

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Are mandatory salt reduction policies and universal salt iodisation programmes at loggerheads? A cross-sectional analysis from the WHO-SAGE South Africa cohort

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020404
Article Type:	Research
Date Submitted by the Author:	02-Nov-2017
Complete List of Authors:	Charlton, Karen; University of Wollongong, School of Health Sciences Ware, Lisa; North West University Faculty of Health Sciences, Hypertension in Africa Research Team Baumgartner, Jeannine; North West University, Centre of Excellence in Nutrition Cockeran, Marike; North West University, Statistical Consulting Services Schutte, Aletta; North West University Faculty of Health Sciences, MRC Research Unit for Hypertension and Cardiovascular Disease; Hypertension in Africa Research Team Naidoo, Nirmala; World Health organization Kowal, Paul; WHO Geneva
Primary Subject Heading :	Public health
Secondary Subject Heading:	Nutrition and metabolism, Public health
Keywords:	sodium, iodine, dietary, policy, nutritional requirements

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright.

1		
2 3	1	Are mandatory salt reduction policies and universal salt iodisation programmes at
4		
5	2	loggerheads? A cross-sectional analysis from the WHO-SAGE South Africa cohort
6 7		
8		Short title: Salt reduction and universal salt iodisation
9		
10		
11 12		Karen Charlton ^{1,2} ; Lisa J Ware ³ ; Jeanine Baumgartner, ⁴ Marike Cockeran ⁵ ; Aletta E
12		Schutte ^{3,6} ;Nirmala Naidoo ⁷ ; and Paul Kowal ^{7,8}
14		
15		19 - h 1
16 17		¹ School of Medicine, University of Wollongong, New South Wales, Australia (karenc@uow.edu.au)
18		² Illawarra Health and Medical Institute, Wollongong, Australia.
19		³ Hypertension in Africa Research Team (HART), North-West University, Potchefstroom,
20		South Africa (<u>lisa.jayne.ware@gmail.com</u>).
21 22	3	⁴ Centre of Excellence in Nutrition, North-West University, Potchefstroom, South Africa
23	3 4	(jeannine.baumgartner@gmail.com)
24	4 5	⁵ Statistical Consultation Services, North-West University, 11 Hoffman Street, Potchefstroom;
25	6	Private Bag X6001, Potchefstroom, 2520, South Africa (Marike.Cockeran@nwu.ac.za)
26 27	0	⁶ MRC Unit for Hypertension and Cardiovascular Disease, North-West University, South
28		Africa (alta.schutte@nwu.ac.za).
29	7	⁷ World Health Organization (WHO), Geneva, Switzerland (naidoon@who.int).
30	8	⁸ University of Newcastle Research Centre for Generational Health and Ageing, Newcastle,
31 32	9	Australia (kowalp@who.int).
33	10	
34	10	
35	11	Corresponding author:
36 37	12	Karen E Charlton
38	13	School of Medicine, University of Wollongong, New South
39		
40 41	14	Wales, Australia
42	15	Tel. +61 (2) 4221 4754; Fax. +61 (2) 4221 3486
43	16	E-mail: karenc@uow.edu.au
44	17	
45 46		
47	18	Word count of manuscript: 3000 exc. abstract, statements, refs and tables
48	19	Word count of abstract: 254
49	20	Total number of figures/tables: 4
50 51		
52	21	
53	22	
54 55	23	
55 56	24	Abstract
57	27	
58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

Objective: The World Health Organization's (WHO) global targets for non-communicable disease (NCD) reduction recommend consumption of <5g salt/day. In 2016, South Africa was the first country to legislate maximum salt levels in processed foods. South Africa's universal salt iodization (USI) fortification programme has successfully eradicated iodine deficiency. Simultaneous monitoring of sodium reduction and iodine status is required to ensure compatibility of the two public health interventions. **Design/setting/participants:** A nested cohort design within WHO's 2015 Study on global AGEing and adult health (SAGE, n=2887) including individuals from households across South Africa. Randomly selected adults (n=875) provided 24-hour and spot urine samples for sodium and iodine concentration (UIC) analysis (the primary and secondary outcome measures respectively). Median 24-hour and spot UIC were compared by salt intakes <5g/day, 5-9g/day and $\geq 9g/day$. **Results:** Median daily salt excretion was 6.3g salt/day (range 1-43 g/day); 35% had urinary sodium excretion values within the desirable range ($\leq 5g \text{ salt/day}$), 37% had high values (5 – 9 g salt/day) and 28% had very high values (\geq 9g salt/day). Median UIC was 130 µg/L (IQR=58-202), indicating population iodine sufficiency ($\geq 100 \ \mu g/L$). Both spot and 24hr iodine excretion differed across urinary sodium categories (p<0.001) and were positively correlated with 24h urinary sodium (r= 0.170 and 0.528 respectively; both p<0.001). **Conclusions:** 24hr urinary sodium and iodine within a nationally representative cohort study allows simultaneous assessment of the compatibility of both salt reduction strategies and USI. Iodine status of populations undergoing salt reduction strategies needs to be closely monitored to prevent re-emergence of iodine deficiency. Strengths and limitations of this study The study uses the current gold standard of 24-hour urine to assess sodium intake The large sample size includes coastal and inland populations from across the country Lack of dietary data precludes assessment of sources of iodine or sodium • The data is only for adults and not children . The sample includes 14% women of approximate child bearing age (18-49y; n=121) • **Keywords:** iodine; sodium, dietary; policy; nutritional requirements; legislation, food Introduction For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Iodine deficiency remains the largest preventable cause of brain damage and mental impairment worldwide. Thyroid hormone production requires an adequate supply of iodine from the diet, and is essential to metabolism and growth across the lifecycle. As well as cretinism in its most severe form, iodine deficiency can also result in miscarriages, stillbirths, and impaired psychomotor development and behavioural problems in children born to iodine deficient mothers¹. To prevent iodine deficiency disorders, the World Health Organization (WHO) has endorsed universal salt iodization (USI), where all salt for human and animal consumption is iodized². USI is hailed as a public health success story, as 70% of the world's population is estimated to use iodized salt in a total of 130 countries³. However, 2 billion individuals worldwide still have insufficient iodine intake, with many in south Asia and sub-Saharan Africa particularly affected⁴.

In South Africa, mandatory iodization of table salt, at a level of 40 to 60 ppm, replaced voluntary iodization in December 1995, using potassium iodate as the fortificant⁵ because of its stability in warm climates⁶, rather than potassium iodide that is used in North America and Europe. The level of fortification was subsequently revised in 2007 to allow a wider range, namely 35 to 65 ppm². The iodization program has effectively eliminated iodine deficiency in the country, but there are some loopholes in the program, such as the domestic use of non-iodized agricultural salt in the northern provinces⁷. Under the legislation, salt used in the manufacturing of processed foods and salt packaged in bags of at least 20 kg are also exempted from mandatory iodization⁵. In 2005, 77% of households in the country used adequately iodized salt, described as salt containing more than 15 ppm of iodine⁸. However, data on the iodine status of the South African population is outdated and a national survey was last conducted in 2005⁷. At that time, South African women and children aged 6 to 9 y old were found to have an optimal iodine status (i.e., MUIC 100–199 mg/L, <20% with UIC levels <50 mg/L)⁹ which indicated a well-functioning salt iodization program¹⁰.

At the same time as salt iodization efforts around the world are being celebrated, there is a global focus on salt reduction efforts to lower population level blood pressure. The World Health Organization (WHO) and World Health Assembly targets to reduce non communicable diseases (NCDs) include a 30% reduction in population salt intake by 2025¹¹ ¹². South Africa was the first country to implement mandatory legislation in July 2016 for maximum salt levels permitted in a wide range of processed foods¹³ that are significant contributors to the sodium intake of the population $^{14-17}$. The legislation is predicted to decrease population-level salt intake by 0.85 grams per day¹⁸ and reduce annual deaths from

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

90 cardiovascular diseases by 11%. This public health strategy is estimated to save the

- 91 government US\$51.25 million/year in health care costs; and save households more than
- 92 US4 million/year in out-of-pocket medical expenses¹⁹.

Since salt is the vehicle for iodine fortification, successful campaigns to reduce salt intake would also likely result in reduced iodine intake²⁰. Dietary modelling conducted in the Netherlands estimated the effect of 12%, 25%, and 50% decreases in salt from processed foods and table salt²⁰. Only at a 50% salt decrease would iodine intake become inadequate for a small percentage of the population which, at that time, confirmed a lack of conflict between population-wide strategies of decreasing salt while ensuring adequate consumption of iodized salt to prevent iodine deficiency. We have previously reported no difference in median UIC across categories of sodium excretion equivalent to salt intakes lower than 5g/day, 5 - 9 g/day, and greater than or equal to 9 g/d in a convenience sample of 262 adult men and women in Cape Town in 2004^{21} . It was concluded that this was because much of the dietary salt consumed was provided from non-iodinated sources, presumably in salt added to processed foods. Given the introduction of the salt reduction legislation, it is timeous to assess the iodine status of the South African population, according to salt intakes.

The aim of the current study was to simultaneously measure sodium (Na) and iodine in 24hr
and spot urinary collections in an adult cohort cohort to determine whether lower salt intakes
are associated with a suboptimal iodine status.

109 Methods

A nested observational study was conducted as part of Wave 2 of the World Health Organization Study on global AGEing and adult health (WHO SAGE). WHO-SAGE is a multinational cohort study examining the health and wellbeing of adult populations and the ageing process. Two waves of this longitudinal study have been completed in China, Ghana, India, Mexico, Russia and South Africa²². In total, 42,464 respondents were recruited across the six countries for Wave 1 (2007-2010), including 4223 respondents in South Africa (9% 18-49 years; 40% 50-59 years; 51% 60+ years). Respondents were recruited from selected probability sampled enumeration areas (EAs) using a multi-stage cluster sampling strategy, with stratification by province, residence and race. Urine capture was included as part of SAGE South Africa Wave 2 data collection. The sampling strategy was designed to account for attrition, where households were classified into the following mutually exclusive categories: 1) SAGE Wave 1 follow-up households with one or more members aged 50 years

BMJ Open

or more targeted for selection; 2) new households with one or more members aged 50 years or more; 3) SAGE Wave 1 follow-up households which include residents aged 18-49 targeted for selection; or, 4) new households which include residents aged 18-49. Further detail on the sampling and recruitment strategy can be found in the study protocol paper²³.

For Wave 2 data collection in 2015, twenty survey teams (one nurse and three interviewers
per team) simultaneously collected data and samples from respondents across all provinces in
the country over a five-month period. Respondents that were recruited to provide urine
samples (n=1200) were sampled from among the first households visited within each EA, as
a means to simplify logistics and reduce sample transit time to the central Durban laboratory.
Inclusion criteria for urine collection were: respondent must be part of the WHO SAGE

cohort, with no indication of urinary incontinence or other condition that could impede 24hour urine collection; and if female, not menstruating, pregnant, or breastfeeding on the day
of collection.

135 Study Measures

All survey teams were trained with support from WHO Geneva. As part of the larger survey, anthropometry, household and individual questionnaires, blood sampling, blood pressure (BP) and physical function tests were completed as described previously in SAGE Wave 1^{22} . Interviewers spoke the respondents' home languages with consent forms available in the most widely spoken languages for each area. All respondents gave free and informed consent prior to taking part. The study complied with ethical principles²⁴ and all procedures involving human subjects were approved by the WHO Ethics Review Committee [RPC149], and North-West University and University of Witwatersrand research ethics committees in South Africa.

145 Urine collection

146 The protocol used for collection of 24-hour urine samples followed the WHO/PAHO

147 guidelines²⁵. Respondents were requested to collect all urine produced for 24 hours,

excluding the first pass urine on day 1, but including the first urine of the following morning

149 (day 2) in a 5-litre plastic container containing 1g thymol as preservative in South Africa. The

- spot sample was collected without preservative from the second urine passed on day 1
- 151 (marking the start of the 24-hour collection) and decanted into three 15 ml Porvair tubes
- 152 (Porvair Sciences, Leatherhead, UK) then kept in a cool box powered by the fieldwork

vehicles. The next morning, the 24-hour sample volumes were recorded and aliquots (4 x Porvair tubes) generated with all samples then shipped to the laboratory, maintaining the cold chain. Thymol, a crystalline natural derivative of the Thyme plant, was used as a preservative. Thymol has been shown to prevent changes in urinary creatinine, sodium and potassium concentrations for up to five days²⁶. Incomplete 24-hour urine collections were assumed if: total volume \leq 300ml; or creatinine excretion \leq 4 mmol/day (women) or \leq 6 $mmol/day (men)^{27}$.

Urine analysis

Sodium and potassium were determined using the indirect Ion Selective Electrode method and creatinine analysed using the standardised urinary Jaffe kinetic method (Beckman Coulter Synchron DXC600/800 System). The WHO population target for salt intake is 5g salt (NaCl) per day, equivalent to urinary sodium excretion 85 mmol/24hr. With the exception of iodine, all South African samples were analysed at a single laboratory in Durban, South Africa (Global Clinical and Viral Laboratories). Urine samples for iodine analysis were stored at -20° C and batch analysed using the Sandell-Kolthoff method with ammonium persulfate digestion and microplate reading²⁸ at the North-West University Centre of Excellence for Nutrition. The laboratory participates successfully in the Program to Ensure the Quality of Urinary Iodine Procedures (EQUIP, U.S. Centres for Disease Control and Prevention, Atlanta GA, USA)²⁹. A median of $<100\mu$ g iodine/L indicates population-level deficiency (there are no reference ranges for individuals) 30 .

Data capture, analysis and statistical power

All data was captured using an electronic data capture system and uploaded to a secure central server for data cleaning and analysis. The nested cohort sample size for the primary outcome measure of 24-hour urine sodium was calculated as previously described.²³ Allowing for error in 24-hour sample collection (incomplete or missing samples) in this complex field study, a target sub-sample size of 1200 was randomly selected from the main SAGE-Wave 2 cohort, and those with incomplete or missing samples excluded from the analysis. The sample size used for this analysis was deemed adequate based on recommendations of WHO (2007) that states a sample size between 600 and 900 is sufficient to have a reasonable confidence interval around the coverage estimate for urinary iodine $concentration^2$.

184	Both spot urinary iodine analyses (UIC) and 24hr urinary iodine excretion (UIE) were
185	compared across three categories of 24hr urinary Na excretion intake, equivalent to salt
186	intakes $<5g/day$, $5-9 g/day$ and $\ge9g/day$. Normality of data was assessed by visual
187	inspection of histograms and the Kolmogorov-Smirnov test. All non-parametric data were
188	reported as median and interquartile range (IQR; 25 th , 75 th percentile) and continuous
189	variables compared using independent Samples Mann-Whitney U test or Independent
190	Samples Kruskal-Wallis test. Categorical variables were compared across groups using
191	Pearson Chi-Square and Fisher's Exact Test. Data were also analysed according to urinary Na
192	excretion values and by iodine category (sub-optimal: UIC <100 ug/L; iodine replete: $100 -$
193	299 ug/L; and excessive: >300ug/L). To assess the association between salt intake, body size,
194	UIC and UIE, Spearman's rank order and partial correlations were conducted.
195	Results
196	Complete urinary Na and iodine data were available in $n = 874$ participants.
197	Sociodemographic characteristics and health indicators of the sub-sample are compared to the
198	total SAGE-Wave 2 cohort ($n = 2887$) in Table 1. The sub-sample had a higher proportion of
199	women and more black/coloured respondents than the main cohort, which may explain
200	differences in smoking, education and BP.
201	Median 24hr Na excretion (n=874) was equivalent to a median salt intake of 6.3gsalt/day

- 202 (range 1-43 g/day); 35% had values within the desirable range (< 5g salt/day), 37% had high 203 values (5 - 9 g salt/day) and 28% had very high values ($\geq 9 \text{ g salt/day})$ (Table 2). MUIC
- 204 (n=875) was 130 μ g/L (IQR=58-202), indicating iodine sufficiency (\geq 100 μ g/L) while
- 205 median 24hr UIE (n=866) was 117 ug/day (IQR 138).
 - Both UIC and 24hr iodine excretion differed across urinary Na categories and were positively correlated with urinary Na (r= 0.172 and 0.533; both P<0.001) (Table 2). In the lowest salt category of <5g/d, median UIC indicated borderline deficiency of 102 μ g/L. Based on 24hr UIE, participants with a salt intake of <5g/day would be considered to be iodine deficient (<100 ug/day).
- When the data was analysed according to urinary Na excretion values by iodine category,
 those in the sub-optimal category (<100 ug/day) had significantly lower salt equivalent
 excretion values compared to those that were classified as being iodine replete (median (IQR)
 = 5.4 (2.9; 7.9) vs 6.9 (4.0; 9.9) g/day) (Table 3). Those in the category considered to be

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

2	
_	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13 14	
14	
15	
16	
17	
15 16 17 18	
18	
19	
20	
21	
21 22 23	
23	
23 24	
25	
26	
25 26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
35 36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

excessive (>300ug/L) had similar urinary Na excretion values to those in the sufficient category (100 – 299 ug/L), namely 6.9 (4.0, 9.9) and 7.3 (4.7, 10.0) g salt/day, respectively (P = 0.854). Similarly, the median UIC of those with the highest salt excretion (>9g/day) was within the normal range (ie.149 (78, 220) ug/L).

219 Responses to questions on salt behaviours did not differ between participants across median

220 UIC categories (data not shown), nor according to UIE (Figure 1).

221

222 Discussion

Our study found that, although the population are on the whole iodine sufficient, iodine
intake is associated with salt intake. With two thirds of the population consuming more than
the recommended daily salt intake, and the low salt intake group already exhibiting
borderline iodine status, there is a risk that sodium reduction strategies may also impact
iodine intake.

