

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The mediating effects of metabolic factors on the association between fruit or vegetable intake and cardiovascular disease: the Korean National Health and Nutrition Examination Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019620
Article Type:	Research
Date Submitted by the Author:	14-Sep-2017
Complete List of Authors:	Lee, Hye Ah; Mokdong Hospital, Ewha Womans University, Clinical Trial Center Lim, Dohee; Korea Centers for Disease Control and Prevention Oh, Kyungwon ; Korea Centers for Disease Control and Prevention, Division of Health and Nutrition Survey Kim, Eun Jung ; Pyeongtaek University, Department of Nursing Park, Hyesook; College of Medicine, Ewha Womans University, Department of preventive medicine,
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	Cardiovascular disease, blood pressure, NUTRITION & DIETETICS

BMJ Open

2	intake and cardiovascular disease: the Korean National Health and Nutri
3	Examination Survey
4	
F	Use Ab Les ¹ Debes Lim ² Kennessen Ob^2 Eur Lung Kim ³
5	Hye An Lee, Donee Lim, Kyungwon On, Eun Jung Kim,
6	Hyesook Park
7	¹ Clinical Trial Center, Mokdong Hospital, Ewha Womans University, Seoul, ² Division
8	Health and Nutrition Survey, Korea Centers for Disease Control and Prevention, Cheongy
9	gun, ³ Department of Nursing, Pyeongtaek University, Pyeongtaek, ⁴ Department of prever
10	medicine, College of Medicine, Ewha Womans University, Seoul, Korea
11	
12	
13	
14	Address for corresponding author: Hyesook Park, MD, Ph.D.
15	Department of Proventive Medicine, School of Medicine, Fyshe Wemone University, 1
15	Department of Preventive Medicine, School of Medicine, Ewna womans University, I
16	Anyangcheon-ro, Yangcheon-ku, Seoul 158-710, Republic of Korea
17	Tel : +82.2-2650-5756, Fax: +82.2-2652-8325
18	E-mail : <u>hpark@ewha.ac.kr</u>
19	
20	Word count: 2,637
	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

21 Abstract

Objective: We assessed the mediating effects of metabolic components on the relationship
between fruit or vegetable intake and cardiovascular disease (CVD).

24 Design: Cross-sectional study

Setting: This study was conducted using data from the 2013–2015 Korean National Health and Nutrition Examination Survey, which is a national representative cross-sectional survey to assess health and nutritional status in the Korean population.

Method and analysis: A total of 9,040 subjects (3,555 males and 5,485 females) aged ≥ 25 years were included in the study. Physician-diagnosed CVD was used as the outcome. Fruit or vegetable intake was measured via a dish-based semi-quantitative food frequency questionnaire and grouped into categories (< 1 time/d, 1 time/d, 2 times/d, and \geq 3 times/d). Systolic blood pressure (SBP), cholesterol, and fasting glucose were considered metabolic mediators, and the bootstrap method was used to assess mediating effect.

Results: About 1.8% of adults aged 25–64 years had CVD. The risk for CVD decreased by 14% as fruit, but not vegetable, intake was increased by one unit per day. After additional adjustment for metabolic factors, the odds ratio was attenuated to 0.89 (95% confidence interval; 0.77–1.03). This result indicates that the indirect effect of three metabolic factors accounted for 21.4% of the relationship between fruit intake and CVD. SBP was a more important metabolic mediator than the other factors. The indirect effect accounted for 30.0% when body mass index was additionally controlled as a mediator, and SBP still had an independent effect compared to the other mediators.

BMJ Open

42	Conclusions: Our results indicate that controlling SBP may lessen the CVD risk, and a diet
43	rich in fruits can regulate SBP, which, in turn, reduces CVD risk.
44	Keywords: Cardiovascular disease, blood pressure, diet
45	
46	ARTICLE SUMMARY
47	
48	Strengths and limitations of this study
49	- In this study, we assessed how fruit or vegetable intake is related to CVD by assessing
50	the indirect effect of systolic blood pressure (SBP), total cholesterol, and fasting
51	glucose. Of them, the mediating effect of SBP on the association between fruit intake
52	and CVD was dominant.
53	- Our study suggests that controlling SBP might lessen CVD risk, and a diet rich in fruits
54	can be used to regulate SBP, which, in turn, reduces CVD risk.
55	- The results were derived from a cross-sectional study design, so causal relationships
56	could not be effectively drawn.
57	
58	
59	
60	
61	
62	
63	
	3
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

64 INTRODUCTION

66 Cardiovascular diseases (CVDs) are responsible for mortality worldwide; a report from 67 the World Health Organization stated that CVDs accounted for 31% of all deaths worldwide 68 in 2015 [1]. Although mortality from ischemic heart disease has shown a flat trend and that 69 from cerebrovascular disease has shown a declining trend in the Republic of Korea since 70 2005, these causes of death remain highly ranked [2].

Several risk factors for CVDs, including metabolic factors, such as high glucose, high blood pressure, and high cholesterol, have been suggested [3]. Several studies have suggested that these metabolic factors are also linked to risk factors (e.g., body mass index [BMI] and dietary factors) and CVD risk as mediators [4, 5]. The causal link between these mediators and disease risk must be identified for an effective public health intervention. However, previous studies focused on a single relationship between a risk factor and a disease rather than the mediating effects.

Excessive risk for CVD caused by poor diet and chronic diseases was reported from a study of global burden of disease (GBD). In addition, the GBD study established causal mediating relationships between a diet poor in fruits or vegetables, metabolic mediators (blood pressure, cholesterol, and glucose), and disease [4]. These metabolic mediators have also been linked to BMI and CVD [4]. The effect of a diet rich in fruits and vegetables on BMI has been reported through epidemiological studies [6], but few studies have assessed BMI as a mediator.

There is a need to study the degree to which these metabolic factors contribute to the relationship between risk factors and disease. Thus, using cross-sectional survey data from

BMJ Open

the 2013–2015 Korean National Health and Nutrition Examination Survey (KNHANES), we assessed the mediating effects of metabolic components applied to a confirmatory model. Furthermore, we assessed how the BMI contributes to the relationship between fruit or vegetable intake and CVD as a confounder or mediator. to beet terien only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

METHODS

1. Study subjects

This study was conducted using data from the 2013–2015 KNHANES, which is a national representative cross-sectional survey to assess health and nutritional status in the Korean population. It consists of a health interview, health examination, and a nutrition survey. A number of variables were collected by trained staff, including physicians, medical technicians, and dieticians. The detailed KNHANES survey method has already been described [7].

The food frequency questionnaire (FFQ) was changed to a dish-based semi-quantitative FFQ based on a 2012 survey. The survey assessed subjects 19–64 years of age. We used the sixth survey from 2013 to 2015 by sampling according to the survey cycle. This study included subjects \geq 25 years. Additionally, the eligible study population included the respondents with data from all three parts of the survey. A total of 9,040 subjects (3,555 males and 5,485 females) were included in the study.

2. Fruit and vegetable intake

The dish-based semi-quantitative FFQ was composed of 112 items and provided information on typical dietary consumption for 1 year using a 9-point scale (less than once per month or never, once per month, 2–3 times per month, once per week, 2–4 times per week, 5–6 times per week, once per day, twice per day, and three times per day) and three levels to represent the amount consumed by referring to a standard amount (less, standard, and more). Based on a previous study [4], we excluded pickled and salted vegetables,

BMJ Open

including kimchi and fruit juice. Vegetable intake included bean sprouts (seasoned, soup); seasoned mung bean sprout; seasoned spinach; seasoned bellflower (boiled or not); pumpkin (seasoned, pan-fried); other seasoned vegetables; cucumber (seasoned, raw); radish (seasoned, pickled, dried); vegetable salad; seasoned green onion, and seasoned Chinese chives; raw vegetables (lettuce, sesame, Chinese cabbage, and pumpkin leaf); green pepper; boiled broccoli, boiled cabbage; garlic; tomato, and cherry tomato. Fruit intake was assessed based on 12 items: strawberry; melon; watermelon; peach; grape; apple; pear; persimmon, dried persimmon; tangerine; banana; orange; and kiwi. The frequency of fruit intake was used after adjusting for seasonal fruit. Estimated intakes of fruits and vegetables were calculated on the FFO by multiplying the frequency of each food (as described above) by the selected amount consumed: small (0.5), medium (1), and large (1.5). Fruit and vegetable intake was expressed in four categories (< 1 time/d, 1 time/d, 2 times/d, and \geq 3 times/d).

- - **3. Outcome and covariate data**

We used data from the health-related questionnaire for the diseases diagnosed by physicians. We selected the questions about stroke, myocardial infarction, and angina pectoris for the CVD-related diseases. If a subject answered "yes" to any of the three diseases, we considered that the subject had CVD. Additionally, we separately considered subjects who answered "yes" on the question about current illness with a physician's diagnosis and those who responded "yes" to a question about receiving treatment for a disease. BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

We used data on sex, age, quartiles of income, region (urban/rural), current smoker, and survey year as covariates through a literature review [8] and the results of a univariate analysis. We used quartile data for income instead of education level as a socioeconomic

indicator because income may be directly linked to food purchases [9]. The question aboutphysical activity was changed from the 2014 survey, so we did not consider physical activity.

154 4. Statistical analysis

The basic characteristics of the study subjects are presented as weighted percentages or weighted means with standard errors by considering the multi-stage sampling survey method. The distributions of the basic characteristics according to fruit or vegetable intake level were assessed using the trend test under the random sampling condition. In the main analysis, CVD was considered the outcome (Y) and fruit or vegetable intake was considered an independent variable (X). Systolic blood pressure (SBP) (M_1) , total cholesterol (M_2) , and fasting glucose (M₃) were applied as metabolic mediators (M). Additionally, BMI was considered as either a covariate or mediator.

We examined the association under the controlling covariates (sex, age, income, region [urban/rural], present smoking, and survey year) through four basic steps to assess mediation [10]. Step 1: association between dietary factors and CVD (X \rightarrow Y; total effect and was marked path "c"); step 2: association between dietary factors and metabolic mediators (X \rightarrow M_i; marked path "a"); step 3: association between metabolic mediators and CVD after controlling for metabolic mediators ($M_i \rightarrow Y$; marked path "b"); and step 4: association between dietary factors and CVD disease after controlling for metabolic mediators (direct effect; marked path "c"). We used the bootstrap method and the "process" macro suggested by Andrew to assess the mediating effects [11]. In this analysis, we applied 10,000 bootstraps. We separately or simultaneously assessed the indirect effect of the metabolic mediators on the association between dietary factors and CVD. The exponential regression coefficient is equal

1 2		
3 4	174	to the odds ratio (OR) when considering the CVD as an outcome variable. The percentage of
5 6 7	175	risk mediated by the metabolic mediator was calculated as [12]: OR (confounder adjusted) -
7 8 9	176	OR (confounder and mediator adjusted)/OR (confounder adjusted) – 1×100 .
10 11	177	All statistical analyses were conducted under a random sampling condition excluding the
12 13	178	basic characteristics given in Table 1 using SAS ver. 9.4 software (SAS Institute, Cary, NC,
14 15 16	179	USA). A two-sided p -value < 0.05 was considered significant.
10 17 18	180	
19 20	181	
21 22	182	
23 24	183	
25 26	184	
27 28 20	185	
30 31	186	
32 33	187	
34 35	188	
36 37	189	
38 39 40	190	
40 41 42	191	
43 44	192	
45 46	193	
47 48	194	
49 50	195	
51 52 53	196	
55 54 55		9
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The basic characteristics of the study subjects are presented in Table 1. Mean age was 43.7 years, and 1.81% of subjects had CVD. Subjects with a higher income ate more fruits or vegetables than those with a lower income. Those who ate more fruit were more likely to be non-smokers and female than their counterparts (Supplemental Tables 1, 2).

The total effect of fruit intake on CVD showed an inverse association without controlling for metabolic mediators (adjusted odds ratio [aOR], 0.86, 95% CI: 0.74–0.98), but the effect of vegetable intake was not significant (aOR, 0.93; 95% CI: 0.81–1.06) after controlling for sex, age, income, region (urban/rural), current smoker, and survey year.

The direct effect of fruit intake on CVD was borderline significant after further considering each metabolic mediator. The effect of SBP did not include zero in the 95% CI range as the other metabolic mediators. The effect of fruit intake on BMI showed borderline significance, and the effect of BMI on CVD was significant, but the indirect effect of BMI was not significant. Additionally, the effect of SBP was significant even after controlling for BMI as a covariate (Table 2). SBP, cholesterol, and BMI were associated with CVD, but vegetable intake did not contribute to either metabolic mediator or CVD (Table 3). The mediating effect of SBP on the association between fruit intake and outcome was dominant even when the outcome was restricted to those with a current illness or undergoing treatment.

The OR was attenuated to 0.89 (95% CI: 0.77–1.03) while simultaneously controlling for multiple metabolic mediators, indicating a 21.4% indirect effect for CVD. SBP showed an independent indirect effect. Higher fruit intake had a beneficial effect on fasting glucose, but

its effect was not associated with CVD. The direct effect of fruit intake on CVD presented an inverse association, but it did not reach statistical significance (Figure 1). In addition, similar results were observed when adding BMI as covariate, with an OR of 0.90 (95% CI: 0.78-1.04; data not shown). We analyzed the serial mediator model to assess whether BMI influenced SBP (Figure 2). Although the effect of fruit intake on BMI showed borderline significance, the influence of BMI on SBP, and the effect of SBP on CVD reached statistical significance. Of the three possible indirect paths, the fruit intake path \rightarrow SBP \rightarrow CVD was the only one to show an independent association. Fruit intake was directly linked to subjects who suffered a stroke, but not ischemic heart disease, regardless of which metabolic factors were controlled. In addition, the mediating effect of SBP was dominant in patients who suffered a stroke or ischemic heart disease even after controlling for BMI (Supplemental Tables 3, 4).

DISCUSSION

In this study, we assessed how fruit or vegetable intake is related to CVD by assessing the indirect effect of metabolic mediators. Based on the established causal link, SBP, total cholesterol, and fasting glucose were considered metabolic mediators, and the effect of BMI was additionally assessed. Of them, the indirect effect of SBP on the relationship between fruit intake and CVD was significant even after considering BMI, but not vegetable intake. The indirect effect of the four metabolic factors accounted for 30.0% of the relationship between fruit intake and CVD. The beneficial effects of high fruit or vegetable intake on CVD and the unfavorable effects of high blood pressure, glucose, and cholesterol on CVD are well known. Thus, previous studies considered metabolic factors together, and mediators were reported to attenuate the association of a direct effect [5]. One large prospective study conducted in 10 regions in China indicated that higher fresh fruit intake is linked to CVD death, and its effect was attenuated by hazard ratios from 0.63 (95% CI: 0.56–0.72) to 0.70 (95% CI: 0.61–0.79) after adjusting for BMI, blood pressure, glucose, and waist circumference [13]. Another study conducted in Shanghai, China showed an attenuated association between fruit intake and incident coronary heart disease after controlling for a history of diabetes, hypertension, or dyslipidemia, but not vegetable intake [5]. A women's health study reported by Liu et al. also showed that the effect of fruits and vegetables on CVD risk became stronger after excluding subjects with a history of diabetes, hypertension, and high cholesterol [14]. However, whether these metabolic factors were causal links between fruit and/or vegetable intake and CVD risk was not investigated.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 29

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

262	The assessment of a mediating effect could help understand how fruit and/or vegetable
263	intake affects CVDs. In addition, an effect of poor dietary risk by metabolic mediators on
264	CVD was suggested by the GBD study, so that was considered to estimate the disease burden.
265	The meditating effect of blood pressure on the association between fruit and/or vegetable
266	intake and CVD was suggested by a prospective cohort study of patients in the first National
267	Health and Nutrition Examination Survey [8]. Blood pressure contributed 22.2% to the
268	relationship between fruit and vegetable intake and CVD death. This was similar to the
269	results adjusted for BMI, cholesterol, and blood pressure. That study also showed that the
270	direct effect of fruit and vegetable intake was notable in patients who suffered a stroke but
271	not those with ischemic heart disease. These results are in line with those of the present study.
272	We assessed a potential role for BMI on the association between fruit intake and CVD
273	using various models. Several reports, including the above-mentioned study, considered BMI
274	as a potential mediator [8, 13]. Additionally, a causal link between BMI and CVD risk is
275	mediated through metabolic factors. Two pooled studies of prospective cohorts assessed the
276	effect of BMI on coronary heart disease and stroke as mediated by metabolic components.
277	They reported that blood pressure was a more important mediator compared to cholesterol
278	and glucose [12, 15]. Other pooled data from an Asian cohort also indicate that estimated
279	mediating proportions through hypertension were 62.3, 35.7, and 92.4% for the association
280	between BMI and death due to CVD, coronary heart disease, and stroke, respectively, but not
281	by diabetes [16]. The GBD study restricted total calories to 2,000 kcal instead of considering
282	BMI [17]. In the present study, higher fruit intake was inversely associated with BMI, but it
283	was borderline significant ($\beta = -0.06$, $p = 0.08$), which affected the results of the fruit intake
284	path \rightarrow BMI \rightarrow SBP \rightarrow CVD in the serial multiple mediator model. Our study found that the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

mediating effect due to BMI was about 7.9%, but previous studies showed a < 3.0% mediating effect by BMI on the association between fruit only or fruit and vegetable intake and CVD deaths by presenting little change in the adjusted risk value [8, 13]. However, it is difficult to make a direct comparison due to discrepancies in study design, study populations, the definition of disease, and fruit and/or vegetable intake.

Eating more vegetables was not significantly associated with either a direct or indirect effect. In Korea, vegetables in the general population are easily accessible by a side dish. Indeed, statistics from the Organisation for Economic Co-operation and Development (OECD) have reported that daily vegetable consumption among adults was the highest in Korea [18]. However, the manner of preparation and/or cooking can influence nutrient content [6]. The favorable effects of fruit and vegetable intake can be explained by nutrients, such as dietary fiber, folate, potassium, and antioxidant vitamins (i.e., vitamin E, vitamin C, polyphenols, flavonoids, and carotenoids) and other components. These nutrients might be involved with controlling glucose, lipid level, and blood pressure, and reduce the risk of CVD along with weight control [6]. However, because foods contain various nutrients, food recommendations help subjects follow a prevention strategy. In addition, healthy eating is also associated with other health behaviors, such as not smoking and regular physical activity [8, 19].

