
10	
12	
13	
14	
45	
15	
16	
17	
17	
18	
19	
20	
21	
າາ	
22	
23	
24	
27	
25	
26	
27	
21	
28	
20	
23	
30	
31	
201	
32	
33	
31	
34	
35	
36	
00	
37	
38	
20	
39	
40	
41	
40	
42	
43	
11	
44	
45	
46	
17	
47	
48	
⊿0	
73	
50	
51	
E 0	
эz	
53	
54	
55	
56	
E7	
57	
58	
50	
29	
60	

Table 2: Accurate estimation	of high CV	⁷ risk by patient, 1	n= 1094
------------------------------	------------	---------------------------------	---------

	Actual CV risk		
Patient's estimation		High (%)	Low/ moderate
	High	112 (14.4)	54 (17.0)
	Low/ Moderate	664 (85.6)	264(83.0)

Table 3: Characteristics of patients who has high CVD risk but self-perceived as low

and moderate risk

			95% Confidence Interval	
	Significance	Adjusted odds		
	value	ratio	Lower	Upper
Age	0.550	1.009	0.981	1.037
Income	0.280	1.000	1.000	1.000
Systolic BP	0.482	1.006	0.989	1.023
Diastolic BP	0.194	0.982	0.955	1.009
Waist Circumference	0.043	0.980	0.960	0.999
Body Mass Index	0.230	0.981	0.952	1.012
Total Cholesterol	0.211	0.770	0.512	1.160
LDL Cholesterol	0.154	1.364	0.890	2.090
HDL Cholesterol	0.252	1.484	0.755	2.917
Ethnicity				
Bumiputera/Others	-			
Malay	0.000	7.729	4.252	14.050

Chinese	0.000	10.320	4.612	23.093
Indian	0.000	9.676	4.272	21.917
Hypertension				
Yes	-			
No	0.370	1.335	0.709	2.514
Diabetes				
Yes	-			
No	0.596	1.230	0.572	2.644
Anti-platelet use				
Yes	-			
No	0.523	1.186	0.703	2.000
Statin use				
Yes	-			
No	0.739	0.905	0.504	1.626
Family History with				
Stroke				
Yes	0 198	1 494	0.811	2 753
No	0.170	1.777	0.011	2.155
Family History with				
CVD				
Yes	-			
No	0.001	2.705	1.538	4.757

BMJ Open

	Patient's Actual risk			
Doctors estimation		High (%)	Low/ moderate	
	High	310 (40.2)	20 (6.3)	
	Low/ Moderate	462 (59.8)	297 (93.7)	

Table 4: Doctor's estimation of patient's CV risk vs patient's actual risk, n=1089

 Table 5: Factors associated with doctor's underestimation of patients' actual risk

	Significance	Adjusted odds	95% Confidence Interval	
	value	ratio	Lower	Upper
DOCTORS' FACTORS				
Age	0.819	1.010	0.931	1.095
Experience	0.065	0.896	0.798	1.007
Gender				
Male	-			
Female	0.094	0.702	0.465	1.061
PATIENTS' FACTORS				
Age	0.000	1.099	1.072	1.127
Income	0.056	1.000	1.000	1.000
Waist Circumference	0.552	1.006	0.986	1.027
Body Mass Index	0.418	0.979	0.929	1.031
Systolic BP	0.000	1.032	1.019	1.045
Diastolic BP	0.109	0.983	0.962	1.004

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

Total Cholesterol	0.610	1.081	0.800	1.462
HDL Cholesterol	0.000	0.281	0.160	0.494
LDL Cholesterol	0.044	1.387	1.009	1.907
Gender				
Male	-	0.470		0 511
Female	0.000	0.463	0.302	0.711
Ethnic				
Bumiputera/ Others	-			
Malay	0.003	2.562	1.373	4.780
Chinese	0.004	2.851	1.397	5.818
Indian	0.000	6.048	2.824	12.954
Smoker				
Yes	-			
No	0.004	0.469	0.282	0.780
Hypertension				
Yes	-			
No	0.026	0.576	0.354	0.936
Diabetes				
Yes	-			
No	0.012	0.491	0.282	0.854
Family History with CVD				
Yes	-			
No	0.518	1.188	0.706	1.999

Family Histor	y with			
Stroke				
Yes	-			
No	0.768	0.925	0.552	1.551
Anti-platelet use				
Yes	-			
No	0.330	0.821	0.552	1.221
Statin use				
Yes	-			
No	0.730	1.084	0.686	1.712

Table 6: Methods used by the doctors to estimate CV risk

Methods of CV calculation	n	%	
Risk factor counting	244	22.3	
Paper/ chart based	250	22.9	
Online risk calculator	544	50.1	
None	51	4.7	

	Item	Recommendation	Page	Checklist
	no.		numbers	Chicolanst
Title and abstract	1	(a)Indicate the study's design with a commonly	1	✓
		used term in the title of abstract		
		(b)Provide in the abstract an informative and	2-3	✓
		balanced summary of what was done and what was		
		found		
Introdu	uction			•
Background/rationale	2	Explain the scientific background and rationale for	3-4	✓
		the investigation being reported		
Objectives	3	State specific objectives, including any prespecified	4	✓
		hypotheses		
Metho	ds			
Study design	4	Present key elements of study design early in the	5	✓
		paper		
Setting	5	Describe the setting, locations, and relevant dates,	5	✓
		including periods of recruitment, exposure, follow-		
		up, and data collection		
Participants	6	Cross-sectional study—Give the eligibility criteria,	5	✓
		and the sources and methods of selection of		
		participants 📃		
Variables	7	Clearly define all outcomes, exposures, predictors,	5-6	✓
		potential confounders, and effect modifiers. Give		
		diagnostic criteria, if applicable		
Data sources/	8	For each variable of interest, give sources of data	5-6	✓
measurement		and details of methods of assessment		
		(measurement). Describe comparability of		
		assessment methods if there		
		is more than one group		
Bias	9	Describe any efforts to address potential sources of	5-6	\checkmark
~		bias	_	
Study size	10	Explain how the study size was arrived at	5	✓
Quantitative variables	11	Explain how quantitative variables were handled in	6	✓
		the analyses. If applicable, describe which		
	10	groupings were chosen and why		
Statistical methods	12	(a) Describe all statistical methods, including those	6	~
		used to control for confounding	(
		(b) Describe any methods used to examine	6	v
		subgroups and interactions	(
		(c) Explain now missing data were addressed	0	v
		(a) Cross-sectional study—If applicable, describe	0	×
		analytical methods taking account of sampling		
		suarcy	NA	
D 14	<u> </u>	(e) Describe any sensitivity analyses	INA	
Results	12	(a) Demonstration $-c$ is the last $1 + c$	6	
Participants	13	(a) Report numbers of individuals at each stage of	0	× ·
		study—eg. numbers potentially		
		eligible included in the study		
		engiote, metudeu in me study,	l	

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
11	
14	
10	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
11	
-+++ / E	
45	
46	
47	
48	
49	
50	
51	
51	
5Z	
53	
54	
55	
56	
57	
50	
50	
59	
60	

		completing follow-up and analysed		
		(b) Give reasons for non-participation at each stage	6	✓
		(c) Consider use of a flow diagram	NA	
Descriptive data	14	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6	~
Outcome data	15	Report numbers of outcome events or summary measures	7	√
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7	~
	0	(b) Report category boundaries when continuous variables were categorized	7	\checkmark
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7	~
Discuss	ion			
Key results	18	Summarise key results with reference to study objectives	8	\checkmark
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	10	~
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	8-9	\checkmark
Generalisability	21	Discuss the generalisability (external validity) of the study results	8-9	√
Other i	nforma	tion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11	~

BMJ Open

Can doctors and patients correctly estimate cardiovascular risk? A cross sectional study in primary care

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-017711.R1
Article Type:	Research
Date Submitted by the Author:	27-Jul-2017
Complete List of Authors:	Liew, Su May; University of Malaya, Department of Primary Care Medicine, Faculty of Medicine Lee, Wai Khew; Luyang Health Clinic Khoo, Ee Ming; University of Malaya, Department of Primary Care Medicine, Faculty of Medicine, Ismail, Irmi Zarina; University Putra Malaysia, Department of Family Medicine, Faculty of Medicine and Health Sciences Ambigapathy, Subashini ; Family Health Development Division, Ministry of Health Malaysia Omar, Mimi; Family Health Development Division, Ministry of Health Malaysia Suleiman, Siti Zaleha; Family Health Development Division, Ministry of Health Malaysia Saaban, Juwita ; University of Science Malaysia, Department of Family Medicine, School of Medical Sciences Mohd Zaidi, Nur Farhana; University of Malaya, Department of Primary Care Medicine, Faculty of Medicine Yusoff, Harmy; Universiti Sultan Zainal Abidin
Primary Subject Heading :	General practice / Family practice
Secondary Subject Heading:	Epidemiology, Cardiovascular medicine, Communication, Patient-centred medicine
Keywords:	cardiovascular risk assessment, communication, shared decision making, consultation, family medicine

SCHOLARONE[™] Manuscripts

Can doctors and patients correctly estimate cardiovascular risk? A cross sectional study in primary care

Su May Liew¹, Wai Khew Lee², Ee Ming Khoo¹, Irmi Zarina³, Subashini Ambigapathy⁴, Mimi Omar⁴, Siti Zaleha Suleiman⁴, Juwita Saaban⁵, Nurfarhana Mohd Zaidi¹, Harmy Yusoff⁶

Author affiliations

¹Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

²Luyang Health Clinic, Ministry of Health Malaysia, Kota Kinabalu, Malaysia.

³Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.

⁴Family Health Development Division, Ministry of Health Malaysia, Putrajaya, Malaysia.

⁵Department of Family Medicine, School of Medical Sciences, University of Science Malaysia, Kubang Kerian, Malaysia.