Concerted efforts are being made in many countries to lower salt consumption¹². Because the 228 229 primary food vehicle for iodine fortification is salt, there is concern that decreasing salt 230 consumption will increase the risk of iodine deficiency. Our study findings indicate that this 231 is a potential public health problem. The findings of the current study are in contrast to 232 previous findings from a sample of adult men and women surveyed in Cape Town in 2004, when UIC did not differ across categories of salt intake⁽²¹⁾. This discrepancy may be 233 explained by an increasing number of food manufacturers that have knowingly or 234 235 unknowingly included iodized salt for food processing over the past decade, or alternatively by an increased consumption of salt provided from processed foods, relative to discretionary 236 237 salt intake.

The South African strategic plan to reduce cardiovascular disease includes the target to 238 reduce the population intake of salt to less than 5 grams/day. At present the salt intake is 239 higher than this level with an estimated 40% coming from discretionary salt intake¹⁶. Our 240 241 study was conducted immediately prior to introduction of the mandatory salt targets in processed foods. Despite iodised salt not being required by law to be used as an ingredient in 242 the manufacturing of processed foods, a study³¹ that investigated the iodine content of salt 243 used in bread, margarine, and salty snack flavourings in 2002 provided surprising results. 244 245 Even though 11 of the 12 manufacturers surveyed at that time reported that they used non-

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

iodized salt in their products, substantial amounts of iodine were found in the salt used by a third of these manufacturers' products, with a mean content of 39 to 69 ppm, and these were the items that were mostly distributed countrywide. An appreciable percentage of the food companies used iodized salt unknowingly in the manufacturing of frequently consumed processed foods, and this may have had a considerable impact on the daily iodine intake of consumers. To our knowledge, there is no updated information on the use of iodised salt by food manufacturers. The salt intake estimations in the current study include both added (discretionary) and non-discretionary salt intakes but the lack of data on dietary intakes of the participants prevents further investigation of the source of the salt. We hypothesize that food manufacturers may have already reduced salt content in processed foods at the time of the study (2015), and that some of these products may have been produced with iodized salt. If this is the case, this would result in lowered iodine intake at the same time as lowered salt intake, as would any reduction in discretionary salt use. Considering the latter, there have been many accompanying health education strategies that target salt reduction behaviours, alongside the salt legislation in processed foods³². In 2015, a mass media campaign (Saltwatch), using television, radio advertisement and other platforms for information dissemination was undertaken to increase public awareness related to the association between a high salt intake, blood pressure and cardiovascular disease in South Africa. The campaign, conducted by the Heart and Stroke Foundation of South Africa with funding from the Department of Health, focused on the need to reduce discretionary salt intake. Evaluation of the programme undertaken in 550 black women, aged 18-55 years in three provinces identified that there was an increase in most of the indicators of knowledge, attitudes and behaviour change towards considering and initiating reduced salt consumption following the campaign³³. Significant increases were found for knowledge items related to high salt intake and its health outcomes. Participants also reported that they added less salt while cooking and at the table. In the current study, responses to questions on salt behaviours did not differ between participants across median UIC categories, nor according to 24-hr UIE. This could mean that the questions are not sufficiently sensitive to discern between salt intake behaviours, or that the contribution of discretionary salt to total iodine intake is influenced by other food sources of iodised salt. A strength of the study was use of the gold standard method for assessment of salt intake, namely 24hr urinary collections. Limitations relate to the high number of respondents with

missing or incomplete urine samples. The difficulty in obtaining complete 24-hour urine

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

samples is well-known, and the comparison between the main study cohort and those providing complete samples shows that men, and those with higher education less frequently provided complete 24-hour urine. This may also reflect the nature of the survey as fieldworkers visited the respondent's homes and those that were away with work were less likely to have taken part or would have potentially had more difficulty with the urine collection, creating a selection bias in the data towards the population with lower employment levels. Future research may consider work-based data collection. A further limitation is the lack of dietary data on sources of iodine provided by foods other than iodised salt. Iodine-rich dietary sources include fish and seafood, and dairy products and it is possible that some of these foods may also be high in salt, as in the case of salted dried fish commonly consumed by the coloured population (known as "bokkems"). However, generally these foods are not major contributors to sodium in the South African diet¹⁶. Interestingly, in women, both UIC and UIE correlated positively with body mass index, independently of salt intake. Looking at changes in food consumption patterns in South Africa over time, it seems that there is not only an increase in processed foods but also other foods that may contribute to iodine intake independently of iodized salt such as fish, eggs, seafood, and dairy foods³⁴. The contribution of food sources, other than iodized salt, to total iodine intake warrants further investigation in the context of evaluating the universal salt iodization programme in South Africa. Furthermore, this study presents limited data for women of child bearing age and no data for children. Further work is needed to determine if there is an impact of the sodium reduction legislation in these particularly iodine-sensitive groups.

300 Conclusion

This study highlights the need to closely monitor the iodine status of populations as they undergo population-level reductions in salt intake, in countries where universal salt iodisation is implemented. If salt intake levels drop to the WHO target of <5g/day, there may be a need to increase the level of iodine in fortified table salt. Alternatively, compulsory iodisation of salt used in the production of some staple foods such as bread may be considered. In a country where some sectors of the population may be over-iodised, this strategy would require careful dietary modelling before being pursued. It is recommended that surveys that measure urinary Na excretion also simultaneously measure urinary iodine concentration.

309 Acknowledgements: The authors thank all respondents for contributions and acknowledge
310 Dr Stephen Rule, Dr Robin Richards and Mr Godfrey Dlulane of Outsourced Insight who

1			
2 3	311	were subcontracted to conduct the surveys and coordinate data collection within South	
4	312	Africa.	
5	512	Ainea.	
6 7	313	Funding: This work is supported by an agreement with the CDC Foundation with financial	
8 9	314	support provided by Bloomberg Philanthropies, and a Partnerships & Research Development	
9 10	315	Fund (PRDF) grant from the Australia Africa Universities Network. SAGE is supported by	
11 12	316	WHO and the Division of Behavioral and Social Research (BSR) at the National Institute on	
13	317	Aging (NIA), US National Institutes of Health, through Interagency Agreements with WHO	
14 15	318	[OGHA 04034785; YA1323-08-CN-0020; Y1-AG-1005-01] and a Research Project Grant	
16 17	319	[R01AG034479]. The content of this manuscript is solely the responsibility of the authors	
17 18	320	and does not necessarily represent the official views of the World Health Organization or the	
19 20	321	funding bodies.	
21	521		
22 23	322	Competing interests: None.	
24			
25	323	Authorship: Authors' contributions were as follows – KC, PK, NN designed research; LJW	
26 27	324	implemented research; JB analysed iodine samples; MC, LJW, KC analysed data; KC, LJW,	
28	325	JB, AES, MC, PK, wrote the paper; KC takes responsibility for the contents of this article.	
29 30	326	All authors read and approved the final manuscript.	
31 32	327	Data sharing statement: The dataset is available on request and will form part of the data	
33	328	catalogue of the World Health Organization Study on Global AGEing and Adult Health	
34 35			
36	329	(SAGE) (http://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/sage/about)	
37 38	330		
39	331	References	
40			
41 42	332	References	
43			
44	333	1. Andersson M, De Benoist B, Delange F, et al. Prevention and control of iodine deficiency in	
45 46	334	pregnant and lactating women and in children less than 2-years-old: conclusions and	
40	335	recommendations of the Technical Consultation. Public health nutrition 2007; 10 (12A):1606-	
48	336 337	11. 2. World Health Organization; United Nations Children's Fund; International Council for the Control	
49	338	of lodine Deficiency Disorders. Assessment of iodine deficiency disorders and monitoring	
50	339	their elimination: a guide for programme managers. 2007. 3rd ed. Geneva: World Health	
51	340	Organization.	
52	341	3. United Nations System. Standing Committee on Nutrition (SCN) News. Universal Salt Iodisation.	
53	342	2007; 35. ISSN 1564-3743. (accessed 17/July/2017).	
54	343	4. Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. The Lancet	
55	344	2008; 372 (9645):1251-62.	
56 57			
58			1
59		1:	L
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

₿

BMJ Open

3MJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.br	
မှ	
en:	
first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Down	
put	
olish	
ied a	
as 1	
0.1	
136	
/bm	
jope	
₽n-2	
017	
-02	
040	
4 or	
ר 30	
Ma	
ırch	
201	
- - - -	
Dow	
nloa	
ade	
d fro	
ň	
)ttp:	
//bm	
jop	
en.t	
, mj.	
con	
√ or	
õ	
tob	
er 1	
, С	
023	
by	
com/ on October 15, 2023 by guest. Protected b	
st. F	
Prot	
ecte	
d b	
y cc	
pyri	
ight.	

2		
3	345	5. Effects of mandatory iodization on the iodine content of retailers and household salt in South
4	346	Africa. 8th World Salt Symposium; 2000.
5	347	6. Joint FAO/WHO Expert Committee on Food Additives. 1991 (WHO Technical Report Series, No.
6	348	806, Annex 5). World Health Organization. Geneva.
7	349	7. Jooste PL, Labadarios D, Nel H, et al. Iodine content of household salt, drinking water and iodine
8	350	status of women and children National Food Consumption Survey-Fortification baseline
9	351	(NFCS-FB): South Africa 2005. Stellenbosch, South Africa, 2007:387-407.
10	352	8. Jooste P, Zimmermann M. Progress towards eliminating iodine deficiency in South Africa: invited
11	353	review. South African Journal of Clinical Nutrition 2008; 21 (1):8-14.
12	354	9. Labadarios D, Swart R, Maunder E, et al. The National Food Consumption Survey–Fortification
13	355	Baseline (NFCS-FB): South Africa, 2005: Directorate: Nutrition, Department of Health.
14	356	Pretoria., 2007.
15	357	10. Jooste PL, Weight MJ, Lombard CJ. Iodine concentration in household salt in South Africa.
16	358	Bulletin of the World Health Organization 2001; 79 (6):534-40.
17	359	11. Webster JL, Dunford EK, Hawkes C, et al. Salt reduction initiatives around the world. Journal of
18	360	Hypertension; 29 (6):1043-50.
19	361	12. Trieu K, Neal B, Hawkes C, et al. Salt Reduction Initiatives around the World–A Systematic Review
20	362	of Progress towards the Global Target. PloS ONE 2015; 10 (7):e0130247.
21 22	363	13. Charlton K, Webster J, Kowal P. To legislate or not to legislate? A comparison of the UK and
22	364	South African approaches to the development and implementation of salt reduction
24	365	programs. Nutrients 2014;6(9):3672-95.
25	366	14. Charlton KE, Steyn K, Levitt NS, et al. Ethnic differences in intake and excretion of sodium,
26	367	potassium, calcium and magnesium in South Africans. European Journal of Cardiovascular
27	368	Prevention & Rehabilitation 2005; 12 (4):355-62.
28	369	15. Charlton KE, Steyn K, Levitt NS, et al. A food-based dietary strategy lowers blood pressure in a
29	370	low socio-economic setting: a randomised study in South Africa. Public Health Nutrition
30	371	2008; 11 (12):1397-406.
31	372	16. Charlton KE, Steyn K, Levitt NS, et al. Diet and blood pressure in South Africa: intake of foods
32	373	containing sodium, potassium, calcium, and magnesium in three ethnic groups. Nutrition
33	374	2005; 21 (1):39-50.
34	375	17. Report number R214: Foodstuffs, cosmetics and disinfectants Act, 1972 (Act 54 of 1972).
35	376	Regulations relating to the reduction of sodium in certain foodstuffs and related matters.
36	370	(2013). South African Department of Health.
37	378	18. Bertram Y, Steyn K, Wentze-Viljoen E, et al. Reducing the sodium content of high-salt foods:
38	379	Effect on cardiovascular disease in South Africa. SAMJ: South African Medical Journal
39	380	2012; 102 (9):743-45.
40	381	19. Watkins DA, Olson ZD, Verguet S, et al. Cardiovascular disease and impoverishment averted due
41	382	to a salt reduction policy in South Africa: an extended cost-effectiveness analysis. Health
42	383	Policy and Planning 2015; 31 (1):75-82.
43	384	20. Verkaik-Kloosterman J, van 't Veer P, Ocké MC. Reduction of salt: will iodine intake remain
44 45	385	adequate in The Netherlands? British Journal of Nutrition 2010; 104 (11):1712-18.
45 46	386	21. Charlton KE, Jooste PL, Steyn K, et al. A lowered salt intake does not compromise iodine status in
40	387	
48		Cape Town, South Africa, where salt iodization is mandatory. Nutrition; 29 (4):630-34.
49	388	22. Kowal P, Chatterji S, Naidoo N, et al. Data resource profile: the World Health Organization Study
50	389	on global AGEing and adult health (SAGE). International Journal of Epidemiology
51	390	2012; 41 (6):1639-49.
52	391	23. Charlton K, Ware LJ, Menyanu E, et al. Leveraging ongoing research to evaluate the health
53	392	impacts of South Africa's salt reduction strategy: a prospective nested cohort within the
54	393	WHO-SAGE multicountry, longitudinal study. BMJ Open 2016; 6 (11).
55	394 205	24. World Medical Association Declaration of Helsinki – Ethical principles for medical research
56	395	involving human subjects (as amended by the 64th WMA General Assembly, Fortaleza,
57		
58		12
59		12

aration-of-
pulation-
n 24-hour
11 24 11001
on of renal
on or renar
of
. JAMA
urinary
,
e quality of
1.
at indicates
tion
essed foods
acks.
e on track,
ŗ
alt present
frica, 2016.
1994.

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright.

3
4
5
6
7
8
9
-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
45 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2

3

Table 1. Characteristics of the main (SAGE South Africa Wave 2, 2015) and subsample 427 428 study cohort.

	Main SA	AGE cohort	Subs	sample ^a	
	n=	2887	n=875		p value
	median	IQR	median	IQR	
Female, n (%)	1939	67	671	77	< 0.00
Age years	57	46, 69	55	44, 67	0.468
Aged over 50 years, n (%)	1979	69	567	65	0.171
Ethnicity, n (%)					
Black	1988	69	410	74	< 0.00
Coloured, mixed race	465	16	96	17	
Indian	306	11	41	7	
White	128	1	11	2	
Rural, n (%)	792	28	163	29	0.41
Education years	10	7, 13	9	6, 12	0.02
Never been to school, n (%)	495	18	109	20	0.18
Never had paid employment, n (%)	1101	55	238	56	0.40
BMI, kg/m ²	28.8	23.9, 33.7	29.1	24.0, 34.2	0.540
Waist to height ratio	0.59	0.52, 0.67	0.58	0.50, 0.66	0.07
Never used alcohol, n (%)	1576	80	353	83	0.052
Never used tobacco, n (%)	1635	83	367	86	0.02
Systolic BP mmHg	131	118, 144	128	116, 141	0.07
Diastolic BP mmHg	81	73, 89	79	71, 87	0.02
Hypertension, n (%)	1233	45	232	43	0.23
Diabetes, n (%)	248	13	46	11	0.35

BMI, body mass index. ^aSubsample: all respondents with spot UIC, valid 24-hour urine, sex 429 and age recorded. Some variables may contain missing data as indicated by percentages. Data 430 shown as median and interquartile range (IQR; 25th, 75th percentile) unless otherwise 431 indicated. Hypertensive by measured BP≥140 and/or 90mmHg or previous diagnosis. 432 Education, tobacco/alcohol use, ethnicity, employment and diabetes prevalence by self-433 report. Continuous variables compared using Independent Samples Mann-Whitney U test, 434 435 categorical variables compared using Pearson Chi-Square and Fisher's Exact Test. 436

2	
3	
4	
5	
6 7	
7	
8 9	
9 10	
11	
12	
13	
14	
15 16	
16 17	
18	
19	
20 21	
21	
22 23	
23 24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43 44	
44	
46	
47	
48	
49	
50 51	
51 52	
53	
54	
55	
56	
57	
58 59	
59 60	
55	

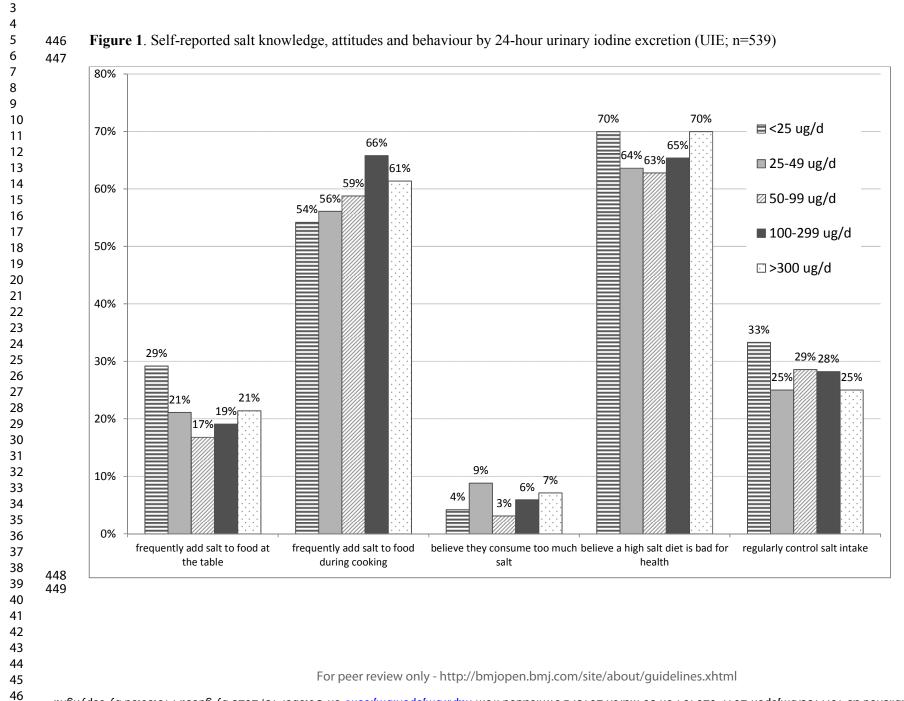
Table 2. Spearman's rank order and partial correlations between salt, body size and urine
iodine concentration (UIC), SAGE South Africa Wave 2 (2015).