The present study had some limitations. First, the results were derived from a crosssectional study design, so causal relationships could not be effectively drawn. But, some parts of our results were consistent with previous studies [8, 19]. Furthermore, the results were consistent even after applying various definitions of outcome. Because the survey conducts general population except those in the hospital, subjects with diseases might be the relatively

BMJ Open

2		
5 4	308	less moderate cases. In addition, unmeasured confounding factors may have influenced the
5		
6 7	309	association.
, 8 9	310	Nevertheless, our study focused on the mediating effects of metabolic factors on CVD
10 11	311	and assessed which metabolic factors affect CVD. Our results were produced using the
12 13	312	bootstrapping method and did not impose the assumption of normality of the sampling
14 15 16	313	distribution; thus, it was an appropriate design for multiple mediations [10]. The given
10 17 18	314	evidence was conceptually approached and was not statistically tested for an indirect effect.
19 20	315	Taken together, our study suggests that controlling SBP might lessen CVD risk, and a
21 22	316	diet rich in fruits can be used to regulate SBP, which, in turn, reduces CVD risk.
23 24	317	
25 26	318	
27 28 20	319	
30 31	320	
32 33 34	321	
35 36 37	322	
38 39 40	323	
41 42 43	324	
44 45 46	325	
47 48 40	326	
50 51 52	327	
53 54 55	328	15
56 57 58		

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

1 2		
3		
4	329	Conflict of interest statement
6		
7	330	None
8		
9 10	331	
11		
12	333	Contributor ship statement
13 14	552	
15	222	
16	333	HA Lee wrote the manuscript and performed the statistical analyses; D Lim, K Oh, and EJ Kim,
17 18	334	provided advice about writing the manuscript, and H Park helped interpret the data.
19		
20	335	
21 22		
23	226	Funding statement
24	550	r unung statement
25 26		
20	337	This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of
28	338	Health & Welfare, Republic of Korea (HI13C0729).
29 30		
31	339	
32	000	
33	240	
35	340	Data availability
36	241	
37	341	The National Health and Nutrition Examination Survey files are available from the Korea Centers for Disease
39	342	Control and Prevention database (URL https://knhanes.cdc.go.kr/knhanes/sub03/sub03_02_02.do). If you
40	343	register your e-mail on this site, you can freely download the raw data.
41 42		
42	344	
44	544	
45 46	245	
40	345	
48		
49 50	346	
50		
52	347	
53 54		
54 55		16
56		
57 59		
50 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Cardiovascular

diseases

Fact

sheet.

Organization (2017).

REFERENCES

1.

World

Health

http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed July 10, 2017. **Statistics** Korea. Causes 2. of Death Statistics in 2015. http://kostat.go.kr/portal/eng/pressReleases/8/10/index.board?bmode=read&bSeg=&aSeg=35 7968&pageNo=1&rowNum=10&navCount=10&currPg=&sTarget=title&sTxt=. Accessed July 10, 2017. 3. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, Mensah GA, Norrving B, Shiue I, Ng M, Estep K, Cercy K, Murray CJL, Forouzanfar MH; Global Burden of Diseases, Injuries and Risk Factors Study 2013 and Stroke Experts Writing Group. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol 2016;15(9):913-924. doi: 10.1016/S1474-4422(16)30073-4. Epub 2016 Jun 9. 4. GBD 2015 Risk Factors Collaborators Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388(10053):1659-1724. doi: 10.1016/S0140-6736(16)31679-8. 5. Danxia Yu, Xianglan Zhang ,Yu-Tang Gao, Honglan Li, Gong Yang, Jie Huang, Wei Zheng, Yong-Bing Xiang, and Xiao-Ou Shu. Fruit and Vegetable Intake and Risk of Coronary Heart Disease: Results from Prospective Cohort Studies of Chinese Adults in Shanghai. Br J Nutr 2014; 111(2): 353–362. 6. Bazzano LA. Dietary intake of fruit and vegetables and risk of diabetes mellitus and cardiovascular diseases. Geneva: World Health Organization, 2005. 7. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, Chun C, Khang YH, Oh K. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014;43(1):69-77. doi: 10.1093/ije/dyt228. 8. Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, Whelton PK. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am JClin For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Nutr 2002;76(1):93-9.

379 9. Darmon N, Drewnowski A. Does social class predict diet quality? *Am J Clin Nutr*380 2008;87(5):1107–1117.

381 10. Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and
382 comparing indirect effects in multiple mediator models. *Behav Res Methods* 2008;40(3):879383 91.

384 11. Andrew F. Hayes. Introduction to mediation, Moderation, and conditional process
385 analysis: a regression-based approach. The Guilford Press, New York, 2013

386 12. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI
387 Mediated Effects), Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G.
388 Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary
389 heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million
390 participants. *Lancet* 2014;383(9921):970-83. doi: 10.1016/S0140-6736(13)61836-X. Epub
391 2013 Nov 22.

- Huaidong Du, Liming Li., Derrick Bennett, Yu Guo, Timothy J. Key, Zheng Bian, Paul
 Sherliker, Haiyan Gao, Yiping Chen, Ling Yang, Junshi Chen, Shanqing Wang, Ranran
 Du, Hua Su, Rory Collins, Richard Peto, Zhengming Chen, for the China Kadoorie
 Biobank Study. Fresh Fruit Consumption and Major Cardiovascular Disease in China. *N Engl J Med* 2016; 374(14): 1332–1343.
- 14. Liu S, Manson JE, Lee IM, Cole SR, Hennekens CH, Willett WC, Buring JE. Fruit and
 vegetable intake and risk of cardiovascular disease: the Women's Health Study. *Am J Clin Nutr* 2000;72(4):922-8.
- 400 15. Lu Y, Hajifathalian K, Rimm EB, Ezzati M, Danaei G Mediators of the Effect of Body
 401 Mass Index on Coronary Heart Disease: Decomposing Direct and Indirect Effects.
 402 *Epidemiology* 2015 ;26(2):153-62. doi: 10.1097/EDE.0000000000234.

403 16. Chen Y, Copeland WK, Vedanthan R, Grant E, Lee JE, Gu D, Gupta PC, Ramadas
404 K, Inoue M, Tsugane S, Tamakoshi A, Gao YT, Yuan JM, Shu XO, Ozasa K, Tsuji I, Kakizaki
405 M, Tanaka H, Nishino Y, Chen CJ, Wang R, Yoo KY, Ahn YO, Ahsan H, Pan WH, Chen
406 CS, Pednekar MS, Sauvaget C, Sasazuki S, Yang G, Koh WP, Xiang YB, Ohishi W, Watanabe
407 T, Sugawara Y, Matsuo K, You SL, Park SK, Kim DH, Parvez F, Chuang SY, Ge W, Rolland
408 B, McLerran D, Sinha R, Thornquist M, Kang D, Feng Z, Boffetta P, Zheng W, He J, Potter

BMJ Open

JD. Association between body mass index and cardiovascular disease mortality in east Asians and south Asians: pooled analysis of prospective data from the Asia Cohort Consortium. *BMJ* 2013;347:f5446. doi: 10.1136/bmj.f5446.

17. GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, Burnett R, Casey D, Coates MM, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386(10010):2287-323. doi: 10.1016/S0140-6736(15)00128-2.

18. Organisation for Economic Co-operation and Development. Daily vegetable eating among adults, 2013 (or nearest year), in Health at a Glance 2015, OECD Publishing, Paris, 2015. doi: http://dx.doi.org/10.1787/health_glance-2015-graph42-en.

19. Takachi R, Inoue M, Ishihara J, Kurahashi N, Iwasaki M, Sasazuki S, Iso H, Tsubono Y, Tsugane S; JPHC Study Group. Fruit and vegetable intake and risk of total cancer and cardiovascular disease: Japan Public Health Center-Based Prospective Study. Am J *Epidemiol* 2008;167(1):59-70.

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

Figure 1. The effect of multiple metabolic factor (M_i) mediators in the association between
fruit intake (X) and cardiovascular diseases (Y).

 ${}^{a}p < 0.01, {}^{b}p < 0.001$, SBP: systolic blood pressure. Coefficients were adjusted for sex, age, 440 income, region (urban/rural), current smoker, and survey year using the bootstrapping method.

Figure 2. The effect of multiple serial mediators of metabolic factors (M_i) in the association
between fruit intake (X) and cardiovascular diseases (Y).

^ap < 0.1, ^bp < 0.05, ^cp < 0.01, ^dp < 0.001, BMI: body mass index, SBP: systolic blood pressure. Coefficients were adjusted for sex, age, income, region (urban/rural), current smoker, and survey year using the bootstrapping method.

Sex 49.92 (0.51 Female 50.08 (0.51 Age range 25-64 year Age (years)† 43.68 (0.18 Region 01 Urban 83.87 (1.52 Rural 16.13 (1.52 Q 25.61 (0.72 Q3 25.03 (0.71 Q4 25.90 (0.97 Current smoking 78.83 (0.60 Yes 24.17 (0.60 Disease 1.81 (0.16 Stroke 0.98 (0.13 Ischemic heart disease 0.90 (0.10 Metabolic Factors† 115.01 (0.21 Total cholesterol (mg/dL) 190.98 (0.47 Fasting plasma glucose (mg/dL) 98.8 (0.33 Body mass index (kg/m ²) 23.92 (0.05 SE: Standard error. 145.01 (0.21 Total cholesterol (mg/dL) 190.98 (0.47 Gady mass index (kg/m ²) 23.92 (0.05 SE: Standard error. 140.90 (0.10 453 545 SE: Standard error. 140.10 (0.1) 460 461 460			
Male 49.92 (0.51) Female 50.08 (0.51) Age range 25-64 year Age (years)† 43.68 (0.18) Region 101 Urban 83.87 (1.52) Rural 16.13 (1.52) Q1 23.46 (0.72) Q2 25.61 (0.72) Q3 20.30 (0.71) Q4 25.90 (0.97) Current smoking 75.83 (0.60) No 75.83 (0.60) Stroke 0.98 (0.13) Ischemic heart disease 1.81 (0.16) Stroke 0.98 (0.13) Ischemic heart disease 0.90 (0.10) Metabolic Factors† 115.01 (0.21) Systolic blood pressure (mmHg) 115.01 (0.21) Total cholesterol (mg/dL) 190.98 (0.47) Fasting plasma glucose (mg/dL) 98.58 (0.30) Body mass index (kg/m²) 23.92 (0.05) SE: Standard error. 140 455 5E: Standard error. 456 5E: Standard error. 457 140 460 461 461 461 <		Sex	Č (
Female 50.08 (0.51) Age range 25-64 year Age (years)† 43.68 (0.18) Region 1 Urban 83.87 (1.52) Rural 16.13 (1.52) Q1 23.46 (0.72) Q2 25.61 (0.77) Q3 22.503 (0.77) Q4 25.90 (0.97) Current smoking 0 No 75.83 (0.60) Yes 24.17 (0.60) Disease 1.81 (0.16) Cardiovascular disease 1.81 (0.16) Stroke 0.98 (0.13) Ischemic heart disease 0.90 (0.10) Metabolic Factors† Systolic blood pressure (mmHg) Systolic blood ymass index (kg/m²) 23.92 (0.05) SE: Standard error. †Weighted mean with standard error. 455 *Weighted mean with standard error. 456 464 465 464		Male	49.92 (0.51
Age range 25-64 year Age (years)† 43.68 (0.18 Region 0 Urban 83.87 (1.52 Rural 16.13 (1.52 1 100 (guartiles) Q1 23.46 (0.73 Q2 25.61 (0.72 Q3 25.03 (0.71) Q4 25.90 (0.97) Current smoking 0 No 75.83 (0.60 Yes 24.17 (0.60 Disease 1.81 (0.16 Stroke 0.90 (0.10 Metabolic Factors† 98 (0.13 Systolic blood pressure (mmHg) 115.01 (0.21 Total cholesterol (mg/dL) 190.98 (0.47 Body mass index (kg/m²) 23.92 (0.05 SE: Standard error. * *Weighted mean with standard error. * * * 460 461 461 465		Female	50.08 (0.51
Age (years)† 43.68 (0.18 Region 83.87 (1.52 Rural 16.13 (1.52) Income level (quartiles) 2 Q1 23.46 (0.72) Q2 25.61 (0.72) Q3 25.03 (0.71) Q4 25.90 (0.97) Current smoking No No 75.83 (0.60) Yes 24.17 (0.60) Disease 1.81 (0.16) Cardiovascular disease 1.81 (0.16) Stroke 0.98 (0.13) Ischemic heart disease 0.99 (0.10) Metabolic Factors† 99.99 (0.10) Systolic blood pressure (mmHg) 115.01 (0.21) Total cholesterol (mg/dL) 99.98 (0.43) Body mass index (kg/m²) 23.92 (0.03) SE: Standard error. †Weighted mean with standard error. 455 5456 456 461 461 465		Age range	25-64 year
Region 0.1 Urban 83.87 (1.52 Rural 16.13 (1.52 Income level (quartiles) 23.46 (0.72 Q2 25.61 (0.72 Q3 25.03 (0.71 Q4 25.90 (0.97) Current smoking 75.83 (0.60 No 75.83 (0.60 Disease 1.81 (0.16 Stroke 0.98 (0.13 Ischemic heart disease 0.90 (0.10 Metabolic Factors† Systolic blood pressure (mmHg) Systolic blood pressure (mmHg) 115.01 (0.21 Total cholesterol (mg/dL) 99.98 (0.43 Fasting plasma glucose (mg/dL) 98.58 (0.30 Body mass index (kg/m ²) 23.92 (0.03 SE: Standard error. * †Weighted mean with standard error. * * * 456 * 457 * * * * * * * * * * * * *		Age (years)†	43.68 (0.18
Urban 83.87 (1.52 Rural 16.13 (1.52 Income level (quartiles) 2 Q1 23.46 (0.72 Q2 25.61 (0.72 Q3 25.03 (0.71) Q4 25.90 (0.97) Current smoking 0 No 75.83 (0.60) Yes 24.17 (0.60) Disease 1.81 (0.16) Cardiovascular disease 0.98 (0.13) Ischemic heart disease 0.99 (0.10) Metabolic Factors† Systolic blood pressure (mmHg) Total cholesterol (mg/dL) 98.58 (0.30) Body mass index (kg/m ²) 23.92 (0.05) SE: Standard error. †Weighted mean with standard error. 455 460 461 462 463 464 464 465		Region	
Rural 16.13 (1.52 Q1 23.46 (0.72 Q2 25.61 (0.72 Q3 25.03 (0.71) Q4 25.90 (0.97) Current smoking 0 No 75.83 (0.66 Yes 24.17 (0.66 Disease 1.81 (0.16 Cardiovascular disease 1.81 (0.16 Stroke 0.98 (0.13 Ischemic heart disease 0.90 (0.10 Metabolic Factors† Systolic blood pressure (mmHg) Total cholesterol (mg/dL) 190.98 (0.47 Fasting plasma glucose (mg/dL) 98.58 (0.30 Body mass index (kg/m ²) 23.92 (0.05) 55 SE: Standard error. 57 †Weighted mean with standard error. 58 64 65 64		Urban	83.87 (1.52
Income level (quartiles) 23.46 (0.73 Q1 25.61 (0.72 Q3 25.03 (0.71) Q4 25.90 (0.97) Current smoking 0 No 75.83 (0.60) Yes 24.17 (0.60) Disease 0.90 (0.10) Metabolic Factors† 0.90 (0.10) Systolic blood pressure (mmHg) 115.01 (0.21) Total cholesterol (mg/dL) 190.98 (0.47) Fasting plasma glucose (mg/dL) 98.58 (0.30) Body mass index (kg/m ²) 23.92 (0.05) SE: Standard error. * *Weighted mean with standard error. * *Weighted mean with standard error. * 459 * 460 461 462 463 464 465		Rural	16.13 (1.52
Q1 23.46 (0.73 Q2 25.61 (0.72 Q3 25.03 (0.71 Q4 25.90 (0.97) Current smoking No No 75.83 (0.60 Yes 24.17 (0.60 Disease 1.81 (0.16 Stroke 0.98 (0.13 Ischemic heart disease 0.90 (0.10 Metabolic Factors† Systolic blood pressure (mmHg) Total cholesterol (mg/dL) 190.98 (0.47 Fasting plasma glucose (mg/dL) 98.58 (0.30 Body mass index (kg/m²) 23.92 (0.05 455 SE: Standard error. †Weighted mean with standard error. 459 460 461 462 463 464 464 465		Income level (quartiles)	
Q2 25.61 (0.72 Q3 25.03 (0.71) Q4 25.90 (0.97) Current smoking 75.83 (0.60 Yes 24.17 (0.60 Disease 1.81 (0.16 Stroke 0.98 (0.13) Ischemic heart disease 0.90 (0.10) Metabolic Factors† 115.01 (0.21) Systolic blood pressure (mmHg) 115.01 (0.21) Total cholesterol (mg/dL) 98.58 (0.30) Body mass index (kg/m²) 23.92 (0.05) SE: Standard error. * †Weighted mean with standard error. * 456 4161 461 463 464 465		Q1	23.46 (0.73
Q3 22.03 (0.71) Q4 25.90 (0.97) Current smoking 75.83 (0.60) No 75.83 (0.60) Yes 24.17 (0.60) Disease 1.81 (0.16) Stroke 0.98 (0.13) Ischemic heart disease 0.90 (0.10) Metabolic Factors† 115.01 (0.21) Systolic blood pressure (mmHg) 115.01 (0.21) Total cholesterol (mg/dL) 98.58 (0.30) Body mass index (kg/m²) 23.92 (0.05) SE: Standard error. †Weighted mean with standard error. 455 456 456 457 456 458 459 460 461 462 463 464 464 465		Q2	25.61 (0.72
Q4 25.90 (0.97) Current smoking 75.83 (0.60) No 75.83 (0.60) Yes 24.17 (0.60) Disease 1.81 (0.16) Stroke 0.98 (0.13) Ischemic heart disease 0.98 (0.13) Ischemic heart disease 0.90 (0.10) Metabolic Factors† 115.01 (0.21) Total cholesterol (mg/dL) 190.98 (0.47) Fasting plasma glucose (mg/dL) 98.58 (0.30) Body mass index (kg/m ²) 23.92 (0.05) SE: Standard error. †Weighted mean with standard error. †Weighted mean with standard error. 1400 1459 1410 1450 1410 1451 1410 1452 1410 1453 1410 1454 1410 1455 1410 1451 1410 1452 1410 1453 1410 1454 1410 1455 1410 1455 1410 1450 1410 1451 1410 1451		Q3	25.03 (0.71
Current smoking 75.83 (0.60 No 75.83 (0.60 Yes 24.17 (0.60 Disease 1.81 (0.16 Stroke 0.98 (0.13) Ischemic heart disease 0.98 (0.13) Stroke 0.98 (0.13) Ischemic heart disease 0.90 (0.10) Metabolic Factors† 115.01 (0.21) Total cholesterol (mg/dL) 190.98 (0.47) Fasting plasma glucose (mg/dL) 98.58 (0.30) Body mass index (kg/m ²) 23.92 (0.05) SE: Standard error. †Weighted mean with standard error. 459 460 461 463 464 465		Q4	25.90 (0.97
No 75.83 (0.00 Yes 24.17 (0.60 Disease 24.17 (0.60 Stroke 0.98 (0.13 Ischemic heart disease 0.90 (0.10 Metabolic Factors† 990 (0.10 Systolic blood pressure (mmHg) 115.01 (0.21 Total cholesterol (mg/dL) 190.98 (0.47 Fasting plasma glucose (mg/dL) 98.58 (0.30 Body mass index (kg/m²) 23.92 (0.05 455 SE: Standard error. †Weighted mean with standard error. 1450 460 461 462 463 464 465		Current smoking	75 02 (0 (0
Yes 24.17 (0.000 Disease Cardiovascular disease 1.81 (0.16) Stroke 0.98 (0.13) 115.01 (0.21) Ischemic heart disease 0.90 (0.10) Metabolic Factors† 115.01 (0.21) Systolic blood pressure (mmHg) 115.01 (0.21) Total cholesterol (mg/dL) 190.98 (0.47) Fasting plasma glucose (mg/dL) 98.58 (0.30) Body mass index (kg/m²) 23.92 (0.05) 455 SE: Standard error. 457 †Weighted mean with standard error. 459 460 461 462 463 464 465 21		No	/5.83 (0.60
Cardiovascular disease 1.81 (0.16 Stroke 0.98 (0.13 Ischemic heart disease 0.90 (0.10 Metabolic Factors† Systolic blood pressure (mmHg) 115.01 (0.21 Total cholesterol (mg/dL) 190.98 (0.47 Fasting plasma glucose (mg/dL) 98.58 (0.30 Body mass index (kg/m ²) 23.92 (0.05 SE: Standard error. †Weighted mean with standard error. 55 459 460 461 462 463		Yes Disease	24.17 (0.00
Stroke 0.98 (0.13) Ischemic heart disease 0.90 (0.10) Metabolic Factors† 115.01 (0.21) Systolic blood pressure (mmHg) 115.01 (0.21) Total cholesterol (mg/dL) 190.98 (0.47) Fasting plasma glucose (mg/dL) 98.58 (0.30) Body mass index (kg/m ²) 23.92 (0.05) 455 SE: Standard error. 457 †Weighted mean with standard error. 458 460 461 462 463 464 465 21		Cardiovascular disease	1 81 (0 16
 Ischemic heart disease 0.90 (0.10) Metabolic Factors† Systolic blood pressure (mmHg) Total cholesterol (mg/dL) Fasting plasma glucose (mg/dL) Body mass index (kg/m²) 23.92 (0.05) SE: Standard error. †Weighted mean with standard error. 455 460 461 462 463 464 465 		Stroke	
Metabolic Factors† 115.01 (0.21) Systolic blood pressure (mmHg) 190.98 (0.47) Total cholesterol (mg/dL) 98.58 (0.30) Body mass index (kg/m²) 23.92 (0.05) 455 SE: Standard error. 457 †Weighted mean with standard error. 459 460 461 462 463 464 465 21		Ischemic heart disease	0.90 (0.10
Systolic blood pressure (mmHg) Total cholesterol (mg/dL) Fasting plasma glucose (mg/dL) Body mass index (kg/m ²) SE: Standard error. TWeighted mean with standard error. SE: Standard error. Weighted mean with standard error. 21		Metabolic Factors†	
Total cholesterol (mg/dL) 190.98 (0.47) Fasting plasma glucose (mg/dL) 98.58 (0.30) Body mass index (kg/m²) 23.92 (0.05) 455 SE: Standard error. 457 †Weighted mean with standard error. 459 460 461 462 463 464 465 21		Systolic blood pressure (mmHg)	115.01 (0.21
Fasting plasma glucose (mg/dL) 98.58 (0.30 Body mass index (kg/m²) 23.92 (0.05 455 SE: Standard error. 457 †Weighted mean with standard error. 459 460 461 462 463 464 465 21		Total cholesterol (mg/dL)	190.98 (0.47
Hashing plasmid giteose (ing clc)) 23.92 (0.05) 455 SE: Standard error. 457 †Weighted mean with standard error. 459 460 461 462 463 464 465 21		Fasting plasma glucose (mg/dL)	98.58 (0.30
455 456 SE: Standard error. 457 †Weighted mean with standard error. 458 459 460 461 462 463 464 465		Body mass index (kg/m^2)	23.92 (0.05
 456 SE: Standard error. 457 †Weighted mean with standard error. 458 459 460 461 462 463 464 465 21 	455	(=================================	
 *Weighted mean with standard error. ************************************	456	SE: Standard error.	
 458 459 460 461 462 463 464 465 21 	457	†Weighted mean with standard error.	
 459 460 461 462 463 464 465 21 	458		
 459 460 461 462 463 464 465 21 			
 460 461 462 463 464 465 21 	459		
400 461 462 463 464 465 21	400		
 461 462 463 464 465 21 	460		
462 463 464 465 21	461		
462 463 464 465	-01		
463 464 465 21	462		
463 464 465 21			
464 465 21	463		
464 465 21			
465 21	464		
465 21	405		
21	465		
21			
21			21
			21