⁶Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia

Correspondence to

Associate Prof Dr. Liew Su May, Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Jalan Universiti 50603 Kuala Lumpur, Malaysia; <u>su_mayliew@um.edu.my</u>; Tel: +603-79492626

Keywords: Cardiac risk assessment, communication, shared decision making, consultation, family medicine

Word count 2016 words

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

Abstract

Objective Accurate cardiovascular risk estimations by patients and doctors are important as these affect health behaviour and medical decision-making. We aimed to determine if doctors and patients were accurately estimating the absolute cardiovascular risk of patients in primary care.

Methods A cross-sectional study was carried out in primary care clinics in Malaysia in 2014. Patients aged 35 years and above without known cardiovascular diseases were included. Face-to-face interviews with a structured questionnaire were used to collect sociodemographic and clinical data as well as patients' perception and doctors' estimate of the patients' cardiovascular disease (CVD) risk. Associations were tested using chi-square, correlation and independent T tests.

Results We recruited 1094 patients and 57 doctors. Using the Framingham Risk Score (FRS) score alone, 508 patients (46.4%) were in the high-risk group. When diabetes was included as high-risk, the number increased to 776 (70.9%). Only 34.4% of patients and 55.7% of doctors correctly estimated the patient's CVD risk in comparison to the reference FRS score.

Of the high-risk patients, 664 (85.6%) underestimated their CV risk. Factors associated with underestimation by patients included not having family history of CVD [AOR: 2.705, CI:(1.538, 4.757)], smaller waist circumference [AOR:0.979,(0.960, 0.999)] and ethnicity in comparison to the Malay as reference group [Indigenous/Others; AOR:0.129 CI: (0.071, 0.235)] Doctors underestimated risk in 59.8% of the high-risk group. Factors associated with underestimation doctors by were patients factors such as being female. [AOR:2.232;CI:1.460,3.410], younger age [AOR:0.908;CI:0.886,0.930], non-hypertensive [AOR:1.731;CI:1.067, 2.808], non-diabetic [AOR:1.931;CI: 1.114, 3.348], higher HDL levels [AOR:3.546;CI:2.025,6.209], lower systolic BP [AOR:0.970;CI:0.957, 0.982], nonsmoker [AOR:2.246;CI:1.354, 3.726] and ethnicity in comparison to the Malay as reference

group [Indian; AOR: 0.430, CI: 0.257, 0.720. Indigenous/Others; AOR: 2.498, CI: (1.346, 4.636).

Conclusions The majority of consultations occurring between doctors and patients are being informed by inaccurate cardiovascular risk estimation. Inaccuracy is mainly due to underestimation of patients' CVD risks by both patients and doctors.

Article summary

Strengths and limitations of this study

- This was a large cross-sectional study that took place in 9 different clinics and covered over a thousand patient consultations.
- It captured the perceptions and practice occurring in actual consultations in primary care settings where medical decisions were being made.
- Participants' behaviour may have been affected due to awareness of the research being undertaken

Background

Despite international efforts, cardiovascular disease (CVD) remains the leading cause of death worldwide, killing more than 17 million people a year.¹ Affordable, feasible and effective global actions capable of averting millions of deaths from non-communicable diseases have been identified to tackle this continuing crisis.² Yet, the rate of non-communicable diseases, of which CVD is a major contributor, is increasing and this increase is disproportionately greater in developing countries.³ Out of five interventions identified as priority actions for the non-communicable disease crisis,² only one addressed individual clinical services that is, access of essential drugs and technologies. This was deemed essential especially for those identified to be at high risk of CVD.

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

People at high risk of CVD can be identified using tools such as cardiovascular risk scores. These were designed to calculate an individual's risk of developing a cardiovascular (CV) event from risk factors obtained from history, physical examination or investigations. Most guidelines recommend the use of risk scores to predict global risk rather than focusing on single risk modification. The majority advocates the use of Framingham risk scores or scores that have been calibrated from the Framingham study data.⁴⁻⁶ A systematic review identified 21 risk scores for use in adults with no history of previous cardiovascular disease.⁷ However, the use of the risk score is surprisingly limited. Studies have reported rates of use ranging from 17-65%.⁸⁻¹⁰ Studies have shown that subjective estimation of cardiovascular risk by doctors is inaccurate.¹¹⁻¹⁶ They tended to underestimate risk when the study used actual patients ¹¹⁻¹⁶ and overestimate risk for case reports or vignettes¹²⁻¹⁵ Patients have also been found to be inaccurate in estimating their own CV risk.⁸ About 40% of the general population underestimates their CV risk and 20% overestimated it.^{11,17,18,19} In studies on those at established high CV risk, only about 40% were aware of their increased risk.²⁰ Higher CV risk perception has been shown to be associated with better acceptance towards medical management regardless of whether the perception accurately reflected actual CV risk or not.²¹

Accurate estimations of CV risk by both patients and doctors are important as these affect health behaviour and medical decision-making. The proliferations of mobile health technology including online risk calculators and guidelines have shown potential in increasing awareness and use of CV risk scores in clinical consultations.²² But has this led to a corresponding improvement in the use of CV risk scores in practice? Our study aimed to determine if doctors and patients were able to accurately estimate the absolute cardiovascular risk of patients in a primary care health setting.

Methodology

This was a cross sectional study carried out in nine public primary care clinics in Malaysia in 2014 with the period of recruitment from the 1st to the 30th November 2014. The nine clinics were chosen conveniently from five regions of Malaysia: two clinics each from the northern (Ipoh), southern (Melaka) and western regions (Klang Valley), and one clinic from the eastern region (Kelantan) of Peninsular Malaysia and two clinics from East Malaysia (Sabah). All patients attending these clinics aged 35 years and above with cardiovascular (CV) risks assessments done within the past year were included. Patients with known cardiovascular diseases (CVD) for example ischaemic heart disease and strokes were excluded.

Based on a study, which found that 40-52% of patients correctly estimated their CV risk, we used 50% to calculate the sample size, giving a total of 384 participants.¹⁷ After stratifying by regions, and taking into account a 30% non-responder rate, a sample size of 998 was needed. About 200 patients were recruited from each region.

A face to face interview was conducted using a structured questionnaire to collect patients' data on socio-demography, CV risk factors including age, gender andfamily history of CVD,. Patients were asked to rate their risk of having a heart attack or stroke within the next 10 years as being low, moderate or high. The doctors then filled in patients' data on smoking status in the last one month, history of diabetes and hypertension, lipid profile within the last one year, antihypertensive, statin and antiplatelet use, and estimated patients' CVD risk in the next 10 years as per usual practice namely low (<10%), moderate (10-20%) and high (>20%)Measurements were also taken for weight, height, waist circumference, and blood pressure using a validated digital blood pressure machine (OMRON HEM-7121). Doctors

were also asked to fill up a questionnaire on their socio-demography, years of practice, and the methods they used to estimate patients' CV risks, if any.

We used the D'Agostino 2008 Framingham General CVD Score (FRS) as the reference CVD risk.²² This has been validated for use in Malaysia without requiring adjustment for demographic variables such as ethnicity. ²³⁻²⁴() The 10-year CVD risk is classified into low (<10%), moderate (10-20%) and high (>20%) risk. In this study, high CVD risk group was defined as FRS >20% and/or presence of diabetes mellitus (DM). Estimations made by the patients and doctors were deemed to be correct when there was agreement with the Framingham score as calculated by the research team; underestimation occurred when estimations were low or moderate in those scored as high risk by the research team.

Analysis

Data were entered and analysed using Statistical Program for Social Sciences (SPSS) version 22.0 (SPSS Inc., 20). Complete-case analysis was used meaning those with missing values were excluded. Frequencies were reported using percentages and proportions. Associations between categorical data were tested using chi-square tests while continuous data were tested using independent T test and correlation test. Kappa value were calculated to determine the agreement between CV risks estimated by patient and actual risk, and CV risks estimated by doctors and actual risk. Univariate and multivariate binary logistic analyses were used, with underestimation of those at high risk as the outcome of interest.

Ethical approval

This study was registered in the National Medical Research Registry, Malaysia. (NMRR-13-962-17898) and approved by the Malaysian Research Ethics Committee. Potential

BMJ Open

participants were given verbal and written information regarding the study and informed consent was obtained from those who were recruited.

Results

Out of the 1107 patients approached, 7 refused to participate and 6 did not fulfil the inclusion criteria, giving a total of 1094 patients recruited. The mean age was 57.2 years (SD 9.8) with a range of 35 to 86 years. There were 62.6% females, 60.8% had diabetes and 76.9% had hypertension (Table 1). A total of 57 doctors participated in the study. The mean age of the doctors was 32.3 years (SD 5.5) with a mean duration of work experience of 6.5 years (SD 3.8). Women comprise 63.4% of the doctors.

Using the FRS score alone, 508 patients (46.4%) were in the high risk group. When diabetes was included, the number increased to 776 (70.9%). Of all the consultations, only 34.4% of patients and 55.7% of doctors correctly estimated the patient's CVD risk group.