		All	Men	Women
Correlations with spot UIC $\mu g/l$				
Salt intake g/day	rho	0.172(***)	0.201(**)	0.156(***
	р	0.000	0.002	0.00
	n	879	203	67
24-hr iodine µg/day	rho	0.469(***)	0.510(***)	0.456(***
	р	0.000	0.000	0.00
	n	871	203	66
BMI kg/m ²	r	0.038	0.004	0.097(*
	p	0.207	0.484	0.03
	п	461	109	35
Weight kg	r	0.041	0.016	0.05
	р	0.184	0.433	0.13
	п	482	112	36
Waist circumference cm	r	0.019	0.032	0.03
	р	0.339	0.369	0.26
	n	477	111	36
Hip circumference cm	r	0.065	0.203(*)	0.04
	р	0.078	0.015	0.18
	n	481	112	36
Correlations with 24-hr UIE $\mu g/d$				
Salt intake g/day	rho	0.533(***)	0.467(***)	0.546(**
	р	0.000	0.000	0.00
	п	872	202	66
BMI kg/m ²	r	0.079(*)	0.051	0.137(*
	р	0.046	0.299	0.00
	n	460	109	34
Weight kg	r	0.090(*)	-0.015	0.132(*
	р	0.024	0.436	0.00
	n	481	112	36
Waist circumference cm	r	0.035	-0.004	0.06
	р	0.226	0.484	0.1
	n	476	111	36
Hip circumference cm	r	0.070	0.083	0.097(
	р	0.062	0.191	0.03
	n	479	112	36

439 BMI, body mass index; UIC, spot urine iodine concentration; UIE, 24-hour urine iodine 440 excretion Correlations between iodine and body size controlled for solt inteke. Correlation

excretion. Correlations between iodine and body size controlled for salt intake. Correlation is
significant at the 0.05 level (*); at the 0.01 level (**); or at the 0.001 level (***).

				24-hour u	rinary sodi	um excretion			
	All n=874 ^a		Salt <5g/d n=307		Salt 5-9g/d n=322		Salt >9g/d n=245		p value
	median	IQR	median	IQR	median	IQR	median	IQR	
Sodium mg/day	2471	1434, 3506	1393	1068, 1719	2638	2219, 3057	4799	3607, 5993	< 0.001
Salt g/day	6.3	3.7, 9.0	3.6	2.8, 4.5	6.8	5.7, 7.9	12.3	9.3, 15.4	< 0.001
UIC µg/l	130	58, 202	102	32, 172	131	56, 206	149	78, 220	< 0.001
UIC µg/g creatinine	102	48, 157	95	41, 150	105	48, 163	109	58, 161	0.076
24hr UIE µg/day	117	48, 186	74	37, 111	119	57, 181	195	117, 273	< 0.001
				Spot urine i	odine conce	entration (UIC	2)		
		All	UIC	<100 µg/l	UIC 10	0-299 µg/l	UIC	>300 µg/l	p value
	n ^a	$=874^{a}$	n	n=343	n=	=408	1	n=107	
	median	IQR	median	IQR	median	IQR	median	IQR	
Sodium mg/day	2471	1434, 3506	2102	1144, 3061	2703	1547, 3860	2855	1811, 3899	< 0.001
Salt g/day	6.3	3.7, 9.0	5.4	2.9, 7.9	6.9	4.0, 9.9	7.3	4.7, 10.0	< 0.001
UIC µg/l	130	58, 202	55	37, 73	169	132, 206	400	332, 469	< 0.001
UIC µg/g creatinine	102	48, 157	63	37, 89	119	72, 166	247	169, 325	< 0.001
24hr UIE μg/day	117	48, 186	78	38, 119	134	69, 199	240	148, 332	< 0.001


443 UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. ^aOne individual in subsample with missing 24-hour sodium analysis.
 444 Data shown as median and interquartile range (IQR; 25th, 75th percentile). Continuous variables compared using Independent Samples Kruskal 445 Wallis test.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright.

47

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright.

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-6
Bias	9	Describe any efforts to address potential sources of bias	4-6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	6
		(d) If applicable, describe analytical methods taking account of sampling strategy	7
		(e) Describe any sensitivity analyses	none
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright.

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	6-7
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	6-7
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1, p 14
		(b) Indicate number of participants with missing data for each variable of interest	Table 1, p 14
Outcome data	15*	Report numbers of outcome events or summary measures	Table 3, p 16
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	none
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	7-8; Table 3, p 16;
			Figure 1, p 17
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	none
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10; Table 1, p 14
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	10
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	8-11
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	11
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright.

BMJ Open

How will South Africa's mandatory salt reduction policy affect its salt iodisation programme? A cross-sectional analysis from the WHO-SAGE Wave 2 Salt & Tobacco study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020404.R1
Article Type:	Research
Date Submitted by the Author:	17-Jan-2018
Complete List of Authors:	Charlton, Karen; University of Wollongong, School of Health Sciences Ware, Lisa; North West University Faculty of Health Sciences, Hypertension in Africa Research Team Baumgartner, Jeannine; North West University , Centre of Excellence in Nutrition Cockeran, Marike; North West University, Statistical Consulting Services Schutte, Aletta; North West University Faculty of Health Sciences, MRC Research Unit for Hypertension and Cardiovascular Disease; Hypertension in Africa Research Team Naidoo, Nirmala; World Health organization Kowal, Paul; WHO Geneva
Primary Subject Heading :	Public health
Secondary Subject Heading:	Nutrition and metabolism, Public health
Keywords:	sodium, iodine, dietary, policy, nutritional requirements

ogramme? A cros	s-sectional analysis from WHO-SAGE Wave 2 Salt & Tobacco
ıdy	·
ort title: Salt reduc	ction and table salt iodisation
aren Charlton ^{1,2} ; Lis	sa J Ware ³ ; Jeanine Baumgartner, ⁴ Marike Cockeran ⁵ ; Aletta E
hutte ^{3,6} ;Nirmala Na	iidoo ⁷ ; and Paul Kowal ^{7,8}
	University of Wollongong, New South Wales, Australia
arenc@uow.edu.au) llawarra Health and) Medical Institute, Wollongong, Australia.
	ca Research Team (HART), North-West University, Potchefstroom,
	ne.ware@gmail.com).
entre of Excellence annine.baumgartne	e in Nutrition, North-West University, Potchefstroom, South Africa
-	on Services, North-West University, 11 Hoffman Street, Potchefstroom;
_	otchefstroom, 2520, South Africa (Marike.Cockeran@nwu.ac.za)
	tension and Cardiovascular Disease, North-West University, South
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	
rica (<u>alta.schutte@</u> /orld Health Organi	
Vorld Health Organi niversity of Newca	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle,
orld Health Organi	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle,
Vorld Health Organi niversity of Newca	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle,
Vorld Health Organi niversity of Newca	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>who.int</u>).
Vorld Health Organi niversity of Newca	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>who.int</u>).
Vorld Health Organi niversity of Newca	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>who.int</u>). Corresponding author: Karen E Charlton
Vorld Health Organi niversity of Newca	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>who.int</u>). Corresponding author: Karen E Charlton School of Medicine, University of Wollongong, New South
Vorld Health Organi niversity of Newca	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>ho.int</u>). Corresponding author: Karen E Charlton School of Medicine, University of Wollongong, New South Wales, Australia
Vorld Health Organi niversity of Newca	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>ho.int</u>). Corresponding author: Karen E Charlton School of Medicine, University of Wollongong, New South Wales, Australia Tel. +61 (2) 4221 4754; Fax. +61 (2) 4221 3486
/orld Health Organi niversity of Newca ıstralia (<u>kowalp@w</u>	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>ho.int</u>). Corresponding author: Karen E Charlton School of Medicine, University of Wollongong, New South Wales, Australia Tel. +61 (2) 4221 4754; Fax. +61 (2) 4221 3486
/orld Health Organi niversity of Newca ıstralia (<u>kowalp@w</u>	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>(ho.int)</u> . Corresponding author: Karen E Charlton School of Medicine, University of Wollongong, New South Wales, Australia Tel. +61 (2) 4221 4754; Fax. +61 (2) 4221 3486 E-mail: karenc@uow.edu.au
Vorld Health Organi iniversity of Newca Istralia (<u>kowalp@w</u> ord count of manus	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>ho.int</u>). Corresponding author: Karen E Charlton School of Medicine, University of Wollongong, New South Wales, Australia Tel. +61 (2) 4221 4754; Fax. +61 (2) 4221 3486 E-mail: karenc@uow.edu.au cript: 3000 exc. abstract, statements, refs and tables ct: 254
Vorld Health Organi iniversity of Newca Istralia (<u>kowalp@w</u> ord count of manus ord count of abstrac	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>ho.int</u>). Corresponding author: Karen E Charlton School of Medicine, University of Wollongong, New South Wales, Australia Tel. +61 (2) 4221 4754; Fax. +61 (2) 4221 3486 E-mail: karenc@uow.edu.au cript: 3000 exc. abstract, statements, refs and tables ct: 254
Vorld Health Organi iniversity of Newca Istralia (<u>kowalp@w</u> ord count of manus ord count of abstrac	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>ho.int</u>). Corresponding author: Karen E Charlton School of Medicine, University of Wollongong, New South Wales, Australia Tel. +61 (2) 4221 4754; Fax. +61 (2) 4221 3486 E-mail: karenc@uow.edu.au cript: 3000 exc. abstract, statements, refs and tables ct: 254
Vorld Health Organi iniversity of Newca Istralia (<u>kowalp@w</u> ord count of manus ord count of abstrac	ization (WHO), Geneva, Switzerland (naidoon@who.int). stle Research Centre for Generational Health and Ageing, Newcastle, <u>ho.int</u>). Corresponding author: Karen E Charlton School of Medicine, University of Wollongong, New South Wales, Australia Tel. +61 (2) 4221 4754; Fax. +61 (2) 4221 3486 E-mail: karenc@uow.edu.au cript: 3000 exc. abstract, statements, refs and tables ct: 254

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22	
22	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
58 59	
59 60	
50	

1

25 Abstract 26 Objective: The World Health Organization's (WHO) global targets for non-communicable disease (NCD) reduction recommend consumption of <5g salt/day. In 2016, South Africa 27 28 was the first country to legislate maximum salt levels in processed foods. South Africa's salt iodization fortification programme has successfully eradicated iodine deficiency. 29 Simultaneous monitoring of sodium reduction and iodine status is required to ensure 30 31 compatibility of the two public health interventions. 32 **Design/setting/participants:** A nested cohort design within WHO's 2015 Study on global 33 AGEing and adult health (SAGE, n=2887) including individuals from households across 34 South Africa. Randomly selected adults (n=875) provided 24-hour and spot urine samples for 35 sodium and iodine concentration analysis (the primary and secondary outcome measures 36 respectively). Median 24-hour iodine excretion (UIE) and spot urinary iodine concentrations 37 (UIC) were compared by salt intakes $\langle 5g/day, 5-9g/day and \geq 9g/day$. 38 **Results:** Median daily sodium excretion was equivalent to 6.3g salt/day (range 1-43 g/day); 35% had urinary sodium excretion values within the desirable range (< 5g salt/day), 37% had 39 high values (5 – 9 g salt/day) and 28% had very high values (\geq 9g salt/day). Median UIC was 40 130 μ g/L (IQR=58-202), indicating population iodine sufficiency (\geq 100 μ g/L). Both UIC and 41 UIE differed across salt intake categories (p<0.001) and were positively correlated with 24h 42 urinary sodium (r= 0.170 and 0.528 respectively; both p<0.001). Participants with salt intakes 43 44 <5g/day were not meeting the EAR for iodine intake (95 µg/day). 45 **Conclusions:** In a nationally representative sample of South African adults, the association 46 between indicators of population iodine status (UIC and UIE) and urinary sodium excretion 47 indicate that low salt intakes may compromise adequacy of iodine intakes in a country with 48 mandatory iodisation of table salt. The iodine status of populations undergoing salt reduction strategies need to be closely monitored to prevent re-emergence of iodine deficiency. 49 50 Strengths and limitations of this study 51 52 The study uses the current gold standard of 24-hour urine to assess sodium intake Timing of the study was immediately prior to legislation of maximum permitted salt 53 • levels in processed foods 54 The large sample size includes coastal and inland populations from across the country 55 • Lack of dietary data precludes assessment of sources of iodine or sodium 56 • The data is only for adults and not children 57

BMJ Open

58	
59	Keywords: iodine; sodium, dietary; policy; nutritional requirements; legislation, food
60	Introduction
61	Iodine deficiency remains the largest preventable cause of brain damage and mental
62	impairment worldwide. Thyroid hormone production requires an adequate supply of iodine
63	from the diet, and is essential to metabolism and growth across the lifecycle. As well as
64	cretinism in its most severe form, iodine deficiency can also result in miscarriages, stillbirths,
65	and impaired psychomotor development and behavioural problems in children born to iodine
66	deficient mothers ¹ . To prevent iodine deficiency disorders, the World Health Organization
67	(WHO) has endorsed universal salt iodization (USI), where all salt for human and animal
68	consumption is iodized ^{2,3} . USI is hailed as a public health success story, as 75% of the
69	world's population was estimated in 2016 to use iodized salt in a total of 130 countries ^{4,5} .
70	The 2016 global estimate of iodine nutrition, based on surveys of school-age children
71	conducted between 2002 and 2016, shows that the iodine intake is insufficient in 15
72	countries, sufficient in 102, and excessive in 10 countries ^{6,7} . Among the 15 countries with
73	insufficient intake, only two are classified as moderately deficient and 13 as mildly deficient.
74	This represents a reduction in the number of countries with insufficient iodine intake, from 32
75	in 2011 ⁸ , to 25 countries in 2015 ⁹ , to 15 countries in 2016 ⁶ which reflects continuing progress
76	to improved coverage of iodized salt at the national level. ¹⁰
77	
78	In South Africa, mandatory iodization of table salt, at a level of 40 to 60 ppm, replaced
79	voluntary iodization in December 1995, using potassium iodate as the fortificant ¹¹ because of
80	its stability in warm climates ¹² , rather than potassium iodide that is used in North America
81	and Europe. The level of fortification was subsequently revised in 2007 to allow a wider
82	range, namely 35 to 65 ppm ¹³ . The iodization program has effectively addressed iodine
83	deficiency in the country, but there are some loopholes in the program, such as the domestic
84	use of non-iodized agricultural salt in some regions ^{14,13} . In 2005, 78% of households
85	nationwide purchased salt for household uses from typical food stores. At the same time, 8-
86	37% of households across all the provinces of South Africa obtained salt for household use
87	from "unconventional" channels such as agricultural and other sources of non-iodized salt.
88	Under the legislation, salt used in the manufacturing of processed foods and salt packaged in
89	bags of at least 20 kg are also exempted from mandatory iodization ¹¹ . In 2005, 77% of
90	households in the country used adequately iodized salt, described as salt containing more than

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

15 ppm of iodine¹³. However, data on the iodine status of the South African population is
outdated and a national survey was last conducted in 2005¹⁴. At that time, South African
women and children aged 6 to 9 y old were found to have an optimal iodine status (i.e.,
MUIC 100–199 mg/L, <20% with UIC levels <50 mg/L)¹⁵ which indicated a wellfunctioning salt iodization program^{6,16}.

At the same time as salt iodization efforts around the world are being celebrated, there is a global focus on salt reduction efforts to lower population level blood pressure. The World Health Organization (WHO) and World Health Assembly targets to reduce non communicable diseases (NCDs) include a 30% reduction in population salt intake by 2025¹⁷ ¹⁸. South Africa was the first country to implement mandatory legislation in July 2016 for maximum salt levels permitted in a wide range of processed foods¹⁹ that are significant contributors to the sodium intake of the population $^{20-23}$. The legislation is predicted to decrease population-level salt intake by 0.85 grams per day²⁴ and reduce annual deaths from cardiovascular diseases by 11%. This public health strategy is estimated to save the government US\$51.25 million/year in health care costs; and save households more than US\$4 million/year in out-of-pocket medical expenses²⁵.

Since salt is the vehicle for iodine fortification, successful campaigns to reduce salt intake would also likely result in reduced iodine intake²⁶. Dietary modelling conducted in the Netherlands estimated the effect of 12%, 25%, and 50% decreases in salt from processed foods and table salt²⁶. Only at a 50% salt decrease would iodine intake become inadequate for a small percentage of the population which, at that time, confirmed a lack of conflict between population-wide strategies of decreasing salt while ensuring adequate consumption of iodized salt to prevent iodine deficiency. We have previously reported no difference in median UIC across categories of sodium excretion equivalent to salt intakes lower than 5g/day, 5 - 9 g/day, and greater than or equal to 9 g/d in a convenience sample of 262 adult men and women in Cape Town in 2004^{27} . It was concluded that this was because much of the dietary salt consumed was provided from non-iodinated sources, presumably in salt added to processed foods. Given the introduction of the salt reduction legislation, it is timeous to assess the iodine status of the South African population, according to salt intakes.