Table 2. The effect of metabolic mediators (M) in the association between fruit intake (X) and

X β	→ M (a)										
β)	Μ	$I \rightarrow Y (I)$	b)	(c' = d)	$X \rightarrow Y$ (c' = direct effect)			Indirect effect (a*b)		
	SE	р	β	SE	р	β	SE	р	β	95%	6 CI	
-0.484	0.144	0.001	0.013	0.004	0.002	-0.137	0.072	0.06	-0.007	-0.014	-0.002	
-0.156	0.357	0.66	-0.019	0.003	<.0001	-0.144	0.075	0.05	0.003	-0.011	0.01	
-0.665	0.217	<.01	0.004	0.003	0.20	-0.144	0.074	0.05	-0.002	-0.006	0.00	
-0.059	0.034	0.08	0.078	0.022	0.001	-0.143	0.072	<.05	-0.005	-0.012	0.00	
-0.420	0.139	<.01	0.011	0.005	0.01	-0.127	0.072	0.08	-0.005	-0.011	-0.0004	
-0.064	0.352	0.86	-0.019	0.003	<.0001	-0.126	0.075	0.09	0.001	-0.012	0.01:	
-0.614	0.214	<.01	0.002	0.003	0.42	-0.130	0.074	0.08	-0.002	-0.005	0.002	
sex, age	e, incor	ne, regi	on (urba	n/rural)	, current	smoking	"surve	y year	, and bod	y mass		
				22								
	-0.059 -0.420 -0.064 -0.614 blood p ndard er: sex, age, sex, age	-0.059 0.034 -0.420 0.139 -0.064 0.352 -0.614 0.214 blood pressure ndard error, 95% sex, age, incom sex, age, incom	-0.059 0.034 0.08 -0.420 0.139 <.01 -0.064 0.352 0.86 -0.614 0.214 <.01 blood pressure, TC: to ndard error, 95% CI: 95 sex, age, income, regio sex, age, income, regio	-0.059 0.034 0.08 0.078 -0.420 0.139 <.01 0.011 -0.064 0.352 0.86 -0.019 -0.614 0.214 <.01 0.002 blood pressure, TC: total chole ndard error, 95% CI: 95% confic sex, age, income, region (urban/s sex, age, income, region (urba	-0.059 0.034 0.08 0.078 0.022 -0.420 0.139 <.01 0.011 0.005 -0.064 0.352 0.86 -0.019 0.003 -0.614 0.214 <.01 0.002 0.003 blood pressure, TC: total cholesterol, ndard error, 95% CI: 95% confidence in sex, age, income, region (urban/rural), c sex, age, income, region (urban/rural)	-0.059 0.034 0.08 0.078 0.022 0.001 -0.420 0.139 <.01 0.011 0.005 0.01 -0.064 0.352 0.86 -0.019 0.003 <.0001 -0.614 0.214 <.01 0.002 0.003 0.42 blood pressure, TC: total cholesterol, FPG: fas ndard error, 95% CI: 95% confidence interval. sex, age, income, region (urban/rural), current sn sex, age, income, region (urban/rural), current sn sex, age, income, region (urban/rural), current	-0.059 0.034 0.08 0.078 0.022 0.001 -0.143 -0.420 0.139 <.01 0.011 0.005 0.01 -0.127 -0.064 0.352 0.86 -0.019 0.003 <.0001 -0.126 -0.614 0.214 <.01 0.002 0.003 0.42 -0.130 blood pressure, TC: total cholesterol, FPG: fasting plas indard error, 95% CI: 95% confidence interval. sex, age, income, region (urban/rural), current smoking, a sex, age, income, region (urban/rural), current smoking, a	-0.059 0.034 0.08 0.078 0.022 0.001 -0.143 0.072 -0.420 0.139 <01 0.011 0.005 0.01 -0.127 0.072 -0.064 0.352 0.86 -0.019 0.003 <0001 -0.126 0.075 -0.614 0.214 <01 0.002 0.003 0.42 -0.130 0.074 blood pressure, TC: total cholesterol, FPG: fasting plasma glu ndard error, 95% CI: 95% confidence interval. sex, age, income, region (urban/rural), current smoking, and surv sex, age, income, region (urban/rural), current smoking, survers	-0.059 0.034 0.08 0.078 0.022 0.001 -0.143 0.072 <05 -0.420 0.139 <01 0.011 0.005 0.01 -0.127 0.072 0.08 -0.064 0.352 0.86 -0.019 0.003 <0001 -0.126 0.075 0.09 -0.614 0.214 <01 0.002 0.003 0.42 -0.130 0.074 0.08 blood pressure, TC: total cholesterol, FPG: fasting plasma glucose, I ndard error, 95% CI: 95% confidence interval. sex, age, income, region (urban/rural), current smoking, and survey year sex, age, income, region (urban/rural), current smoking, survey year	-0.059 0.034 0.08 0.078 0.022 0.001 -0.143 0.072 <05 -0.005 -0.420 0.139 <01 0.011 0.005 0.01 -0.127 0.072 0.08 -0.005 -0.064 0.352 0.86 -0.019 0.003 <000 -0.126 0.075 0.09 0.001 -0.614 0.214 <01 0.002 0.003 0.42 -0.130 0.074 0.08 -0.002 blood pressure, TC: total cholesterol, FPG: fasting plasma glucose, BMI: bod ndard error, 95% CI: 95% confidence interval. sex, age, income, region (urban/rural), current smoking, and survey year. sex, age, income, region (urban/rural), current smoking, survey year, and bod	-0.059 0.034 0.08 0.078 0.022 0.001 -0.143 0.072 0.05 -0.005 -0.012 -0.420 0.139 0.01 0.011 0.005 0.01 -0.127 0.072 0.08 -0.005 -0.011 -0.064 0.352 0.86 -0.019 0.003 0.001 -0.126 0.075 0.09 0.001 -0.102 -0.614 0.214 0.01 0.002 0.003 0.42 -0.130 0.074 0.08 -0.002 -0.005 blood pressure, TC: total cholesterol, FPG: fasting plasma glucose, BMI: body mass nard error, 95% CI: 95% confidence interval. sex, age, income, region (urban/rural), current smoking, and survey year. sex, age, income, region (urban/rural), current smoking, survey year, and body mass	

1	
2 3	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22 23	
24	
25	
26	
27	
28 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 ⊿1	
42	
43	
44	
45	
46 47	
48	
49	
50	
51	
52 52	
55 54	
55	
56	
57	
58 50	
39	

488	Table 3. The effect of metabolic mediators (M) in the association between vegetable intake
489	(X) and cardiovascular disease (Y).

		Vegetable intake											
		$X \rightarrow M$ (a)				$I \rightarrow Y (I)$	b)	(c' = d)	$X \rightarrow Y$ irect eff	ect)	Indirec	t effect (a'	*b)
	Metabolic Factors (M)	β	SE	р	β	SE	р	β	SE	р	β	95%	CI
	SBP ^a	-0.042	0.169	0.80	0.014	0.004	0.002	-0.132	0.086	0.13	-0.001	-0.006	0.004
	TC ^a	0.236	0.420	0.57	-0.019	0.003	<.0001	-0.121	0.089	0.18	-0.005	-0.021	0.012
	FPG ^a	-0.054	0.256	0.83	0.004	0.003	0.18	-0.132	0.088	0.14	-0.0002	-0.003	0.002
	BMI" SDD ^b	0.057	0.040	0.16	0.080	0.022	<.001	-0.145	0.086	0.09	0.005	-0.002	0.013
	SBP TC ^b	0.114	0.103	0.48	-0.012	0.003	< 0001	-0.131 -0.122	0.080	0.13	-0.001	-0.000	0.002
	FPG ^b	-0.121	0.252	0.63	0.003	0.003	0.4	-0.132	0.088	0.14	-0.0003	-0.003	0.002
490 491	SBP: systolic	c blood p	oressure,	TC: to	otal chole	esterol,	FPG: fas	ting plas	ma glu	cose, I	3MI: body	mass	
492	index, SE: sta	andard er	ror, 95%	CI: 95	% confid	lence in	terval.						
493	^a Adjusted for	sex, age,	, income	, region	n (urban/i	rural), c	urrent sn	noking, a	nd surv	ey year			
494	^b Adjusted for	r sex, age	e, incom	ne, regi	on (urba	n/rural)	, current	smoking	, surve	y year,	and body	mass	
495	index.												
496													
497													
498													
499													
500													
501													
502													
503													
504													
505													
506													
507													
508													
						22							
						23							

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

60

1

^ap<0.01, ^bp<0.001

254x190mm (96 x 96 DPI)

망
20
) per
n: fir
stp
ŭbli
ishe
d ag
s 10
.11
36/t
j,
opei
n-20
)17-
010
620
0 on
28
Fet
orua
Ś
2018
 D
own
lloa
ded
fro
n <mark>h</mark>
ttp:/
/bm
jope
en.b
<u>, </u>
Öm
on /
õ
tobe
er 1
,4 2
023
by (
gue
st. F
rot
ecte
q p
y cc
pyr
ight.
•

Supplemental	Table 1.	Distributi	ion of bas	sic charac	teristics	by fruit in	ntake.		
				Fruit in	ıtake				
-	< 1	time/day	1	time/day	2 ti	mes/day	3+ ti	imes/day	p_{trend}
	n	%	n	%	n	%	n	%	-
Survey year									
2013	961	29.61	935	28.8	629	19.38	721	22.21	0.03
2014	945	31.81	825	27.77	538	18.11	663	22.32	
2015	916	32.45	810	28.69	488	17.29	609	21.57	
Sex									
Male	1519	42.73	983	27.65	551	15.5	502	14.12	<.0001
Female	1303	23.76	1587	28.93	1104	20.13	1491	27.18	
Age (years)	45.83	10.97	45.38	10.94	45.76	10.69	46.53	10.81	0.02
Region									
Urban	2280	30.62	2118	28.44	1389	18.65	1660	22.29	<.01
Rural	542	34.02	452	28.37	266	16.7	333	20.9	
Income level (q	uartiles)								
Q1	863	40.29	574	26.8	354	16.53	351	16.39	<.0001
Q2	827	36.38	634	27.89	359	15.79	453	19.93	
Q3	612	26.9	702	30.86	435	19.12	526	23.12	
Q4	510	22.02	649	28.02	500	21.59	657	28.37	
Current smoki	ng								
No smoking	1826	26.21	2030	29.14	1377	19.77	1733	24.88	<.0001
Smoking	833	50.24	431	26	210	12.67	184	11.1	

Supplemental T	able 2. I	Distributi	ion of bas	sic charac	teristics	by vegeta	ble intak	e.	
				Vegetable	intake				
	< 1 t	ime/day	1 1	time/day	2 ti	imes/day	3+ ti	mes/day	p_{trend}
	n	%	n	%	n	%	n	%	
Survey year									
2013	357	11	711	21.9	674	20.76	1504	46.33	<.0001
2014	374	12.59	725	24.4	585	19.69	1287	43.32	
2015	382	13.53	724	25.65	574	20.33	1143	40.49	
Sex									
Male	428	12.04	892	25.09	709	19.94	1526	42.93	0.38
Female	685	12.49	1268	23.12	1124	20.49	2408	43.9	
Age (years)	45.54	11.70	45.11	10.93	45.49	10.93	46.49	10.55	<.0001
Region									
Urban	910	12.22	1775	23.84	1526	20.49	3236	43.45	0.73
Rural	203	12.74	385	24.17	307	19.27	698	43.82	
Income level (qu	artiles)								
Q1	182	21.19	221	25.73	133	15.48	323	37.6	<.0001
Q2	337	15.56	546	25.21	438	20.22	845	39.01	
Q3	325	11.33	708	24.68	612	21.33	1224	42.66	
Q4	264	8.48	677	21.75	642	20.63	1529	49.13	
Current smoker									
No	810	11.63	1668	23.94	1421	20.4	3067	44.03	<.01
Yes	248	14.96	392	23.64	325	19.6	693	41.8	

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

1	
2	
3	
4	Supplementa
5	intake (X) an
6 7	
8	
9	_
10	
11 12	Metabolic Factors (M)
12	SBP ^a
14	TC ^a
15	FPG ^a
16	BMI ^a
17	SBP ⁰
19	FPG ^b
20	ITO
21	SBP: systolic
22	index SE: sta
24	
25	Adjusted for
26	^D Adjusted for
27	index.
20 29	
30	
31	
32	
33 34	
35	
36	
37	
38	
40	
41	
42	
43	
44 45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55 56	
57	
58	

59

60

Supplemental Table 3. The effect of metabolic mediators (M) in the association between fruit intake (X) and stroke (Y).