Patients' estimation

Table 2 shows patients' estimation of their CV risks. Among patients in high CV risk group, only 112 (14.4%) correctly estimated their risks. The remaining 664 (85.6%) underestimated their CV risk. The correlation between patients' perceived CV risk and their actual risk was Kappa = -0.016. Factors associated with underestimation by patients included not having family history of CVD [AOR: 2.747, CI:(1.566, 4.818)], smaller waist circumference [AOR:0.980; (0.960, 0.999)] and ethnicity in comparison to the Malay as reference group. [Indigenous/Others; AOR:0.129 CI: (0.071, 0.235)]. (Table 3)

Doctors' estimation

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

Table 4 shows doctors' estimation of patients' CV risks. Among patients in high CV risk group, doctors correctly estimated 40.2% and underestimated 59.8%. The correlation between doctors' estimation of patient's CV risk versus patient's actual CV risk was Kappa = -0.084. Factors associated with underestimation of high CV risk by doctors were patients factors such as being female, [AOR:2.232;CI:1.460,3.410], younger age [AOR:0.908;CI:0.886,0.930], non-hypertensive [AOR:1.731;CI:1.067, 2.808], non-diabetic [AOR:1.931;CI: 1.114, 3.348], higher HDL levels [AOR:3.546;CI:2.025,6.209], , lower systolic BP [AOR:0.970;CI:0.957, 0.982], non-smoker [AOR:2.246;CI:1.354, 3.726] and ethnicity in comparison to the Malay as reference group [Indian; AOR: 0.430, CI: 0.257, 0.720. Indigenous/Others; AOR: 2.498, CI: (1.346, 4.636).]. (Table 5)

Table 6 summarises the methods used by doctors to estimate patients' CV risk. About half used online risk calculators while a quarter each used risk factor counting or manual calculation. Risk scores used included Framingham, QRISK and ACC-AHA risk scores.

Discussion

Our findings indicate that both patients and doctors were underestimating the patient's cardiovascular risk. Of those at high CV risk, only 1 in 7 patients could identify themselves as being at high risk. More worryingly, only 2 out of 5 doctors seeing these high CV risk patients could correctly identify them. This implies that medical decision-making during these consultations were poorly informed due to inaccurate CV risk estimation.

How can this occur with the easy availability of online risk calculators and guidelines recommending use of risk estimation? It is likely that risk estimation for CVD is still poorly understood. Many CVD risk scores recommended using baseline levels of risk factors for risk calculation prior to the initiation of medication. For some risk scores such as the ATP-III risk

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

calculator and the Pooled Cohort Risk score, diabetes is automatically taken as high CV risk without the need for calculation. However, new risk calculators such as QRISK and D'Agostino now consider the effect of treatment and incorporate variables such as present use of antihypertensive or lipid lowering agents into the calculation.^{25,26}Differences in the methods used by different risk scores and over time have led to misunderstandings, confusion and uncertainty by users.

A study that explored general practitioners' use of cardiovascular risk scores found that doctors had great uncertainty over the use of CVD scores in treated patients.²⁷ Use of patient's risk factor levels when patient is on treatment would lead to an under-estimation of the true CVD risk. Prolonged exposure to previous high levels and the presence of established chronic changes would mean that maximal reduction may take longer than 5 years and may never reach the level of a treatment naïve patient. However, doctors find it difficult to obtain pre-treatment levels and over-estimation would occur if the patient's risk factor had been controlled over a long period of time.

Shared medical decision-making through proper risk communication ensures patients and doctors are able to weigh the risk and benefits of treatment options. The underestimation of risk as seen in this study population is likely to have significant impact on their management. Overoptimism has also been noted in other studies which described the tendency for people to be unrealistically optimistic about future life events.²⁸ The research showed that subjects tended to be optimistic of their chances for negative events when the event is perceived to be controllable. This appears to mirror our finding where patients and doctors perceived the risk for CVD as being low because of the availability of treatment and behavioural lifestyle modification steps that can be taken. The mainstay of treatment of risk factors is to prevent

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

progression of disease. Yet, patients and doctors must understand that residual risk remains and that treatment should be continued for most despite normalisation of risk factor levels. This understanding is potentially jeopardised by optimism bias as adherence to medication and preventive behaviour have been shown to be associated with higher risk perception.²⁹⁻³¹

The findings also suggest that patients and doctors estimated risk by risk factor profile or risk factor counting as opposed to absolute risk calculation. It appears that there is good awareness of some of the risk factors for cardiovascular disease as risk perception was found to be associated with these factors namely age, gender, co-morbidities and smoking. However, focusing on individual risk factors or risk factor counting tends to underestimate risk in those who may have slightly elevated levels of multiple risk factors that synergistically increased the overall absolute CV risk.³² This is why most cardiovascular disease guidelines advocate the use of risk calculators to estimate individual risk.^{5, 6, 33-34}Patients appeared to be more aware of family history and having a higher waist circumference as conferring risk compared to other risk factors. Family history and obesity have been shown to be associated with increased self-perception of risk.¹² It is useful to identify factors that have greater meaning to patients. Otherwise, a mismatch between doctors' and patients' perception on the importance of particular risk factors can affect the communication of risk. The very low correlation between provider and patient estimates that we found in this study indicates that this mismatch is occurring.

Ethnicity also was found to be significantly associated with underestimation of risk. It is unclear as to why this should occur. This finding can be used to target those at greater risk of inaccurate estimations for intervention.

Strengths and limitations of the study
BMJ Open

This is a cross-sectional study that examined the risk perceptions of individual patients by both the patients and the doctors seeing these patients. The study design allowed us to capture the perceptions and practice occurring in actual consultations in primary care settings where decisions on institution of management for cardiovascular disease prevention and treatment are made. This study took place in 9 different clinics and covered over a thousand patient consultations.

It is possible that the doctors involved in this study may have been prompted to assess patients CV risk due to awareness of the research being undertaken as informed consent was obtained from all participants. However, we believe that this would only have prompted them to look up cardiovascular assessment. If knowledge of this study had introduced bias to the results, it would likely that the direction of the bias would be towards more accurate estimation of risk. Hence the rate of inaccurate risk estimation may actually be greater than was found.

This study used the validated Framingham risk score as the reference standard. Therefore, accuracy of estimations were based on agreement with the reference score and not to actual cardiovascular outcomes which would require a cohort study design. We included patients aged 75 and above although the Framingham risk score is recommended for those aged 30 to 74 years of age. This decision was taken as it reflects the actual patient population that is seen in primary care. However, we understand that the risk score is less accurate when used outside the recommended age ranges. There was no adjustment for cluster effect or multicollinearity.

Recommendations

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

In view of these findings, future studies should look at developing interventional strategies to implement formal CVD risk calculation into consultation and testing the strategies in actual consultations. Examples are system processes that incorporate risk calculators into electronic medical records or simple displays of risk charts on clinic desks.³² Accurate risk estimations should then be conveyed to patients to allow them to be fully informed when making decisions regarding their management in clinical practice.

Conclusion

The majority of consultations occurring between doctors and patients are being informed by inaccurate cardiovascular risk estimation. Inaccuracy is mainly due to underestimation of patients' CVD risks. Interventions are required to improve CVD risk estimation in order to inform shared decision-making in primary care consultations.

Acknowledgement

We would like to thank the DG of Health for approving the publication of this paper. We would also like to thank the director of CRC, MOH Dr Goh Pik Pin for providing the platform for this research. We would also like to thank Dr Zukry from Klinik Kesihatan Ketereh and all the clinics. The project was funded by the National Institute of Health, Malaysia. All authors declare no conflict of interests No additional data available.

Contributorship statement

SML- Liew Su May, WKL- Lee Wai Khew, EMK- Khoo Ee Ming, IZ- Irmi Zarina Ismail, SA- Subashini Ambigapathy, MO- Mimi Omar, SZ- Siti Zaleha Suleiman, JS- Juwita Saaban, NZ- Nurfarhana Zaidi, HY-Harmy Yussof

BMJ Open

<text> The study was conceived by SML, WKL, EMK, IZ and HY. SML, WKL, EMK, IZ, SA, MO,

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References:

1. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014 May;11(5):276-89

2. Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, et al. Priority actions for the non-communicable disease crisis. Lancet. 2011 Apr 23;377(9775):1438-47

3. Heneghan C, Blacklock C, Perera R, Davis R, Banerjee A, Gill P, Liew S, Chamas L, Hernandez J, Mahtani K, Hayward G. Evidence for non-communicable diseases: analysis of Cochrane reviews and randomised trials by World Bank classification. BMJ open. 2013 Jul 1;3(7):e003298.

4. National Institute for Health and Clinical Excellence. Change to lipid modification guideline CG67, 2010. Available at <u>http://www.nice.org.uk/newsroom/news/ChangeToLipidModificationGuidelineCG67.jsp</u>. Accessed August 15, 2011.

5. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003 Dec;42(6):1206-52

6. Tonkin A, Barter P, Best J, Boyden A, Furler J, Hossack K, et al. National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand: position statement on lipid management-2005. Heart Lung Circ. 2005 Dec;14(4):275-91

7. Liew SM, Doust J, Glasziou P. Cardiovascular risk scores do not account for the effect of treatment: a review. Heart. 2011 May;97(9):689-97

8. Webster R, Heeley E. Perceptions of risk: understanding cardiovascular disease. Risk Manag Healthc Policy. 2010;3:49-60

9. Sposito AC, Ramires JAF, Jukema JW, Molina JC, Silva PMd, Ghadanfar MM, et al. Physicians' attitudes and adherence to use of risk scores for primary prevention of cardiovascular disease: cross-sectional survey in three world regions. Curr Med Res Opin. 2009; 25(5):1171-1178.

10. Dallongeville J, Banegas JR, Tubach F, Guallar E, Borghi C, De Backer G, et al. Survey of physicians' practices in the control of cardiovascular risk factors: the EURIKA study. Eur J Cardiovasc Prev Rehabil. 2012; 19(3):541-550

11. Montgomery AA, Fahey T, MacKintosh C, Sharp DJ, Peters TJ. Estimation of cardiovascular risk in hypertensive patients in primary care. Br J Gen Pract. 2000; 50(451):127-128.

12. Heeley EL, Peiris DP, Patel AA, et al. Cardiovascular risk perception and evidence-practice gaps in Australian general practice (the AusHEART study). The Medical journal of Australia 2010;**192**(5):254-9

13. Friedmann PD, Brett AS, Mayo-Smith MF. Differences in generalists' and cardiologists' perceptions of cardiovascular risk and the outcomes of preventive therapy in cardiovascular disease. Annals of internal medicine 1996;**124**(4):414-

14. Pignone M, Phillips CJ, Elasy TA, et al. Physicians' ability to predict the risk of coronary heart disease. BMC Health Services Research 2003;**3**(1):13 doi: 10.1186/1472-6963-3-13[published Online First: Epub Date]|.