The aim of the current study was to simultaneously measure sodium (Na) and iodine in 24hr
and spot urinary collections in an adult cohort to determine whether lower salt intakes are
associated with a suboptimal iodine status.

BMJ Open

123	Methods
124	A nested observational study was conducted as part of Wave 2 of the World Health
125	Organization Study on global AGEing and adult health (WHO SAGE). WHO-SAGE is a
126	multinational cohort study examining the health and wellbeing of adult populations and the
127	ageing process. Two waves of this longitudinal study have been completed in China, Ghana,
128	India, Mexico, Russia and South Africa ²⁸ . In total, 42,464 respondents were recruited across
129	the six countries for Wave 1 (2007-2010), including 4223 respondents in South Africa (9%
130	18-49 years; 40% 50-59 years; 51% 60+ years). Respondents were recruited from selected
131	probability sampled enumeration areas (EAs) using a multi-stage cluster sampling strategy,
132	with stratification by province, residence and race. Urine capture was included as part of
133	SAGE South Africa Wave 2 data collection. The sampling strategy was designed to account
134	for attrition, where households were classified into the following mutually exclusive
135	categories: 1) SAGE Wave 1 follow-up households with one or more members aged 50 years
136	or more targeted for selection; 2) new households with one or more members aged 50 years
137	or more; 3) SAGE Wave 1 follow-up households which include residents aged 18-49 targeted
138	for selection; or, 4) new households which include residents aged 18-49. Further detail on the
139	sampling and recruitment strategy can be found in the study protocol paper ²⁹ .
140	For Wave 2 data collection in 2015, twenty survey teams (one nurse and three interviewers
141	per team) simultaneously collected data and samples from respondents across all provinces in
142	the country over a five-month period. Respondents that were recruited to provide urine
143	collections (n=1200) were sampled from among the first households visited within each EA,
144	as a means to simplify logistics and reduce sample transit time to the central Durban
145	laboratory.
146	Inclusion criteria for urine collection were: respondent must be part of the WHO SAGE
147	cohort, with no indication of urinary incontinence or other condition that could impede 24-
148	hour urine collection; and if female, not menstruating, pregnant, or breastfeeding on the day
149	of collection.
150	Study Measures

All survey teams were trained with support from WHO Geneva. As part of the larger survey, anthropometry, household and individual questionnaires, blood sampling, blood pressure (BP) and physical function tests were completed as described previously in SAGE Wave 1^{28} .

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

Interviewers spoke the respondents' home languages with consent forms available in the most
widely spoken languages for each area. All respondents gave free and informed consent prior
to taking part. The study complied with ethical principles³⁰ and all procedures involving
human subjects were approved by the WHO Ethics Review Committee [RPC149], and
North-West University and University of Witwatersrand research ethics committees in South
Africa.

160 Urine collection

The protocol used for collection of 24-hour urine samples followed the WHO/PAHO guidelines³¹. Respondents were requested to collect all urine produced for 24 hours, excluding the first pass urine on day 1, but including the first urine of the following morning (day 2) in a 5-litre plastic container containing 1g thymol as preservative in South Africa. The spot sample was collected without preservative from the second urine passed on day 1 (marking the start of the 24-hour collection) and decanted into three 15 ml Porvair tubes (Porvair Sciences, Leatherhead, UK) then kept in a cool box powered by the fieldwork vehicles. The next morning, the 24-hour sample volumes were recorded and aliquots (4 x Porvair tubes) generated with all samples then shipped to the laboratory, maintaining the cold chain. Thymol, a crystalline natural derivative of the Thyme plant, was used as a preservative. Thymol has been shown to prevent changes in urinary creatinine, sodium and potassium concentrations for up to five days³². Incomplete 24-hour urine collections were assumed if: total volume \leq 300ml; or creatinine excretion \leq 4 mmol/day (women) or \leq 6 $mmol/day (men)^{33}$.

175 Urine analysis

Sodium was determined using the indirect Ion Selective Electrode method and creatinine analysed using the standardised urinary Jaffe kinetic method (Beckman Coulter Synchron DXC600/800 System). The WHO population target for salt intake is 5g salt (NaCl) per day, equivalent to urinary sodium excretion 1950mg (or 85mmol)/24hr. Sodium (mmol/l) in the 24 h urine sample was converted to salt (g/d) using the formula: Na mmol/l * 24 h volume (litres) * 23.1 (molecular weight of sodium)/390 (390 mg sodium per 1 g sodium chloride (salt)). With the exception of iodine, all South African samples were analysed at a single laboratory in Durban, South Africa (Global Clinical and Viral Laboratories). Urine samples for iodine analysis were stored at -20° C and batch analysed using the Sandell-Kolthoff method with ammonium persulfate digestion and microplate reading³⁴ at the North-West

Page 7 of 22

BMJ Open

	BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjope
	n.bmj.d
	com/ on October 15, 2023 by guest. Protected by copyright

University Centre of Excellence for Nutrition. The laboratory participates successfully in the Program to Ensure the Quality of Urinary Iodine Procedures (EQUIP, U.S. Centres for Disease Control and Prevention, Atlanta GA, USA)³⁵. To convert urinary excretion values to estimated daily iodine intake (ug/day), UIE (ug/24hr) values were divided by 0.92 to account for the 92% bioavailability (approximately 8% of consumed dietary iodine consumption is absorbed). A median of <100 µg iodine/L indicates population-level deficiency (there are no reference ranges for individuals)³⁶. Data capture, analysis and statistical power All data was captured using an electronic data capture system and uploaded to a secure central server for data cleaning and analysis. The nested cohort sample size for the primary outcome measure of 24-hour urine sodium was calculated as previously described.²⁹

central server for data cleaning and analysis. The nested cohort sample size for the primary outcome measure of 24-hour urine sodium was calculated as previously described.²⁹
Allowing for error in 24-hour sample collection (incomplete or missing samples) in this complex field study, a target sub-sample size of 1200 was randomly selected from the main SAGE-Wave 2 cohort, and those with incomplete or missing samples excluded from the analysis. The sample size used for this analysis was deemed adequate based on recommendations of WHO (2007) that states a sample size between 600 and 900 is sufficient to have a reasonable confidence interval around the coverage estimate for urinary iodine concentration². More recently, Karmisholt (2014) recommends that 400 urine samples are

required to determine the median UIC of a group with 5% precision³⁷.

Both spot urinary iodine analyses (UIC) and 24hr urinary iodine excretion (UIE) were compared across three categories of 24hr urinary Na values, equivalent to salt intakes $\leq 5g/day$, 5-9g/day and $\geq 9g/day$. Normality of data was assessed by visual inspection of histograms and the Kolmogorov-Smirnov test. All non-parametric data were reported as median and interquartile range (IQR; 25th, 75th percentile) and continuous variables compared using independent Samples Mann-Whitney U test or Independent Samples Kruskal-Wallis test. Categorical variables were compared across groups using Pearson Chi-Square and Fisher's Exact Test. Data were also analysed according to urinary Na excretion values and by iodine category (sub-optimal: UIC $\leq 100 \text{ ug/L}$; iodine replete: 100 - 299 ug/L; and excessive: >300ug/L). To assess the association between salt intake, body size, UIC and UIE, Spearman's rank order and partial correlations were conducted.

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14 15 16 17	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1

218	Results
219	Complete urinary Na and iodine data were available in $n = 874$ participants.
220	Sociodemographic characteristics and health indicators of the sub-sample are compared to
221	total SAGE-Wave 2 cohort ($n = 2887$) in Table 1. The sub-sample had a higher proportion
222	women and more black/coloured respondents than the main cohort, which may explain
223	differences in smoking, education and BP.
224	Median 24hr Na excretion (n=874) was equivalent to a median salt intake of 6.3gsalt/day
225	(range 1-43 g/day); 35% had values within the desirable range (< 5g salt/day), 37% had his
226	values $(5 - 9 \text{ g salt/day})$ and 28% had very high values ($\geq 9 \text{g salt/day}$). We have previousl
227	reported that median salt intakes are higher in younger than older (50+ y) adults in this co
228	(8.6 g vs 6.1 g/day; $p < 0.001$), and in urban compared to rural dwellers (7.0 g vs 6.0 gday
229	$p=0.033)^{38}$ but further analysis of Na vs iodine excretion, by demographic breakdown is
230	outside the scope of the current analysis. No significant difference in median UIE was fou
231	according to age category (18-49y; 50+y) or sex, however median UIE was significantly
232	higher in urban compared to rural dwellers (128 (IQR147) vs 115 (IQR 119); p=0.041). N
233	demographic differences were found for median UIC. In the total sample, median UIC
234	(n=875) was 130 μ g/L (IQR=58-202), indicating iodine sufficiency (\geq 100 μ g/L) while
235	median 24hr UIE (n=866) was 117 ug/day (IQR 138).
236	
237	Both UIC and 24hr iodine excretion differed across urinary salt categories and were
238	positively correlated with urinary Na ($r= 0.172$ and 0.533; both P<0.001) (Table 2). In the
239	lowest salt category of $<5g/d$, median UIC indicated borderline deficiency of 102 μ g/L
240	(Table 3). According to median 24hr UIE values, the group of participants with a salt inta
241	of <5g/day are not meeting their dietary n Estimated Average Requirement (EAR) of
242	95µg/day (IOM 2003). ³⁹ , with 58.4% having intakes below this value (Table 3). Response
243	questions on salt behaviours did not differ between participants across median UIC categor
244	(data not shown), nor according to UIE (Figure 1).
245	
246	Discussion
247	Our study found that in a sample of South African adults, those with a salt intake within the

248 WHO recommended range of less than 5g/day had urinary iodine excretion values indicative

BMJ Open

of suboptimal iodine intakes, whereas those with higher salt intakes were shown to have adequate intakes using 24hour urinary iodine excretion as a biomarker of intake. . Thus, there is a risk that sodium reduction strategies may impact adversely on iodine intakes and result in populations being at risk of inadequate iodine intakes unless fortificant levels of iodine in salt are revised accordingly. This data was collected immediately prior to introduction of South Africa's mandatory salt reduction legislation, that requires food manufacturers to comply with maximum salt targets across a wide range of processed foods. The impact of the salt reduction policy on iodised salt intake is unknown. South Africa has had a well functioning table salt iodisation programme since 2005, but salt used in food processing is exempt from mandatory iodisation. Despite iodised salt not being required by law to be used as an ingredient in the manufacturing of processed foods, a study⁴⁰ that investigated the iodine content of salt used in bread, margarine, and salty snack flavourings in 2002 provided surprising results. Even though 11 of the 12 manufacturers surveyed at that time reported that they used non-iodized salt in their products, substantial amounts of iodine were found in the salt used by a third of these manufacturers' products, with a mean content of 39 to 69 ppm, and these were the items that were mostly distributed countrywide. An appreciable percentage of the food companies used iodized salt unknowingly in the manufacturing of frequently consumed processed foods, and this may have had a considerable impact on the daily iodine intake of consumers. To our

knowledge, there is no updated information on the use of iodised salt by food manufacturers.
Thus, it is feasible that the salt reduction legislation may also impact on contribution of
iodine intake from iodised salt.

As well as changes to the food supply, nutrition education activities undertaken by the Department of Health and non-governmental organizations in South Africa aim to change consumer behaviour related to table salt use^{41 42}. The timing of the WHO SAGE Salt & Tobacco sub-study in South Africa was planned to provide a baseline population salt intake³⁸ one year before mandatory salt legislation, in order for comparison in the same cohort one year after introduction of the legislation²⁹ in SAGE Wave 3. The data reported in this paper relate to the pre-salt reduction legislation baseline timepoint. Inclusion of iodine analyses in Wave 3 in 2018 will further allow evaluation of the compatibility of iodine fortification and salt reduction policies.

Concerted efforts are being made in many countries to lower salt consumption¹⁸. Because the primary food vehicle for iodine fortification is salt, there is concern that decreasing salt consumption will increase the risk of iodine deficiency. Our study findings indicate that this is a potential public health problem. The findings of the current study are in contrast to previous findings from a sample of adult men and women surveyed in Cape Town in 2004, when UIC did not differ across categories of salt intake²¹. Reasons for this are unclear but may reflect an increased consumption of salt provided from non-iodised sources in processed foods, accompanied by a reduction in discretionary iodised salt intake, since 2004. However, data is not available to further postulate in this regard.

The South African strategic plan to reduce cardiovascular disease includes the target to reduce the population intake of salt to less than 5 grams/day. At present the salt intake is higher than this level, with older reports from the early 2000s estimating that 40% salt was provided from discretionary salt intake²². Our study was conducted immediately prior to introduction of the mandatory salt targets in processed foods. The salt intake estimations in the current study include both added (discretionary) and non-discretionary salt intakes but the lack of data on dietary intakes of the participants prevents further investigation of the source of the salt.

We hypothesize that food manufacturers may have already reduced salt content in processed foods at the time of the study (2015), and that some of these products may have been produced with iodized salt. If this is the case, this would result in lowered iodine intake at the same time as lowered salt intake, as would any reduction in discretionary salt use. Considering the latter, there have been many accompanying health education strategies that target salt reduction behaviours, alongside the salt legislation in processed foods⁴². In 2015, a mass media campaign (Saltwatch), using television, radio advertisement and other platforms for information dissemination was undertaken to increase public awareness related to the association between a high salt intake, blood pressure and cardiovascular disease in South Africa. The campaign, conducted by the Heart and Stroke Foundation of South Africa with funding from the Department of Health, focused on the need to reduce discretionary salt intake. Evaluation of the programme undertaken in 550 black women, aged 18-55 years in three provinces identified that there was an increase in most of the indicators of knowledge, attitudes and behaviour change towards considering and initiating reduced salt consumption following the campaign. Significant increases were found for knowledge items related to high salt intake and its health outcomes. Participants also reported that they added less salt while

Page 11 of 22

BMJ Open

cooking and at the table. In the current study, responses to questions on salt behaviours did not differ between participants across median UIC categories, nor according to 24-hr UIE. This could mean that the questions are not sufficiently sensitive to discern between salt intake behaviours, or that the contribution of discretionary salt to total iodine intake is influenced by other food sources of iodised salt. A strength of the current study was use of the gold standard method for assessment of salt intake, namely 24hr urinary collections. Limitations relate to the high number of respondents with missing or incomplete urine samples. The difficulty in obtaining complete 24-hour urine samples is well-known, and the comparison between the main study cohort and those providing complete samples shows that men, and those with higher education less frequently provided complete 24-hour urine. This may also reflect the nature of the survey as fieldworkers visited the respondent's homes and those that were away with work were less likely to have taken part or would have potentially had more difficulty with the urine collection, creating a selection bias in the data towards the population with lower employment levels. Future research may consider workplace-based data collection. An assumption was made regarding cut-off values for completeness of 24hr urine collection whereby urinary volume < 300 ml/day or creatinine excretion $\leq 4 \text{ mmol/day}$ (women) or ≤ 6 mmol/day (men)³³ were the criteria used for exclusion purposes. In populations with low protein intakes, daily creatinine excretion is more variable than in well nourished populations, and often lower than 1 g (8.84 mmol)per day.⁴³ A limitation of the study is that neither dietary protein intake, nor lean body mass was assessed which makes it difficult to account for these two confounding variables when deciding on how to interpret low urinary creatinine concentrations. A further limitation is the lack of dietary data on sources of iodine provided by foods other

than iodised salt. Iodine-rich dietary sources include fish and seafood, and dairy products and it is possible that some of these foods may also be high in salt, as in the case of salted dried fish commonly consumed by the coloured population (known as "bokkems"). However, generally these foods are not major contributors to sodium in the South African diet²². Interestingly, in women, both UIC and UIE correlated positively with body mass index, independently of salt intake. Looking at changes in food consumption patterns in South Africa over time, it seems that there is not only an increase in processed foods but also other foods that may contribute to iodine intake independently of iodized salt such as fish, eggs,

seafood, and dairy foods⁴⁴. The contribution of food sources, other than iodized salt, to total iodine intake warrants further investigation in the context of evaluating the mandatory salt iodization programme in South Africa. Furthermore, this study presents limited data for women of child bearing age and no data for children. Further work is needed to determine if there is an impact of the sodium reduction legislation in these particularly iodine-sensitive groups.

Conclusion

This study highlights the need to closely monitor the iodine status of populations as they undergo population-level reductions in salt intake, in countries where mandatory salt iodisation is implemented. If salt intake levels drop to the WHO target of <5g/day, there may be a need to increase the level of iodine in fortified table salt. Alternatively, compulsory iodisation of salt used in the production of some staple foods such as bread may be considered. In a country where some sectors of the population may be exposed to excessive iodine intakes, this strategy would require careful dietary modelling before being pursued. It is recommended that surveys that measure urinary Na excretion also simultaneously measure urinary iodine concentration and determine the iodine content in table salt collected from households.

Acknowledgements: The authors thank all respondents for contributions and acknowledge Dr Stephen Rule, Dr Robin Richards and Mr Godfrey Dlulane of Outsourced Insight who were subcontracted to conduct the surveys and coordinate data collection within South Africa.

Funding: This work is supported by an agreement with the CDC Foundation with financial support provided by Bloomberg Philanthropies, and a Partnerships & Research Development Fund (PRDF) grant from the Australia Africa Universities Network. SAGE is supported by WHO and the Division of Behavioral and Social Research (BSR) at the National Institute on Aging (NIA), US National Institutes of Health, through Interagency Agreements with WHO [OGHA 04034785; YA1323-08-CN-0020; Y1-AG-1005-01] and a Research Project Grant [R01AG034479]. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the World Health Organization or the funding bodies.