		Fruit intake										
	X -	→ M (a	a)	$M \rightarrow Y (b)$			$X \longrightarrow Y$ (c' = direct effect)			Indirect effect (a*b)		
Metabolic Factors (M)	β	SE	р	β	SE	р	β	SE	р	β	95%	6 CI
SBP ^a	-0.484	0.144	<.001	0.015	0.006	<.01	-0.242	0.100	0.02	-0.007	-0.017	-0.001
TC ^a	-0.156	0.357	0.66	-0.018	0.003	<.0001	-0.268	0.105	0.01	0.003	-0.009	0.016
FPG ^a	-0.665	0.217	<.01	0.005	0.004	0.19	-0.269	0.105	0.01	-0.003	-0.008	0.002
BMI ^a	-0.059	0.034	0.08	0.074	0.029	0.01	-0.249	0.100	0.01	-0.004	-0.013	0.001
SBP ^b	-0.420	0.139	<.01	0.013	0.006	0.03	-0.238	0.100	0.02	-0.005	-0.014	0.001
TC ^b	-0.064	0.352	0.86	-0.018	0.003	<.0001	-0.255	0.105	0.02	0.001	-0.011	0.015
FPG ^b	-0.614	0.214	<.01	0.003	0.004	0.37	-0.260	0.105	0.01	-0.002	-0.007	0.004

SBP: systolic blood pressure, TC: total cholesterol, FPG: fasting plasma glucose, BMI: body mass index, SE: standard error, 95% CI: 95% confidence interval.

^aAdjusted for sex, age, income, region (urban/rural), current smoking, and survey year.

^bAdjusted for sex, age, income, region (urban/rural), current smoking, survey year, and body mass index.

						Frui	t intake					
	X -	→ M (a)	Ν	$1 \rightarrow Y (1)$))	(c' = c')	$X \rightarrow Y$ lirect eff	ect)	Ind	irect effect	t (a*b)
Metabolic Factors (M)	β	SE	р	β	SE	р	β	SE	р	β	959	% CI
SBP ^a	-0.484	0.144	<.001	0.011	0.006	0.06	-0.065	0.097	0.51	-0.006	-0.013	-0.0001
TC ^a	-0.156	0.357	0.66	-0.021	0.003	<.0001	-0.042	0.100	0.67	0.003	-0.012	0.019
FPG ^a	-0.665	0.217	<.01	0.002	0.004	0.65	-0.048	0.099	0.63	-0.001	-0.006	0.004
BMI^{a}	-0.059	0.034	0.08	0.079	0.031	0.01	-0.069	0.097	0.48	-0.005	-0.012	0.001
SBP^b	-0.420	0.139	<.01	0.010	0.006	0.12	-0.047	0.097	0.63	-0.004	-0.011	0.001
TC ^b	-0.064	0.352	0.86	-0.020	0.003	<.0001	-0.018	0.100	0.86	0.001	-0.013	0.016
FPG ^b	-0.614	0.214	<.01	0.001	0.004	0.88	-0.028	0.099	0.78	0.000	-0.004	0.005

SBP: systolic blood pressure, TC: total cholesterol, FPG: fasting plasma glucose, BMI: body mass index, SE: standard error, 95% CI: 95% confidence interval.

^aAdjusted for sex, age, income, region (urban/rural), current smoking, and survey year.

intake (X) and ischemic heart disease (Y).

^bAdjusted for sex, age, income, region (urban/rural), current smoking, survey year, and body mass index.

BMJ Open

The mediating effects of metabolic factors on the association between fruit or vegetable intake and cardiovascular disease: the Korean National Health and Nutrition Examination Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019620.R1
Article Type:	Research
Date Submitted by the Author:	22-Dec-2017
Complete List of Authors:	Lee, Hye Ah; Mokdong Hospital, Ewha Womans University, Clinical Trial Center Lim, Dohee; Korea Centers for Disease Control and Prevention Oh, Kyungwon ; Korea Centers for Disease Control and Prevention, Division of Health and Nutrition Survey Kim, Eun Jung ; Pyeongtaek University, Department of Nursing Park, Hyesook; College of Medicine, Ewha Womans University, Department of preventive medicine,
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	Cardiovascular disease, blood pressure, NUTRITION & DIETETICS

BMJ Open

2	intake and cardiovascular disease: the Korean National Health and Nutri
2	Examination Survey
Э	Examination Survey
4	
5	Hye Ah Lee ¹ , Dohee Lim ² , Kyungwon Oh ² , Eun Jung Kim ³ ,
6	Hyesook Park ⁴
7	¹ Clinical Trial Center, Mokdong Hospital, Ewha Womans University, Seoul, ² Divisio
8	Health and Nutrition Survey, Korea Centers for Disease Control and Prevention, Cheongy
9	gun, ³ Department of Nursing, Pyeongtaek University, Pyeongtaek, ⁴ Department of prever
10	medicine, College of Medicine, Ewha Womans University, Seoul, Korea
11	
12	
13	
14	Address for corresponding author: Hyesook Park, MD, Ph.D.
15	Department of Preventive Medicine, School of Medicine, Ewha Womans University, 1
16	Anyangcheon-ro, Yangcheon-ku, Seoul 158-710, Republic of Korea
17	Tel : +82.2-2650-5756, Fax: +82.2-2652-8325
18	E-mail : <u>hpark@ewha.ac.kr</u>
19	
20	Word count: 2,911

21 Abstract

Objective: We assessed the mediating effects of metabolic components on the relationship
between fruit or vegetable intake and cardiovascular disease (CVD).

24 Design: Cross-sectional study

Setting: This study was conducted using data from the 2013–2015 Korean National Health and Nutrition Examination Survey, which is a national representative cross-sectional survey to assess health and nutritional status in the Korean population.

Method and analysis: A total of 9,040 subjects (3,555 males and 5,485 females) aged ≥ 25 years were included in the study. Physician-diagnosed CVD via self-report was used as the outcome. Fruit or vegetable intake was measured via a dish-based semi-quantitative food frequency questionnaire and grouped into categories (< 1 time/d, 1 time/d, 2 times/d, and ≥ 3 times/d). Systolic blood pressure (SBP), cholesterol, and fasting glucose were considered metabolic mediators, and the bootstrap method was used to assess mediating effect.

Results: About 1.8% of adults aged 25–64 years had CVD. The risk for CVD decreased by 14% as fruit, but not vegetable, intake was increased by one unit per day. After additional adjustment for metabolic factors, the odds ratio was attenuated to 0.89 (95% confidence interval; 0.77–1.03). This result indicates that the indirect effect of three metabolic factors accounted for 21.4% of the relationship between fruit intake and CVD. SBP was a more important metabolic mediator than the other factors. The indirect effect accounted for 30.0% when body mass index was additionally controlled as a mediator, and SBP still had an independent effect compared to the other mediators.

1	
h	
2	
3	
-	
4	
5	
5	
6	
7	
8	
٥	
,	
10	
11	
12	
13	
13	
14	
15	
15	
16	
17	
10	
18	
19	
20	
20	
21	
22	
23	
24	
24	
25	
20	
26	
27	
20	
28	
29	
20	
30	
31	
22	
32	
33	
24	
54	
35	
26	
50	
37	
20	
20	
39	
⊿∩	
40	
41	
12	
72	
43	
44	
45	
46	
47	
48	
40	
49	
50	
- 1	
51	
52	
53	
54	
55	
55 56	
55 56	
55 56 57	
55 56 57 58	
55 56 57 58	
55 56 57 58 59	

42	Conclusions: Our results indicate that controlling SBP may lessen the CVD risk, and a diet
43	rich in fruits can regulate SBP, which, in turn, reduces CVD risk.
44	Keywords: Cardiovascular disease, blood pressure, diet
45	
46	ARTICLE SUMMARY
47	
48	Strengths and limitations of this study
49	- In this study, we assessed how fruit or vegetable intake is related to cardiovascular
50	disease by assessing the indirect effect of systolic blood pressure, total cholesterol, and
51	fasting glucose, including body mass index. This topic was a less interesting part so far,
52	so the study has scientific value.
53	- Using national representative data source, we sought to generalize the research findings
54	- But, this results were derived from a cross-sectional study design, so causal
55	relationships could not be effectively drawn. Therefore, it is necessary to pay attention
56	to interpretation of research results.
57	
58	
59	
60	
61	
62	
63	
	3

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

64 INTRODUCTION

66 Cardiovascular diseases (CVDs) are responsible for mortality worldwide; a report from 67 the World Health Organization stated that CVDs accounted for 31% of all deaths worldwide 68 in 2015 [1]. Although mortality from ischemic heart disease has shown a flat trend and that 69 from cerebrovascular disease has shown a declining trend in the Republic of Korea since 70 2005, these causes of death remain highly ranked [2].

Several risk factors for CVDs, including metabolic factors, such as high glucose, high blood pressure, and high cholesterol, have been suggested [3]. Several studies have suggested that these metabolic factors are also linked to risk factors (e.g., body mass index [BMI] and dietary factors) and CVD risk as mediators [4, 5]. The causal link between these mediators and disease risk must be identified for an effective public health intervention. The mediators can help explain how intervention of risk factors works. However, previous studies focused on a single relationship between a risk factor and a disease rather than the mediating effects.

Excessive risk for CVD caused by poor diet and chronic diseases was reported from a study of global burden of disease (GBD). In addition, the GBD study established possible causal mediating relationships between a diet poor in fruits or vegetables, metabolic mediators (blood pressure, cholesterol, and glucose), and disease [4]. Moreover, a recent meta-analysis reported that the beneficial effects of fruits and vegetables intake were also shown in CVD, as well as in cancer and all-cause mortality [6]. The metabolic mediators mentioned above have also been linked to BMI and CVD [4]. The effect of a diet rich in fruits and vegetables on BMI has been reported through epidemiological studies [7], but few studies have assessed BMI as a mediator.
BMJ Open

There is a need to study the degree to which these metabolic factors contribute to the relationship between risk factors and disease. Although the evidence for the association between fruit/vegetable intake and CVD is relatively strong [8, 9], clarifying the potential biological pathway mechanisms could substantially add to our knowledge. Thus, using cross-sectional survey data from the 2013–2015 Korean National Health and Nutrition Examination Survey (KNHANES), we assessed the mediating effects of metabolic components applied to a confirmatory model. Furthermore, we assessed how the BMI contributes to the relationship between fruit or vegetable intake and CVD as a confounder or mediator. Abic

METHODS

1. Study subjects

This study was conducted using data from the 2013–2015 KNHANES, which is a national representative cross-sectional survey to assess health and nutritional status in the Korean population (response rate=78.3%). It consists of a health interview, health examination, and a nutrition survey. A number of variables were collected by trained staff, including physicians, medical technicians, and dieticians. The detailed KNHANES survey method has already been described [10].

The food frequency questionnaire (FFQ) was changed to a dish-based semi-quantitative FFQ based on a 2012 survey. The survey assessed subjects 19-64 years of age. Details regarding the development process and validation results of the FFQ tool have been previously published elsewhere [11, 12]. We used the sixth survey from 2013 to 2015 by sampling according to the survey cycle. This study included subjects ≥ 25 years. Additionally, the eligible study population included the respondents with data from all three parts of the survey. Of the subjects aged 25-64 who participated in the survey (n=12,258), 73.7% participated in all three parts of the survey. A total of 9,040 subjects (3,555 males and 5,485 females) were included in the study. The study protocol was approved by the Institutional Review Board of the Ewha Womans University Hospital.

2. Fruit and vegetable intake

128 The dish-based semi-quantitative FFQ was composed of 112 items and provided 129 information on typical dietary consumption for 1 year using a 9-point scale (less than once

per month or never, once per month, 2–3 times per month, once per week, 2–4 times per week, 5–6 times per week, once per day, twice per day, and three times per day) and three levels to represent the amount consumed by referring to a standard amount (less, standard, and more). Based on a previous study [4], we excluded pickled and salted vegetables, kimchi, and fruit juice. Vegetable intake and fruit intake were evaluated based on 15 items and 12 items, respectively (Supplemental Tables 1). The frequency of fruit intake was used after adjusting for seasonal fruit. Estimated intakes of fruits and vegetables were calculated on the FFQ by multiplying the frequency of each food (as described above) by the selected amount consumed: small (0.5), medium (1), and large (1.5). Fruit and vegetable intake was expressed in four categories (< 1 time/d, 1 time/d, 2 times/d, and \geq 3 times/d).

- - **3. Outcome and covariate data**

We used data from the health-related questionnaire for the diseases diagnosed by physicians. We selected the questions about stroke, myocardial infarction, and angina pectoris for the CVD-related diseases. If a subject answered "yes" to any of the three diseases, we considered that the subject had CVD. Additionally, we separately considered subjects who answered "yes" on the question about current illness with a physician's diagnosis and those who responded "yes" to a question about receiving treatment for a disease.

Using the measured height and weight information, BMI was calculated in units of kg/m².
Blood pressure was measured three times in total and the average value of the second and
third measurements was used. Total cholesterol and glucose were measured by taking blood
from fasting state.

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

We used data on sex, age, quartiles of income, region (urban/rural), current smoker, and

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

survey year as covariates through a literature review [13] and the results of a univariate analysis. We used quartile data for income instead of education level as a socioeconomic indicator because income may be directly linked to food purchases [14]. The question about physical activity was changed from the 2014 survey, so we did not consider physical activity.

158 4. Statistical analysis

The basic characteristics of the study subjects are presented as weighted percentages or weighted means with standard errors by considering the multi-stage sampling survey method. The distributions of the basic characteristics according to fruit or vegetable intake level were assessed using the trend test under the random sampling condition. In the main analysis, CVD was considered the outcome (Y) and fruit or vegetable intake was considered an independent variable (X). Systolic blood pressure (SBP) (M_1) , total cholesterol (M_2) , and fasting glucose (M_3) were applied as metabolic mediators (M). Additionally, BMI was considered as either a covariate or mediator.

We examined the association under the controlling covariates (sex, age, income, region [urban/rural], present smoking, and survey year) through four basic steps to assess mediation [15]. Step 1: association between dietary factors and CVD (X \rightarrow Y; total effect and was marked path "c"); step 2: association between dietary factors and metabolic mediators (X \rightarrow M_i; marked path "a"); step 3: association between metabolic mediators and CVD after controlling for metabolic mediators ($M_i \rightarrow Y$; marked path "b"); and step 4: association between dietary factors and CVD disease after controlling for metabolic mediators (direct effect; marked path "c"). We used the bootstrap method and the "process" macro (ver. V2.16.3) suggested by Andrew to assess the mediating effects [16]. In this analysis, we

BMJ Open

176	applied 10,000 bootstraps. We separately or simultaneously assessed the indirect effect of the
177	metabolic mediators on the association between dietary factors and CVD. The exponential
178	regression coefficient is equal to the odds ratio (OR) when considering the CVD as an
179	outcome variable. The percentage of risk mediated by the metabolic mediator was calculated
180	as [17]: OR (confounder adjusted) - OR (confounder and mediator adjusted)/OR (confounder
181	adjusted) – 1×100 .
182	All statistical analyses were conducted under a random sampling condition excluding the
183	basic characteristics given in Table 1 using SAS ver. 9.4 software (SAS Institute, Cary, NC,
184	USA). A two-sided <i>p</i> -value < 0.05 was considered significant.
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	
197	
198	
	٥

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

RESULTS

2	0	0	
<u> </u>	v	v	

 The basic characteristics of the study subjects are presented in Table 1. Mean age was 43.7 years, and 1.81% of subjects (n=189) had CVD. In addition, 0.98% and 0.90% of subject had stroke (n=102) and ischemic heart disease (n=97), respectively. Subjects with a higher income ate more fruits or vegetables than those with a lower income. Those who ate more fruit were more likely to be non-smokers and female than their counterparts (Supplemental Tables 2, 3).

The total effect of fruit intake on CVD showed an inverse association without controlling for metabolic mediators (adjusted odds ratio [aOR], 0.86, 95% CI: 0.74–0.98), but the effect of vegetable intake was not significant (aOR, 0.93; 95% CI: 0.81–1.06) after controlling for sex, age, income, region (urban/rural), current smoker, and survey year.

The direct effect of fruit intake on CVD was borderline significant after further considering each metabolic mediator. The effect of SBP did not include zero in the 95% CI range as the other metabolic mediators. The effect of fruit intake on BMI showed borderline significance, and the effect of BMI on CVD was significant, but the indirect effect of BMI was not significant. Additionally, the effect of SBP was significant even after controlling for BMI as a covariate (Table 2). SBP, cholesterol, and BMI were associated with CVD, but vegetable intake did not contribute to either metabolic mediator or CVD (Table 3). The mediating effect of SBP on the association between fruit intake and outcome was dominant even when the outcome was restricted to those with a current illness or undergoing treatment.

The OR was attenuated to 0.89 (95% CI: 0.77–1.03) while simultaneously controlling for

BMJ Open

multiple metabolic mediators, indicating a 21.4% indirect effect for CVD (i.e. (0.8555-(0.8864)/(0.8555-1)*100=21.4%). SBP showed an independent indirect effect. Higher fruit intake had a beneficial effect on fasting glucose, but its effect was not associated with CVD. The direct effect of fruit intake on CVD presented an inverse association, but it did not reach statistical significance (Figure 1). In addition, similar results were observed when adding BMI as covariate, with an OR of 0.90 (95% CI: 0.78–1.04; data not shown).

We analyzed the serial mediator model to assess whether BMI influenced SBP (Figure 2). Although the effect of fruit intake on BMI showed borderline significance, the influence of BMI on SBP, and the effect of SBP on CVD reached statistical significance. Of the three possible indirect paths, the fruit intake path \rightarrow SBP \rightarrow CVD was the only one to show an independent association.