15. Grover SA, Lowensteyn I, Esrey KL, et al. Do doctors accurately assess coronary risk in their patients? Preliminary results of the coronary health assessment study. Bmj 1995;**310**(6985):975-8

16. McManus RJ, Mant J, Meulendijks CFM, et al. Comparison of estimates and calculations of risk of coronary heart disease by doctors and nurses using different calculation tools in general practice: cross sectional study. BMJ 2002;**324**(7335):459-64 doi: 10.1136/bmj.324.7335.459[published Online First: Epub Date]|.

17. Avis NE, Smith KW, McKinlay JB. Accuracy of perceptions of heart attack risk: what influences perceptions and can they be changed? Am J Public Health. 1989;79(12):1608–1612.

18. Marteau TM, Kinmonth AL, Pyke S, Thompson SG. Readiness for lifestyle advice: self-assessments of coronary risk prior to screening in the British family heart study. Family Heart Study Group. Br J Gen Pract. 1995;45(390):5–8

19. Niknian M, McKinlay SM, Rakowski W, Carleton RA. A comparison of perceived and objective CVD risk in a general population. Am J Public Health. 1989;79(12):1653–1654.

20. Samsa GP, Cohen SJ, Goldstein LB, Bonita AJ, Duncan PW, Enarson C, et al. Knowledge of risk among patients at increased risk for stroke. Stroke. 1997;28(5):916–921.

21. Bonner C, Jansen J, McKinn S, Irwig L, Doust J, Glasziou P, et al. How do general practitioners and patients make decisions about cardiovascular disease risk? Health Psychol. 2015 Mar;34(3):253-61. doi: 10.1037/hea0000122. Epub 2014 Aug 18

22. Neubeck L, Lowres N, Benjamin EJ, Freedman SB, Coorey G, Redfern J. The mobile revolution [mdash] using smartphone apps to prevent cardiovascular disease. Nature Reviews Cardiology. 2015 Jun 1;12(6):350-60.

23. Selvarajah S, Kaur G, Jamaiyah H, Kee CT, Tee GH, Van der Graaf Y, et al. Comparison of the Framingham Risk Score, SCORE and WHO/ISH cardiovascular risk prediction models in an Asian population. International Journal of Cardiology 176 (2014) 211–218.

24. YC, Gray Chia SYW, Ching SM, et al. Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population: a retrospective cohort study. BMJ Open 2015;5(5) doi: 10.1136/bmjopen-2014-007324

25. D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General Cardiovascular Risk Profile for Use in Primary Care The Framingham Heart Study.
26. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. Bmj. 2007 Jul 19;335(7611):136.

27. Liew SM, Blacklock C, Hislop J, Glasziou P, Mant D. Cardiovascular risk scores: qualitative study of how primary care practitioners understand and use them. Br J Gen Pract. 2013 Jun 1;63(611):e401-7.

28. Weinstein ND. Unrealistic optimism about future life events. Journal of personality and social psychology. 1980 Nov;39(5):806.

29. Corneli A, Wang M, Agot K, Ahmed K, Lombaard J, Van Damme L, et al. Perception of HIV risk and adherence to a daily, investigational pill for HIV prevention in FEM-PrEP. J Acquir Immune Defic Syndr. 2014 Dec15;67(5):555-63

30. Brewer NT, Chapman GB, Gibbons FX, Gerrard M, McCaul KD, Weinstein ND. Meta-analysis of the relationship between risk perception and health behavior: the example of vaccination. Health Psychol. 2007 Mar;26(2):136-45

31. Everett B, Salamonson Y, Rolley JX, Davidson PM. Underestimation of risk perception in patients at risk of heart disease. Eur J Cardiovasc Nurs. 2014 Oct 21

32. Cooney MT, Dudina AL, Graham IM. Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol. 2009; 54(14):1209-1227.]

33. Stone, N. J., Robinson, J. G., Lichtenstein, A. H., Bairey Merz, C. N., Blum, C. B., Eckel, R. H, et al. (2014). 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults. *Journal of the American College of Cardiology*, *63*(25), 2889-2934. doi:10.1016/j.jacc.2013.11.002

34. Mancia, G, Fagard, R, Narkiewicz, K, Redon, J, Zanchetti, A, Bohm, M, et al. (2013). 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). *Eur Heart J, 34*(28), 2159-2219. doi:10.1093/eurheartj/eht151

Demographi	ic data and profile	Frequency (%)
Mean Age ± SD (years) Mean income ± SD (RM)		57.23 ± 9.81
		1824.34 ± 2112.09
Mean body 1	mass index ± SD (kg/m ²)	28.02 ± 13.17
Gender	Female	685 (62.6)
Ethnicity	Malay	559 (51.1)
	Chinese	234 (21.4)
	Indian	161 (14.7)
	Indigenous	112 (10.2)
	Other	28 (2.6)
Smoker		185 (16.9)
Diabetes		665 (60.8)
Hypertensio)n	840 (76.8)
Family histo	ory of Stroke	165 (15.1)
Family histo	ory of Cardiovascular Disease	158 (14.4)

Table 1: Socio-demography and profile of the respondents

Table 2: Accurate estimation of high CV risk by patient, n= 1094

	Actual CV risk		
Patient's estimation		High (%)	Low/ moderate
	High	112 (14.4)	54 (17.0)
	Low/ Moderate	664 (85.6)	264(83.0)
	Low/ Moderate	664 (85.6)	264(83.0)

Table 3: Factors associated with underestimation of high cardiovascular disease risk by

patients

				95% Confidence	Interval
		Significance	Adjusted odds		
		value	ratio	Lower	Upper
SmoGe nderg	Age	0.550	1.009	0.981	1.037
	Gender	0.339	1.290	0.765	2.175
	Smoker	0.167	0.616	0.310	1.224
	Income	0.280	1.000	1.000	1.000
	Systolic BP	0.482	1.006	0.989	1.023
	Diastolic BP	0.194	0.982	0.955	1.009
	Waist Circumference	0.043	0.980	0.960	0.999
	Body Mass Index	0.230	0.981	0.952	1.012

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

1	
2 3 4	Total
5	Choleste
7 8	LDL
9 10	Choleste
11 12 12	HDL
13 14 15	Choleste
16 17	Ethnicit
18 19 20	
20 21 22	Malay
23 24	Chines
25 26	Indian
27 28	Indigi
29 30 31	Hyperte
32 33	Yes
34 35	No
36 37	Diabetes
30 39 40	Yes
41 42	No
43 44	Anti-pla
45 46	use
47 48 49	Yes
50 51	No
52 53	Statin us
54 55	Yes
56 57 58	No
59 60	li

Total	0.211	0.770	0.512	1.160
Cholesterol				
LDL	0 154	1 364	0.890	2 090
Cholesterol	0.101	1.501	0.090	2.090
HDL	0.252	1 484	0.755	2 917
Cholesterol	0.232	1.101	0.755	2.717
Ethnicity	_			
Malay				
Chinese	0.430	1.335	0.651	2.738
Indian	0.533	1.252	0.671	2.539
Indigineous	0.000	0.129	0.071	0.235
Hypertension				
Yes	-			
No	0.370	1.335	0.709	2.514
Diabetes				
Yes	-			
No	0.596	1.230	0.572	2.644
Anti-platelet				
use	-			
Yes	0.523	1 196	0 702	2 000
No		1.180	0.705	2.000
Statin use				
Yes	-			
No	0.739	0.905	0.504	1.626

Family History				
with Stroke	_			
Yes				
	0.198	1.494	0.811	2.753
No				
Family History				
with CVD				
Yes	-			
No	0.001	2.705	1.538	4.757
	_			

BMJ Open

	Patient's Actual	risk	
Doctors estimation		High (%)	Low/ moderate
	High	310 (40.2)	20 (6.3)
	Low/ Moderate	462 (59.8)	297 (93.7)

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
25
30
30
37
38
39
40
41
42
43
11
44 15
40
46
47
48
49
50
51
52
53
50
54
55
56
57
58
59
60

Table 5: Factors associated with doctor's underestimation of patients' actual risk

	Significance	Adjusted odds	95% Confide	nce Interval
	value	ratio	Lower	Upper
DOCTORS' FACTORS				
Age	0.771	0.988	0.911	1.071
Experience	0.055	1.120	0.998	1.257
Gender				
Male	-			
Female	0.096	1.416	0.940	2.131
PATIENTS' FACTORS				
Age	0.000	0.908	0.886	0.930
Income	0.052	1.000	1.000	1.000
Waist Circumference	0.902	1.001	0.985	1.017
Body Mass Index	0.530	0.994	0.975	1.013
Systolic BP	0.000	0.970	0.957	0.982
Diastolic BP	0.121	1.017	0.996	1.038
Total Cholesterol	0.471	0.899	0.672	1.202
HDL Cholesterol	0.000	3.546	2.025	6.209
LDL Cholesterol	0.059	0.747	0.552	1.012
Gender				
Male	-			
Female	0.000	2.232	1.460	3.410

Ethnic				
-	-			
Malay				
Chinese	0.727	0.916	0.560	1.499
Indian	0.001	0.430	0.257	0.720
Indigenous/Others	0.004	2.498	1.346	4.636
Smoker				
Yes	-			
No	0.002	2.246	1.354	3.726
Hypertension				
Yes	-			
No	0.026	1.731	1.067	2.808
Diabetes				
Yes	-			
No	0.019	1.931	1.114	3.348
Family History with CVD				
Yes	-			
No	0.513	0.841	0.500	1.414
Family History with				
Stroke				
Yes	-	1.001	0.652	1.025
No	0.740	1.091	0.652	1.825
Anti-platelet use				
Yes	-			
No	0.385	1.192	0.802	1.772