- Competing interests: None.

BMJ Open

2 3	380	Authorship: Authors' contributions were as follows – KC, PK, NN designed research; LJW
5 4		
5	381	implemented research; JB analysed iodine samples; MC, LJW, KC analysed data; KC, LJW,
6 7	382	JB, AES, MC, PK, wrote the paper; KC takes responsibility for the contents of this article.
8 9	383	All authors read and approved the final manuscript.
10 11	384	Data sharing statement: The dataset is available on request and will form part of the data
12	385	catalogue of the World Health Organization Study on Global AGEing and Adult Health
13 14	386	(SAGE) (http://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/sage/about)
15 16	387	
17 18 19	388	References
20	389	1. Andersson M, De Benoist B, Delange F, et al. Prevention and control of iodine deficiency in
21	390	pregnant and lactating women and in children less than 2-years-old: conclusions and
22	391	recommendations of the Technical Consultation. Public health nutrition 2007; 10 (12A):1606-
23	392	11.
24	393	2. World Health Organization; United Nations Children's Fund; International Council for the Control
25	394	of lodine Deficiency Disorders. Assessment of iodine deficiency disorders and monitoring
26 27	395	their elimination: a guide for programme managers. 2007. 3rd ed. Geneva: World Health
28	396	Organization.
29	397	3. WHO Guideline on Fortification of food-grade salt (2014). See
30	398	http://www.who.int/nutrition/publications/guidelines/fortification_foodgrade_saltwithiodin
31	399	e/en/ Geneva: WHO.
32	400 401	 United Nations System. Standing Committee on Nutrition (SCN) News. Universal Salt Iodisation. 2007; 35. ISSN 1564-3743. (accessed 17/July/2017).
33	401	5. United Nations Children's Fund (UNICEF). The State of the World's Children 2016. [cited 12
34	402	January 2018]. Available at: https://www.unicef.org/sowc2016/ New York: UNICEF.
35	403	6. The lodine Global Network. Global lodine Nutrition Scorecard 2016 [accessed 12 January 2018].
36	405	Available from: <u>http://www.ign.org/cmdata/Scorecard_2016_SAC_PW.pdf</u> . Zurich, 2016.
37	406	7. Gizak M, Gorstein J, Andersson M. Epidemiology of Iodine Deficiency In: Pearce E, ed. Iodine
38 39	407	Deficiency Disorders and Their Elimination. Ebook, available at:
40	408	https://link.springer.com/book/10.1007/978-3-319-49505-7 Springer, 2017:35.
41	409	8. Andersson M, Karumbunathan V, Zimmermann MB. Global iodine status in 2011 and trends over
42	410	the past decade. The Journal of nutrition 2012; 142 (4):744-50.
43	411	9. The Iodine Global Network. Global iodine nutrition scorecard 2015 [Internet]. Zurich: The Iodine
44	412	Global Network [cited 1 January 2018]. Available from:
45	413	http://www.ign.org/cmdata/Scorecard 2015 August 26 new.pdf, 2015.
46	414	10. Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. The Lancet
47	415	2008; 372 (9645):1251-62.
48	416	11. Effects of mandatory iodization on the iodine content of retailers and household salt in South
49	417	Africa. 8th World Salt Symposium; 2000.
50	418	12. Joint FAO/WHO Expert Committee on Food Additives. 1991 (WHO Technical Report Series, No.
51 52	419	806, Annex 5). World Health Organization. Geneva.
52 53	420	13. Jooste P, Zimmermann M. Progress towards eliminating iodine deficiency in South Africa: invited
53 54	421	review. South African Journal of Clinical Nutrition 2008; 21 (1):8-14.
55		
56		
57		
58		13
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

422 423	14. Jooste PL, Labadarios D, Nel H, et al. Iodine content of household salt, drinking water and iod status of women and children. National Food Consumption Survey-Fortification baselir
425 424	
	(NFCS-FB): South Africa 2005. Stellenbosch, South Africa, 2007:387-407.
425	15. Labadarios D, Swart R, Maunder E, et al. The National Food Consumption Survey–Fortification
426	Baseline (NFCS-FB): South Africa, 2005: Directorate: Nutrition, Department of Health.
427 428	Pretoria., 2007. 16. Jooste PL, Weight MJ, Lombard CJ. Iodine concentration in household salt in South Africa.
428 429	Bulletin of the World Health Organization 2001; 79 (6):534-40.
430	17. Webster JL, Dunford EK, Hawkes C, et al. Salt reduction initiatives around the world. Journal
431	Hypertension; 29 (6):1043-50.
432	18. Trieu K, Neal B, Hawkes C, et al. Salt Reduction Initiatives around the World–A Systematic Re
433	of Progress towards the Global Target. PloS ONE 2015;10(7):e0130247.
434	19. Charlton K, Webster J, Kowal P. To legislate or not to legislate? A comparison of the UK and
435	South African approaches to the development and implementation of salt reduction
436	programs. Nutrients 2014; 6 (9):3672-95.
437	20. Charlton KE, Steyn K, Levitt NS, et al. Ethnic differences in intake and excretion of sodium,
438	potassium, calcium and magnesium in South Africans. European Journal of Cardiovascul
439	Prevention & Rehabilitation 2005 ; 12 (4):355-62.
440	21. Charlton KE, Steyn K, Levitt NS, et al. A food-based dietary strategy lowers blood pressure in
441	low socio-economic setting: a randomised study in South Africa. Public Health Nutrition
442	2008; 11 (12):1397-406.
443	22. Charlton KE, Steyn K, Levitt NS, et al. Diet and blood pressure in South Africa: intake of foods
444	containing sodium, potassium, calcium, and magnesium in three ethnic groups. Nutritio
445	2005; 21 (1):39-50.
446	23. Report number R214: Foodstuffs, cosmetics and disinfectants Act, 1972 (Act 54 of 1972).
447	Regulations relating to the reduction of sodium in certain foodstuffs and related matter
448	(2013). South African Department of Health.
449	24. Bertram Y, Steyn K, Wentze-Viljoen E, et al. Reducing the sodium content of high-salt foods:
450	Effect on cardiovascular disease in South Africa. SAMJ: South African Medical Journal
451	2012; 102 (9):743-45.
452	25. Watkins DA, Olson ZD, Verguet S, et al. Cardiovascular disease and impoverishment averted
453	to a salt reduction policy in South Africa: an extended cost-effectiveness analysis. Health
454	Policy and Planning 2015; 31 (1):75-82.
455	26. Verkaik-Kloosterman J, van 't Veer P, Ocké MC. Reduction of salt: will iodine intake remain
456	adequate in The Netherlands? British Journal of Nutrition 2010;104(11):1712-18.
457	27. Charlton KE, Jooste PL, Steyn K, et al. A lowered salt intake does not compromise iodine stat
458	Cape Town, South Africa, where salt iodization is mandatory. Nutrition; 29 (4):630-34.
459	28. Kowal P, Chatterji S, Naidoo N, et al. Data resource profile: the World Health Organization St
460	on global AGEing and adult health (SAGE). International Journal of Epidemiology
461	2012; 41 (6):1639-49.
462	29. Charlton K, Ware LJ, Menyanu E, et al. Leveraging ongoing research to evaluate the health
463	impacts of South Africa's salt reduction strategy: a prospective nested cohort within the
464	WHO-SAGE multicountry, longitudinal study. BMJ Open 2016;6(11):e013316.
465	30. World Medical Association Declaration of Helsinki – Ethical principles for medical research
466	involving human subjects (as amended by the 64th WMA General Assembly, Fortaleza,
467	Brazil, October 2013; available at: https://www.wma.net/policies-post/wma-declaration
468	helsinki-ethical-principles-for-medical-research-involving-human-subjects/).
469	31. WHO/PAHO Regional Expert Group for Cardiovascular Disease Prevention through Populatic
470	wide Dietary Salt Reduction. Protocol for population level sodium determination in 24-h
471	urine samples (2010). Geneva: World Health Organization.

60

BMJ Open

2		
3	472	32. Nicar MJ, Hsu MC, Johnson T, et al. The preservation of urine samples for determination of renal
4	473	stone risk factors. Laboratory Medicine 1987; 18 (6):382-4.
5	474	33. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, et al. Fatal and nonfatal outcomes, incidence of
6 7	475	hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA
8	476	2011; 305 (17):1777-85.
9	477 478	 Ohashi T, Yamaki M, Pandav CS, et al. Simple microplate method for determination of urinary iodine. Clinical Chemistry 2000;46(4):529-36.
10	478	35. Caldwell KL, Makhmudov A, Jones RL, et al. EQUIP: a worldwide program to ensure the quality of
11	479	urinary iodine procedures. Accreditation and Quality Assurance 2005; 10 (7):356-61.
12	480 481	36. Delange F, de Benoist B, Burgi H. Determining median urinary iodine concentration that indicates
13	482	adequate iodine intake at population level. Bulletin of the World Health Organization
14	483	2002; 80 (8):633-36.
15	484	37. Karmisholt J, Laurberg P, Andersen S. Recommended number of participants in iodine nutrition
16	485	studies is similar before and after an iodine fortification programme. European journal of
17	486	nutrition 2014; 53 (2):487-92.
18 19	487	38. Ware LJ, Charlton K, Schutte AE, et al. Associations between dietary salt, potassium and blood
20	488	pressure in South African adults: WHO SAGE Wave 2 Salt & Tobacco. Nutrition, Metabolism
20	489	and Cardiovascular Diseases 2017; 27 (9):784-91.
22	490	39. Institute of Medicine, Academy of Sciences, USA. Dietary Reference Intakes for Vitamin A, Vitamin
23	491	K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese,Molybdenum, Nickel, Silicon,
24	492	Vanadium and Zinc. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25057538</u> .
25	493	Washington, DC: The National Academies Press, 2001.
26	494	40. Harris MJ, Jooste PL, Charlton KE. The use of iodised salt in the manufacturing of processed foods
27	495	in South Africa: bread and bread premixes, margarine, and flavourants of salty snacks.
28 29	496	International journal of food sciences and nutrition 2003;54(1):13-9.
29 30	497	41. Wentzel-Viljoen E, Steyn K, Lombard C, et al. Evaluation of a Mass-Media Campaign to Increase
31	498	the Awareness of the Need to Reduce Discretionary Salt Use in the South African Population.
32	499 500	Nutrients 2017; 9 (11):1238.
33	500 501	42. Webster J, Crickmore C, Charlton K, et al. South Africa's salt reduction strategy: Are we on track, and what lies ahead? SAMJ: South African Medical Journal 2017; 107 (1):20-21.
34	501	43. Bourdoux P. Evaluation of the iodine intake: problems of the iodine/creatinine ratio –
35	502	comparison with iodine excretion and daily fluctuations of iodine concentration. Exp Clin Endocrinol
36		
37	504	Diabetes. 1998;106(Suppl 3):S17–S20.
38 39	505	44. Ronquest-Ross L-C, Vink N, Sigge GO. Food consumption changes in South Africa since 1994.
39 40	506	South African Journal of Science 2015; 111 (9-10):01-12.
41		
42	507	
43	508	
44	508	
45	509	
46		
47		
48 49		
49 50		
51		
52		
53		
54		
55		
56		
57		
58 59		15
27		

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright.

2	
3	
4	
5	
6	
7	
8	
q	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
12 13 14 15 16 17 18	
19	
20	
20 21	
∠ I 22	
21 22	
25	
24	
25	
26	
27	
28	
29	
30	
30 31 32 33 34 35	
21	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51 52	
53	
54	
55	
56	
57	
58	
59	
59	

60

1 2

Table 1. Characteristics of the main (SAGE South Africa Wave 2, 2015) and subsample
study cohort.

	Main SA	AGE cohort	Subs	sample ^a	
	n=	2887	n=	p value	
	median	IQR	median	IQR	
Female, n (%)	1939	67	671	77	< 0.00
Age years	57	46, 69	55	44, 67	0.468
Aged over 50 years, n (%)	1979	69	567	65	0.171
Ethnicity, n (%)					
Black	1988	69	410	74	< 0.00
Coloured, mixed race	465	16	96	17	
Indian	306	11	41	7	
White	128	4	11	2	
Rural, n (%)	792	28	163	29	0.418
Education years	10	7, 13	9	6, 12	0.028
Never been to school, n (%)	495	18	109	20	0.180
Never had paid employment, n (%)	1101	55	238	56	0.403
BMI, kg/m ²	28.8	23.9, 33.7	29.1	24.0, 34.2	0.540
Waist to height ratio	0.59	0.52, 0.67	0.58	0.50, 0.66	0.070
Never used alcohol, n (%)	1576	80	353	83	0.052
Never used tobacco, n (%)	1635	83	367	86	0.023
Systolic BP mmHg	131	118, 144	128	116, 141	0.073
Diastolic BP mmHg	81	73, 89	79	71, 87	0.029
Hypertension, n (%)	1233	45	232	43	0.239
Diabetes, n (%)	248	13	46	11	0.355

BMI, body mass index. ^aSubsample: all respondents with spot UIC, valid 24-hour urine, sex and age recorded. Some variables may contain missing data as indicated by percentages. Data shown as median and interquartile range (IQR; 25th, 75th percentile) unless otherwise indicated. Hypertensive by measured BP≥140 and/or 90mmHg or previous diagnosis.
Education, tobacco/alcohol use, ethnicity, employment and diabetes prevalence by self-report. Continuous variables compared using Independent Samples Mann-Whitney U test, categorical variables compared using Pearson Chi-Square and Fisher's Exact Test.

. ..

. .

		All n=456	Men n=110	Women n=346
Correlations with spot UIC μ g/l				
Salt intake g/day	rho	0.166(***)	0.164	0.153(**
	р	0.000	0.088	0.00
24-hr iodine µg/day	rho	0.423(***)	0.483(***)	0.392(***
	p	0.000	0.000	0.00
BMI kg/m ²	r	0.036	0.001	0.09
	p	0.448	0.988	0.07
Weight kg	r	0.043	0.035	0.05
	p	0.365	0.716	0.29
Waist circumference cm	r	0.001	0.027	0.00
	р	0.991	0.784	0.87
Hip circumference cm	r	0.040	0.213(*)	0.00
	p p	0.389	0.026	0.88
Correlations with 24-hr UIE µg/d				
Salt intake g/day	rho	0.552(***)	0.504(***)	0.561(**
	р	0.000	0.000	0.00
BMI kg/m ²	r	0.092	0.030	0.168(*
	p	0.051	0.758	0.00
Weight kg	r	0.130(**)	-0.023	0.193(**
	р	0.005	0.814	0.00
Waist circumference cm	r	0.032	-0.011	0.06
	р	0.491	0.911	0.20
Hip circumference cm	r	0.052	0.056	0.09
	р	0.269	0.563	0.08

excretion. Correlations between iodine and body size controlled for salt intake. Correlation is

significant at the 0.05 level (*); at the 0.01 level (**); or at the 0.001 level (***).

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
12 13 14 15 16 17	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
0C 7C	
37	
38	
39	
40	
41	
42	
43	
44	
44	
45 46	
16	

47

1

				24-hour ur	inary sodi	um excretion			
	All n=874 ^a		Salt <5g/d n=307		Salt 5-9g/d n=322		Salt >9g/d n=245		p value
	median	IQR	median	IQR	median	IQR	median	IQR	
Sodium mg/day	2471	1434, 3506	1393	1068, 1719	2638	2219, 3057	4799	3607, 5993	< 0.001
Salt g/day	6.3	3.7, 9.0	3.6	2.8, 4.5	6.8	5.7, 7.9	12.3	9.3, 15.4	< 0.001
UIC µg/l	130	58, 202	102	32, 172	131	56, 206	149	78, 220	< 0.001
24hr UIE µg/day	117	48, 186	74	37, 111	119	57, 181	195	117, 273	< 0.001
Estimated iodine	127	52, 202	80	40, 120	130	63, 197	212	127, 297	< 0.001
intake µg/day									
% with daily iodine	37.1%		58.4%		34.7%		13.5%		
intake below EAR									
for iodine (95									
μg/day)†									
UIC, spot urine iodin Data shown as media Wallis test. † Daily iodine intake	n and inter	quartile range	e (IQR; 25 ^t	^h , 75 th percentile). Continu	ious variables	bsample w compared	vith missing 24-h using Independe	our sodium ent Samples

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3		
4 5 6	532 533	Figure Legend: Self-reported salt knowledge, attitudes and behaviour by 24-hour urinary iodine excretion (UIE; n=539)
7	555	
8 9		
9 10		
11		
12		
13 14		
15		
16		
17 18		
19		
20		
21 22		
22		
24		
25 26		
20		
28		
29 30		
31		
32		
33 34		
35		
36		
37 38		
30 39		
40		
41 42		19
42 43		
44		
45 46		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46 47	ʻight.	BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copy

Page 20 of 22

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright.