Fruit intake was directly linked to subjects who suffered a stroke, but not ischemic heart disease, regardless of which metabolic factors were controlled. In addition, the mediating effect of SBP was dominant in patients who suffered a stroke or ischemic heart disease even after controlling for BMI (Supplemental Tables 4, 5).

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

DISCUSSION

In this study, we assessed how fruit or vegetable intake is related to CVD by assessing the indirect effect of metabolic mediators. Based on the suggested causal link, SBP, total cholesterol, and fasting glucose were considered metabolic mediators, and the effect of BMI was additionally assessed. Of them, the indirect effect of SBP on the relationship between fruit intake and CVD was significant even after considering BMI, but not vegetable intake. The indirect effect of the four metabolic factors accounted for 30.0% of the relationship between fruit intake and CVD (i.e. (0.8555-0.8989)/(0.8555-1)*100=30.0%). The beneficial effects of high fruit or vegetable intake on CVD and the unfavorable effects of high blood pressure, glucose, and cholesterol on CVD are well known. Thus, previous studies considered metabolic factors together, and mediators were reported to attenuate the association of a direct effect [5]. One large prospective study conducted in 10 regions in China indicated that higher fresh fruit intake is linked to CVD death, and its effect was attenuated by hazard ratios from 0.63 (95% CI: 0.56–0.72) to 0.70 (95% CI: 0.61–0.79) after adjusting for BMI, blood pressure, glucose, and waist circumference [18]. Another study conducted in Shanghai, China showed an attenuated association between fruit intake and incident coronary heart disease after controlling for a history of diabetes, hypertension, or dyslipidemia, but no association or attenuation was observed for vegetable intake [5]. A women's health study reported by Liu et al. also showed that the effect of fruits and vegetables on CVD risk became stronger after excluding subjects with a history of diabetes, hypertension, and high cholesterol [19]. It seems that these mediators largely attribute to the relationship between fruit and/or vegetable intake and CVD risk. However, biological

BMJ Open

pathways by metabolic factors between fruit and/or vegetable intake and CVD risk have notbeen investigated.

The assessment of a mediating effect could help understand how fruit and/or vegetable intake affects CVDs. In addition, an effect of poor dietary risk by metabolic mediators on CVD was suggested by the GBD study, so that was considered to estimate the disease burden. The mediating effect of blood pressure on the association between fruit and/or vegetable intake and CVD was suggested by a prospective cohort study of patients in the first National Health and Nutrition Examination Survey [13]. Blood pressure contributed 22.2% to the relationship between fruit and vegetable intake and CVD death. This was similar to the results adjusted for BMI, cholesterol, and blood pressure. That study also showed that the direct effect of fruit and vegetable intake was notable in patients who suffered a stroke but not those with ischemic heart disease. These results are in line with those of the present study. We assessed a potential role for BMI on the association between fruit intake and CVD using various models. Several reports, including the above-mentioned study, considered BMI as a potential mediator [13, 18]. Additionally, a causal link between BMI and CVD risk is mediated through metabolic factors. Two pooled studies of prospective cohorts assessed the effect of BMI on coronary heart disease and stroke as mediated by metabolic components. They reported that blood pressure was a more important mediator compared to cholesterol and glucose [17, 20]. Other pooled data from an Asian cohort also indicate that estimated mediating proportions through hypertension were 62.3, 35.7, and 92.4% for the association between BMI and death due to CVD, coronary heart disease, and stroke, respectively, but not by diabetes [21]. The GBD study restricted total calories to 2,000 kcal instead of considering BMI [22]. In the present study, higher fruit intake was inversely associated with BMI, but it

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

was borderline significant ($\beta = -0.06$, p = 0.08), which affected the results of the fruit intake path \rightarrow BMI \rightarrow SBP \rightarrow CVD in the serial multiple mediator model. Our study found that the mediating effect due to BMI was about 7.9%, but previous studies showed a < 3.0% mediating effect by BMI on the association between fruit only or fruit and vegetable intake and CVD deaths by presenting little change in the adjusted risk value [13, 18]. However, it is difficult to make a direct comparison due to discrepancies in study design, study populations, the definition of disease, and fruit and/or vegetable intake.

Eating more vegetables was not significantly associated with either a direct or indirect effect. In Korea, vegetables in the general population are easily accessible by a side dish. Indeed, statistics from the Organisation for Economic Co-operation and Development (OECD) have reported that daily vegetable consumption among adults was the highest in Korea [23]. However, the manner of preparation and/or cooking can influence nutrient content [7]. The favorable effects of fruit and vegetable intake can be explained by nutrients, such as dietary fiber, folate, potassium, and antioxidant vitamins (i.e., vitamin E, vitamin C, polyphenols, flavonoids, and carotenoids) and other components. These nutrients might be involved with controlling glucose, lipid level, and blood pressure, and reduce the risk of CVD along with weight control [7]. However, because foods contain various nutrients, food recommendations help subjects follow a prevention strategy. In addition, healthy eating is also associated with other health behaviors, such as not smoking and regular physical activity [13, 24].

The present study has some limitations. First, the results were derived from a crosssectional study design, so causal relationships could not be effectively drawn. Our study design is also open to the problem of reverse causation. If the reverse causation affects the

results, the association will appear to be null or reverse direction to what is expected. But, the indirect effect by SBP was significant and some parts of our results were consistent with previous studies [13, 24]. Furthermore, the results were consistent even after applying stroke or ischemic heart disease. Because the survey is conducted through a household visit and excludes people in the hospital, subjects with diseases might be the relatively less serious cases. Measurement error in FFQ survey or self-reported disease status may influence the results. In addition, residual confounding factors such as physical activity may have influenced the association. Finally, owing to the number of participants with CVD is very low (1.8%), the study has inadequate statistical power which might explain some of the non-significant findings.

Nevertheless, our study focused on the mediating effects of metabolic factors on CVD and assessed which metabolic factors affect CVD. Our results were produced using the bootstrapping method and did not impose the assumption of normality of the sampling distribution; thus, it was an appropriate design for multiple mediations [15]. The given evidence was conceptually approached and was not statistically tested for an indirect effect.

Taken together, our study suggests that controlling SBP might lessen CVD risk, and a diet rich in fruits can be used to regulate SBP, which, in turn, reduces CVD risk.

1

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

2		
3 4 5	334	Conflict of interest statement
6 7 8	335	None
9 10	336	
12 13	337	Contributor ship statement
15 16	338	HA Lee wrote the manuscript and performed the statistical analyses; D Lim, K Oh, and EJ Kim,
17 18 10	339	provided advice about writing the manuscript, and H Park helped interpret the data.
20 21	340	
22 23 24	341	Funding statement
25 26 27	342	This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of
28 29	343	Health & Welfare, Republic of Korea (HI13C0729).
30 31 32	344	
33 34 35	345	Data availability
36	246	The National Health and Nutrition Examination Survey files are exailable from the Karoo Contars for Disease
37 38	540	The National Health and Nutrition Examination Survey lifes are available from the Korea Centers for Disease
39	347	Control and Prevention database (URL <u>https://knhanes.cdc.go.kr/knhanes/sub03/sub03_02_02.do</u>). If you
40 41 42	348	register your e-mail on this site, you can freely download the raw data.
43 44	349	
45 46 47	350	
48 49 50	351	
51 52	352	
53 54		
55 56 57		16
58 50		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

REFERENCES

Organization (2017). World Health Cardiovascular diseases Fact 1. sheet. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed July 10, 2017. **Statistics** Causes 2. Korea. of Death Statistics in 2015. http://kostat.go.kr/portal/eng/pressReleases/8/10/index.board?bmode=read&bSeg=&aSeg=35 7968&pageNo=1&rowNum=10&navCount=10&currPg=&sTarget=title&sTxt=. Accessed July 10, 2017. 3. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, Mensah GA, Norrving B, Shiue I, Ng M, Estep K, Cercy K, Murray CJL, Forouzanfar MH; Global Burden of Diseases, Injuries and Risk Factors Study 2013 and Stroke Experts Writing Group. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic

analysis for the Global Burden of Disease Study 2013. *Lancet Neurol* 2016;15(9):913-924.
doi: 10.1016/S1474-4422(16)30073-4. Epub 2016 Jun 9.

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

4. GBD 2015 Risk Factors Collaborators Global, regional, and national comparative risk
assessment of 79 behavioural, environmental and occupational, and metabolic risks or
clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study
2015. *Lancet* 2016;388(10053):1659-1724. doi: 10.1016/S0140-6736(16)31679-8.

5. Danxia Yu, Xianglan Zhang ,Yu-Tang Gao, Honglan Li, Gong Yang, Jie Huang, Wei
Zheng, Yong-Bing Xiang, and Xiao-Ou Shu. Fruit and Vegetable Intake and Risk of Coronary
Heart Disease: Results from Prospective Cohort Studies of Chinese Adults in Shanghai. *Br J Nutr* 2014; 111(2): 353–362.

6. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, Greenwood DC, Riboli
E, Vatten LJ, Tonstad S. Fruit and vegetable intake and the risk of cardiovascular disease,
total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of
prospective studies. *Int J Epidemiol.* 2017;46(3):1029-1056.

- 379 7. Bazzano LA. Dietary intake of fruit and vegetables and risk of diabetes mellitus and
 380 cardiovascular diseases. Geneva: World Health Organization, 2005.
 - 8. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller
 MJ, Oberritter H, Schulze M, Stehle P, Watzl B. Critical review: vegetables and fruit in the

383	prevention of chronic diseases. Eur J Nutr. 2012;51(6):637-63. doi: 10.1007/s00394-012-
384	0380-у.
385	9. Dauchet L, Amouyel P, Dallongeville J. Fruits, vegetables and coronary heart disease. Nat
386	Rev Cardiol. 2009;6(9):599-608. doi: 10.1038/nrcardio.2009.131.
387	10. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, Chun C, Khang YH, Oh K. Data
388	resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES).
389	Int J Epidemiol 2014;43(1):69-77. doi: 10.1093/ije/dyt228.
390	11. Kim DW, Song S, Lee JE, Oh K, Shim J, Kweon S, Paik HY, Joung H. Reproducibility
391	and validity of an FFQ developed for the Korea National Health and Nutrition Examination
392	Survey (KNHANES). Public Health Nutr 2015;18(8):1369-1377.
93	12. Yun SH, Shim JS, Kweon S, Oh, K. Development of a Food Frequency Questionnaire for
94	the Korea National Health and Nutrition Examination Survey: Data from the Fourth Korea
95	National Health and Nutrition Examination Survey (KNHANES IV). Korean J Nutr 2013;
96	46(2): 186 ~ 196. (Korean)
397	13. Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, Whelton PK. Fruit and
898	vegetable intake and risk of cardiovascular disease in US adults: the first National Health and
99	Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin
00	Nutr 2002;76(1):93-9.
01	14. Darmon N, Drewnowski A. Does social class predict diet quality? Am J Clin Nutr
)2	2008;87(5):1107–1117.
03	15. Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and
104	comparing indirect effects in multiple mediator models. Behav Res Methods 2008;40(3):879-
405	91.
406	16. Andrew F. Hayes. Introduction to mediation, Moderation, and conditional process
407	analysis: a regression-based approach. The Guilford Press, New York, 2013
408	17. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI
409	Mediated Effects), Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G.
410	Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary
411	heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million
412	participants. Lancet 2014;383(9921):970-83. doi: 10.1016/S0140-6736(13)61836-X. Epub
413	2013 Nov 22.
	10

Page 19 of 33

BMJ Open

18. Huaidong Du, Liming Li., Derrick Bennett, Yu Guo, Timothy J. Key, Zheng Bian, Paul Sherliker, Haiyan Gao, Yiping Chen, Ling Yang, Junshi Chen, Shanqing Wang, Ranran Du, Hua Su, Rory Collins, Richard Peto, Zhengming Chen, for the China Kadoorie Biobank Study. Fresh Fruit Consumption and Major Cardiovascular Disease in China. N Engl J Med 2016; 374(14): 1332–1343.

- 19. Liu S, Manson JE, Lee IM, Cole SR, Hennekens CH, Willett WC, Buring JE. Fruit and vegetable intake and risk of cardiovascular disease: the Women's Health Study. Am J Clin Nutr 2000;72(4):922-8.
- 20. Lu Y, Hajifathalian K, Rimm EB, Ezzati M, Danaei G. Mediators of the Effect of Body Mass Index on Coronary Heart Disease: Decomposing Direct and Indirect Effects. Epidemiology 2015 ;26(2):153-62. doi: 10.1097/EDE.00000000000234.
- 21. Chen Y, Copeland WK, Vedanthan R, Grant E, Lee JE, Gu D, Gupta PC, Ramadas K, Inoue M, Tsugane S, Tamakoshi A, Gao YT, Yuan JM, Shu XO, Ozasa K, Tsuji I, Kakizaki M, Tanaka H, Nishino Y, Chen CJ, Wang R, Yoo KY, Ahn YO, Ahsan H, Pan WH, Chen CS, Pednekar MS, Sauvaget C, Sasazuki S, Yang G, Koh WP, Xiang YB, Ohishi W, Watanabe T, Sugawara Y, Matsuo K, You SL, Park SK, Kim DH, Parvez F, Chuang SY, Ge W, Rolland B, McLerran D, Sinha R, Thornquist M, Kang D, Feng Z, Boffetta P, Zheng W, He J, Potter JD. Association between body mass index and cardiovascular disease mortality in east Asians and south Asians: pooled analysis of prospective data from the Asia Cohort Consortium. *BMJ* 2013;347:f5446. doi: 10.1136/bmj.f5446.

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

- 22. GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, Burnett R, Casey D, Coates MM, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386(10010):2287-323. doi: 10.1016/S0140-6736(15)00128-2.
- 23. Organisation for Economic Co-operation and Development. Daily vegetable eating among adults, 2013 (or nearest year), in Health at a Glance 2015, OECD Publishing, Paris, 2015. doi: http://dx.doi.org/10.1787/health glance-2015-graph42-en.
 - 24. Takachi R, Inoue M, Ishihara J, Kurahashi N, Iwasaki M, Sasazuki S, Iso H, Tsubono Y, Tsugane S; JPHC Study Group. Fruit and vegetable intake and risk of total cancer and

44	5 cardiovascula	r disease:	Japan	Public	Health	Center-Based	Prospective	Study.	Am	J
44	6 Epidemiol 200	08;167(1):5	9-70.				-	-		
44	17									
44	8									
44	9									
45	50									
45	1									
45	52									
45	53									
45	54									
45	55									
45	6									
45	57									
45	58									
45	9									
46	60									
46	51									
46	52									
46	53									
46	64									
46	55									
46	56				20					
					20					
	Fc	or peer revie	w only -	http://bn	njopen.br	nj.com/site/abou	ıt/guidelines.xł	ntml		

Figure Legends

Figure 1. The effect of multiple metabolic factor (M_i) mediators in the association between fruit intake (X) and cardiovascular diseases (Y). ${}^{a}p < 0.01, {}^{b}p < 0.001$, SBP: systolic blood pressure. Coefficients were adjusted for sex, age, income, region (urban/rural), current smoker, and survey year using the bootstrapping method. Figure 2. The effect of multiple serial mediators of metabolic factors (M_i) in the association between fruit intake (X) and cardiovascular diseases (Y). $^{a}p < 0.1$, $^{b}p < 0.05$, $^{c}p < 0.01$, $^{d}p < 0.001$, BMI: body mass index, SBP: systolic blood pressure. Coefficients were adjusted for sex, age, income, region (urban/rural), current smoker, and survey year using the bootstrapping method.

486 Table 1. Basic characteristics of the study subjects.

	Weighted % (SE)
Sex	
Male	49.92 (0.51)
Female	50.08 (0.51)
Age range	25-64 years
Age (years)†	43.68 (0.18)
Region	
Urban	83.87 (1.52)
Rural	16.13 (1.52)
Income level (quartiles)	
Q1	23.46 (0.73)
Q2	25.61 (0.72)
Q3	25.03 (0.71)
Q4	25.90 (0.97)
Current smoking	
No	75.83 (0.60)
Yes	24.17 (0.60)
Disease	
Cardiovascular disease	1.81 (0.16)
Stroke	0.98 (0.13)
Ischemic heart disease	0.90 (0.10)
Metabolic Factors†	
Systolic blood pressure (mmHg)	115.01 (0.21)
Total cholesterol (mg/dL)	190.98 (0.47)
Fasting plasma glucose (mg/dL)	98.58 (0.30)
Body mass index (kg/m^2)	23.92 (0.05)
SE: Standard error.	
†Weighted mean with standard error.	
	22
	22

BMJ Open

500 501 502 503 504 505 506 507 508 509							Frui	t intake					
		X -	→ M (a	a)	$M \rightarrow Y (b)$			$X \rightarrow Y$ (c' = direct effect)			Indirect effect (a*b)		
	Metabolic Factors (M)	β	SE	р	β	SE	р	<u>β</u>	SE	<u>р</u>	β	95%	6 CI
	SBP ^a	-0.484	0.144	0.001	0.013	0.004	0.002	-0.137	0.072	0.06	-0.007	-0.014	-0.00
	TC ^a	-0.156	0.357	0.66	-0.019	0.003	<.0001	-0.144	0.075	0.05	0.003	-0.011	0.01
	FPG ^a	-0.665	0.217	<.01	0.004	0.003	0.20	-0.144	0.074	0.05	-0.002	-0.006	0.00
	BMI"	-0.059	0.034	0.08 < 01	0.078	0.022	0.001	-0.143	0.072	<.05	-0.005	-0.012	0.00
	SBP*	-0.420	0.159	<.01 0.86	-0.011	0.003	0.01	-0.127	0.072	0.08	-0.003	-0.011	-0.0004
	FPG ^b	-0.614	0.332	< 01	0.012	0.003	0.42	-0.120	0.075	0.09	-0.001	-0.012	0.01
	ITO	-0.014	0.214	01	0.002	0.005	0.42	0.150	0.074	0.00	0.002	0.005	0.002
4 5 6	^b Adjusted for index.	r sex, ago	e, incor	ne, regi	on (urbai	n/rural)	, current	smoking	g, surve	y year	, and bod	y mass	
)7													
8													
)9													
.0													
.1													
12													
L3													
L4													
15													
õ													
.7													
8													
9													

						Vegetab	le intake					
	Х –	→ M (a	a)	М	$I \rightarrow Y (I$)	$\sum_{n=1}^{\infty} (c) = d$	$X \rightarrow Y$	ect)	Indired	et effect (a	*b)
Metabolic	β	SE	р	β	SE	р	β	SE	<u>р</u>	β	95%	CI
BP ^a	-0.042	0.169	0.80	0.014	0.004	0.002	-0.132	0.086	0.13	-0.001	-0.006	0.004
C ^a	0.236	0.420	0.57	-0.019	0.003	<.0001	-0.121	0.089	0.18	-0.005	-0.021	0.012
PG ^a	-0.054	0.256	0.83	0.004	0.003	0.18	-0.132	0.088	0.14	-0.0002	-0.003	0.002
BMI ^a	0.057	0.040	0.16	0.080	0.022	<.001	-0.145	0.086	0.09	0.005	-0.002	0.013
BP ^b	-0.114	0.163	0.48	0.012	0.005	0.01	-0.131	0.086	0.13	-0.001	-0.006	0.002
°C ^b	0.142	0.415	0.73	-0.019	0.003	<.0001	-0.122	0.089	0.17	-0.003	-0.019	0.014
PG ^b	-0.121	0.252	0.63	0.003	0.003	0.4	-0.132	0.088	0.14	-0.0003	-0.003	0.002
SBP: systolic	c blood p	oressure.	, TC: to	otal chole	esterol,	FPG: fas	sting plas	sma glu	icose, I	BMI: body	mass	
ndex, SE: sta	andard er	ror, 95%	6 CI: 95	% confid	lence in	terval.						
Adjusted for	sex, age,	income	e, region	n (urban/i	rural), c	urrent sn	noking, a	nd surv	ey year	r.		
Adjusted fo	r sex, age	e, incon	ne, regi	on (urba	n/rural)	, current	smoking	g, surve	y year,	, and body	mass	
ndex.												
					24							

520 Table 3. The effect of metabolic mediators (M) in the association between vegetable intake

(X) and cardiovascular disease (Y).