Statin use	Γ			[
Statin use				
Yes	-			
No	0.696	0.913	0.580	1.439

Table 6: Methods used by the doctors to estimate CV risk

Methods of CV calculation	n	%
Risk factor counting	244	22.3
Paper/ chart based	250	22.9
Online risk calculator	544	50.1
None	51	4.7

Ite	m Recommendation	Page	Checklist
no		numbers	
Title and abstract	(a)Indicate the study's design with a commonly used term in the title of abstract	1	~
	(b)Provide in the abstract an informative and balanced summary of what was done and what was found	2-3	√
Introductio	n		
Background/rationale 2	Explain the scientific background and rationale for	3-4	 ✓
	the investigation being reported	5.	
Objectives 3	State specific objectives, including any prespecified	4	✓
	hypotheses		
Methods			
Study design 4	Present key elements of study design early in the	5	✓
<i>y e</i>	paper		
Setting 5	Describe the setting, locations, and relevant dates,	5	✓
J. J	including periods of recruitment, exposure, follow-		
	up, and data collection		
Participants 6	Cross-sectional study—Give the eligibility criteria,	5	✓
	and the sources and methods of selection of		
	participants		
Variables 7	Clearly define all outcomes, exposures, predictors,	5-6	\checkmark
	potential confounders, and effect modifiers. Give		
	diagnostic criteria, if applicable		
Data sources/ 8	For each variable of interest, give sources of data	5-6	\checkmark
measurement	and details of methods of assessment		
	(measurement). Describe comparability of		
	assessment methods if there		
D: 0	1s more than one group	5.6	
Bias 9	Describe any efforts to address potential sources of	5-6	v
Study, size 10	Dias	5	
Study Size 10 Operatitative veriables 11	Explain now the study size was arrived at	5	• •
Quantitative variables 11	Explain now quantitative variables were handled in the analyses If applicable describe which	0	v
	arounings were chosen and why		
Statistical methods 12	(a) Describe all statistical methods, including those	6	
Statistical methods 12	used to control for confounding	0	,
	(b) Describe any methods used to examine	6	✓
	subgroups and interactions	Ũ	
	(c) Explain how missing data were addressed	6	✓
	(d) Cross-sectional study—If applicable describe	6	✓
	analytical methods taking account of sampling	Ũ	
	strategy		
	(e) Describe any sensitivity analyses	NA	
Results		1	1
Participants 13	(a) Report numbers of individuals at each stage of	6	✓
1	study—eg: numbers potentially		
	eligible, examined for eligibility, confirmed		
	eligible, included in the study.		

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

1
2
3
Δ
-
5
6
7
8
0
9
10
11
12
13
10
14
15
16
17
10
10
19
20
21
22
22
23 0.1
24
25
26
27
21
28
29
30
31
20
32
33
34
35
36
30
37
38
39
40
41
42
43
44
15
40
46
47
48
49
50
50
51
52
53
51
54
55
56
57
58
50
59
60

		completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	6	✓
		(c) Consider use of a flow diagram	NA	
Descriptive data	14	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6	√
Outcome data	15	Report numbers of outcome events or summary measures	7	~
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7	✓
	0	(b) Report category boundaries when continuous variables were categorized	7	~
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7	√
Discus	sion			
Key results	18	Summarise key results with reference to study objectives	8	✓
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	10	✓
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	8-9	√
Generalisability	21	Discuss the generalisability (external validity) of the study results	8-9	~
Other	informa	ntion ()		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11	√

BMJ Open

Can doctors and patients correctly estimate cardiovascular risk? A cross sectional study in primary care

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-017711.R2
Article Type:	Research
Date Submitted by the Author:	03-Oct-2017
Complete List of Authors:	Liew, Su May; University of Malaya, Department of Primary Care Medicine, Faculty of Medicine Liew, Su-May; University of Malaya, Primary Care Medicine Lee, Wai Khew; Luyang Health Clinic Khoo, Ee Ming; University of Malaya, Department of Primary Care Medicine, Faculty of Medicine, Ismail, Irmi Zarina; University Putra Malaysia, Department of Family Medicine, Faculty of Medicine and Health Sciences Ambigapathy, Subashini ; Family Health Development Division, Ministry of Health Malaysia Omar, Mimi; Family Health Development Division, Ministry of Health Malaysia Suleiman, Siti Zaleha; Family Health Development Division, Ministry of Health Malaysia Saaban, Juwita ; University of Science Malaysia, Department of Family Medicine, School of Medical Sciences Mohd Zaidi, Nur Farhana; University of Malaya, Department of Primary Care Medicine, Faculty of Medicine Yusoff, Harmy; Universiti Sultan Zainal Abidin
Primary Subject Heading :	General practice / Family practice
Secondary Subject Heading:	Epidemiology, Cardiovascular medicine, Communication, Patient-centred medicine
Keywords:	cardiovascular risk assessment, communication, shared decision making, consultation, family medicine

SCHOLARONE[™] Manuscripts

BMJ Open

Can doctors and patients correctly estimate cardiovascular risk? A cross sectional study in primary care

Su May Liew¹, Wai Khew Lee², Ee Ming Khoo¹, Irmi Zarina³, Subashini Ambigapathy⁴, Mimi Omar⁴, Siti Zaleha Suleiman⁴, Juwita Saaban⁵, Nurfarhana Mohd Zaidi¹, Harmy Yusoff⁶

Author affiliations

¹Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

²Luyang Health Clinic, Ministry of Health Malaysia, Kota Kinabalu, Malaysia.

³Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.

⁴Family Health Development Division, Ministry of Health Malaysia, Putrajaya, Malaysia.

⁵Department of Family Medicine, School of Medical Sciences, University of Science Malaysia, Kubang Kerian, Malaysia.

⁶Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia

Correspondence to

Associate Prof Dr. Liew Su May, Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Jalan Lembah Pantai, 50603 Kuala Lumpur, Malaysia; <u>su_mayliew@um.edu.my</u>; Tel: +603-79492626

Keywords: Cardiac risk assessment, communication, shared decision making, consultation, family medicine

Word count 2016 words

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

Abstract

Objective Accurate cardiovascular risk estimations by patients and doctors are important as these affect health behaviour and medical decision-making. We aimed to determine if doctors and patients were accurately estimating the absolute cardiovascular risk of patients in primary care.

Methods A cross-sectional study was carried out in primary care clinics in Malaysia in 2014. Patients aged 35 years and above without known cardiovascular diseases were included. Face-to-face interviews with a structured questionnaire were used to collect sociodemographic and clinical data as well as patients' perception and doctors' estimate of the patients' cardiovascular disease (CVD) risk. Associations were tested using chi-square, correlation and independent T tests.

Results We recruited 1094 patients and 57 doctors. Using the Framingham Risk Score (FRS) score alone, 508 patients (46.4%) were in the high-risk group. When diabetes was included as high-risk, the number increased to 776 (70.9%). Only 34.4% of patients and 55.7% of doctors correctly estimated the patient's CVD risk in comparison to the reference FRS score.

Of the high-risk patients, 664 (85.6%) underestimated their CV risk. Factors associated with underestimation by patients included not having family history of CVD [AOR: 2.705, CI:(1.538, 4.757)], smaller waist circumference [AOR:0.979,(0.960, 0.999)] and ethnicity in comparison to the Malay as reference group [Indigenous/Others; AOR:0.129 CI: (0.071, 0.235)] Doctors underestimated risk in 59.8% of the high-risk group. Factors associated with underestimation doctors by were patients factors such as being female, [AOR:2.232;CI:1.460,3.410], younger age [AOR:0.908;CI:0.886,0.930], non-hypertensive [AOR:1.731;CI:1.067, 2.808], non-diabetic [AOR:1.931;CI: 1.114, 3.348], higher HDL levels [AOR:3.546;CI:2.025,6.209], lower systolic BP [AOR:0.970;CI:0.957, 0.982], nonsmoker [AOR:2.246;CI:1.354, 3.726] and ethnicity in comparison to the Malay as reference

group [Indian; AOR: 0.430, CI: 0.257, 0.720. Indigenous/Others; AOR: 2.498, CI: (1.346, 4.636).

Conclusions The majority of consultations occurring between doctors and patients are being informed by inaccurate cardiovascular risk estimation.

Article summary

Strengths and limitations of this study

- This was a large cross-sectional study that took place in 9 different clinics and covered over a thousand patient consultations.
- It captured the perceptions and practice occurring in actual consultations in primary care settings where medical decisions were being made.
- Participants' behaviour may have been affected due to awareness of the research being undertaken

Background

Despite international efforts, cardiovascular disease (CVD) remains the leading cause of death worldwide, killing more than 17 million people a year.¹ Affordable, feasible and effective global actions capable of averting millions of deaths from non-communicable diseases have been identified to tackle this continuing crisis.² Yet, the rate of non-communicable diseases, of which CVD is a major contributor, is increasing and this increase is disproportionately greater in developing countries.³ Out of five interventions identified as priority actions for the non-communicable disease crisis,² only one addressed individual clinical services that is, access of essential drugs and technologies. This was deemed essential especially for those identified to be at high risk of CVD.