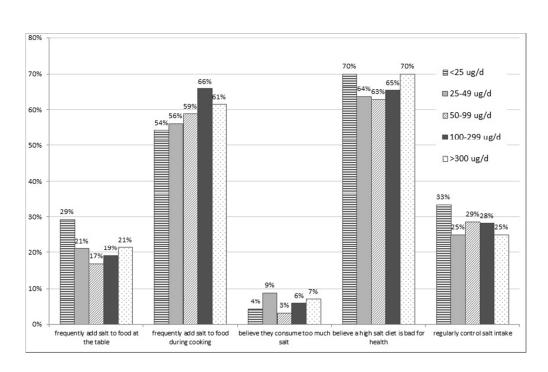


Figure 1. Self-reported salt knowledge, attitudes and behaviour by 24-hour urinary iodine excretion (UIE; n=539)

BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-6
Bias	9	Describe any efforts to address potential sources of bias	4-6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	6
		(d) If applicable, describe analytical methods taking account of sampling strategy	7
		(e) Describe any sensitivity analyses	none

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	6-7
		(b) Give reasons for non-participation at each stage	6-7
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1, p 14
		(b) Indicate number of participants with missing data for each variable of interest	Table 1, p 14
Outcome data	15*	Report numbers of outcome events or summary measures	Table 3, p 16
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	none
		(b) Report category boundaries when continuous variables were categorized	7-8; Table 3, p 16; Figure 1, p 17
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	none
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10; Table 1, p 14
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	10
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	8-11
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

How will South Africa's mandatory salt reduction policy affect its salt iodisation programme? A cross-sectional analysis from the WHO-SAGE Wave 2 Salt & Tobacco study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-020404.R2
Article Type:	Research
Date Submitted by the Author:	05-Feb-2018
Complete List of Authors:	Charlton, Karen; University of Wollongong, School of Medicine; Illawarra Health and Medical Research Institute Ware, Lisa; North West University Faculty of Health Sciences, Hypertension in Africa Research Team; University of Witwatersrand, Developmental Pathways for Health Research Unit Baumgartner, Jeannine; North West University , Centre of Excellence in Nutrition Cockeran, Marike; North West University, Statistical Consulting Services Schutte, Aletta; North West University Faculty of Health Sciences, MRC Research Unit for Hypertension and Cardiovascular Disease; Hypertension in Africa Research Team Naidoo, Nirmala; World Health Organization Kowal, Paul; World Health Organization; University of Newcastle, Research Centre for Generational Health and Ageing
Primary Subject Heading :	Public health
Secondary Subject Heading:	Nutrition and metabolism, Public health
Keywords:	sodium, iodine, dietary, policy, nutritional requirements

SCHOLARONE[™] Manuscripts

	study
\$	Short title: Salt reduction and table salt iodisation
]	Karen Charlton ^{1,2} ; Lisa J Ware ^{3,4} ; Jeanine Baumgartner, ⁵ Marike Cockeran ⁶ ; Aletta E
	Schutte ^{3,7} ;Nirmala Naidoo ⁸ ; and Paul Kowal ^{8,9}
!	¹ School of Medicine, University of Wollongong, New South Wales, Australia
((karenc@uow.edu.au)
	² Illawarra Health and Medical Institute, Wollongong, Australia.
	³ Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa (lisa.jayne.ware@gmail.com).
	⁴ Developmental Pathways for Health Research Unit, University of the Witwatersrand,
	Johannesburg, South Africa.
	⁵ Centre of Excellence in Nutrition, North-West University, Potchefstroom, South Africa
	(jeannine.baumgartner@gmail.com)
	⁶ Statistical Consultation Services, North-West University, , Potchefstroom, 2520, South Africa (Marike.Cockeran@nwu.ac.za)
	⁷ MRC Unit for Hypertension and Cardiovascular Disease, North-West University,
	Potchefstroom, South Africa (<u>alta.schutte@nwu.ac.za</u>).
	⁸ World Health Organization (WHO), Geneva, Switzerland (naidoon@who.int;
	kowalp@who.int).
	⁹ University of Newcastle Research Centre for Generational Health and Ageing, Newcastle, Australia (<u>kowalp@who.int</u>).
14	
15	Corresponding author:
16	Karen E Charlton
17	School of Medicine, University of Wollongong, New South
18	Wales, Australia
19	Tel. +61 (2) 4221 4754; Fax. +61 (2) 4221 3486
20	E-mail: karenc@uow.edu.au
21	
	Word count of manuscript: 3000 exc. abstract, statements, refs and tables
	Word count of abstract: 254
	Total number of figures/tables: 4
25	
	1

26	
27	
28	Abstract
29	Objective: The World Health Organization's (WHO) global targets for non-communicable
30	disease (NCD) reduction recommend consumption of <5g salt/day. In 2016, South Africa
31	was the first country to legislate maximum salt levels in processed foods. South Africa's salt
32	iodization fortification programme has successfully addressed iodine deficiency but
33	information is dated Simultaneous monitoring of sodium reduction and iodine status is
34	required to ensure compatibility of the two public health interventions.
35	Design/setting/participants: A nested cohort design within WHO's 2015 Study on global
36	AGEing and adult health (SAGE, n=2887) including individuals from households across
37	South Africa. Randomly selected adults (n=875) provided 24-hour and spot urine samples for
38	sodium and iodine concentration analysis (the primary and secondary outcome measures
39	respectively). Median 24-hour iodine excretion (UIE) and spot urinary iodine concentrations
40	(UIC) were compared by salt intakes $<5g/day$, $5-9g/day$ and $\ge9g/day$.
41	Results: Median daily sodium excretion was equivalent to 6.3g salt/day (range 1-43 g/day);
42	35% had urinary sodium excretion values within the desirable range (< 5g salt/day), 37% had
13	high values (5 – 9 g salt/day) and 28% had very high values (\geq 9g salt/day). Median UIC was
44	130 μ g/L (IQR=58-202), indicating population iodine sufficiency (\geq 100 μ g/L). Both UIC and
15	UIE differed across salt intake categories (p<0.001) and were positively correlated with
46	estimated salt intake (r= 0.166 and 0.552 respectively; both p<0.001). Participants with salt
17	intakes <5g/day were not meeting the EAR for iodine intake (95 µg/day).
48	Conclusions: In a nationally representative sample of South African adults, the association
49	between indicators of population iodine status (UIC and UIE) and salt intake, estimated using
50	24hr urinary sodium excretion, indicate that low salt intakes may compromise adequacy of
51	iodine intakes in a country with mandatory iodisation of table salt. The iodine status of
52	populations undergoing salt reduction strategies need to be closely monitored to prevent re-
53	emergence of iodine deficiency.
54	
55	Strengths and limitations of this study
56	• The study uses the current gold standard of 24-hour urine to assess sodium intake
57	• Timing of the study was immediately prior to legislation of maximum permitted salt
58	levels in processed foods
	2
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

59	• The large sample size includes coastal and inland populations from across the country
60	• Lack of dietary data precludes assessment of sources of iodine or sodium
61	• The data is only for adults and not children
62	
63	Keywords: iodine; sodium, dietary; policy; nutritional requirements; legislation, food
64	Introduction
65	Iodine deficiency remains the largest preventable cause of brain damage and mental
66	impairment worldwide. Thyroid hormone production requires an adequate supply of iodine
67	from the diet, and is essential to metabolism and growth across the lifecycle. As well as
68	cretinism in its most severe form, iodine deficiency can also result in miscarriages, stillbirths,
69	and impaired psychomotor development and behavioural problems in children born to iodine
70	deficient mothers ¹ . To prevent iodine deficiency disorders, the World Health Organization
71	(WHO) has endorsed universal salt iodization (USI), where all salt for human and animal
72	consumption is iodized ^{2,3} . USI is hailed as a public health success story, as 75% of the
73	world's population was estimated in 2016 to use iodized salt in a total of 130 countries ^{4,5} .
74	The 2016 global estimate of iodine nutrition, based on surveys of school-age children
75	conducted between 2002 and 2016, shows that the iodine intake is insufficient in 15
76	countries, sufficient in 102, and excessive in 10 countries ^{6,7} . Among the 15 countries with
77	insufficient intake, only two are classified as moderately deficient and 13 as mildly deficient.
78	This represents a reduction in the number of countries with insufficient iodine intake, from 32
79	in 2011 ⁸ , to 25 countries in 2015 ⁹ , to 15 countries in 2016 ⁶ which reflects continuing progress
80	to improved coverage of iodized salt at the national level. ¹⁰
81	
82	In South Africa, mandatory iodization of table salt, at a level of 40 to 60 ppm, replaced

In South Africa, mandatory iodization of table salt, at a level of 40 to 60 ppm, replaced voluntary iodization in December 1995, using potassium iodate as the fortificant¹¹ because of its stability in warm climates¹², rather than potassium iodide that is used in North America and Europe. The level of fortification was subsequently revised in 2007 to allow a wider range, namely 35 to 65 ppm¹³. The iodization program has effectively addressed iodine deficiency in the country, but there are some loopholes in the program, such as the domestic use of non-iodized agricultural salt in some regions^{14,13}. In 2005, 78% of households nationwide purchased salt for household uses from typical food stores. At the same time, 8-37% of households across all the provinces of South Africa obtained salt for household use

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

from "unconventional" channels such as agricultural and other sources of non-iodized salt. Under the legislation, salt used in the manufacturing of processed foods and salt packaged in bags of at least 20 kg are also exempted from mandatory iodization¹¹. In 2005, 77% of households in the country used adequately iodized salt, described as salt containing more than 15 ppm of iodine¹³. However, data on the iodine status of the South African population is outdated and a national survey was last conducted in 2005¹⁴. At that time, South African women and children aged 6 to 9 y old were found to have an optimal iodine status (i.e., MUIC 100–199 mg/L, <20% with UIC levels <50 mg/L)¹⁵ which indicated a well-functioning salt iodization program^{6,16}. At the same time as salt iodization efforts around the world are being celebrated, there is a global focus on salt reduction efforts to lower population level blood pressure. The World Health Organization (WHO) and World Health Assembly targets to reduce non communicable diseases (NCDs) include a 30% reduction in population salt intake by 2025¹⁷ ¹⁸. South Africa was the first country to implement mandatory legislation in July 2016 for maximum salt levels permitted in a wide range of processed foods¹⁹ that are significant contributors to the sodium intake of the population $^{20-23}$. The legislation is predicted to decrease population-level salt intake by 0.85 grams per day²⁴ and reduce annual deaths from cardiovascular diseases by 11%. This public health strategy is estimated to save the government US\$51.25 million/year in health care costs; and save households more than US\$4 million/year in out-of-pocket medical expenses²⁵. Since salt is the vehicle for iodine fortification, successful campaigns to reduce salt intake would also likely result in reduced iodine intake²⁶. Dietary modelling conducted in the Netherlands estimated the effect of 12%, 25%, and 50% decreases in salt from processed foods and table salt²⁶. Only at a 50% salt decrease would iodine intake become inadequate for a small percentage of the population which, at that time, confirmed a lack of conflict between population-wide strategies of decreasing salt while ensuring adequate consumption of iodized salt to prevent iodine deficiency. We have previously reported no difference in median UIC across categories of sodium excretion equivalent to salt intakes lower than 5g/day, 5 - 9 g/day, and greater than or equal to 9 g/d in a convenience sample of 262 adult men and women in Cape Town in 2004^{27} . It was concluded that this was because much of the dietary salt consumed was provided from non-iodinated sources, presumably in salt added to processed foods. Given the introduction of the salt reduction legislation, it is timeous to assess the iodine status of the South African population, according to salt intakes.

Page 5 of 24

BMJ Open

The aim of the current study was to simultaneously measure sodium (Na) and iodine in 24hr and spot urinary collections in an adult cohort to determine whether lower salt intakes are associated with a suboptimal iodine status.

127 Methods

A nested observational study was conducted as part of Wave 2 of the World Health Organization Study on global AGEing and adult health (WHO SAGE). WHO-SAGE is a multinational cohort study examining the health and wellbeing of adult populations and the ageing process. Two waves of this longitudinal study have been completed in China, Ghana, India, Mexico, Russia and South Africa²⁸. In total, 42,464 respondents were recruited across the six countries for Wave 1 (2007-2010), including 4223 respondents in South Africa (9% 18-49 years; 40% 50-59 years; 51% 60+ years). Respondents were recruited from selected probability sampled enumeration areas (EAs) using a multi-stage cluster sampling strategy, with stratification by province, residence and race. Urine capture was included as part of SAGE South Africa Wave 2 data collection. The sampling strategy was designed to account for attrition, where households were classified into the following mutually exclusive categories: 1) SAGE Wave 1 follow-up households with one or more members aged 50 years or more targeted for selection; 2) new households with one or more members aged 50 years or more; 3) SAGE Wave 1 follow-up households which include residents aged 18-49 targeted for selection; or, 4) new households which include residents aged 18-49. Further detail on the sampling and recruitment strategy can be found in the study protocol paper²⁹.

For Wave 2 data collection in 2015, twenty survey teams (one nurse and three interviewers per team) simultaneously collected data and samples from respondents across all provinces in the country over a five-month period. Respondents that were recruited to provide urine collections (n=1200) were sampled from among the first households visited within each EA, as a means to simplify logistics and reduce sample transit time to the central Durban laboratory.

Inclusion criteria for urine collection were: respondent must be part of the WHO SAGE
cohort, with no indication of urinary incontinence or other condition that could impede 24hour urine collection; and if female, not menstruating, pregnant, or breastfeeding on the day
of collection.

154 Study Measures

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

All survey teams were trained with support from WHO Geneva. As part of the larger survey, anthropometry, household and individual questionnaires, blood sampling, blood pressure (BP) and physical function tests were completed as described previously in SAGE Wave 1^{28} . Interviewers spoke the respondents' home languages with consent forms available in the most widely spoken languages for each area. All respondents gave free and informed consent prior to taking part. The study complied with ethical principles³⁰ and all procedures involving human subjects were approved by the WHO Ethics Review Committee [RPC149], and North-West University and University of Witwatersrand research ethics committees in South Africa.

Urine collection

The protocol used for collection of 24-hour urine samples followed the WHO/PAHO guidelines³¹. Respondents were requested to collect all urine produced for 24 hours, excluding the first pass urine on day 1, but including the first urine of the following morning (day 2) in a 5-litre plastic container containing 1g thymol as preservative in South Africa. The spot sample was collected without preservative from the second urine passed on day 1 (marking the start of the 24-hour collection) and decanted into three 15 ml Porvair tubes (Porvair Sciences, Leatherhead, UK) then kept in a cool box powered by the fieldwork vehicles. The next morning, the 24-hour sample volumes were recorded and aliquots (4 x Porvair tubes) generated with all samples then shipped to the laboratory, maintaining the cold chain. Thymol, a crystalline natural derivative of the Thyme plant, was used as a preservative. Thymol has been shown to prevent changes in urinary creatinine, sodium and potassium concentrations for up to five days³². Incomplete 24-hour urine collections were assumed if: total volume \leq 300ml; or creatinine excretion \leq 4 mmol/day (women) or \leq 6 $mmol/day (men)^{33}$.

Urine analysis

Sodium was determined using the indirect Ion Selective Electrode method and creatinine analysed using the standardised urinary Jaffe kinetic method (Beckman Coulter Synchron DXC600/800 System). The WHO population target for salt intake is 5g salt (NaCl) per day, equivalent to urinary sodium excretion 1950mg (or 85mmol)/24hr. Sodium (mmol/l) in the 24 h urine sample was converted to salt (g/d) using the formula: Na mmol/l * 24 h volume (litres) * 23.1 (molecular weight of sodium)/390 (390 mg sodium per 1 g sodium chloride (salt)). With the exception of iodine, all South African samples were analysed at a single

Page 7 of 24

BMJ Open

laboratory in Durban, South Africa (Global Clinical and Viral Laboratories). Urine samples

for iodine analysis were stored at -20° C and batch analysed using the Sandell-Kolthoff

method with ammonium persulfate digestion and microplate reading³⁴ at the North-West

Program to Ensure the Quality of Urinary Iodine Procedures (EQUIP, U.S. Centres for

University Centre of Excellence for Nutrition. The laboratory participates successfully in the

Disease Control and Prevention, Atlanta GA, USA)³⁵. To convert urinary excretion values to

estimated daily iodine intake (ug/day), UIE (ug/24hr) values were divided by 0.92, based on

the assumption that approximately 92% of dietary iodine is excreted in urine. A median of

<100µg iodine/L indicates population-level deficiency (there are no reference ranges for

All data was captured using an electronic data capture system and uploaded to a secure

outcome measure of 24-hour urine sodium was calculated as previously described.²⁹

Allowing for error in 24-hour sample collection (incomplete or missing samples) in this

SAGE-Wave 2 cohort, and those with incomplete or missing samples excluded from the

to have a reasonable confidence interval around the coverage estimate for urinary iodine concentration². More recently, Karmisholt (2014) recommends that 400 urine samples are

Both spot urinary iodine analyses (UIC) and 24hr urinary iodine excretion (UIE) were

compared across three categories of 24hr urinary Na values, equivalent to salt intakes

<5g/day, 5-9g/day and $\geq 9g/day$. Normality of data was assessed by visual inspection of

median and interguartile range (IOR; 25th, 75th percentile) and continuous variables compared

Fisher's Exact Test. Data were also analysed according to urinary Na excretion values and by

using independent Samples Mann-Whitney U test or Independent Samples Kruskal-Wallis

test. Categorical variables were compared across groups using Pearson Chi-Square and

histograms and the Kolmogorov-Smirnov test. All non-parametric data were reported as

analysis. The sample size used for this analysis was deemed adequate based on

required to determine the median UIC of a group with 5% precision 37 .

complex field study, a target sub-sample size of 1200 was randomly selected from the main

recommendations of WHO (2007) that states a sample size between 600 and 900 is sufficient

central server for data cleaning and analysis. The nested cohort sample size for the primary

2	
3	187
4 5	188
6	189
7 8	190
9 10	191
11	192
12 13	193
14	194
15 16	195
17 18	196
19	197
20 21	198
22	
23 24	199
25 26	200
27	201
28 29	202
30	203
31 32	204
33 34	205
35	206
36 37	207
38	208
39 40	209
41 42	210
43	211
44 45	212
46	213
47 48	213
49 50	214
51	215
52 53	210
54	217
55 56	218
57	
58 50	

60

individuals)³⁶.