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

а p<0.1, b p<0.05, с p<0.01, d p<0.001

254x190mm (300 x 300 DPI)

Fruit	Vegetable
Strawberry	Bean sprouts (seasoned, soup)
Melon	Seasoned mung bean sprout
Watermelon	Seasoned spinach
Peach	Seasoned bellflower (boiled or not)
Grape	Pumpkin (seasoned, pan-fried)
Apple	Other seasoned vegetables
Pear	Cucumber (seasoned, raw)
Persimmon, dried persimmon	Radish (seasoned, pickled, dried)
Tangerine	Vegetable salad
Banana	Seasoned green onion, and seasoned Chinese chives
Orange	Raw vegetables (lettuce, sesame, Chinese cabbage, and pumpkin leaf)
Kiwi	Green pepper
	Boiled broccoli, boiled cabbage
	Garlic
	Tomato, and cherry tomato

The food frequency questionnaire consists of dietary consumption using a 9-point scale (less than once per month or never, once per month, 2–3 times per month, once per week, 2–4 times per week, 5–6 times per week, once per day, twice per day, and three times per day) and three levels to represent the amount consumed by referring to a standard amount (less, standard, and more).

				Fruit in	ntake				
	< 1	time/day	1	time/day	2 ti	imes/day	3+ ti	mes/day	p_{trend}
	n	%	n	%	n	%	n	%	
Survey year									
2013	961	29.61	935	28.8	629	19.38	721	22.21	0.03
2014	945	31.81	825	27.77	538	18.11	663	22.32	
2015	916	32.45	810	28.69	488	17.29	609	21.57	
Sex									
Male	1519	42.73	983	27.65	551	15.5	502	14.12	<.0001
Female	1303	23.76	1587	28.93	1104	20.13	1491	27.18	
Age (years)	45.83	10.97	45.38	10.94	45.76	10.69	46.53	10.81	0.02
Region									
Urban	2280	30.62	2118	28.44	1389	18.65	1660	22.29	<.01
Rural	542	34.02	452	28.37	266	16.7	333	20.9	
Income level (qu	ıartiles) 🔪								
Q1	863	40.29	574	26.8	354	16.53	351	16.39	<.0001
Q2	827	36.38	634	27.89	359	15.79	453	19.93	
Q3	612	26.9	702	30.86	435	19.12	526	23.12	
Q4	510	22.02	649	28.02	500	21.59	657	28.37	
Current smokin	g								
No	1826	26.21	2030	29.14	1377	19.77	1733	24.88	<.0001
Yes	833	50.24	431	26	210	12.67	184	11.1	

Supplemental Table 2. Distribution of basic characteristics by fruit intake.

	Vegetable intake						(1) 2 1 (1)				
	< 1 1	time/day	1	time/day	2 ti	mes/day	3+ times/day		p_{trend}		
~	n	%	n	%	n	%	n	%			
Survey year	0.57	11	711	21.0	CT A	20.74	1504	16.00	000		
2013	357	12 50	711	21.9	674	20.76	1504	46.33	<.0001		
2014	374	12.59	725	24.4	585	19.69	1287	43.32			
2015	382	13.53	724	25.65	574	20.33	1143	40.49			
Sex	100	10.04	0.00		-	10.04	1.50 -	10.00			
Male	428	12.04	892	25.09	709	19.94	1526	42.93	0.38		
Female	685	12.49	1268	23.12	1124	20.49	2408	43.9			
Age (years)	45.54	11.70	45.11	10.93	45.49	10.93	46.49	10.55	<.0001		
Region											
Urban	910	12.22	1775	23.84	1526	20.49	3236	43.45	0.73		
Rural	203	12.74	385	24.17	307	19.27	698	43.82			
income level (qua	rtiles) 📃										
Q1	394	18.39	550	25.68	391	18.25	807	37.68	<.000		
Q2	288	12.67	587	25.82	481	21.16	917	40.34			
Q3	239	10.51	529	23.25	485	21.32	1022	44.92			
Q4	187	8.07	486	20.98	468	20.21	1175	50.73			
Current smoker											
No	810	11.63	1668	23.94	1421	20.4	3067	44.03	<.0		
Yes	248	14.96	392	23.64	325	19.6	693	41.8			

Supplemental Table 3. Distribution of basic characteristics by vegetable intake.

2	
3	
4	
5	
6	
7	
/ 0	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27 20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
ΔA	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	

1

Supplemental Table 4. The effect of metabolic mediators (M) in the association between fruit intake (X) and stroke (Y).

	Fruit intake											
	$X \rightarrow M$ (a)			$X \rightarrow M$ (a) $M \rightarrow Y$ (b)			$X \rightarrow Y$ (c' = direct effect)			Indirect effect (a*b)		
Metabolic Factors (M)	β SE p β SE p β		SE	р	β	95% CI						
SBP ^a	-0.484	0.144	<.001	0.015	0.006	<.01	-0.242	0.100	0.02	-0.007	-0.017	-0.001
TC ^a	-0.156	0.357	0.66	-0.018	0.003	<.0001	-0.268	0.105	0.01	0.003	-0.009	0.016
FPG ^a	-0.665	0.217	<.01	0.005	0.004	0.19	-0.269	0.105	0.01	-0.003	-0.008	0.002
$\mathbf{BMI}^{\mathrm{a}}$	-0.059	0.034	0.08	0.074	0.029	0.01	-0.249	0.100	0.01	-0.004	-0.013	0.001
\mathbf{SBP}^{b}	-0.420	0.139	<.01	0.013	0.006	0.03	-0.238	0.100	0.02	-0.005	-0.014	0.001
TC ^b	-0.064	0.352	0.86	-0.018	0.003	<.0001	-0.255	0.105	0.02	0.001	-0.011	0.015
FPG ^b	-0.614	0.214	<.01	0.003	0.004	0.37	-0.260	0.105	0.01	-0.002	-0.007	0.004

SBP: systolic blood pressure, TC: total cholesterol, FPG: fasting plasma glucose, BMI: body mass index, SE: standard error, 95% CI: 95% confidence interval.

^aAdjusted for sex, age, income, region (urban/rural), current smoking, and survey year.

^bAdjusted for sex, age, income, region (urban/rural), current smoking, survey year, and body mass index.

terez onz

4

Page 31 of 33

Supplemental Table 5. The effect of metabolic mediators (M) in the association between fruit intake (X) and ischemic heart disease (Y).

	Fruit intake											
	X -	$X \rightarrow M$ (a) $M \rightarrow Y$ (b)			(c' = c')	$X \rightarrow Y$ lirect eff	ect)	Indirect effect (a*b)				
Metabolic Factors (M)	β	SE	р	β	SE	р	β	SE	р	β	959	% CI
SBP^{a}	-0.484	0.144	<.001	0.011	0.006	0.06	-0.065	0.097	0.51	-0.006	-0.013	-0.0001
TC^{a}	-0.156	0.357	0.66	-0.021	0.003	<.0001	-0.042	0.100	0.67	0.003	-0.012	0.019
FPG ^a	-0.665	0.217	<.01	0.002	0.004	0.65	-0.048	0.099	0.63	-0.001	-0.006	0.004
BMI ^a	-0.059	0.034	0.08	0.079	0.031	0.01	-0.069	0.097	0.48	-0.005	-0.012	0.001
SBP^{b}	-0.420	0.139	<.01	0.010	0.006	0.12	-0.047	0.097	0.63	-0.004	-0.011	0.001
TC^b	-0.064	0.352	0.86	-0.020	0.003	<.0001	-0.018	0.100	0.86	0.001	-0.013	0.016
FPG ^b	-0.614	0.214	<.01	0.001	0.004	0.88	-0.028	0.099	0.78	0.000	-0.004	0.005

SBP: systolic blood pressure, TC: total cholesterol, FPG: fasting plasma glucose, BMI: body mass index, SE: standard error, 95% CI: 95% confidence interval.

^aAdjusted for sex, age, income, region (urban/rural), current smoking, and survey year.

^bAdjusted for sex, age, income, region (urban/rural), current smoking, survey year, and body mass index.

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	6-8
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	15
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8-9
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	8
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	6
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	10-11
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-15
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	16
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

BMJ Open

The mediating effects of metabolic factors on the association between fruit or vegetable intake and cardiovascular disease: the Korean National Health and Nutrition Examination Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019620.R2
Article Type:	Research
Date Submitted by the Author:	22-Jan-2018
Complete List of Authors:	Lee, Hye Ah; Mokdong Hospital, Ewha Womans University, Clinical Trial Center Lim, Dohee; Korea Centers for Disease Control and Prevention Oh, Kyungwon ; Korea Centers for Disease Control and Prevention, Division of Health and Nutrition Survey Kim, Eun Jung ; Pyeongtaek University, Department of Nursing Park, Hyesook; College of Medicine, Ewha Womans University, Department of preventive medicine,
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	Cardiovascular disease, blood pressure, NUTRITION & DIETETICS

BMJ Open

2	intake and cardiovascular disease: the Korean National Health and Nutri
3	Examination Survey
	•
4	
5	Hye Ah Lee ¹ , Dohee Lim ² , Kyungwon Oh ² , Eun Jung Kim ³ ,
6	Hyesook Park ⁴
7	¹ Clinical Trial Center, Mokdong Hospital, Ewha Womans University, Seoul, ² Divisio
8	Health and Nutrition Survey, Korea Centers for Disease Control and Prevention, Cheongy
9	gun, ³ Department of Nursing, Pyeongtaek University, Pyeongtaek, ⁴ Department of preven
10	medicine, College of Medicine, Ewha Womans University, Seoul, Korea
11	
12	
13	
14	Address for corresponding author: Hyesook Park, MD, Ph.D.
15	Department of Preventive Medicine, School of Medicine, Ewha Womans University, 1
16	Anyangcheon-ro, Yangcheon-ku, Seoul 158-710, Republic of Korea
17	Tel : +82.2-2650-5756, Fax: +82.2-2652-8325
18	E-mail : <u>hpark@ewha.ac.kr</u>
19	
20	Word count: 2,986
	1
	Ť

21 Abstract

Objective: We assessed the mediating effects of metabolic components on the relationship
between fruit or vegetable intake and cardiovascular disease (CVD).

24 Design: Cross-sectional study

Setting: This study was conducted using data from the 2013–2015 Korean National Health and Nutrition Examination Survey, which is a national representative cross-sectional survey to assess health and nutritional status in the Korean population.

Method and analysis: A total of 9,040 subjects (3,555 males and 5,485 females) aged ≥ 25 years were included in the study. Physician-diagnosed CVD via self-report was used as the outcome. Fruit or vegetable intake was measured via a dish-based semi-quantitative food frequency questionnaire and grouped into categories (< 1 time/d, 1 time/d, 2 times/d, and ≥ 3 times/d). Systolic blood pressure (SBP), cholesterol, and fasting glucose were considered metabolic mediators, and the bootstrap method was used to assess mediating effect.

Results: About 1.8% of adults aged 25-64 years had CVD. According to the result of "process" macro, the confounder adjusted risk for CVD decreased by 14% (odds ratio (OR) = 0.86, 95 % confidence interval (CI): 0.74–0.98) as fruit, but not vegetable, intake was increased by one unit per day. After additional adjustment for three metabolic factors simultaneously, the OR was attenuated to 0.89 (95% CI; 0.77–1.03). This result indicates that the indirect effect of three metabolic factors accounted for 21.4% of the relationship between fruit intake and CVD. SBP was a more important metabolic mediator than the other factors. The indirect effect by metabolic factors accounted for 30.0% when body mass index was

BMJ Open

Ξ
g
ēn:
firs
tpu
blis
hed
as
10.
113
6/b
mjo
per
1-20
17-
019
620
or or
1 28
Fe
bru
ary
201
Q
vnlo
ade
ďfi
МО.
Ħ
0://t
, Mi
ppei
n.br
nj.c
Om/
on
õ
tob€
er 1
,4 2
023
3 by
nő,
est.
Prc
otec
ted
Å
сор
yrig
1h

42	additionally controlled as a mediator, and SBP still had an independent effect compared to the
43	other mediators.
44	Conclusions: Our results indicate that controlling SBP may lessen the CVD risk, and a diet
45	rich in fruits can regulate SBP, which, in turn, reduces CVD risk.
46	Keywords: Cardiovascular disease, blood pressure, diet
47	
48	ARTICLE SUMMARY
49	
50	Strengths and limitations of this study
51	- In this study, we assessed how fruit or vegetable intake is related to cardiovascular
52	disease by assessing the indirect effect of systolic blood pressure, total cholesterol, and
53	fasting glucose, including body mass index. This topic was a less interesting part so far,
54	so the study has scientific value.
55	- Using national representative data source, we sought to generalize the research findings
56	- But, this results were derived from a cross-sectional study design, so causal
57	relationships could not be effectively drawn. Therefore, it is necessary to pay attention
58	to interpretation of research results.
59	
60	
61	
62	
63	
	3

64 INTRODUCTION

66 Cardiovascular diseases (CVDs) are responsible for mortality worldwide; a report from 67 the World Health Organization stated that CVDs accounted for 31% of all deaths worldwide 68 in 2015 [1]. Although mortality from ischemic heart disease has shown a flat trend and that 69 from cerebrovascular disease has shown a declining trend in the Republic of Korea since 70 2005, these causes of death remain highly ranked [2].

Several risk factors for CVDs, including metabolic factors, such as high glucose, high blood pressure, and high cholesterol, have been suggested [3]. Several studies have suggested that these metabolic factors are also linked to risk factors (e.g., body mass index [BMI] and dietary factors) and CVD risk as mediators [4, 5]. The causal link between these mediators and disease risk can help explain how intervention of risk factors works. However, previous studies focused on a single relationship between a risk factor and a disease rather than the mediating effects.

Excessive risk for CVD caused by poor diet and chronic diseases was reported from a study of global burden of disease (GBD). In addition, the GBD study established possible causal mediating relationships between a diet poor in fruits or vegetables, metabolic mediators (blood pressure, cholesterol, and glucose), and disease [4]. Moreover, a recent meta-analysis reported that the beneficial effects of fruits and vegetables intake were also shown in CVD, as well as in cancer and all-cause mortality [6]. The metabolic mediators mentioned above have also been linked to BMI and CVD [4]. The effect of a diet rich in fruits and vegetables on BMI has been reported through epidemiological studies [7], but few studies have assessed BMI as a mediator.

BMJ Open

There is a need to study the degree to which these metabolic factors contribute to the relationship between risk factors and disease. Although the evidence for the association between fruit/vegetable intake and CVD is relatively strong [8, 9], clarifying the potential biological pathway mechanisms could substantially add to our knowledge. Thus, using cross-sectional survey data from the 2013–2015 Korean National Health and Nutrition Examination Survey (KNHANES), we assessed the mediating effects of metabolic components applied to a confirmatory model. Furthermore, we assessed how the BMI contributes to the relationship between fruit or vegetable intake and CVD as a confounder or mediator. Abic

METHODS

1. Study subjects

This study was conducted using data from the 2013–2015 KNHANES, which is a national representative cross-sectional survey to assess health and nutritional status in the Korean population (response rate=78.3%). It consists of a health interview, health examination, and a nutrition survey. A number of variables were collected by trained staff, including physicians, medical technicians, and dieticians. The detailed KNHANES survey method has already been described [10].

The food frequency questionnaire (FFQ) was changed to a dish-based semi-quantitative FFQ based on a 2012 survey. The survey assessed subjects 19-64 years of age. Details regarding the development process and validation results of the FFQ tool have been previously published elsewhere [11, 12]. We used the sixth survey from 2013 to 2015 by sampling according to the survey cycle. This study included subjects ≥ 25 years. Additionally, the eligible study population included the respondents with data from all three parts of the survey. Of the subjects aged 25-64 who participated in the survey (n=12,258), 73.7% participated in all three parts of the survey. A total of 9,040 subjects (3,555 males and 5,485 females) were included in the study. The study protocol was approved by the Institutional Review Board of the Ewha Womans University Hospital.