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

People at high risk of CVD can be identified using tools such as cardiovascular risk scores. These were designed to calculate an individual's risk of developing a cardiovascular (CV) event from risk factors obtained from history, physical examination or investigations. Most guidelines recommend the use of risk scores to predict global risk rather than focusing on single risk modification. The majority advocates the use of Framingham risk scores or scores that have been calibrated from the Framingham study data.⁴⁻⁶ A systematic review identified 21 risk scores for use in adults with no history of previous cardiovascular disease.⁷ However, the use of the risk score is surprisingly limited. Studies have reported rates of use ranging from 17-65%.⁸⁻¹⁰ Studies have shown that subjective estimation of cardiovascular risk by doctors is inaccurate.¹¹⁻¹⁶ They tended to underestimate risk when the study used actual patients ¹¹⁻¹⁶ and overestimate risk for case reports or vignettes¹²⁻¹⁵ Patients have also been found to be inaccurate in estimating their own CV risk.⁸ About 40% of the general population underestimates their CV risk and 20% overestimated it.^{11,17,18,19} In studies on those at established high CV risk, only about 40% were aware of their increased risk.²⁰ Higher CV risk perception has been shown to be associated with better acceptance towards medical management regardless of whether the perception accurately reflected actual CV risk or not.²¹

Accurate estimations of CV risk by both patients and doctors are important as these affect health behaviour and medical decision-making. The proliferations of mobile health technology including online risk calculators and guidelines have shown potential in increasing awareness and use of CV risk scores in clinical consultations.²² But has this led to a corresponding improvement in the use of CV risk scores in practice? Our study aimed to determine if doctors and patients were able to accurately estimate the absolute cardiovascular risk of patients in a primary care health setting.

Methodology

This was a cross sectional study carried out in nine public primary care clinics in Malaysia in 2014 with the period of recruitment from the 1st to the 30th November 2014. The nine clinics were chosen conveniently from five regions of Malaysia: two clinics each from the northern (Ipoh), southern (Melaka) and western regions (Klang Valley), and one clinic from the eastern region (Kelantan) of Peninsular Malaysia and two clinics from East Malaysia (Sabah). All patients attending these clinics aged 35 years and above with cardiovascular (CV) risks assessments done within the past year were included. Patients with known cardiovascular diseases (CVD) for example ischaemic heart disease and strokes were excluded.

Based on a study, which found that 40-52% of patients correctly estimated their CV risk, we used 50% to calculate the sample size, giving a total of 384 participants.¹⁷ After stratifying by regions, and taking into account a 30% non-responder rate, a sample size of 998 was needed. About 200 patients were recruited from each region.

A face to face interview was conducted using a structured questionnaire to collect patients' data on socio-demography, CV risk factors including age, gender and family history of CVD,. Patients were asked to rate their risk of having a heart attack or stroke within the next 10 years as being low, moderate or high. The doctors then filled in patients' data on smoking status in the last one month, history of diabetes and hypertension, lipid profile within the last one year, antihypertensive, statin and antiplatelet use, and estimated patients' CVD risk in the next 10 years as per usual practice namely low (<10%), moderate (10-20%) and high (>20%). Measurements were also taken for weight, height, waist circumference, and blood pressure using a validated digital blood pressure machine (OMRON HEM-7121). Doctors were also

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

asked to fill up a questionnaire on their socio-demography, years of practice, and the methods they used to estimate patients' CV risks, if any.

We used the D'Agostino 2008 Framingham General CVD Score (FRS) as the reference CVD risk.²² This has been validated for use in Malaysia without requiring adjustment for demographic variables such as ethnicity. ²³⁻²⁴ The 10-year CVD risk is classified into low (<10%), moderate (10-20%) and high (>20%) risk. In this study, high CVD risk group was defined as FRS >20% and/or presence of diabetes mellitus (DM). Estimations made by the patients and doctors were deemed to be correct when there was agreement with the Framingham score as calculated by the research team; underestimation occurred when estimations were low or moderate in those scored as high risk by the research team.

Analysis

Data were entered and analysed using Statistical Program for Social Sciences (SPSS) version 22.0 (SPSS Inc., 20). Complete-case analysis was used meaning those with missing values were excluded. Frequencies were reported using percentages and proportions. Associations between categorical data were tested using chi-square tests while continuous data were tested using independent T test and correlation test. Kappa value was calculated to determine the agreement between CV risks estimated by patient and actual risk, and CV risks estimated by doctors and actual risk. Univariate and multivariate binary logistic analyses were used, with underestimation of those at high risk as the outcome of interest. The intracluster correlation coefficient (ICC) was calculated to determine the homogeneity of the clusters. Values of ICC that are close to 0 indicate that the design effect is 1 and that the clusters are homogenous.²⁵ The correlation estimates and the variant inflation factors (VIF) were used to determine multicollinearity among the explanatory variables.

BMJ Open

Ethical approval

This study was registered in the National Medical Research Registry, Malaysia. (NMRR-13-962-17898) and approved by the Malaysian Research Ethics Committee. Potential participants were given verbal and written information regarding the study and informed consent was obtained from those who were recruited.

Results

Out of the 1107 patients approached, 7 refused to participate and 6 did not fulfil the inclusion criteria, giving a total of 1094 patients recruited. The mean age was 57.2 years (SD 9.8) with a range of 35 to 86 years. There were 62.6% females, 60.8% had diabetes and 76.9% had hypertension (Table 1). A total of 57 doctors participated in the study. The mean age of the doctors was 32.3 years (SD 5.5) with a mean duration of work experience of 6.5 years (SD 3.8). Women comprise 63.4% of the doctors.

Using the FRS score alone, 508 patients (46.4%) were in the high risk group. When diabetes was included, the number increased to 776 (70.9%). Of all the consultations, only 34.4% of patients and 55.7% of doctors correctly estimated the patient's CVD risk group.

The ICC values calculated for all the variables were small, ranging from 0.001 to 0.086, indicating that the clusters are homogenous. The highest correlation between the variables is < 0.85 (the highest being 0.780) while the highest variance Inflation Factor (VIF) is < 5. Hence, there is no multicollinearity within the variables.

Patients' estimation

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

Table 2 shows patients' estimation of their CV risks. Among patients in high CV risk group, only 112 (14.4%) correctly estimated their risks. The remaining 664 (85.6%) underestimated their CV risk. The correlation between patients' perceived CV risk and their actual risk was Kappa = -0.016. Factors associated with underestimation by patients included not having family history of CVD [AOR: 2.747, CI:1.566, 4.818], smaller waist circumference [AOR:0.980; CI: 0.960, 0.999] and ethnicity in comparison to the Malay as reference group. [Indigenous/Others; AOR:0.129 CI: 0.071, 0.235]. (Table 3)

Doctors' estimation

Table 4 shows doctors' estimation of patients' CV risks. Among patients in high CV risk group, doctors correctly estimated 40.2% and underestimated 59.8%. The correlation between doctors' estimation of patient's CV risk versus patient's actual CV risk was Kappa = -0.084. Factors associated with underestimation of high CV risk by doctors were patients factors such as being female, [AOR:2.232; CI:1.460,3.410], younger age [AOR:0.908; CI:0.886,0.930], non-hypertensive [AOR:1.731; CI:1.067, 2.808], non-diabetic [AOR:1.931; CI:1.114, 3.348], higher HDL levels [AOR:3.546; CI:2.025,6.209], lower systolic BP [AOR:0.970; CI:0.957, 0.982], non-smoker [AOR:2.246; CI:1.354, 3.726] and ethnicity in comparison to the Malay as reference group [Indian; AOR: 0.430, CI: 0.257, 0.720. Indigenous/Others; AOR: 2.498, CI: (1.346, 4.636).]. (Table 5)

Table 6 summarises the methods used by doctors to estimate patients' CV risk. About half used online risk calculators while a quarter each used risk factor counting or manual calculation. Risk scores used included Framingham, QRISK and ACC-AHA risk scores.

Discussion

Our findings indicate that both patients and doctors were underestimating the patient's cardiovascular risk. Of those at high CV risk, only 1 in 7 patients could identify themselves as being at high risk. More worryingly, only 2 out of 5 doctors seeing these high CV risk patients could correctly identify them. This implies that medical decision-making during these consultations were poorly informed due to inaccurate CV risk estimation.

How can this occur with the easy availability of online risk calculators and guidelines recommending use of risk estimation? It is likely that risk estimation for CVD is still poorly understood. Many CVD risk scores recommended using baseline levels of risk factors for risk calculation prior to the initiation of medication. For some risk scores such as the ATP-III risk calculator and the Pooled Cohort Risk score, diabetes is automatically taken as high CV risk without the need for calculation. However, new risk calculators such as QRISK and D'Agostino now consider the effect of treatment and incorporate variables such as present use of antihypertensive or lipid lowering agents into the calculation.^{26,27.} Differences in the methods used by different risk scores and over time have led to misunderstandings, confusion and uncertainty by users.

A study that explored general practitioners' use of cardiovascular risk scores found that doctors had great uncertainty over the use of CVD scores in treated patients.²⁸ Use of patient's risk factor levels when patient is on treatment would lead to an under-estimation of the true CVD risk. Prolonged exposure to previous high levels and the presence of established chronic changes would mean that maximal reduction may take longer than 5 years and may never reach the level of a treatment naïve patient. However, doctors find it difficult to obtain pre-treatment levels and over-estimation would occur if the patient's risk factor had been controlled over a long period of time.

Shared medical decision-making through proper risk communication ensures patients and doctors are able to weigh the risk and benefits of treatment options. The underestimation of risk as seen in this study population is likely to have significant impact on their management. Over-optimism has also been noted in other studies which described the tendency for people to be unrealistically optimistic about future life events.²⁹ The research showed that subjects tended to be optimistic of their chances for negative events when the event is perceived to be controllable. This appears to mirror our finding where patients and doctors perceived the risk for CVD as being low because of the availability of treatment and behavioural lifestyle modification steps that can be taken. The mainstay of treatment of risk factors is to prevent progression of disease. Yet, patients and doctors must understand that residual risk remains and that treatment should be continued for most despite normalisation of risk factor levels. This understanding is potentially jeopardised by optimism bias as adherence to medication and preventive behaviour have been shown to be associated with higher risk perception.³⁰⁻³² The findings also suggest that patients and doctors estimated risk by risk factor profile or risk

factor counting as opposed to absolute risk calculation. It appears that there is good awareness of some of the risk factors for cardiovascular disease as risk perception was found to be associated with these factors namely age, gender, co-morbidities and smoking. However, focusing on individual risk factors or risk factor counting tends to underestimate risk in those who may have slightly elevated levels of multiple risk factors that synergistically increased the overall absolute CV risk.³³ This is why most cardiovascular disease guidelines advocate the use of risk calculators to estimate individual risk.^{5, 6, 34-35} Patients appeared to be more aware of family history and having a higher waist circumference as conferring risk compared to other risk factors. Family history and obesity have been shown to be associated with increased self-perception of risk.¹² It is useful to identify factors that have greater meaning to

BMJ Open

patients. Otherwise, a mismatch between doctors' and patients' perception on the importance of particular risk factors can affect the communication of risk. The very low correlation between provider and patient estimates that we found in this study indicates that this mismatch is occurring.

Ethnicity also was found to be significantly associated with underestimation of risk. The AOR for underestimation of risk by doctors for patients of Indian ethnicity was 0.430, CI: 0.257, 0.720 compared to the reference group (Malay patients). This indicates that in comparison to the Malay patients, underestimation of risk by doctors was less in patients of Indian ethnicity. It is possible that this is linked to training that those of South Asian ethnicity are at higher CVD risk. ³⁶ This finding can be used to target those at greater risk of inaccurate estimations for intervention.

Strengths and limitations of the study

This is a cross-sectional study that examined the risk perceptions of individual patients by both the patients and the doctors seeing these patients. The study design allowed us to capture the perceptions and practice occurring in actual consultations in primary care settings where decisions on institution of management for cardiovascular disease prevention and treatment are made. This study took place in 9 different clinics and covered over a thousand patient consultations.

It is possible that the doctors involved in this study may have been prompted to assess patients' CV risk due to awareness of the research being undertaken as informed consent was obtained from all participants. However, we believe that this would only have prompted them to look up cardiovascular assessment. If knowledge of this study had introduced bias to the

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright

results, it would likely that the direction of the bias would be towards more accurate estimation of risk. Hence the rate of inaccurate risk estimation may actually be greater than was found.

This study used the validated Framingham risk score as the reference standard. Therefore, accuracy of estimations was based on agreement with the reference score and not to actual cardiovascular outcomes which would require a cohort study design. We included patients aged 75 and above although the Framingham risk score is recommended for those aged 30 to 74 years of age. This decision was taken as it reflects the actual patient population that is seen in primary care. However, we understand that the risk score is less accurate when used outside the recommended age ranges.

Recommendations

In view of these findings, future studies should look at developing interventional strategies to implement formal CVD risk calculation into consultation and testing the strategies in actual consultations. Examples are system processes that incorporate risk calculators into electronic medical records or simple displays of risk charts on clinic desks.³² Accurate risk estimations should then be conveyed to patients to allow them to be fully informed when making decisions regarding their management in clinical practice.

Conclusion

The majority of consultations occurring between doctors and patients are being informed by inaccurate cardiovascular risk estimation. Inaccuracy is mainly due to underestimation of patients' CVD risks. Interventions are required to improve CVD risk estimation in order to inform shared decision-making in primary care consultations.

Acknowledgement

We would like to thank the DG of Health for approving the publication of this paper. We would also like to thank the director of CRC, MOH Dr Goh Pik Pin for providing the platform for this research. We would also like to thank Dr Zukry from Klinik Kesihatan Ketereh and all the clinics. The project was funded by the National Institute of Health, Malaysia. All authors declare no conflict of interests No additional data available.

Contributorship statement

SML- Liew Su May, WKL- Lee Wai Khew, EMK- Khoo Ee Ming, IZ- Irmi Zarina Ismail, SA- Subashini Ambigapathy, MO- Mimi Omar, SZ- Siti Zaleha Suleiman, JS- Juwita Saaban, NZ- Nurfarhana Zaidi, HY-Harmy Yussof

The study was conceived by SML, WKL, EMK, IZ and HY. SML, WKL, EMK, IZ, SA, MO, SZ, JS and HY contributed to the planning and data analysis of the study. WKL, IZ, SA, MO, SZ, and JS assisted with data collection. NZ assisted with data analysis of the study. SML drafted the manuscript and the final version was revised and approved by SML, WKL, EMK, IZ, SA, MO, SZ, JS, NZ and HY.

References:

1. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014 May;11(5):276-89

2. Beaglehole R, Bonita R, Horton R, Adams C, Alleyne G, Asaria P, et al. Priority actions for the non-communicable disease crisis. Lancet. 2011 Apr 23;377(9775):1438-47

3. Heneghan C, Blacklock C, Perera R, Davis R, Banerjee A, Gill P, Liew S, Chamas L, Hernandez J, Mahtani K, Hayward G. Evidence for non-communicable diseases: analysis of Cochrane reviews and randomised trials by World Bank classification. BMJ open. 2013 Jul 1;3(7):e003298.

4. National Institute for Health and Clinical Excellence. Change to lipid modification guideline CG67, 2010. Available at <u>http://www.nice.org.uk/newsroom/news/ChangeToLipidModificationGuidelineCG67.jsp</u>. Accessed August 15, 2011.

5. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003 Dec;42(6):1206-52

6. Tonkin A, Barter P, Best J, Boyden A, Furler J, Hossack K, et al. National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand: position statement on lipid management-2005. Heart Lung Circ. 2005 Dec;14(4):275-91

7. Liew SM, Doust J, Glasziou P. Cardiovascular risk scores do not account for the effect of treatment: a review. Heart. 2011 May;97(9):689-97

8. Webster R, Heeley E. Perceptions of risk: understanding cardiovascular disease. Risk Manag Healthc Policy. 2010;3:49-60

9. Sposito AC, Ramires JAF, Jukema JW, Molina JC, Silva PMd, Ghadanfar MM, et al. Physicians' attitudes and adherence to use of risk scores for primary prevention of cardiovascular disease: cross-sectional survey in three world regions. Curr Med Res Opin. 2009; 25(5):1171-1178.

10. Dallongeville J, Banegas JR, Tubach F, Guallar E, Borghi C, De Backer G, et al. Survey of physicians' practices in the control of cardiovascular risk factors: the EURIKA study. Eur J Cardiovasc Prev Rehabil. 2012; 19(3):541-550

11. Montgomery AA, Fahey T, MacKintosh C, Sharp DJ, Peters TJ. Estimation of cardiovascular risk in hypertensive patients in primary care. Br J Gen Pract. 2000; 50(451):127-128.

12. Heeley EL, Peiris DP, Patel AA, et al. Cardiovascular risk perception and evidence-practice gaps in Australian general practice (the AusHEART study). The Medical journal of Australia 2010;**192**(5):254-9

13. Friedmann PD, Brett AS, Mayo-Smith MF. Differences in generalists' and cardiologists' perceptions of cardiovascular risk and the outcomes of preventive therapy in cardiovascular disease. Annals of internal medicine 1996;**124**(4):414-

14. Pignone M, Phillips CJ, Elasy TA, et al. Physicians' ability to predict the risk of coronary heart disease. BMC Health Services Research 2003;**3**(1):13 doi: 10.1186/1472-6963-3-13[published Online First: Epub Date]|.

15. Grover SA, Lowensteyn I, Esrey KL, et al. Do doctors accurately assess coronary risk in their patients? Preliminary results of the coronary health assessment study. Bmj 1995;**310**(6985):975-8

16. McManus RJ, Mant J, Meulendijks CFM, et al. Comparison of estimates and calculations of risk of coronary heart disease by doctors and nurses using different calculation tools in general practice: cross sectional study. BMJ 2002;**324**(7335):459-64 doi: 10.1136/bmj.324.7335.459[published Online First: Epub Date]|.

17. Avis NE, Smith KW, McKinlay JB. Accuracy of perceptions of heart attack risk: what influences perceptions and can they be changed? Am J Public Health. 1989;79(12):1608–1612.

18. Marteau TM, Kinmonth AL, Pyke S, Thompson SG. Readiness for lifestyle advice: self-assessments of coronary risk prior to screening in the British family heart study. Family Heart Study Group. Br J Gen Pract. 1995;45(390):5–8

19. Niknian M, McKinlay SM, Rakowski W, Carleton RA. A comparison of perceived and objective CVD risk in a general population. Am J Public Health. 1989;79(12):1653–1654.

20. Samsa GP, Cohen SJ, Goldstein LB, Bonita AJ, Duncan PW, Enarson C, et al. Knowledge of risk among patients at increased risk for stroke. Stroke. 1997;28(5):916–921.

21. Bonner C, Jansen J, McKinn S, Irwig L, Doust J, Glasziou P, et al. How do general practitioners and patients make decisions about cardiovascular disease risk? Health Psychol. 2015 Mar;34(3):253-61. doi: 10.1037/hea0000122. Epub 2014 Aug 18

22. Neubeck L, Lowres N, Benjamin EJ, Freedman SB, Coorey G, Redfern J. The mobile revolution [mdash] using smartphone apps to prevent cardiovascular disease. Nature Reviews Cardiology. 2015 Jun 1;12(6):350-60.

23. Selvarajah S, Kaur G, Jamaiyah H, Kee CT, Tee GH, Van der Graaf Y, et al. Comparison of the Framingham Risk Score, SCORE and WHO/ISH cardiovascular risk prediction models in an Asian population. International Journal of Cardiology 176 (2014) 211–218.

24. YC, Gray Chia SYW, Ching SM, et al. Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population: a retrospective cohort study. BMJ Open 2015;5(5) doi: 10.1136/bmjopen-2014-007324

25. Killip S, Mahfoud Z, Pearce K. What is an intracluster correlation coefficient? Crucial concepts for primary care researchers. Ann Fam Med. 2004 May-Jun;2(3):204-8.

26. D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General Cardiovascular Risk Profile for Use in Primary Care The Framingham Heart Study. 27. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. Bmj. 2007 Jul 19;335(7611):136.

28. Liew SM, Blacklock C, Hislop J, Glasziou P, Mant D. Cardiovascular risk scores: qualitative study of how primary care practitioners understand and use them. Br J Gen Pract. 2013 Jun 1;63(611):e401-7.

29. Weinstein ND. Unrealistic optimism about future life events. Journal of personality and social psychology. 1980 Nov;39(5):806.

30. Corneli A, Wang M, Agot K, Ahmed K, Lombaard J, Van Damme L, et al. Perception of HIV risk and adherence to a daily, investigational pill for HIV prevention in FEM-PrEP. J Acquir Immune Defic Syndr. 2014 Dec15;67(5):555-63

31. Brewer NT, Chapman GB, Gibbons FX, Gerrard M, McCaul KD, Weinstein ND. Meta-analysis of the relationship between risk perception and health behavior: the example of vaccination. Health Psychol. 2007 Mar;26(2):136-45

32. Everett B, Salamonson Y, Rolley JX, Davidson PM. Underestimation of risk perception in patients at risk of heart disease. Eur J Cardiovasc Nurs. 2014 Oct 21

33. Cooney MT, Dudina AL, Graham IM. Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol. 2009; 54(14):1209-1227.]

34. Stone, N. J., Robinson, J. G., Lichtenstein, A. H., Bairey Merz, C. N., Blum, C. B., Eckel, R. H, et al. (2014). 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults. *Journal of the American College of Cardiology*, *63*(25), 2889-2934. doi:10.1016/j.jacc.2013.11.002

35. Mancia, G, Fagard, R, Narkiewicz, K, Redon, J, Zanchetti, A, Bohm, M, et al. (2013). 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). *Eur Heart J, 34*(28), 2159-2219. doi:10.1093/eurheartj/eht151

36. Gupta M, Singh N, Verma S. South Asians and cardiovascular risk: what clinicians should know. Circulation. 2006 Jun 27;113(25):e924-9.

3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
53
54
55
55
20
5/
58
59
60

1 2

Table 1: Socio-demography and profile of the respondents

Demographic data and profile		Frequency (%)	
Mean Age ± SD (years)		57.23 ± 9.81	
Mean incom	\pm SD (RM)	1824.34 ± 2112.09	
Mean body mass index \pm SD (kg/m ²)		28.02 ± 13.17	
Gender	Female	685 (62.6)	
Ethnicity	Malay	559 (51.1)	
	Chinese	234 (21.4)	
	Indian	161 (14.7)	
	Indigenous	112 (10.2)	
	Other	28 (2.6)	
Smoker		185 (16.9)	
Diabetes		665 (60.8)	
Hypertensio	DN	840 (76.8)	
Family history of Stroke		165 (15.1)	
Family history of Cardiovascular Disease		158 (14.4)	

Table 2: Accurate estimation	of high CV	risk by patien	t, n= 1094

	Actual CV risk		
Patient's estimation		High (%)	Low/ moderate
	High	112 (14.4)	54 (17.0)
	Low/ Moderate	664 (85.6)	264(83.0)

Table 3: Factors associated with underestimation of high cardiovascular disease risk by

patients

			95% Confidence Interval	
	Significance	Adjusted odds		
	value	ratio	Lower	Upper
Age	0.550	1.009	0.981	1.037
Gender (female)	0.339	1.290	0.765	2.175
Smoker (Non smoker)	0.167	0.616	0.310	1.224
Income	0.280	1.000	1.000	1.000
Systolic BP	0.482	1.006	0.989	1.023
Diastolic BP	0.194	0.982	0.955	1.009
Waist Circumference	0.043	0.980	0.960	0.999
Body Mass Index	0.230	0.981	0.952	1.012
Total Cholesterol	0.211	0.770	0.512	1.160
LDL Cholesterol	0.154	1.364	0.890	2.090
BMJ Open

HDL Cholesterol	0.252	1.484	0.755	2.917
Ethnicity				
Malay (reference)		1.0		
Chinese	0.430	1.335	0.651	2.738
Indian	0.533	1.252	0.671	2.539
Indigineous	0.000	0.129	0.071	0.235
Hypertension				
Yes (reference)	-	1.0		
No	0.370	1.335	0.709	2.514
Diabetes				
Yes(reference)	-	1.0		
No	0.596	1.230	0.572	2.644
Anti-platelet use				
Yes (reference)	-	1.0		
No	0.523	1.186	0.703	2.000
Statin use				
Yes (reference)	-	1.0		
No	0.739	0.905	0.504	1.626
Family History with				
Stroke		1.0		
Yes (reference)	-	1.0		
No	0.198	1.494	0.811	2.753

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
24
34
35
36
37
38
39
40
41
/2
ד∠ ⊿י
43
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
59
00

Family History with				
CVD				
Yes (reference)	-	1.0		
No	0.001	2.705	1.538	4.757

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
З	
4	
4	
5	
6	
7	
1	
8	
9	
10	
10	
11	
12	
12	
13	
14	
15	
16	
47	
17	
18	
19	
20	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
20	
23	
30	
31	
30	
52	
33	
34	
35	
30	
36	
37	
20	
30	
39	
40	
14	
41	
42	
43	
11	
44	
45	
46	
17	
41	
48	
49	
50	
50	
51	
52	
52	
23	
54	
55	
50	
90	
57	
58	
FO	
59	
60	

	Patient's Actual	risk	
Doctors estimation		High (%)	Low/ moderate
	High	310 (40.2)	20 (6.3)
	Low/ Moderate	462 (59.8)	297 (93.7)

Table 4: Doctor's estimation of patient's CV risk vs patient's actual risk, n=1089

	Significance	Adjusted odds	95% Confide	ence Interva
	value	ratio	Lower	Linner
	value	Tatio	Lower	Opper
DOCTORS' FACTORS				
Age	0.771	0.988	0.911	1.071
Experience	0.055	1.120	0.998	1.257
Gender				
Male (reference)	-	1.0		
Female	0.096	1.416	0.940	2.131
PATIENTS' FACTORS				
Age	0.000	0.908	0.886	0.930
Income	0.052	1.000	1.000	1.000
Waist Circumference	0.902	1.001	0.985	1.017
Body Mass Index	0.530	0.994	0.975	1.013
Systolic BP	0.000	0.970	0.957	0.982
Diastolic BP	0.121	1.017	0.996	1.038
Total Cholesterol	0.471	0.899	0.672	1.202
HDL Cholesterol	0.000	3.546	2.025	6.209
LDL Cholesterol	0.059	0.747	0.552	1.012
Gender				
Male (reference)	-	1.0		
Female	0.000	2.232	1.460	3.410

BMJ Open: first published as 10.1136/bmjopen-2017-017711 on 26 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 29, 2024 by guest. Protected by copyright.

Ethnic				
Malay (reference)		1.0		
Chinese	0.727	0.916	0.560	1.499
Indian	0.001	0.430	0.257	0.720
Indigenous/Others	0.004	2.498	1.346	4.636
Smoker				
Yes (reference)	-	1.0		
No	0.002	2.246	1.354	3.726
Hypertension				
Yes (reference)	-	1.0		
No	0.026	1.731	1.067	2.808
Diabetes				
Yes (reference)	-	1.0		
No	0.019	1.931	1.114	3.348
Family History with CVD				
Yes (reference)	-	1.0		
No	0.513	0.841	0.500	1.414
Family History with				
Stroke				
Yes (reference)	-	1.0		
No	0.740	1.091	0.652	1.825
Anti-platelet use				
Yes (reference)	-	1.0		
No	0.385	1.192	0.802	1.772

Statin use				
Yes	-	1.0		
No	0.696	0.913	0.580	1.439

Table 6: Methods used by the doctors to estimate CV risk

Methods of CV calculation	n	%
Risk factor counting	244	22.3
Paper/ chart based	250	22.9
Online risk calculator	544	50.1
None	51	4.7

	Item no.	Recommendation	Page numbers	Checklist
Title and abstract 1		(a)Indicate the study's design with a commonly used term in the title of abstract	1	~
		(b)Provide in the abstract an informative and balanced summary of what was done and what was found	2-3	~
I	ntroduction			
Background/ration	ale 2	Explain the scientific background and rationale for the investigation being reported	3-4	✓
Objectives	3	State specific objectives, including any prespecified hypotheses	4	√
Ν	/lethods	J.F. H. L. L.		
Study design	4	Present key elements of study design early in the	5	✓
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow- up and data collection	5	✓
Participants	6	Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants	5	✓
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-6	✓
Data sources/ measurement	8	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-6	√
Bias	9	Describe any efforts to address potential sources of bias	5-6	√
Study size	10	Explain how the study size was arrived at	5	✓
Quantitative variab	oles 11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6	~
Statistical methods	s 12	(a) Describe all statistical methods, including those used to control for confounding	6	✓
		(b) Describe any methods used to examine subgroups and interactions	6	✓
		(c) Explain how missing data were addressed	6	✓
		(d) Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	6	√
		(e) Describe any sensitivity analyses	NA	
R	Results			
Participants	13	(a) Report numbers of individuals at each stage of study—eg: numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study,	6	×

		completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage	6	✓
		(c) Consider use of a flow diagram	NA	
Descriptive data	14	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6	~
Outcome data	15	Report numbers of outcome events or summary measures	7	~
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7	✓
	0	(b) Report category boundaries when continuous variables were categorized	7	~
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7	~
Di	iscussion			
Key results	18	Summarise key results with reference to study objectives	8	~
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	10	~
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	8-9	✓
Generalisability	21	Discuss the generalisability (external validity) of the study results	8-9	~
0	ther informa	ition		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11	√