Data capture, analysis and statistical power

iodine category (sub-optimal: UIC <100 ug/L; iodine replete: 100 – 299 ug/L; and excessive:

7

219 >300ug/L). To assess the association between salt intake, body size, UIC and UIE,

220 Spearman's rank order and partial correlations were conducted.

Results

223 Complete urinary Na and iodine data were available in n = 874 participants.

Sociodemographic characteristics and health indicators of the sub-sample are compared to the
total SAGE-Wave 2 cohort (n = 2887) in Table 1 which included participants aged between
18 and 102y with a BMI of 13.5-69.9. The sub-sample had a higher proportion of women and
more black/coloured respondents than the main cohort, which may explain differences in
smoking, education and BP.

In the subsample that provided urine collections, median 24hr urine volume was 1385 (IQR 900, 2278) ml/day, with a range from 500 – 4900ml/day. Median urinary creatinine excretion was 1097 (IQR 790, 1682) mg/24hr, with a range from 460 – 6441 mg/24hr. Median 24hr Na excretion (n=874) was equivalent to a median salt intake of 6.3gsalt/day (range 1-43 g/day); 35% had values within the desirable range (< 5g salt/day), 37% had high values (5 – 9 g salt/day) and 28% had very high values (\geq 9g salt/day). We have previously reported that median salt intakes are higher in younger than older (50+ y) adults in this cohort (8.6 g vs 6.1 g/day; p < 0.001), and in urban compared to rural dwellers (7.0 g vs 6.0 gday; p=0.033)³⁸ but further analysis of Na vs iodine excretion, by demographic breakdown is outside the scope of the current analysis. No significant difference in median UIE was found according to age category (18-49y; 50+y) or sex, however median UIE was significantly higher in urban compared to rural dwellers (128 (IQR147) vs 115 (IQR 119); p=0.041). No demographic differences were found for median UIC. In the total sample, median UIC (n=875) was 130 μ g/L (IQR=58-202), indicating iodine sufficiency (\geq 100 μ g/L) while median 24hr UIE (n=866) was 117 ug/day (IQR 138).

Both UIC and 24hr iodine excretion differed across salt intake categories and were positively correlated with 24hr salt intake, estimated from urinary Na excretion (r= 0.166 and 0.552; both P<0.001) (Table 2). In the lowest salt category of <5g/d, median UIC indicated borderline deficiency of 102 μ g/L (Table 3). According to median 24hr UIE values, the group of participants with a salt intake of <5g/day are not meeting their dietary Estimated Average Requirement (EAR) of 95 μ g/day (IOM 2003).³⁹, with 58.4% having intakes below Page 9 of 24

BMJ Open

this value (Table 3). Even in those with salt intakes in the moderately raised category of 5 –
9g/day, a considerable proportion (34.7%) had intakes below the EAR. Responses to
questions on salt behaviours did not differ between participants across median UIC categories
(data not shown), nor according to UIE (Figure 1).

256 Discussion

Our study found that in a sample of South African adults, those with a salt intake within the WHO recommended range of less than 5g/day had urinary iodine excretion values indicative of suboptimal iodine intakes, whereas those with higher salt intakes were shown to have adequate intakes using 24hour urinary iodine excretion as a biomarker of intake. Thus, there is a risk that sodium reduction strategies may impact adversely on iodine intakes and result in populations being at risk of inadequate iodine intakes unless fortificant levels of iodine in salt are revised accordingly.

This data was collected immediately prior to introduction of South Africa's mandatory salt reduction legislation, that requires food manufacturers to comply with maximum salt targets across a wide range of processed foods. The impact of the salt reduction policy on iodised salt intake is unknown. South Africa has had a well functioning table salt iodisation programme since 2005, but salt used in food processing is exempt from mandatory iodisation. Despite iodised salt not being required by law to be used as an ingredient in the manufacturing of processed foods, a study⁴⁰ that investigated the iodine content of salt used in bread, margarine, and salty snack flavourings in 2002 provided surprising results. Even though 11 of the 12 manufacturers surveyed at that time reported that they used non-iodized salt in their processed foods, substantial amounts of iodine were found in the salt used by a third of these manufacturers' products, with a mean content of 39 to 69 ppm, and these were the items that were mostly distributed countrywide. An appreciable percentage of the food companies used iodized salt unknowingly in the manufacturing of frequently consumed processed foods, and this may have had a considerable impact on the daily iodine intake of consumers. To our knowledge, there is no updated information on the use of iodised salt in food processing by food manufacturers. Thus, it is feasible that the salt reduction legislation may also impact on contribution of iodine intake from iodised salt.

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

As well as changes to the food supply, nutrition education activities undertaken by the Department of Health and non-governmental organizations in South Africa aim to change consumer behaviour related to table salt use^{41 42}. The timing of the WHO SAGE Salt & Tobacco sub-study in South Africa was planned to provide a baseline population salt intake³⁸ one year before mandatory salt legislation, in order for comparison in the same cohort one year after introduction of the legislation²⁹ in SAGE Wave 3. The data reported in this paper relate to the pre-salt reduction legislation baseline timepoint. Inclusion of iodine analyses in Wave 3 in 2018 will further allow evaluation of the compatibility of iodine fortification and salt reduction policies.

Concerted efforts are being made in many countries to lower salt consumption¹⁸. Because the primary food vehicle for iodine fortification is salt, there is concern that decreasing salt consumption will increase the risk of iodine deficiency. Our study findings indicate that this is a potential public health problem. The findings of the current study are in contrast to previous findings from a sample of adult men and women surveyed in Cape Town in 2004, when UIC did not differ across categories of salt intake²¹. Reasons for this are unclear but may reflect an increased consumption of salt provided from non-iodised sources in processed foods, accompanied by a reduction in discretionary iodised salt intake, since 2004. However, data is not available to further postulate in this regard.

The South African strategic plan to reduce cardiovascular disease includes the target to reduce the population intake of salt to less than 5 grams/day. At present the salt intake is higher than this level, with older reports from the early 2000s estimating that 40% salt was provided from discretionary salt intake²². Our study was conducted immediately prior to introduction of the mandatory salt targets in processed foods. The salt intake estimations in the current study include both added (discretionary) and non-discretionary salt intakes but the lack of data on dietary intakes of the participants prevents further investigation of the source of the salt.

We hypothesize that food manufacturers may have already reduced salt content in processed foods at the time of the study (2015), and that some of these products may have been produced with iodized salt. If this is the case, this would result in lowered iodine intake at the same time as lowered salt intake, as would any reduction in discretionary salt use.

314 Considering the latter, there have been many accompanying health education strategies that

Page 11 of 24

BMJ Open

target salt reduction behaviours, alongside the salt legislation in processed foods⁴². In 2015, a mass media campaign (Saltwatch), using television, radio advertisement and other platforms for information dissemination was undertaken to increase public awareness related to the association between a high salt intake, blood pressure and cardiovascular disease in South Africa. The campaign, conducted by the Heart and Stroke Foundation of South Africa with funding from the Department of Health, focused on the need to reduce discretionary salt intake. Evaluation of the programme undertaken in 550 black women, aged 18-55 years in three provinces identified that there was an increase in most of the indicators of knowledge, attitudes and behaviour change towards considering and initiating reduced salt consumption following the campaign. Significant increases were found for knowledge items related to high salt intake and its health outcomes. Participants also reported that they added less salt while cooking and at the table. In the current study, responses to questions on salt behaviours did not differ between participants across median UIC categories, nor according to 24-hr UIE. This could mean that the questions are not sufficiently sensitive to discern between salt intake behaviours, or that the contribution of discretionary salt to total iodine intake is influenced by other food sources of iodised salt.

A strength of the current study was use of the gold standard method for assessment of salt intake, namely 24hr urinary collections. Limitations relate to the high number of respondents with missing or incomplete urine samples. The difficulty in obtaining complete 24-hour urine samples is well-known, and the comparison between the main study cohort and those providing complete samples shows that men, and those with higher education less frequently provided complete 24-hour urine. This may also reflect the nature of the survey as fieldworkers visited the respondent's homes and those that were away with work were less likely to have taken part or would have potentially had more difficulty with the urine collection, creating a selection bias in the data towards the population with lower employment levels. Future research may consider workplace-based data collection. An assumption was made regarding cut-off values for completeness of 24hr urine collection whereby urinary volume < 300 ml/day or creatinine excretion ≤ 4 mmol/day (women) or ≤ 6 mmol/day (men)³³ were the criteria used for exclusion purposes. In populations with low protein intakes, daily creatinine excretion is more variable than in well nourished populations, and often lower than 1 g (8.84 mmol)per day.⁴³ A limitation of the study is that neither dietary protein intake, nor lean body mass was assessed which makes it difficult to account for these two confounding variables when deciding on how to interpret low urinary creatinine

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright

concentrations. It is possible that the use of higher creatinine excretion cut-off reference
values as a measure of completeness of urine collection may have resulted in a somewhat
lower number of subjects considered to be at risk of inadequate iodine nutrition, as well as a
higher estimated salt intake.

A further limitation is the lack of dietary data on sources of iodine provided by foods other than iodised salt. Iodine-rich dietary sources include fish and seafood, and dairy products and it is possible that some of these foods may also be high in salt, as in the case of salted dried fish commonly consumed by the coloured population (known as "bokkems"). However, generally these foods are not major contributors to sodium in the South African diet²². Interestingly, in women, both UIC and UIE correlated positively with body mass index, independently of salt intake. Looking at changes in food consumption patterns in South Africa over time, it seems that there is not only an increase in processed foods but also other foods that may contribute to iodine intake independently of iodized salt such as fish, eggs, seafood, and dairy foods⁴⁴. The contribution of food sources, other than iodized salt, to total iodine intake warrants further investigation in the context of evaluating the mandatory salt iodization programme in South Africa. Furthermore, this study presents limited data for women of child bearing age and no data for children. Further work is needed to determine if there is an impact of the sodium reduction legislation in these particularly iodine-sensitive groups.

368 Conclusion

This study highlights the need to closely monitor the iodine status of populations as they undergo population-level reductions in salt intake, in countries where mandatory salt iodisation is implemented. Even at salt intake levels currently above the WHO target of 5g/day, there was a considerable proportion with iodine intakes below the EAR. This indicates there may be a need to increase the level of iodine in fortified table salt. Alternatively, compulsory iodisation of salt used in the production of some staple foods such as bread may be considered. In a country where some sectors of the population may be exposed to excessive iodine intakes, this strategy would require careful dietary modelling before being pursued. It is recommended that surveys that measure urinary Na excretion also simultaneously measure urinary iodine concentration and determine the iodine content in table salt collected from households.

BMJ Open

Acknowledgements: The authors thank all respondents for contributions and acknowledge
Dr Stephen Rule, Dr Robin Richards and Mr Godfrey Dlulane of Outsourced Insight who
were subcontracted to conduct the surveys and coordinate data collection within South
Africa.
Funding: This work is supported by an agreement with the CDC Foundation with financial
support provided by Bloomberg Philanthropies, and a Partnerships & Research Development
Fund (PRDF) grant from the Australia Africa Universities Network. SAGE is supported by

WHO and the Division of Behavioral and Social Research (BSR) at the National Institute on
Aging (NIA), US National Institutes of Health, through Interagency Agreements with WHO
[OGHA 04034785; YA1323-08-CN-0020; Y1-AG-1005-01] and a Research Project Grant
[R01AG034479]. The content of this manuscript is solely the responsibility of the authors
and does not necessarily represent the official views of the World Health Organization or the
funding bodies.

Competing interests: None.

Authorship: Authors' contributions were as follows – KC, PK, NN designed research; LJW
implemented research; JB analysed iodine samples; MC, LJW, KC analysed data; KC, LJW,
JB, AES, MC, PK, wrote the paper; KC takes responsibility for the contents of this article.
All authors read and approved the final manuscript.

398 Data sharing statement: The dataset is available on request and will form part of the data
399 catalogue of the World Health Organization Study on Global AGEing and Adult Health
400 (SAGE) (http://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/sage/about)
401

References

403 1. Andersson M, De Benoist B, Delange F, et al. Prevention and control of iodine deficiency in
404 pregnant and lactating women and in children less than 2-years-old: conclusions and
405 recommendations of the Technical Consultation. Public health nutrition 2007;10(12A):1606406 11.
407 2. World Health Organization; United Nations Children's Fund; International Council for the Control

 407 2. World Health Organization; United Nations Children's Fund; International Council for the Control 408 of Iodine Deficiency Disorders. Assessment of iodine deficiency disorders and monitoring 409 their elimination: a guide for programme managers. 2007. 3rd ed. Geneva: World Health 410 Organization.
 411 3. WHO Guideline on Fortification of food-grade salt (2014). See

412 <u>http://www.who.int/nutrition/publications/guidelines/fortification_foodgrade_saltwithiodin</u>
 413 e/en/ Geneva: WHO.

2		
3	414	4. United Nations System. Standing Committee on Nutrition (SCN) News. Universal Salt Iodisation.
4	415	2007; 35. ISSN 1564-3743. (accessed 17/July/2017).
5	416	5. United Nations Children's Fund (UNICEF). The State of the World's Children 2016. [cited 12
6	417	January 2018]. Available at: <u>https://www.unicef.org/sowc2016/</u> New York: UNICEF.
7	418	6. The Iodine Global Network. Global Iodine Nutrition Scorecard 2016 [accessed 12 January 2018].
8	419	Available from: http://www.ign.org/cmdata/Scorecard 2016 SAC PW.pdf. Zurich, 2016.
9	420	7. Gizak M, Gorstein J, Andersson M. Epidemiology of Iodine Deficiency In: Pearce E, ed. Iodine
10	421	Deficiency Disorders and Their Elimination. Ebook, available at:
11	422	https://link.springer.com/book/10.1007/978-3-319-49505-7 Springer, 2017:35.
12	423	8. Andersson M, Karumbunathan V, Zimmermann MB. Global iodine status in 2011 and trends over
13	424	the past decade. The Journal of nutrition 2012; 142 (4):744-50.
14	425	9. The Iodine Global Network. Global iodine nutrition scorecard 2015 [Internet]. Zurich: The Iodine
15	426	Global Network [cited 1 January 2018]. Available from:
16	427	http://www.ign.org/cmdata/Scorecard 2015 August 26 new.pdf, 2015.
17	428	10. Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. The Lancet
18	429	2008; 372 (9645):1251-62.
19 20	430	11. Effects of mandatory iodization on the iodine content of retailers and household salt in South
20 21	431	Africa. 8th World Salt Symposium; 2000.
22	432	12. Joint FAO/WHO Expert Committee on Food Additives. 1991 (WHO Technical Report Series, No.
23	433	806, Annex 5). World Health Organization. Geneva.
24	434	13. Jooste P, Zimmermann M. Progress towards eliminating iodine deficiency in South Africa: invited
25	435	review. South African Journal of Clinical Nutrition 2008; 21 (1):8-14.
26	436	14. Jooste PL, Labadarios D, Nel H, et al. Iodine content of household salt, drinking water and iodine
27	437	status of women and children National Food Consumption Survey-Fortification baseline
28	438	(NFCS-FB): South Africa 2005. Stellenbosch, South Africa, 2007:387-407.
29	439	15. Labadarios D, Swart R, Maunder E, et al. The National Food Consumption Survey–Fortification
30	440	Baseline (NFCS-FB): South Africa, 2005: Directorate: Nutrition, Department of Health.
31	441	Pretoria., 2007.
32	442	16. Jooste PL, Weight MJ, Lombard CJ. Iodine concentration in household salt in South Africa.
33	443	Bulletin of the World Health Organization 2001; 79 (6):534-40.
34	444	17. Webster JL, Dunford EK, Hawkes C, et al. Salt reduction initiatives around the world. Journal of
35	445	Hypertension; 29 (6):1043-50.
36	446	18. Trieu K, Neal B, Hawkes C, et al. Salt Reduction Initiatives around the World–A Systematic Review
37	447	of Progress towards the Global Target. PloS ONE 2015;10(7):e0130247.
38 39	448	19. Charlton K, Webster J, Kowal P. To legislate or not to legislate? A comparison of the UK and
39 40	449	South African approaches to the development and implementation of salt reduction
40	450	programs. Nutrients 2014; 6 (9):3672-95.
42	451	20. Charlton KE, Steyn K, Levitt NS, et al. Ethnic differences in intake and excretion of sodium,
43	452	potassium, calcium and magnesium in South Africans. European Journal of Cardiovascular
44	453	Prevention & Rehabilitation 2005; 12 (4):355-62.
45	454	21. Charlton KE, Steyn K, Levitt NS, et al. A food-based dietary strategy lowers blood pressure in a
46	455	low socio-economic setting: a randomised study in South Africa. Public Health Nutrition
47	456	2008; 11 (12):1397-406.
48	457	22. Charlton KE, Steyn K, Levitt NS, et al. Diet and blood pressure in South Africa: intake of foods
49	458	containing sodium, potassium, calcium, and magnesium in three ethnic groups. Nutrition
50	459	2005; 21 (1):39-50.
51	460	23. Report number R214: Foodstuffs, cosmetics and disinfectants Act, 1972 (Act 54 of 1972).
52	461	Regulations relating to the reduction of sodium in certain foodstuffs and related matters.
53	462	(2013). South African Department of Health.
54		
55		
56		
57		
58		14