2. Fruit and vegetable intake

128 The dish-based semi-quantitative FFQ was composed of 112 items and provided 129 information on typical dietary consumption for 1 year using a 9-point scale (less than once
per month or never, once per month, 2–3 times per month, once per week, 2–4 times per week, 5–6 times per week, once per day, twice per day, and three times per day) and three levels to represent the amount consumed by referring to a standard amount (less, standard, and more). Based on a previous study [4], we excluded pickled and salted vegetables, kimchi, and fruit juice. Vegetable intake and fruit intake were evaluated based on 15 items and 12 items, respectively (Supplemental Tables 1). The frequency of fruit intake was used after adjusting for seasonal fruit. Estimated intakes of fruits and vegetables were calculated on the FFQ by multiplying the frequency of each food (as described above) by the selected amount consumed: small (0.5), medium (1), and large (1.5). Fruit and vegetable intake was expressed in four categories (< 1 time/d, 1 time/d, 2 times/d, and \geq 3 times/d).

- - **3. Outcome and covariate data**

We used data from the health-related questionnaire for the diseases diagnosed by physicians. We selected the questions about stroke, myocardial infarction, and angina pectoris for the CVD-related diseases. If a subject answered "yes" to any of the three diseases, we considered that the subject had CVD. Additionally, we separately considered subjects who answered "yes" on the question about current illness with a physician's diagnosis and those who responded "yes" to a question about receiving treatment for a disease.

Using the measured height and weight information, BMI was calculated in units of kg/m².
Blood pressure was measured three times in total and the average value of the second and
third measurements was used. Total cholesterol and glucose were measured by taking blood
from fasting state.

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

We used data on sex, age, quartiles of income, region (urban/rural), current smoker, and

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

survey year as covariates through a literature review [13] and the results of a univariate analysis. We used quartile data for income instead of education level as a socioeconomic indicator because income may be directly linked to food purchases [14]. The question about physical activity was changed from the 2014 survey, so we did not consider physical activity.

158 4. Statistical analysis

The basic characteristics of the study subjects are presented as weighted percentages or weighted means with standard errors by considering the multi-stage sampling survey method. The distributions of the basic characteristics according to fruit or vegetable intake level were assessed using the trend test under the random sampling condition. In the main analysis, CVD was considered the outcome (Y) and fruit or vegetable intake was considered an independent variable (X). Systolic blood pressure (SBP) (M_1) , total cholesterol (M_2) , and fasting glucose (M_3) were applied as metabolic mediators (M). Additionally, BMI was considered as either a covariate or mediator.

We used the "process" macro based on the bootstrap method (ver. V2.16.3) suggested by Andrew to assess the mediating effects [15]. In this analysis, we applied 10,000 bootstraps. We separately or simultaneously assessed the indirect effect of the metabolic mediators on the association between dietary factors and CVD. Firstly, we examined the association under the controlling covariates (sex, age, income, region [urban/rural], present smoking, and survey year) through four basic steps to assess mediation [16]. Step 1: association between dietary factors and CVD (X \rightarrow Y; total effect and was marked path "c"); step 2: association between dietary factors and metabolic mediators (X \rightarrow M_i; marked path "a"); step 3: association between metabolic mediators and CVD after controlling for metabolic mediators ($M_i \rightarrow Y$;

BMJ Open

marked path "b"); and step 4: association between dietary factors and CVD disease after controlling for metabolic mediators (direct effect; marked path "c"). Subsequently, we evaluated the multiple mediator model and the serial mediator model. The exponential regression coefficient is equal to the odds ratio (OR) when considering the CVD as an outcome variable. The percentage of risk mediated by the metabolic mediator was calculated as [17]: OR (confounder adjusted) - OR (confounder and mediator adjusted)/OR (confounder adjusted) $- 1 \times 100$. All statistical analyses were conducted under a random sampling condition excluding the basic characteristics given in Table 1 using SAS ver. 9.4 software (SAS Institute, Cary, NC, Was co.. USA). A two-sided *p*-value < 0.05 was considered significant.

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

2	0	0	
_	v	0	

The basic characteristics of the study subjects are presented in Table 1. Mean age was 43.7 years, and 1.81% of subjects (n=189) had CVD. In addition, 0.98% and 0.90% of subject had stroke (n=102) and ischemic heart disease (n=97), respectively. Subjects with a higher income ate more fruits or vegetables than those with a lower income. Those who ate more fruit were more likely to be non-smokers and female than their counterparts (Supplemental Tables 2, 3).

The total effect of fruit intake on CVD showed an inverse association without controlling for metabolic mediators (adjusted odds ratio [aOR], 0.86, 95% CI: 0.74–0.98), but the effect of vegetable intake was not significant (aOR, 0.93; 95% CI: 0.81–1.06) after controlling for sex, age, income, region (urban/rural), current smoker, and survey year (data not shown).

The direct effect of fruit intake on CVD was borderline significant after further considering each metabolic mediator. The effect of fruit intake on SBP (X \rightarrow M) and the effect of SBP on CVD ($M \rightarrow Y$) were significant, and subsequently the indirect effect of SBP did not include zero in the 95% CI range, unlikely other metabolic mediators. The effect of fruit intake on BMI showed borderline significance, and the effect of BMI on CVD was significant, but the indirect effect of BMI was not significant. Additionally, the effect of SBP was significant even after controlling for BMI as a covariate (Table 2). SBP, cholesterol, and BMI were associated with CVD, but vegetable intake did not contribute to either metabolic mediator or CVD (Table 3). The mediating effect of SBP on the association between fruit intake and outcome was dominant even when the outcome was restricted to those with a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

221 current illness or undergoing treatment.

When the beta coefficient was expressed as OR, the OR of the effect of fruit intake on CVD was attenuated to 0.89 (95% CI: 0.77–1.03) while simultaneously controlling for three metabolic mediators, indicating a 21.4% indirect effect for CVD (i.e. (0.8555-(0.8864)/(0.8555-1)*100=21.4%). SBP showed an independent indirect effect. Higher fruit intake had a beneficial effect on fasting glucose, but its effect was not associated with CVD. The direct effect of fruit intake on CVD presented an inverse association (β =-0.121, p=0.11), but it did not reach statistical significance (Figure 1). In addition, similar results were observed when adding BMI as covariate, with an OR (the effect of fruit intake on CVD) of 0.90 (95% CI: 0.78–1.04; data not shown). The indirect effect of the four metabolic factors accounted for 30.0% of the relationship between fruit intake and CVD (i.e. (0.8555-0.8989)/(0.8555-1)*100=30.0%).

We analyzed the serial mediator model to assess whether BMI influenced SBP (Figure 2). Although the effect of fruit intake on BMI showed borderline significance, the influence of BMI on SBP, and the effect of SBP on CVD reached statistical significance. Of the three possible indirect paths, the fruit intake path \rightarrow SBP \rightarrow CVD was the only one to show an independent association.

Fruit intake was directly linked to subjects who suffered a stroke, but not ischemic heart disease, regardless of which metabolic factors were controlled. In addition, the mediating effect of SBP was dominant in patients who suffered a stroke or ischemic heart disease even after controlling for BMI (Supplemental Tables 4, 5).

DISCUSSION

In this study, we assessed how fruit or vegetable intake is related to CVD by assessing the indirect effect of metabolic mediators. Based on the suggested causal link, SBP, total cholesterol, and fasting glucose were considered metabolic mediators, and the effect of BMI was additionally assessed. Of them, the indirect effect of SBP on the relationship between fruit intake and CVD was significant even after considering BMI, but not vegetable intake. The indirect effect of the four metabolic factors accounted for 30.0% of the relationship between fruit intake and CVD. The beneficial effects of high fruit or vegetable intake on CVD and the unfavorable effects of high blood pressure, glucose, and cholesterol on CVD are well known. Thus, previous studies considered metabolic factors together, and mediators were reported to attenuate the association of a direct effect [5]. One large prospective study conducted in 10 regions in China indicated that higher fresh fruit intake is linked to CVD death, and its effect was attenuated by hazard ratios from 0.63 (95% CI: 0.56–0.72) to 0.70 (95% CI: 0.61–0.79) after adjusting for BMI, blood pressure, glucose, and waist circumference [18]. Another study conducted in Shanghai, China showed an attenuated association between fruit intake and incident coronary heart disease after controlling for a history of diabetes, hypertension, or dyslipidemia, but no association or attenuation was observed for vegetable intake [5]. The Women's Health Study reported by Liu et al. also showed that the effect of fruits and vegetables on CVD risk became stronger after excluding subjects with a history of diabetes, hypertension, and high cholesterol [19]. It seems that these mediators largely attribute to the relationship between fruit and/or vegetable intake and CVD risk. However, biological

BMJ Open

pathways by metabolic factors between fruit and/or vegetable intake and CVD risk have notbeen investigated.

The assessment of a mediating effect could help understand how fruit and/or vegetable intake affects CVDs. In addition, an effect of poor dietary risk by metabolic mediators on CVD was suggested by the GBD study, so that was considered to estimate the disease burden. The mediating effect of blood pressure on the association between fruit and/or vegetable intake and CVD was suggested by a prospective cohort study of patients in the first National Health and Nutrition Examination Survey [13]. Blood pressure contributed 22.2% to the relationship between fruit and vegetable intake and CVD death. This was similar to the results adjusted for BMI, cholesterol, and blood pressure. That study also showed that the direct effect of fruit and vegetable intake was notable in patients who suffered a stroke but not those with ischemic heart disease. These results are in line with those of the present study. We assessed a potential role for BMI on the association between fruit intake and CVD using various models. Several reports, including the above-mentioned study, considered BMI as a potential mediator [13, 18]. Additionally, a causal link between BMI and CVD risk is mediated through metabolic factors. Two pooled studies of prospective cohorts assessed the effect of BMI on coronary heart disease and stroke as mediated by metabolic components. They reported that blood pressure was a more important mediator compared to cholesterol and glucose [17, 20]. Other pooled data from an Asian cohort also indicate that estimated mediating proportions through hypertension were 62.3, 35.7, and 92.4% for the association between BMI and death due to CVD, coronary heart disease, and stroke, respectively, but not by diabetes [21]. The GBD study restricted total calories to 2,000 kcal instead of considering BMI [22]. In the present study, higher fruit intake was inversely associated with BMI, but it

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

was borderline significant ($\beta = -0.06$, p = 0.08), which affected the results of the fruit intake path \rightarrow BMI \rightarrow SBP \rightarrow CVD in the serial multiple mediator model. Our study found that the mediating effect due to BMI was about 7.9%, but previous studies showed a < 3.0% mediating effect by BMI on the association between fruit only or fruit and vegetable intake and CVD deaths by presenting little change in the adjusted risk value [13, 18]. However, it is difficult to make a direct comparison due to discrepancies in study design, study populations, the definition of disease, and fruit and/or vegetable intake.

Eating more vegetables was not significantly associated with either a direct or indirect effect. In Korea, vegetables in the general population are easily accessible by a side dish. Indeed, statistics from the Organisation for Economic Co-operation and Development (OECD) have reported that daily vegetable consumption among adults was the highest in Korea [23]. However, the manner of preparation and/or cooking can influence nutrient content [7]. The favorable effects of fruit and vegetable intake can be explained by nutrients, such as dietary fiber, folate, potassium, and antioxidant vitamins (i.e., vitamin E, vitamin C, polyphenols, flavonoids, and carotenoids) and other components. These nutrients might be involved with controlling glucose, lipid level, and blood pressure, and reduce the risk of CVD along with weight control [7]. However, because foods contain various nutrients, food recommendations help subjects follow a prevention strategy. In addition, healthy eating is also associated with other health behaviors, such as not smoking and regular physical activity [13, 24].

The present study has some limitations. First, the results were derived from a crosssectional study design, so causal relationships could not be effectively drawn. Our study design is also open to the problem of reverse causation. If the reverse causation affects the

results, the association will appear to be null or reverse direction to what is expected. But, the indirect effect by SBP was significant and some parts of our results were consistent with previous studies [13, 24]. Furthermore, the results were also consistent when stroke and ischemic heart disease were analyzed separately. Because the survey was conducted through a household visit and excludes people in the hospital, subjects with diseases might be the relatively less serious cases. Measurement error in FFQ survey or self-reported disease status may influence the results. In addition, residual confounding factors such as physical activity may have influenced the association. Finally, because the number of participants with CVD was very low (1.8%), the study had inadequate statistical power which might explain some of the non-significant findings.

Nevertheless, our study focused on the mediating effects of metabolic factors on CVD and assessed which metabolic factors affect CVD. Our results were produced using the bootstrapping method and did not impose the assumption of normality of the sampling distribution; thus, it was an appropriate design for multiple mediations [16]. The given evidence was conceptually approached and was not statistically tested for an indirect effect. BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

Taken together, our study suggests that diets rich in fruits may contribute to a lower CVD risk partly through lowered systolic blood pressure. Further prospective studies are needed for confirmation.

1		
3		
4 5	335	Conflict of interest statement
6 7	336	None
8		
9 10	337	
11 12		
13	338	Contributor ship statement
14 15		
16	339	HA Lee wrote the manuscript and performed the statistical analyses; D Lim, K Oh, and EJ Kim,
17 18	340	provided advice about writing the manuscript, and H Park helped interpret the data.
19 20		
20	341	
22		
23 24	342	Funding statement
25		
26 27	343	This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of
28 29	344	Health & Welfare, Republic of Korea (HI13C0729).
30		
31 32	345	
33		
34 35	346	Data availability
36	247	The Mating I Haulth and Matitice Franciscotice Commendiate and evillable from the Kome Content for Discover
37 38	347	The National Health and Nutrition Examination Survey files are available from the Korea Centers for Disease
39	348	Control and Prevention database (URL <u>https://knhanes.cdc.go.kr/knhanes/sub03/sub03_02_02_02.do</u>). If you
40 41	349	register your e-mail on this site, you can freely download the raw data.
42		
45 44	350	
45		
46 47	351	
48		
49	352	
50 51		
52	353	
53		
54 55		16
56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

REFERENCES

Organization (2017). World Health Cardiovascular diseases Fact 1. sheet. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed July 10, 2017. **Statistics** Causes 2. Korea. of Death Statistics in 2015. http://kostat.go.kr/portal/eng/pressReleases/8/10/index.board?bmode=read&bSeg=&aSeg=35 7968&pageNo=1&rowNum=10&navCount=10&currPg=&sTarget=title&sTxt=. Accessed July 10, 2017. 3. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, Mensah

362 3. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, Mensah
363 GA, Norrving B, Shiue I, Ng M, Estep K, Cercy K, Murray CJL, Forouzanfar MH; Global
364 Burden of Diseases, Injuries and Risk Factors Study 2013 and Stroke Experts Writing Group.
365 Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic
366 analysis for the Global Burden of Disease Study 2013. *Lancet Neurol* 2016;15(9):913-924.
367 doi: 10.1016/S1474-4422(16)30073-4. Epub 2016 Jun 9.

4. GBD 2015 Risk Factors Collaborators Global, regional, and national comparative risk
assessment of 79 behavioural, environmental and occupational, and metabolic risks or
clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study
2015. *Lancet* 2016;388(10053):1659-1724. doi: 10.1016/S0140-6736(16)31679-8.

5. Danxia Yu, Xianglan Zhang ,Yu-Tang Gao, Honglan Li, Gong Yang, Jie Huang, Wei
Zheng, Yong-Bing Xiang, and Xiao-Ou Shu. Fruit and Vegetable Intake and Risk of Coronary
Heart Disease: Results from Prospective Cohort Studies of Chinese Adults in Shanghai. *Br J Nutr* 2014; 111(2): 353–362.

6. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, Greenwood DC, Riboli
E, Vatten LJ, Tonstad S. Fruit and vegetable intake and the risk of cardiovascular disease,
total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of
prospective studies. *Int J Epidemiol.* 2017;46(3):1029-1056.

- 7. Bazzano LA. Dietary intake of fruit and vegetables and risk of diabetes mellitus and
 cardiovascular diseases. Geneva: World Health Organization, 2005.
 - 8. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller
 - 383 MJ, Oberritter H, Schulze M, Stehle P, Watzl B. Critical review: vegetables and fruit in the

	BMJ Open
384	prevention of chronic diseases. Eur J Nutr. 2012;51(6):637-63. doi: 10.1007/s00394-0
385	0380-у.
386	9. Dauchet L, Amouyel P, Dallongeville J. Fruits, vegetables and coronary heart disease.
387	Rev Cardiol. 2009;6(9):599-608. doi: 10.1038/nrcardio.2009.131.
388	10. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, Chun C, Khang YH, Oh K.
389	resource profile: the Korea National Health and Nutrition Examination Survey (KNHAN
390	Int J Epidemiol 2014;43(1):69-77. doi: 10.1093/ije/dyt228.
391	11. Kim DW, Song S, Lee JE, Oh K, Shim J, Kweon S, Paik HY, Joung H. Reproducib
392	and validity of an FFQ developed for the Korea National Health and Nutrition Examination
393	Survey (KNHANES). Public Health Nutr 2015;18(8):1369-1377.
394	12. Yun SH, Shim JS, Kweon S, Oh, K. Development of a Food Frequency Questionnaire
395	the Korea National Health and Nutrition Examination Survey: Data from the Fourth K
396	National Health and Nutrition Examination Survey (KNHANES IV). Korean J Nutr 2
397	46(2): 186 ~ 196. (Korean)
398	13. Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, Whelton PK. Fruit
399	vegetable intake and risk of cardiovascular disease in US adults: the first National Health
400	Nutrition Examination Survey Epidemiologic Follow-up Study. Am J
401	Nutr 2002;76(1):93-9.
402	14. Darmon N, Drewnowski A. Does social class predict diet quality? Am J Clin
403	2008;87(5):1107–1117.
404	15. Andrew F. Hayes. Introduction to mediation, Moderation, and conditional pro-
405	analysis: a regression-based approach. The Guilford Press, New York, 2013
406	16. Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing
407	comparing indirect effects in multiple mediator models. Behav Res Methods 2008;40(3):
408	91.
409	17. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (
410	Mediated Effects), Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danae
411	Metabolic mediators of the effects of body-mass index, overweight, and obesity on coro
412	heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 mi
413	participants. Lancet 2014;383(9921):970-83. doi: 10.1016/S0140-6736(13)61836-X. H
414	2013 Nov 22.

Page 19 of 33

BMJ Open

18. Huaidong Du, Liming Li., Derrick Bennett, Yu Guo, Timothy J. Key, Zheng Bian, Paul Sherliker, Haiyan Gao, Yiping Chen, Ling Yang, Junshi Chen, Shanqing Wang, Ranran Du, Hua Su, Rory Collins, Richard Peto, Zhengming Chen, for the China Kadoorie Biobank Study. Fresh Fruit Consumption and Major Cardiovascular Disease in China. N Engl J Med 2016; 374(14): 1332–1343.

19. Liu S, Manson JE, Lee IM, Cole SR, Hennekens CH, Willett WC, Buring JE. Fruit and vegetable intake and risk of cardiovascular disease: the Women's Health Study. Am J Clin Nutr 2000;72(4):922-8.

20. Lu Y, Hajifathalian K, Rimm EB, Ezzati M, Danaei G. Mediators of the Effect of Body Mass Index on Coronary Heart Disease: Decomposing Direct and Indirect Effects. Epidemiology 2015 ;26(2):153-62. doi: 10.1097/EDE.00000000000234.

21. Chen Y, Copeland WK, Vedanthan R, Grant E, Lee JE, Gu D, Gupta PC, Ramadas K, Inoue M, Tsugane S, Tamakoshi A, Gao YT, Yuan JM, Shu XO, Ozasa K, Tsuji I, Kakizaki M, Tanaka H, Nishino Y, Chen CJ, Wang R, Yoo KY, Ahn YO, Ahsan H, Pan WH, Chen CS, Pednekar MS, Sauvaget C, Sasazuki S, Yang G, Koh WP, Xiang YB, Ohishi W, Watanabe T, Sugawara Y, Matsuo K, You SL, Park SK, Kim DH, Parvez F, Chuang SY, Ge W, Rolland B, McLerran D, Sinha R, Thornquist M, Kang D, Feng Z, Boffetta P, Zheng W, He J, Potter JD. Association between body mass index and cardiovascular disease mortality in east Asians and south Asians: pooled analysis of prospective data from the Asia Cohort Consortium. *BMJ* 2013;347:f5446. doi: 10.1136/bmj.f5446.

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

22. GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, Burnett R, Casey D, Coates MM, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386(10010):2287-323. doi: 10.1016/S0140-6736(15)00128-2.

23. Organisation for Economic Co-operation and Development. Daily vegetable eating among adults, 2013 (or nearest year), in Health at a Glance 2015, OECD Publishing, Paris, 2015. doi: http://dx.doi.org/10.1787/health glance-2015-graph42-en.

24. Takachi R, Inoue M, Ishihara J, Kurahashi N, Iwasaki M, Sasazuki S, Iso H, Tsubono Y, Tsugane S; JPHC Study Group. Fruit and vegetable intake and risk of total cancer and

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

BMJ Open

446	cardiovascular	disease:	Japan	Public	Health	Center-Based	Prospective	Study.	Am J	Ţ
447	Epidemiol 2008	8;167(1):5	59-70.							
448										
449										
450										
451										
452										
453										
454										
455										
456										
457										
458										
459										
460										
461										
462										
463										
464										
465										
466										
467					20					
					20					
	For	peer revie	w only -	http://bn	njopen.br	nj.com/site/abou	ıt/guidelines.xł	ntml		

Figure Legends

470	Figure 1. The effect of multiple metabolic factor (M _i) mediators in the association between
471	fruit intake (X) and cardiovascular diseases (Y).
472	${}^{a}p < 0.01$, ${}^{b}p < 0.001$, SBP: systolic blood pressure. Coefficients were adjusted for sex, age,
473	income, region (urban/rural), current smoker, and survey year using the bootstrapping method.
474	
475	Figure 2. The effect of multiple serial mediators of metabolic factors (M _i) in the association
476	between fruit intake (X) and cardiovascular diseases (Y).
477	${}^{a}p < 0.1$, ${}^{b}p < 0.05$, ${}^{c}p < 0.01$, ${}^{d}p < 0.001$, BMI: body mass index, SBP: systolic blood pressure.
478	Coefficients were adjusted for sex, age, income, region (urban/rural), current smoker, and
479	survey year using the bootstrapping method.
480	
481	
482	
483	
405	
484	
485	
486	
	21
	21

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 22	
2∠ 22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

487 Table 1. Basic characteristics of the study subjects.

	Weighted % (SE)
Sex	
Male	49.92 (0.51)
Female	50.08 (0.51)
Age range	25–64 years
Age (years)†	43.68 (0.18)
Region	
Urban	83.87 (1.52)
Rural	16.13 (1.52)
Income level (quartiles)	
Q1	23.46 (0.73)
Q2	25.61 (0.72)
Q3	25.03 (0.71)
Q4	25.90 (0.97)
Current smoking	
No	75.83 (0.60)
Yes	24.17 (0.60)
Disease	
Cardiovascular disease	1.81 (0.16)
Stroke	0.98 (0.13)
Ischemic heart disease	0.90 (0.10)
Metabolic Factors†	
Systolic blood pressure (mn	nHg) 115.01 (0.21)
Total cholesterol (mg/dL)	190.98 (0.47)
Fasting plasma glucose (mg	/dL) 98.58 (0.30)
Body mass index (kg/m^2)	23.92 (0.05)
SE: Standard error.	
†Weighted mean with standard	error.
	22

BMJ Open

						Frui	it intake					
	X -	→ M (a)	М	$M \rightarrow Y (b)$			$X \rightarrow Y$ (c' = direct effect)			irect effect	(a*b)
Metabolic Factors (M)	β	SE	р	β	SE	р	β	SE	р	β	95%	6 CI
SBP ^a	-0.484	0.144	0.001	0.013	0.004	0.002	-0.137	0.072	0.06	-0.007	-0.014	-0.0
TC ^a	-0.156	0.357	0.66	-0.019	0.003	<.0001	-0.144	0.075	0.05	0.003	-0.011	0.0
FPG ^a	-0.665	0.217	<.01	0.004	0.003	0.20	-0.144	0.074	0.05	-0.002	-0.006	0.0
BMI^{a}	-0.059	0.034	0.08	0.078	0.022	0.001	-0.143	0.072	<.05	-0.005	-0.012	0.0
SBP^{b}	-0.420	0.139	<.01	0.011	0.005	0.01	-0.127	0.072	0.08	-0.005	-0.011	-0.00
TC ^b	-0.064	0.352	0.86	-0.019	0.003	<.0001	-0.126	0.075	0.09	0.001	-0.012	0.0
FPG ^b	-0.614	0.214	<.01	0.002	0.003	0.42	-0.130	0.074	0.08	-0.002	-0.005	0.
All analyzes	s were pe	erforme	ed separ	rately ac	cording	g to each	n metabo	olic me	diator.			

	Vegetable intake													
		X -	→M (a)	$M \rightarrow Y (b) \qquad \qquad X \rightarrow Y \\ (c' = direct effect)$						Indired	et effect (a	*b)	
	Metabolic Factors (M)	β	SE	р	β	SE	р	β	SE	р	β	95%	CI	
	SBP ^a	-0.042	0.169	0.80	0.014	0.004	0.002	-0.132	0.086	0.13	-0.001	-0.006	0.004	
	TC ^a	0.236	0.420	0.57	-0.019	0.003	<.0001	-0.121	0.089	0.18	-0.005	-0.021	0.012	
	FPG ^a	-0.054	0.256	0.83	0.004	0.003	0.18	-0.132	0.088	0.14	-0.0002	-0.003	0.002	
	BMI ^a	0.057	0.040	0.16	0.080	0.022	<.001	-0.145	0.086	0.09	0.005	-0.002	0.013	
	SBP	-0.114	0.163	0.48	0.012	0.005	0.01	-0.131	0.086	0.13	-0.001	-0.006	0.002	
	TC ^b	0.142	0.415	0.73	-0.019	0.003	<.0001	-0.122	0.089	0.17	-0.003	-0.019	0.014	
	FPG ^o	-0.121	0.252	0.63	0.003	0.003	0.4	-0.132	0.088	0.14	-0.0003	-0.003	0.002	
	SBP: systolic	c blood p	oressure,	TC: to	otal chole	esterol,	FPG: fas	sting plas	sma glu	cose, I	BMI: body	mass		
	index, SE: sta	andard er	ror, 95%	CI: 95	% confid	lence in	terval.							
	^a Adjusted for	r sex, age,	, income	, region	n (urban/i	rural), c	urrent sn	noking, a	nd surv	ey year	r.			
	^b Adjusted for	r sex, ag	e, incom	ne, regi	on (urba	n/rural)	, current	smoking	, surve	y year,	and body	mass		
	index.													
	All analyzes	s were pe	erforme	d separ	rately ac	cording	g to each	n metabo	lic me	diator.				
1														
5														
6														
7														
88														
9														
0														
1														
						24								
						24								
		F			t		. ,.							

Table 3. The effect of metabolic mediators (M) in the association between vegetable intake

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

а p<0.1, b p<0.05, с p<0.01, d p<0.001

254x190mm (300 x 300 DPI)

Fruit	Vegetable
Strawberry	Bean sprouts (seasoned, soup)
Melon	Seasoned mung bean sprout
Watermelon	Seasoned spinach
Peach	Seasoned bellflower (boiled or not)
Grape	Pumpkin (seasoned, pan-fried)
Apple	Other seasoned vegetables
Pear	Cucumber (seasoned, raw)
Persimmon, dried persimmon	Radish (seasoned, pickled, dried)
Tangerine	Vegetable salad
Banana	Seasoned green onion, and seasoned Chinese chives
Orange	Raw vegetables (lettuce, sesame, Chinese cabbage, and pumpkin leaf)
Kiwi	Green pepper
	Boiled broccoli, boiled cabbage
	Garlic
	Tomato, and cherry tomato

The food frequency questionnaire consists of dietary consumption using a 9-point scale (less than once per month or never, once per month, 2–3 times per month, once per week, 2–4 times per week, 5–6 times per week, once per day, twice per day, and three times per day) and three levels to represent the amount consumed by referring to a standard amount (less, standard, and more).

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

1	
2	
3 4 5	Supplemental Ta
6	
7	
9	Survey year
10	2013
11	2014
12	Sex
13	Male
15	Female
16	Age (years) Region
17	Urban
18	Rural
19	Income level (qua
20	Q_1 Q_2
22	Q3
23	Q4
24	Current smoking
25	Yes
20	
28	
29	
30	
31	
33	
34	
35	
36	
37	
30 39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50 51	
52	
53	
54	
55	
56	
57 58	
50	

59

60

Supplemental Table 2	Distribution of	f basic character	ristics by fruit	t intake.
----------------------	-----------------	-------------------	------------------	-----------

				Fruit in	ıtake				
	< 1 t	time/day	1 t	time/day	2 ti	mes/day	3+ ti	mes/day	p_{trend}
	n	%	n	%	n	%	n	%	
Survey year									
2013	961	29.61	935	28.8	629	19.38	721	22.21	0.03
2014	945	31.81	825	27.77	538	18.11	663	22.32	
2015	916	32.45	810	28.69	488	17.29	609	21.57	
Sex									
Male	1519	42.73	983	27.65	551	15.5	502	14.12	<.0001
Female	1303	23.76	1587	28.93	1104	20.13	1491	27.18	
Age (years)	45.83	10.97	45.38	10.94	45.76	10.69	46.53	10.81	0.02
Region									
Urban	2280	30.62	2118	28.44	1389	18.65	1660	22.29	<.01
Rural	542	34.02	452	28.37	266	16.7	333	20.9	
Income level (qu	artiles)								
Q1	863	40.29	574	26.8	354	16.53	351	16.39	<.0001
Q2	827	36.38	634	27.89	359	15.79	453	19.93	
Q3	612 🧹	26.9	702	30.86	435	19.12	526	23.12	
Q4	510	22.02	649	28.02	500	21.59	657	28.37	
Current smokin	g								
No	1826	26.21	2030	29.14	1377	19.77	1733	24.88	<.0001
Yes	833	50.24	431	26	210	12.67	184	11.1	

29.14 26 210 12...

	Ū
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
10	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	

60

Supplemental Table 3. Distribution of basic characteristics by vegetable intake.

				Vegetable	intake				
	< 1	time/day	1	time/day	2 ti	mes/day	3+ ti	mes/day	p_{trend}
	n	%	n	%	n	%	n	%	
Survey year									
2013	357	11	711	21.9	674	20.76	1504	46.33	<.0001
2014	374	12.59	725	24.4	585	19.69	1287	43.32	
2015	382	13.53	724	25.65	574	20.33	1143	40.49	
Sex									
Male	428	12.04	892	25.09	709	19.94	1526	42.93	0.38
Female	685	12.49	1268	23.12	1124	20.49	2408	43.9	
Age (years)	45.54	11.70	45.11	10.93	45.49	10.93	46.49	10.55	<.0001
Region									
Urban	910	12.22	1775	23.84	1526	20.49	3236	43.45	0.73
Rural	203	12.74	385	24.17	307	19.27	698	43.82	
Income level (qu	artiles)								
Q1	394	18.39	550	25.68	391	18.25	807	37.68	<.0001
Q2	288	12.67	587	25.82	481	21.16	917	40.34	
Q3	239	10.51	529	23.25	485	21.32	1022	44.92	
Q4	187	8.07	486	20.98	468	20.21	1175	50.73	
Current smoker									
No	810	11.63	1668	23.94	1421	20.4	3067	44.03	<.01
Yes	248	14.96	392	23.64	325	19.6	693	41.8	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Indirect effect (a*b)

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright

at	oolic m	ediators	(M) in t	he asso	ociatio	n t
		Fruit	intake			
м	$\rightarrow V (1)$	2)	Χ	$X \rightarrow Y$		
101	/ 1 (1))	(c' = d	lirect eff	ect)	
	SE	р	β	SE	р	
	0.006	<.01	-0.242	0.100	0.02	-0
	0.003	<.0001	-0.268	0.105	0.01	0
	0.004	0.19	-0.269	0.105	0.01	-0
	0.029	0.01	-0.249	0.100	0.01	-0
	0.006	0.03	-0.238	0.100	0.02	-0
	0.003	<.0001	-0.255	0.105	0.02	0
	0.004	0.37	-0.260	0.105	0.01	-0
ole	esterol,	FPG: fa	sting plas	sma glu	cose, l	BM
fid	lence in	terval.				
n/ı	rural), c	urrent sn	noking, a	nd surv	ey yea	ſ.
ba	n/rural)	, current	smoking	, surve	y year	, ar
ac	cording	g to each	n metabo	olic mee	liator.	
	4					
ni	nnen hr	ni com/s	ite/about	/auidal	ines vh	tm

Supplemental Table 4. The effect of metabolic mediators (M) in the association between fru	it
intake (X) and stroke (Y).	

 $X \rightarrow M$ (a)

Metabolic

Factors (M)	β	SE	р	β	SE	р	β	SE	р	β	95%	6 CI
SBP ^a	-0.484	0.144	<.001	0.015	0.006	<.01	-0.242	0.100	0.02	-0.007	-0.017	-0.001
TC ^a	-0.156	0.357	0.66	-0.018	0.003	<.0001	-0.268	0.105	0.01	0.003	-0.009	0.016
FPG ^a	-0.665	0.217	<.01	0.005	0.004	0.19	-0.269	0.105	0.01	-0.003	-0.008	0.002
$\mathbf{BMI}^{\mathrm{a}}$	-0.059	0.034	0.08	0.074	0.029	0.01	-0.249	0.100	0.01	-0.004	-0.013	0.001
SBP^b	-0.420	0.139	<.01	0.013	0.006	0.03	-0.238	0.100	0.02	-0.005	-0.014	0.001
TC^{b}	-0.064	0.352	0.86	-0.018	0.003	<.0001	-0.255	0.105	0.02	0.001	-0.011	0.015
FPG^{b}	-0.614	0.214	<.01	0.003	0.004	0.37	-0.260	0.105	0.01	-0.002	-0.007	0.004

SBP: systolic blood pressure, TC: total cholesterol, FPG: fasting plasma II: body mass index, SE: standard error, 95% CI: 95% confidence interval.

^aAdjusted for sex, age, income, region (urban/rural), current smoking, and su

^bAdjusted for sex, age, income, region (urban/rural), current smoking, sur nd body mass index.

All analyzes were performed separately according to each metabolic r

	Fruit intake											
	$X \rightarrow M$ (a)			$M \rightarrow Y (b)$			$\begin{array}{c} X \longrightarrow Y \\ \text{(c' = direct effect)} \end{array}$			Indirect effect (a*b)		
Metabolic Factors (M)	β	SE	р	β	SE	р	β	SE	р	β	95	% CI
SBP ^a	-0.484	0.144	<.001	0.011	0.006	0.06	-0.065	0.097	0.51	-0.006	-0.013	-0.0001
TC ^a	-0.156	0.357	0.66	-0.021	0.003	<.0001	-0.042	0.100	0.67	0.003	-0.012	0.019
FPG ^a	-0.665	0.217	<.01	0.002	0.004	0.65	-0.048	0.099	0.63	-0.001	-0.006	0.004
BMI ^a	-0.059	0.034	0.08	0.079	0.031	0.01	-0.069	0.097	0.48	-0.005	-0.012	0.001
SBP^b	-0.420	0.139	<.01	0.010	0.006	0.12	-0.047	0.097	0.63	-0.004	-0.011	0.001
TC^b	-0.064	0.352	0.86	-0.020	0.003	<.0001	-0.018	0.100	0.86	0.001	-0.013	0.016
FPG ^b	-0.614	0.214	<.01	0.001	0.004	0.88	-0.028	0.099	0.78	0.000	-0.004	0.005

SBP: systolic blood pressure, TC: total cholesterol, FPG: fasting plasma glucose, BMI: body mass index, SE: standard error, 95% CI: 95% confidence interval.

^aAdjusted for sex, age, income, region (urban/rural), current smoking, and survey year.

^bAdjusted for sex, age, income, region (urban/rural), current smoking, survey year, and body mass index.

All analyzes were performed separately according to each metabolic mediator.

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	6-8
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	15
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8-9
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	8
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	6
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10-11
		(b) Report category boundaries when continuous variables were categorized	7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-15
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	16

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-019620 on 28 February 2018. Downloaded from http://bmjopen.bmj.com/ on October 14, 2023 by guest. Protected by copyright.