BMJ Open

2		
3	463	24. Bertram Y, Steyn K, Wentze-Viljoen E, et al. Reducing the sodium content of high-salt foods:
4	464	Effect on cardiovascular disease in South Africa. SAMJ: South African Medical Journal
5	465	2012; 102 (9):743-45.
6	466	25. Watkins DA, Olson ZD, Verguet S, et al. Cardiovascular disease and impoverishment averted due
7	467	to a salt reduction policy in South Africa: an extended cost-effectiveness analysis. Health
8	468	Policy and Planning 2015; 31 (1):75-82.
9	469	26. Verkaik-Kloosterman J, van 't Veer P, Ocké MC. Reduction of salt: will iodine intake remain
10	470	adequate in The Netherlands? British Journal of Nutrition 2010; 104 (11):1712-18.
11	471	27. Charlton KE, Jooste PL, Steyn K, et al. A lowered salt intake does not compromise iodine status in
12	472	Cape Town, South Africa, where salt iodization is mandatory. Nutrition;29(4):630-34.
13	473	28. Kowal P, Chatterji S, Naidoo N, et al. Data resource profile: the World Health Organization Study
14	474	on global AGEing and adult health (SAGE). International Journal of Epidemiology
15	475	2012; 41 (6):1639-49.
16	476	29. Charlton K, Ware LJ, Menyanu E, et al. Leveraging ongoing research to evaluate the health
17	477	impacts of South Africa's salt reduction strategy: a prospective nested cohort within the
18	478	WHO-SAGE multicountry, longitudinal study. BMJ Open 2016; 6 (11):e013316.
19	479	30. World Medical Association Declaration of Helsinki – Ethical principles for medical research
20	480	involving human subjects (as amended by the 64th WMA General Assembly, Fortaleza,
21	480	Brazil, October 2013; available at: <u>https://www.wma.net/policies-post/wma-declaration-of-</u>
22	482	helsinki-ethical-principles-for-medical-research-involving-human-subjects/).
23	482	31. WHO/PAHO Regional Expert Group for Cardiovascular Disease Prevention through Population-
24 25	485	wide Dietary Salt Reduction. Protocol for population level sodium determination in 24-hour
26	484	
20		urine samples (2010). Geneva: World Health Organization
28	486	32. Nicar MJ, Hsu MC, Johnson T, et al. The preservation of urine samples for determination of renal
29	487	stone risk factors. Laboratory Medicine 1987; 18 (6):382-4.
30	488	33. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, et al. Fatal and nonfatal outcomes, incidence of
31	489	hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA
32	490	2011; 305 (17):1777-85.
33	491	34. Ohashi T, Yamaki M, Pandav CS, et al. Simple microplate method for determination of urinary
34	492	iodine. Clinical Chemistry 2000; 46 (4):529-36.
35	493	35. Caldwell KL, Makhmudov A, Jones RL, et al. EQUIP: a worldwide program to ensure the quality of
36	494	urinary iodine procedures. Accreditation and Quality Assurance 2005; 10 (7):356-61.
37	495	36. Delange F, de Benoist B, Burgi H. Determining median urinary iodine concentration that indicates
38	496	adequate iodine intake at population level. Bulletin of the World Health Organization
39	497	2002; 80 (8):633-36.
40	498	37. Karmisholt J, Laurberg P, Andersen S. Recommended number of participants in iodine nutrition
41	499	studies is similar before and after an iodine fortification programme. European journal of
42	500	nutrition 2014; 53 (2):487-92.
43	501	38. Ware LJ, Charlton K, Schutte AE, et al. Associations between dietary salt, potassium and blood
44	502	pressure in South African adults: WHO SAGE Wave 2 Salt & Tobacco. Nutrition, Metabolism
45	503	and Cardiovascular Diseases 2017; 27 (9):784-91.
46	504	39. Institute of Medicine, Academy of Sciences, USA. Dietary Reference Intakes for Vitamin A, Vitamin
47	505	K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese,Molybdenum, Nickel, Silicon,
48	506	Vanadium and Zinc. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/25057538</u> .
49	507	Washington, DC: The National Academies Press, 2001.
50	508	40. Harris MJ, Jooste PL, Charlton KE. The use of iodised salt in the manufacturing of processed foods
51	509	in South Africa: bread and bread premixes, margarine, and flavourants of salty snacks.
52	510	International journal of food sciences and nutrition 2003; 54 (1):13-9.
53	511	41. Wentzel-Viljoen E, Steyn K, Lombard C, et al. Evaluation of a Mass-Media Campaign to Increase
54 55	512	the Awareness of the Need to Reduce Discretionary Salt Use in the South African Population.
55 56	513	Nutrients 2017; 9 (11):1238.
50 57		
58		
58 59		15
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 5 6 7 8	514 515 516 517 518	 Webster J, Crickmore C, Charlton K, et al. South Africa's salt reduction strategy: Are we on track, and what lies ahead? SAMJ: South African Medical Journal 2017;107(1):20-21. Bourdoux P. Evaluation of the iodine intake: problems of the iodine/creatinine ratio – comparison with iodine excretion and daily fluctuations of iodine concentration. Exp Clin Endocrinol Diabetes. 1998;106(Suppl 3):S17–S20.
9 10 11	519 520	44. Ronquest-Ross L-C, Vink N, Sigge GO. Food consumption changes in South Africa since 1994. South African Journal of Science 2015; 111 (9-10):01-12.
12	521	
13 14	522	
15	523	
$\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$		
59		1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		i or peer rement only intep//onlyopenionly.com/one/about/guidenies/intrill

p value

	Main SA	GE cohort	Sub	sample ^a
	n=2	2887	n	=875
	median	IQR	median	IQI
Female, n (%)	1939	67	671	77
		46, 69		44, 0
	57		55	
Age years				
Aged over 50 years, n (%)	1979	69	567	65
Ethnicity, n (%)				
Black	1988	69	410	74
Coloured, mixed race		16	96	17
Indian	306	11	41	7
White	128	4	11	2
Rural, n (%)	792	28	163	29
Education years	10	7, 13	9	6, 1
Never been to school, n (%)	495	18	109	20
Never had paid employment,	n (%) 1101	55	238	56
		23.9, 33.7		24.0, 3
BMI, kg/m ²	28.8		29.1	
Waist to height ratio	0.59	0.52, 0.67	0.58	0.50, (
Never used alcohol, n (%)	1576	80	353	83
Never used tobacco, n (%)	1635	83	367	86
Systolic BP mmHg	131	118, 144	128	116, 1
Diastolic BP mmHg	81	73, 89	79	71,8
Hypertension, n (%)	1233	45	232	43
Diabetes, n (%)	248	13	46	11
 BMI, body mass index. ^aSubsa and age recorded. Some varial shown as median and interqua indicated. Hypertensive by me Education, tobacco/alcohol us 	bles may contain miss rtile range (IQR; 25 th , easured BP≥140 and/o	ing data as ind 75 th percentile r 90mmHg or ent and diabete	icated by pe e) unless oth previous dia es prevalenc	ercentage nerwise agnosis. ee by self

10		median	IQR	median	IQR	
11 12	Female, n (%)	1939	67	671	77	< 0.001
13			46, 69		44, 67	0.468
14			40, 07		, 07	0.400
15		57		55		
16	Age years					
17	rige years					
18	Aged over 50 years, n (%)	1979	69	567	65	0.171
19 20	Ethnicity, n (%)					
20						
22	Black	1988	69	410	74	< 0.001
23	Coloured, mixed race	465	16	96	17	
24						
25	Indian	306	11	41	7	
26	White	128	4	11	2	
27		120			-	
28	Rural, n (%)	792	28	163	29	0.418
29 30			= 10	0	(10	0.000
31	Education years	10	7, 13	9	6, 12	0.028
32	Never been to school, n (%)	495	18	109	20	0.180
33		195		109	20	0.100
34	Never had paid employment, n (%)	1101	55	238	56	0.403
35			23.9, 33.7		24.0, 34.2	0.540
36			23.9, 33.1		24.0, 34.2	0.340
37	BMI, kg/m ²	28.8		29.1		
38	XX7 1 1	0.50	0.52.0.(7	0.59	0.50 0.66	0.070
39 40	Waist to height ratio	0.59	0.52, 0.67	0.58	0.50, 0.66	0.070
40	Never used alcohol, n (%)	1576	80	353	83	0.052
42		1570	00	555	05	0.022
43	Never used tobacco, n (%)	1635	83	367	86	0.023
44		101	110 144	100	117 111	0.070
45	Systolic BP mmHg	131	118, 144	128	116, 141	0.073
46	Diastolic BP mmHg	81	73, 89	79	71, 87	0.029
47	Diastone Dr mining	01	15,07	17	/1,0/	0.027
48 49	Hypertension, n (%)	1233	45	232	43	0.239
47						

17

0.355

1		
2	531	report. Continuous variables compared using Independent Samples Mann-Whitney U test,
3 4	531	categorical variables compared using Pearson Chi-Square and Fisher's Exact Test.
5	533	earegonear variables compared using rearson em-square and risher's Exact rest.
6	555	
7	534	
8	554	
9		
10		
11 12		
12		
14		
15		
16		
17		
18		
19		
20		
21 22		
22		
24		
25		
26		
27		
28		
29		
30 31		
31		
33		
34		
35		
36		
37		
38		
39 40		
41		
42		
43		
44		
45		
46		
47 48		
48 49		
49 50		
51		
52		
53		
54		
55		
56		
57 59		
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		All n=456	Men n=110	Women n=346
Correlations with spot UIC µg/l				
Salt intake g/day	rho	0.166(***)	0.164	0.153(**)
	р	0.000	0.088	0.004
24-hr iodine µg/day	rho	0.423(***)	0.483(***)	0.392(***)
	р	0.000	0.000	0.000
BMI kg/m ²	r	0.036	0.001	0.096
	р	0.448	0.988	0.076
Weight kg	r	0.043	0.035	0.056
	р	0.365	0.716	0.299
Waist circumference cm	r	0.001	0.027	0.008
	р	0.991	0.784	0.878
Hip circumference cm	r	0.040	0.213(*)	0.008
	р	0.389	0.026	0.883
Correlations with 24-hr UIE $\mu g/d$				
Salt intake g/day	rho	0.552(***)	0.504(***)	0.561(***)
	p	0.000	0.000	0.000
BMI kg/m ²	r	0.092	0.030	0.168(**)
	p 🦉	0.051	0.758	0.002
Weight kg	r	0.130(**)	-0.023	0.193(***)
	р	0.005	0.814	0.000
Waist circumference cm	r	0.032	-0.011	0.069
	р	0.491	0.911	0.200
Hip circumference cm	r	0.052	0.056	0.094
BMI, body mass index; UIC, spot urine i	р	0.269	0.563	0.080

535	Table 2. Spearman's rank order and partial correlations between urine iodine concent	ra

estimated salt intake, a

BMI, body mass index

excretion. Correlations significant at the 0.05 l

1 2 4 5 6 7 8 9	540
10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23 24 25 26 27	
28 29	
30	541
31	542
32	543
33	544
34	
35	
36	545
37	
38	546
39	-
40	
41	
42	
43	
44	
45	
46	.jht.
	7-1-

Table 3. Urinary iodine, estimated iodine intake and sodium excretion values by salt intake equivalent categories

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Sodium mg/day 2471 1434 , 3506 1393 1068 , 1719 2638 2219 , 3057 4799 3607 , 5993 <0.001 Salt g/day 6.3 3.7 , 9.0 3.6 2.8 , 4.5 6.8 5.7 , 7.9 12.3 9.3 , 15.4 <0.001 UIC $\mu g/l$ 130 58 , 202 102 32 , 172 131 56 , 206 149 78 , 220 <0.001 24hr UIE $\mu g/day$ 117 48 , 186 74 37 , 111 119 57 , 181 195 117 , 273 <0.001 Estimated iodine 127 52 , 202 80 40 , 120 130 63 , 197 212 127 , 297 <0.001 intake $\mu g/day$ 9 8.4% 58.4% 34.7% 13.5% 13.5% UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. 8 One individual in subsample with missing 24-hour sodiumData shown as median and interquartile range (IQR; 25^{th} , 75^{th} percentile). Continuous variables compared using Independent Samples Wallis test.
Salt g/day6.3 $3.7, 9.0$ 3.6 $2.8, 4.5$ 6.8 $5.7, 7.9$ 12.3 $9.3, 15.4$ <0.001 UIC µg/l13058, 202102 $32, 172$ 131 $56, 206$ 149 $78, 220$ <0.001 24hr UIE µg/day11748, 18674 $37, 111$ 119 $57, 181$ 195 $117, 273$ <0.001 Estimated iodine127 $52, 202$ 8040, 120130 $63, 197$ 212 $127, 297$ <0.001 intake µg/day $%$ with daily iodine 37.1% 58.4% 34.7% 13.5% intake below EAR $for iodine (95$ $µg/day)^{\dagger}$ $UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. ^{\circ}One individual in subsample with missing 24-hour sodiumData shown as median and interquartile range (IQR; 25^{th}, 75^{th} percentile). Continuous variables compared using Independent Samples Wallis test.$
UIC $\mu g/l$ 13058, 20210232, 17213156, 20614978, 220<0.00124hr UIE $\mu g/day$ 11748, 1867437, 11111957, 181195117, 273<0.001
24hr UIE μ g/day11748, 1867437, 11111957, 181195117, 273<0.001Estimated iodine12752, 2028040, 12013063, 197212127, 297<0.001
Estimated iodine 127 52, 202 80 40, 120 130 63, 197 212 127, 297 <0.001 intake μg/day % with daily iodine 37.1% 58.4% 34.7% 13.5% intake below EAR for iodine (95 μg/day)† UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. ^a One individual in subsample with missing 24-hour sodium Data shown as median and interquartile range (IQR; 25 th , 75 th percentile). Continuous variables compared using Independent Samples Wallis test.
intake μg/day % with daily iodine 37.1% 58.4% 34.7% 13.5% intake below EAR for iodine (95 μg/day)† UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. ^a One individual in subsample with missing 24-hour sodium Data shown as median and interquartile range (IQR; 25 th , 75 th percentile). Continuous variables compared using Independent Samples Wallis test.
% with daily iodine 37.1% 58.4% 34.7% 13.5% intake below EAR for iodine (95 µg/day)† UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. ^a One individual in subsample with missing 24-hour sodium Data shown as median and interquartile range (IQR; 25^{th} , 75^{th} percentile). Continuous variables compared using Independent Samples Wallis test.
intake below EAR for iodine (95 µg/day)† UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. ^a One individual in subsample with missing 24-hour sodium Data shown as median and interquartile range (IQR; 25 th , 75 th percentile). Continuous variables compared using Independent Samples Wallis test.
for iodine (95 μg/day)† UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. ^a One individual in subsample with missing 24-hour sodium Data shown as median and interquartile range (IQR; 25 th , 75 th percentile). Continuous variables compared using Independent Samples Wallis test.
μg/day) [†] UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. ^a One individual in subsample with missing 24-hour sodium Data shown as median and interquartile range (IQR; 25 th , 75 th percentile). Continuous variables compared using Independent Samples Wallis test.
UIC, spot urine iodine concentration; UIE, 24-hour urine iodine excretion. ^a One individual in subsample with missing 24-hour sodium Data shown as median and interquartile range (IQR; 25 th , 75 th percentile). Continuous variables compared using Independent Samples Wallis test.
Data shown as median and interquartile range (IQR; 25 th , 75 th percentile). Continuous variables compared using Independent Samples Wallis test.
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
ished as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copy

BMJ Open

1 2		
2 3 4		
5 6	547 548	Figure Legend: Self-reported salt knowledge, attitudes and behaviour by 24-hour urinary iodine excretion (UIE; n=539)
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	548	
36 37		
38 39		
40 41		21
42 43		
44 45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46 47	ʻight.	BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyr

Page 22 of 24

BMJ Open: first published as 10.1136/bmjopen-2017-020404 on 30 March 2018. Downloaded from http://bmjopen.bmj.com/ on October 15, 2023 by guest. Protected by copyright.

BMJ Open

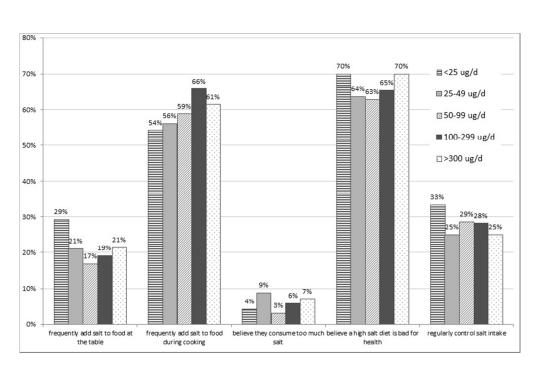


Figure 1. Self-reported salt knowledge, attitudes and behaviour by 24-hour urinary iodine excretion (UIE; n=539)

BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction	1		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods	1		
Study design	4	Present key elements of study design early in the paper	4-5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data	5
		collection	
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	5-6
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	4-6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	6
		(d) If applicable, describe analytical methods taking account of sampling strategy	7
		(e) Describe any sensitivity analyses	none
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	6-7
		(b) Give reasons for non-participation at each stage	6-7
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1, p 14
		(b) Indicate number of participants with missing data for each variable of interest	Table 1, p 14
Outcome data	15*	Report numbers of outcome events or summary measures	Table 3, p 16
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	none
		(b) Report category boundaries when continuous variables were categorized	7-8; Table 3, p 16; Figure 1, p 17
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	none
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10; Table 1, p 14
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	10
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	8-11
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml