

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Validation of the Hospital Frailty Risk Score in a Tertiary Care Hospital in Switzerland: results of a prospective, observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026923
Article Type:	Research
Date Submitted by the Author:	26-Sep-2018
Complete List of Authors:	Eckart, Andreas; Kantonsspital Aarau, University Department of Medicine Hauser, Stephanie; Universitat Basel Medizinische Fakultat Haubitz, Sebastian; Kantonsspital Aarau, University Department of Medicine; Kantonsspital Aarau, University Department of Medicine, Division of Infectious Diseases Struja, Tristan; Kantonsspital Aarau, University Department of Medicine Kutz, Alexander; University Department of Medicine, Kantonsspital Aarau Koch, Daniel; University Department of Medicine, Kantonsspital Aarau Neeser, Olivia; University Department of Medicine, Kantonsspital Aarau Meier, Marc; University Department of Medicine, Kantonsspital Aarau Mueller, Beat; University Department of Medicine, Kantonsspital Aarau Schuetz, Philipp; Cantonal Hospital Aarau, Internal Medicine
Keywords:	GERIATRIC MEDICINE, HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PREVENTIVE MEDICINE

SCHOLARONE[™] Manuscripts Validation of the Hospital Frailty Risk Score in a Tertiary Care Hospital in Switzerland: results of a prospective, observational study ¹Andreas Eckart[†]*, ²Stephanie I. Hauser^{*}, ^{1,3}Sebastian Haubitz, ¹Tristan Struja, ¹Alexander Kutz, ¹Daniel Koch, ¹Olivia Neeser, ¹Marc A Meier, ¹Beat Mueller, and ¹Philipp Schuetz

eckartan@gmail.com; hauserstei@gmail.com; sebastian.haubitz@ksa.ch; tristan.struja@ksa.ch; kutz.alexander@gmail.com; daniel.koch@ksa.ch; olivia.neeser@ksa.ch; marc.meier@ksa.ch; happy.mueller@unibas.ch; schuetzph@gmail.com

¹Division of General Internal and Emergency Medicine; University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland ²Faculty of Medicine, University of Basel ³Division of Infectious Diseases, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland

*Andreas Eckart and Stephanie Hauser contributed equally to this work.

[†]Corresponding author:

Division of General Internal and Emergency Medicine University Department of Medicine Kantonsspital Aarau, Tellstrasse 25 5001 Aarau, Switzerland Email: eckartan@gmail.com Fax: +41 (0)62 838 98 73

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright

BMJ Open

Tel: +41 (0)62 838 95 17

Word count: Abstract: 274/300; Main: 2910/4000

Number of Tables: 3, Number of Figures: 2, Number of References: 19

Supplementary material: Number of Tables: 2

<text>

ABSTRACT

Objectives: Recently, the Hospital Frailty Risk Score based on a derivation and validation study in the United Kingdom has been proposed as a low-cost, systematic screening tool to identify elderly patients who are at greater risk of adverse outcomes and for whom a frailty-attuned approach might be useful. We aimed to validate this Score in an independent cohort in Switzerland.

Design: Secondary analysis of a prospective, observational study (TRIAGE study).
Setting: One 600-bed tertiary care hospital in Aarau, Switzerland
Participants: Consecutive medical inpatients aged 75 years or older that presented to the emergency department or were electively admitted between October 2015 and April 2018.

Primary and secondary outcome measures: The primary endpoint was all-cause 30-day mortality. Secondary endpoints were length of hospital stay, hospital readmission, functional impairment, and quality of life measures. We used multivariate regression analyses.

Results: Of 4957 included patients, 3150 (63.5%) were classified as low risk, 1663 (33.5%) intermediate risk, and 144 (2.9%) high risk for frailty. Compared to the low-risk group, patients in the moderate risk and high-risk groups had increased risk for 30-day mortality (odds ratio [OR] 2.53, 95%CI 2.09 to 3.06, P<0.001 and OR 4.40, 95%CI 2.94 to 6.57, P<0.001) with overall moderate discrimination (area under the ROC curve 0.66). The results remained robust after adjustment for important confounders. Similarly, we found longer length of hospital stay, more severe functional impairment and a lower quality of life in higher risk group patients. **Conclusion:** Our data confirms the prognostic value of the Hospital Frailty Risk Score to identify frail, elderly people at risk for mortality and adverse outcomes in an independent patient population.

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright

Trial registration number: ClinicalTrials.gov; Identifier: NCT01768494

STRENGTHS AND LIMITATIONS OF THE STUDY

Strength and limitations of this study

- This is the first study to validate the Hospital Frailty Risk Score following its publication and initial validation.
- The validation in a Swiss Tertiary care hospital is a first step in assessing the applicability of the risk score in multinational settings.
- In addition to associations with adverse clinical outcomes we assess associations of higher hospital frailty risk scores with functional impairment, quality of life, and need for post-acute care.
- Due to the study design there was no routine frailty assessment in our patients and we were not able to compare the score with other frailty assessments or screening scores.
- As the score is dependent of documentation and coding of ICD-10, variation in coding could contribute to misclassification.

With the increase in the ageing, multimorbidity patient population, the proportion of frail patients is expected to further raise.¹ Frailty describes a state of increased risk for decline in health after an exposure to a stressor event (e.g., hospitalization for an acute illness) increasing the risk for adverse events such as falls, delirium, disability and death.²⁻⁴ Importantly, identifying patients at risk for frailty early during the course of hospitalization may help to improve treatment strategies including a comprehensive geriatric assessment to improve the care and outcomes of patients.⁵ Several tools to identify frailty have been developed in the last 20 years.⁶ Yet none has emerged as a gold standard. Current instruments show only a moderate power to identify frailty,⁷ and some tools require time consuming manual assessment ⁸⁹. Moreover, in most hospitals there is no routine assessment of the elderly and only a subset of patients is screened for frailty⁶. For these reasons, patients who may benefit from a specific frailty-directed treatment approach may be missed in usual hospital care. To improve the care of frail patients, the recently published Hospital Frailty Risk score¹⁰ was developed for early identification of patients with characteristics of frailty, who are at risk of adverse health-care outcomes and who could be identified without any additional assessment apart from routinely collected data. The score relies on the diagnostic codes from the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10), a coding system that is implemented in many administrative hospital databases worldwide. This provides the opportunity to systematically screen elderly patients in a low-cost manner ¹⁰. In a three-step approach, this score was developed and later validated within three patient populations from the United Kingdom showing high prognostic performance. Still, international validation is needed before more widespread use of this score in other health care systems. Herein, we aimed to validate

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright

the Hospital Frailty Risk Score in a Swiss tertiary care hospital. We investigated <text><text><text> associations of the score with adverse clinical outcomes such as 30-day mortality, length of hospital stay, and 30-day readmission, as well as functional outcomes including functional impairment, quality of life and discharge location.

METHODS

Study design and study population

This is a secondary analysis of the TRIAGE study, a prospective, observational cohort study initially designed to understand the value of admission biomarkers to predict later adverse outcomes.^{11 12} We included consecutive medical patients presenting with a medical urgency at the Kantonsspital in Aarau (Switzerland), a 600-bed tertiary care hospital with most medical admissions entering the hospital over the ED. As an observational quality control study, the Institutional Review Boards (IRB) of the hospital approved the study and waived the need for individual informed consent (main Swiss IRB: Ethikkommission Kanton Aargau (EK 2012/059). The study was registered at the "ClinicalTrials.gov" registration website

(<u>http://www.clinicaltrials.gov/ct2/show/NCT01768494</u>) and the study protocol has been published previously.¹³

In accordance with the initial study, we selected medical inpatients aged 75 years or older, that were admitted between October 2015 and April 2018. The cohort includes elective and emergency admissions. In case of multiple admissions of the same patient, only the first admission was used for the analysis.

Patient and Public Involvement

Patients were not involved in the development of the research question or the design of the study.

Follow-up and initial data collection

We used ICD-10 diagnostic codes assigned to patients after discharge by professional hospital coders according to the information of medical records. The electronic records contained up to 38 diagnosis fields coded according to ICD-10.

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright

Regarding follow-up, 30 days after hospital admission patients were contacted by telephone for a structured interview to obtain information on vital status, clinical outcomes, location of living and functional measurements. Functional status was obtained using the EQ-5D-3L standardized measure of health, which was administered as recommended ¹⁴. We assessed mobility, self-care, usual activities, pain or discomfort, and anxiety and depression, using dichotomized data with levels 2 and 3 indicating "impairment" and level 1 indicating "no impairment". Moreover, we used the EQ-VAS, recording the self-rated health on a visual analogue scale with values between 0 and 100 with higher points indicating better health states. We used the Barthel Index to measure activities of daily living (ADL)¹⁵, with a cutoff <95 points indicating functional impairment. We assessed location after discharge and identified patients who were living at home before hospital admission and were discharged to a location other than home.

All information was stored in a centralized, password-secured database (SecuTrial®; interActive Systems GmbH, Berlin, Germany).

Calculation of the Hospital Frailty Risk Score

For each patient the Hospital Frailty Risk Score was calculated retrospectively using all available ICD-10 diagnostic codes that were documented for the particular admission as recommended ¹⁰. The score is an aggregate of 109 ICD-10 diagnostic codes that were found to be associated with frailty risk. Each of these ICD-10 diagnostic codes were awarded with specific values proportional to how strongly they predicted frailty. According to the aggregate score, patients were divided into the three frailty risk categories low risk (<5 points), intermediate risk (5-15 points), and high risk (> 15 points) as recommended ¹⁰.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Research aims and statistical approach

We investigated associations of the Hospital Frailty Risk with adverse clinical outcomes. Our primary endpoint is all-cause 30-day mortality. Secondary endpoints include hospital length of stay, long hospital stay (>10 days), and hospital readmission within 30 days. Moreover, we examined associations with functional impairment using the Barthel-Index (<95 points indicating impairment), Quality of Life measurements using the EQ-5D standardized measure, and discharge location other than home, for patients that were living at home before admission.

Statistical analysis

We expressed patient characteristics using descriptive statistics including mean with standard deviation (SD), median with interquartile range (IQR), and frequencies, as appropriate. Frequency comparison was done using the χ^2 test.

To investigate associations of the Hospital Frailty Risk Score with outcomes we used univariate and multivariate regression analyses. Models were stepwise adjusted for age (model 1), age and gender (model 2), and age, gender and comorbidities that were not included in the calculation of the frailty risk score (model 3). We provide odds ratios (ORs) or regression coefficients (RCs) with 95% confidence intervals (95% CIs) as appropriate. We used receiver operating statistics reporting area under the curve (AUC) as a measure of discrimination. We considered AUCs of 0.6 to 0.7 as moderate, 0.7 to 0.8 as fair, 0.8 to 0.9 as good, and >0.9 as excellent. Also, for graphical illustration we generated Kaplan-Meier survival estimates stratified by frailty risk groups.

We repeated analyses in predefined subgroups stratified by age and gender. All tests were two-tailed and carried out at 5% significance levels. Analyses were performed with STATA 12.1 (Stata Corp., College Station, TX, USA).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright

RESULTS

Patient Population

A total of 4957 Patients with a median age of 82 years were included in this analysis. At time of admission the majority of patients (63.4%) resided at home. A total of 63.5% (3150) of patients were in the low frailty risk group, 33.5% (1663) in the intermediate risk group, and 2.9% (144) were in the high-risk group. Baseline characteristics of the general population and stratified by Hospital Frailty Risk categories are listed in **Table 1**.

Table1 Baseline characteristics of the total cohort and stratified by frailty risk group

Characteristic -	Total cohort		Frailty risk (points)		p-value
Characteristics		Low risk (<5)	Intermediate risk (5-15)	High risk (>15)	
N (%)	4957	3150 (63.5%)	1663 (33.5%)	144 (2.9%)	
Male gender, n (%)	2426 (49.0%)	1634 (52.0%)	733 (44.2%)	59 (41.0%)	<0.001
Age (years), median (IQR)	82 (78, 86)	82 (78, 85)	83 (79, 87)	83 (79, 87)	<0.001
Vital signs, median (IQR)		6			
Blood pressure systolic					
(mmHg)	148 (129, 168)	149 (131, 168)	147 (125, 166)	151 (132, 176.5)	0.007
Blood pressure diastolc					
(mmHg)	80 (68, 93)	80 (69, 93)	80 (68, 92)	80 (69, 97)	0.25
Pulse rate (bpm)	81.5 (70, 95.2)	80.5 (69, 94.8)	82 (70.9, 96)	85 (73, 101)	0.009
Oxygen saturation (%)	95.8 (92.8, 98)	96 (93.5, 98)	95.4 (92.1, 97.6)	95.05 (92, 97.4)	<0.001
Temperature (°C)	36.8 (36.4, 37.3)	36.8 (36.4, 37.3)	36.8 (36.4, 37.4)	36.6 (36.4, 37.1)	0.007
Comorbidities, n (%)					
Diabetes	698 (14.1%)	486 (15.4%)	205 (12.3%)	7 (4.9%)	<0.001
Malignant disease	494 (10.0%)	354 (11.2%)	131 (7.9%)	9 (6.2%)	<0.001
Chronic heart failure	699 (14.1%)	436 (13.8%)	249 (15.0%)	14 (9.7%)	0.17
COPD	257 (5.2%)	178 (5.7%)	75 (4.5%)	4 (2.8%)	0.099
Dementia	338 (6.8%)	104 (3.3%)	218 (13.1%)	16 (11.1%)	<0.001
Chronic renal disease	1282 (25.9%)	715 (22.7%)	540 (32.5%)	27 (18.8%)	<0.001
Hypertension	2608 (52.6%)	1726 (54.8%)	826 (49.7%)	56 (38.9%)	<0.001
Coronary heart disease	531 (10.7%)	424 (13.5%)	100 (6.0%)	7 (4.9%)	<0.001
Stroke	668 (13.5%)	193 (6.1%)	396 (23.8%)	79 (54.9%)	<0.001

Location prior to admission, n (%)					
Home	3144 (63.4%)	2194 (69.7%)	895 (53.8%)	55 (38.2%)	<0.001
Home with assistance service	264 (5.3%)	107 (3.4%)	142 (8.5%)	15 (10.4%)	
Nursing home	370 (7.5%)	161 (5.1%)	190 (11.4%)	19 (13.2%)	
Other hospital	457 (9.2%)	275 (8.7%)	161 (9.7%)	21 (14.6%)	
Unknown or other	722 (14.6%)	413 (13.1%)	275 (16.5%)	34 (23.6%)	

COPD chronic obstructive pulmonary disease; IQR interquartile range

Associations of frailty risk score with mortality

A total of 524 (10.7%) patients died within 30 days of admission, consisting of 221 (7.1%) of those in the low risk group, 267 (16.2%) in the intermediate risk group and 36 (25.2%) in the high-risk group. Regression analyses showed corresponding ORs of 2.53 (95% Cl 2.09 to 3.06, P<0.001) for the intermediate risk group and 4.40 (95% Cl 2.94 to 6.57, P<0.001) for the high-risk group, respectively, compared to the low risk group. Results remained robust after adjustment for confounders (age, gender, and comorbidities not included in the score) (**Table 2, Figure 1**). We also investigated the discriminative performance of the score and found only

moderate results for mortality (AUC 0.66) (Table 3).

Table 2 Associations of elevated frailty risk groups with adverse clinical outcomes compared to the low frailty risk group

Overall Low Risk Intermediate High Risk Intermediate Risk, OR (95% CI), P-value High Risk, OR (95% CI), P-value Outcome n (%) n (%) Risk, n (%) P value n (%) unadjusted fully adjusted unadjusted fully adjusted 221 (7.1%) 267 (16.2%) 2.53 (2.09 to 3.06), p<0.001 2.65 (2.17 to 3.25), p<0.001 4.4 (2.94 to 6.57), p<0.001 all-cause 30-day mortality 524 (10.7%) 36 (25.2%) < 0.001 4.83 (3.17 to 7.37), p<0.001 Length of stay, median (IQR)* 4 (2, 7) 10.04 (8.92 to 11.16), p<0.001 5 (2, 9) 7 (4, 12) 11.5 (7, 18) < 0.001 3.74 (3.34 to 4.14), p<0.001 3.77 (3.39 to 4.15), p<0.001 10.07 (9.02 to 11.13), p<0.001 Long hospital stay >10 days 1010 (20.4%) 386 (12.3%) 543 (32.7%) 81 (56.2%) 3.47 (2.99 to 4.02), p<0.001 3.66 (3.14 to 4.28), p<0.001 9.21 (6.51 to 13.01), p<0.001 9.75 (6.83 to 13.92), p<0.001 < 0.001 30-day readmission 586 (11.8%) 372 (11.8%) 195 (11.7%) 19 (13.2%) 0.87 1.04 (0.88 to 1.24), p=0.643 1.04 (0.87 to 1.24), p=0.69 1.47 (0.95 to 2.26), p=0.081 1.67 (1.08 to 2.59), p=0.022 Functional impairment, n (%) Barthel Index, median (IQR)* 95 (70, 100) 100 (85, 100) 80 (55, 100) 50 (20, 75) < 0.001 -15.76 (-17.87 to -13.64), p<0.001 -14.59 (-16.69 to -12.48), p<0.001 -40.55 (-47.01 to -34.09), p<0.001 -39.7 (-46.06 to -33.33), p<0.001 Barthel Index <95 points 1052 (46.5%) 529 (36.3%) 51 (92.7%) 2.98 (2.48 to 3.58), p<0.001 2.87 (2.37 to 3.47), p<0.001 22.37 (8.04 to 62.23), p<0.001 25.03 (8.91 to 70.32), p<0.001 472 (62.9%) < 0.001 Quality of Life, n(%) 408 (18.0%) Impairment of mobility 162 (11.1%) 217 (28.9%) 29 (51.8%) < 0.001 3.25 (2.59 to 4.08), p<0.001 3.1 (2.46 to 3.92), p<0.001 8.61 (4.97 to 14.91), p<0.001 8.45 (4.82 to 14.81), p<0.001 Impairment of self-care 1010 (44.5%) 480 (32.9%) 484 (64.4%) 46 (82.1%) < 0.001 3.69 (3.07 to 4.44), p<0.001 3.63 (2.99 to 4.4), p<0.001 9.40 (4.7 to 18.79), p<0.001 9.59 (4.74 to 19.41), p<0.001 Impairment of usual activities 1366 (60.2%) 767 (52.5%) 553 (73.5%) 46 (82.1%) < 0.001 2.51 (2.08 to 3.05), p<0.001 2.35 (1.92 to 2.87), p<0.001 4.16 (2.08 to 8.31), p<0.001 3.98 (1.97 to 8.06), p<0.001 Pain/discomfort 910 (42.7%) 574 (40.8%) 314 (46.3%) 22 (48.9%) 0.039 1.25 (1.04 to 1.51), p=0.017 1.21 (1 to 1.47), p=0.047 1.39 (0.77 to 2.52), p=0.278 1.28 (0.7 to 2.33), p=0.43 Anxiety/depression 629 (30.3%) 394 (28.2%) 213 (33.2%) 22 (56.4%) < 0.001 1.26 (1.03 to 1.55), p=0.023 1.26 (1.02 to 1.55), p=0.029 3.29 (1.73 to 6.26), p<0.001 3.11 (1.62 to 5.99), p=0.001 EQ-VAS, mean (SD)* 70.8 (18.3) 72.1 (17.9) 68.2 (19.0) -10.3 (-17.53 to -3.08), p=0.005 -11.12 (-18.29 to -3.94), p=0.002 61.8 (17.6) < 0.001 -3.9 (-5.83 to -1.97), p<0.001 -3.75 (-5.69 to -1.81), p<0.001 2.53 (2.18 to 2.92), p<0.001 3.81 (2.68 to 5.42), p<0.001 discharge other than home 1092 (22.0%) 504 (16.0%) 530 (31.9%) 58 (40.3%) < 0.001 2.46 (2.13 to 2.83), p<0.001 3.54 (2.5 to 5.01), p<0.001 95% CI confidence interval; EQ-VAS EuroQol visual analog health scale; IQR interquartile range; OR odds ratio; SD standard deviation; Quality of life measures were adapted from EQ-5D. We dichotomized levels into "no impairment" (level 1) and "impairment" (levels 2 and 3). Frequencies of reported impairment (level 2 and 3) were analyzed. The fully adjusted model was adjusted for age, gender, and comorbidities not included in the score * linear regression analyses were calculated reporting regression coefficient, 95% confidence interval, P-value 12 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright.

45 46

BMJ Open

Table 3 Discriminative Performance of the Hospital frailty Risk Score regarding

clinical and functional outcomes

Outcome	AUC (95% CI)
Clinical outcomes	
all-cause 30-day mortality	0.66 (0.63 to 0.68)
Long hospital stay (>10 days)	0.72 (0.7 to 0.74)
30-day readmission	0.54 (0.51 to 0.56)
Functional impairment	
Barthel Index <95 points, n (%)	0.69 (0.67 to 0.71)
Quality of Life, n (%)	
Impairment of mobility	0.71 (0.68 to 0.74)
Impairment of self-care	0.71 (0.69 to 0.73)
Impairment of usual activities	0.66 (0.63 to 0.68)
Pain/discomfort	0.54 (0.51 to 0.56)
Anxiety/depression	0.56 (0.53 to 0.58)
discharge other than home, n (%)	0.64 (0.63 to 0.66)

AUC area under the receiver operating curve; 95% CI 95% confidence interval

Quality of life measures were adapted from EQ-5D. We dichotomized levels into "no impairment" (level 1) and "impairment" (levels 2 and 3). Frequencies of reported impairment (level 2 and 3) were analyzed.

Associations of frailty risk score with other adverse clinical outcomes

We also found significant results regarding length of hospital stay and long hospital stay (>10 days). Compared to the low risk group corresponding ORs for long hospital stay were 3.47 (95% CI 2.99 to 4.02, P<0.001) for the intermediate risk group and 9.21 (95% CI 6.51 to 13.01, P<0.001) for the high-risk group. Again, results remained robust after adjustment for the confounders mentioned.

Regarding hospital readmission within 30 days we did only find a significant association for the high-risk group compared to the low-risk group in the fully adjusted model (fully adjusted OR 1.67, 95% CI 1.08 to 2.59, P=0.022) (**Table 2**).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Associations with functional Impairment, quality of life, and location after discharge

Regarding functional status, we found significantly higher proportions of impairment (Barthel Index < 95 points) in higher frailty risk groups with corresponding ORs of 2.98 (95% CI 2.48 to 3.58, P<0.001) and 22.37 (95% CI 8.04 to 62.23, P<0.001). Similar results were found for quality of life measures 30 days after admission with corresponding ORs for the high-risk group of 8.61 (95% CI 4.97 to 14.91, P<0.001) for impairment of mobility, 9.40 (95% CI 4.7 to 18.79, P<0.001) for impaired self-care, 4.16 (95% CI 2.08 to 8.31, P<0.001) for impairment of usual activities, and 3.29 (95% CI 1.73 to 6.26, P<0.001) for suffering from anxiety or depression. Compared to patients in the low risk group, patients in the high-risk group that resided home at time of admission had a 3.5 fold increased risk of not being able to be discharged back home (OR 3.54 (95% CI 2.5 to 5.01, P<0.001) (**Table 2**).

Additional results of regression analyses of all models with stepwise adjustment for confounders are shown in the supplemental material (**Tables A1 & A2**).

Subgroup analyses

Analyses of subgroups showed similar associations of the Hospital Frailty Risk Score with 30-day mortality, long hospital stay, and hospital readmission among different age groups and stratified by gender with no evidence for effect modification (**Figure 2**).

Within this independent validation study including medical inpatients >75 years of age in a Swiss tertiary care setting, we found significant associations between the Hospital frailty risk scores and several adverse clinical outcomes, specifically all-cause 30-day mortality, hospital length of stay, and long hospital stay (>10 days). Moreover, we found significant associations of the intermediate and high-risk group with functional impairment, measured by the Barthel Index, and reduced quality of life, as assessed by the EQ-5D. Last, we found patients of the higher risk group that were admitted from home significantly less likely to return back home at time of discharge.

Compared to the three cohorts of the original publication (one development cohort and two validation cohorts) by Gilbert et al.¹⁰ a similar proportion of patients were classified in the intermediate-risk group (33.5% vs. 20.3 to 37.6%) but a smaller proportion of patients were classified in the high-risk group (2.9% vs. 9.0 to 20.0%). This might be due to different health care systems, different patient populations studied and variation in ICD-10 coding. However, compared to the results of Gilbert et al., we found even stronger associations of the high frailty risk group compared to the low-risk group with regard to 30-day mortality (adjusted OR 4.83, 95% CI 3.17 to 7.37, p<0.001 vs. adjusted OR 1.71, 95% CI 1.68 to 1.75), and long hospital stay (adjusted OR 9.75, 95% CI 6.83 to 13.92, p<0.001 vs. adjusted OR 6.03, 95% CI 5.92 to 6.10).

Regarding the discriminative performance of the Hospital frailty risk score we found similar results as Gilbert et al. with regard to 30-day mortality (AUC 0.66 vs. 0.60), long hospital stay (AUC 0.72 vs. 0.68), and hospital readmission within 30 days (AUC 0.54 vs. 0.56). Overall, these results show significant associations of the Hospital frailty risk score with adverse outcomes, however, with moderate discriminatory

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright

ability. Thus, future studies should aim to further refine the score to increase its sensitivity and specificity.

To the best of our knowledge, this is the first study to validate the Hospital Frailty Risk Score following its publication and initial validation. Moreover, the validation in a Swiss tertiary care hospital in an unselected medical cohort including emergency admissions and elective admissions is a first step in assessing whether the risk score is applicable in multinational settings.

In addition to Gilbert et al. we were able to show associations of higher hospital frailty risk scores not only with adverse clinical outcomes but also with functional impairment, quality of life, and need for post-acute care. Our data thus extend the prior study and provides new evidence that the score is valuable in risk stratification of patients based on ICD10 codes.

A general strength of the score is the easy calculation using routine hospital data which provides a systematic method to screen for patients at risk for frailty without any need to apply a manual score bringing along resource intensive assessment and potential inter-operator reliability issues ^{8 9 16}. Moreover, instead of focusing only on symptoms and diagnoses that are known to be related to frailty, the score contains a wider set of ICD-10 codes focusing on codes that are actually in routine use. Our report has several limitations. Firstly, this is a secondary analysis of a former prospective study. We did address this limitation by adjusting for confounders. Furthermore, as we were able to externally validate the previous findings accurately, we are confident that there is no additional bias. Second, due to the study design there was no routine frailty assessment in our patients. As a consequence, we were not able to compare the Hospital Frailty Risk score with other frailty assessments or screening scores. Yet, so far there is no gold standard in frailty screening to compare it to ^{2 16 17}. In addition, Gilbert et al. found fair overlap of the score with the

BMJ Open

2 3	established frailty assessment tools Fried and Rockwood scales ^{9 10 17} . Using multiple
4 5	clinical and functional outcomes as well as quality of life measures, we tried to
б	clinical and functional outcomes as well as quality of the measures, we then to
7 8	address a broad variety of potential adverse outcomes associated with frailty.
9	Thirdly, though we had a large sample size, only few patients were in the high frailty
10 11	
12	risk group, which may impact confidence intervals. Lastly, the score is dependent of
13 14	documentation and coding of ICD-10. Thus, variation in coding could contribute to
15 16	misclassification. Moreover, important components of frailty such as polypharmacy or
17	
18 19	general weakness might not be adequately reflected in ICD-10 codes.
20	The development of a gold standard for frailty risk assessment has proven to be a
21 22	challenging task ^{16 17} . The attempt has left us with a multitude of screening tools,
23	chanenging task . The altempt has left us with a multitude of screening tools,
24 25	suited for a variety of patient populations and a large variability of application
26	methods ⁶ . Recent research suggests that a single universal frailty measurement
27 28	
29	method may not be the best approach. As some methods are useful for broad
30 31	population screenings whilst others are based on clinical assessment, a two-tiered
32 33	system may be the way forward ¹⁸ . The Hospital Frailty Risk Score could be used as
34	system may be the way forward . The Hospital Franty Risk Score could be used as
35 36	a screening tool to assess all elderly patients admitted to a hospital using all
37	previously and currently documented ICD-10 codes. This could easily identify high-
38 39	
40	risk patients in need of a complete in-depth clinical assessment. As a low-cost, swift
41 42	and consecutively widely used tool, the Hospital Frailty Risk Score could ensure that
43	less notionts with frailty are missed. Identifying frail notionts is vital, as they may
44 45	less patients with frailty are missed. Identifying frail patients is vital, as they may
46	benefit from improved outcomes when they undergo geriatric assessment and
47 48	receive a particular frailty-adjusted treatment approach ¹⁹ .
49 50	
50 51	The frailty risk score needs further validation in a wide variety of patient settings. Its
52 53	place in the screening of geriatric patients, possibly in combination with other frailty
53 54	
55 56	assessment methods, as well as the practicability in clinical practice, has yet to be
56 57	

58 59 60

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright

investigated. Furthermore, it remains unclear whether its theoretical benefits can be translated into improved patient care and patient outcome.

CONCLUSION

The Hospital Frailty Risk Score is an easy to use and low-cost tool using administrative hospital data to identify frail, elderly people at risk for adverse outcomes who might benefit from a standardized geriatric assessment and from a particular frailty-adjusted treatment approach. Our data further validate this score in an independent patient population.

Acknowledgments

This multidisciplinary and inter-professional trial was only possible in close collaboration with personnel from multiple departments within the Kantonsspital Aarau, including social services (Anja Keller, Regina Schmid), nursing (Susanne Schirlo, Petra Tobias), central laboratory (Martha Kaeslin, Renate Hunziker), medical control (Juergen Froehlich, Thomas Holler, Christoph Reemts), and information technology (Roger Wohler, Kurt Amstad, Ralph Dahnke, Sabine Storost), the Clinical Trial Unit (CTU) at the University Hospital of Basel (Stefan Felder, Timo Tondelli), and all participating patients, nurses, and physicians.

Author contributions

All authors made substantive intellectual contributions to this study regarding conception and design, have taken an active part in acquisition, analysis, and interpretation of data, and approved the final version of the manuscript. AE, SH, and PS conducted the statistical analyses and initially drafted the manuscript. AE and SH contributed equally to this work.

Research Funding: ThermoFisher provided an unrestricted research grant for the study. PS is supported by the Swiss National Science Foundation (SNSF Professorship, PP00P3_150531/1) and the Research Council of the Kantonsspital Aarau (1410.000.044).

Competing interests

All authors have no conflicts of interest relevant to this paper. The funding organization had no role in the design or conduct of the study, analysis and interpretation of the data, writing of the manuscript, or the decision to submit the manuscript for publication.

Data sharing statement:

Part of the dataset will be available from the Dryad repository.

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright

60

1

References

- 1. Rechel B, Grundy E, Robine JM, et al. Ageing in the European Union. *Lancet (London, England)* 2013;381(9874):1312-22. doi: 10.1016/s0140-6736(12)62087-x [published Online First: 2013/04/02]
- 2. Clegg A, Young J, Iliffe S, et al. Frailty in elderly people. *Lancet (London, England)* 2013;381(9868):752-62. doi: 10.1016/s0140-6736(12)62167-9 [published Online First: 2013/02/12]
- 3. Hubbard RE, Peel NM, Samanta M, et al. Frailty status at admission to hospital predicts multiple adverse outcomes. *Age and ageing* 2017;46(5):801-06. doi: 10.1093/ageing/afx081 [published Online First: 2017/05/23]
- 4. Song X, Mitnitski A, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. *Journal of the American Geriatrics Society* 2010;58(4):681-7. doi: 10.1111/j.1532-5415.2010.02764.x [published Online First: 2010/03/30]
- Ellis G, Whitehead MA, O'Neill D, et al. Comprehensive geriatric assessment for older adults admitted to hospital. *Cochrane Database Syst Rev* 2011(7):Cd006211. doi: 10.1002/14651858.CD006211.pub2 [published Online First: 2011/07/08]
- 6. Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical practice: A review. *European journal of internal medicine* 2016;31:3-10. doi: 10.1016/j.ejim.2016.03.007 [published Online First: 2016/04/04]
- 7. Theou O, Brothers TD, Mitnitski A, et al. Operationalization of frailty using eight commonly used scales and comparison of their ability to predict all-cause mortality. *Journal of the American Geriatrics Society* 2013;61(9):1537-51. doi: 10.1111/jgs.12420 [published Online First: 2013/09/14]
- McCusker J, Bellavance F, Cardin S, et al. Detection of older people at increased risk of adverse health outcomes after an emergency visit: the ISAR screening tool. *Journal of the American Geriatrics Society* 1999;47(10):1229-37. [published Online First: 1999/10/16]
- 9. Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people. *CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne* 2005;173(5):489-95. doi: 10.1503/cmaj.050051 [published Online First: 2005/09/01]
- 10. Gilbert T, Neuburger J, Kraindler J, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. *Lancet (London, England)* 2018;391(10132):1775-82. doi: 10.1016/s0140-6736(18)30668-8 [published Online First: 2018/05/01]
- 11. Kutz A, Hausfater P, Amin D, et al. The TRIAGE-ProADM Score for an Early Risk Stratification of Medical Patients in the Emergency Department - Development Based on a Multi-National, Prospective, Observational Study. *PloS one* 2016;11(12):e0168076. doi: 10.1371/journal.pone.0168076 [published Online First: 2016/12/23]
- Schuetz P, Hausfater P, Amin D, et al. Biomarkers from distinct biological pathways improve early risk stratification in medical emergency patients: the multinational, prospective, observational TRIAGE study. *Critical care* 2015;19:377. doi: 10.1186/s13054-015-1098-z [published Online First: 2015/10/30]
- 13. Schuetz P, Hausfater P, Amin D, et al. Optimizing triage and hospitalization in adult general medical emergency patients: the triage project. *BMC emergency medicine*

BMJ Open

	86/1471-227X-13-12 [published Online First:
policy (Amsterdam, Nethe	e measurement of health-related quality of life. <i>Health</i> <i>rlands)</i> 1990;16(3):199-208. [published Online First:
	el ADL Index: a standard measure of physical disability? <i>udies</i> 1988;10(2):64-7. [published Online First:
16. Pritchard JM, Kennedy CC, Ka comparison of physical fr clinic. <i>BMC geriatrics</i> 201	arampatos S, et al. Measuring frailty in clinical practice: a ailty assessment methods in a geriatric out-patient 7;17(1):264. doi: 10.1186/s12877-017-0623-0
	er M, et al. Measures of frailty in population-based <i>C geriatrics</i> 2013;13:64. doi: 10.1186/1471-2318-13-64
18. Cesari M, Gambassi G, van Ka different instruments for	n GA, et al. The frailty phenotype and the frailty index: different purposes. <i>Age and ageing</i> 2014;43(1):10-2. 60 [published Online First: 2013/10/18]
19. Ellis G, Gardner M, Tsiachrist older adults admitted to h	as A, et al. Comprehensive geriatric assessment for nospital. <i>Cochrane Database Syst Rev</i> 2017;9:Cd006211. CD006211.pub3 [published Online First: 2017/09/13]
	21

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright

FIGURES

Figure 1 Survival estimates stratified by the three Hospital Frailty Risk group

Figure 2 Associations of elevated hospital frailty risk with adverse clinical outcomes

stratified by age and gender

OR odds ratio, 95% CI 95% confidence interval

1 2 3 4 5 6 7 8	Ka 100 100 95 90 45 00 00 00 00 00 00 00 00 00 0	aplan–Meier su	rvival estimate	9S.
9 10	Surv			
11	- 06 s			
12 13				
14				
15	80-			
16 17	0	10	20	30
18		Time after adm		
19 20	Number at risk	0015	2006	0000
20 21	low frailty risk 3056 intermediate frailty risk 1572	2915 1433	2896. 1396.	2890 1384
22	high frailty risk 132	118	108	108
23		low frailty risk —	intermediate	frailty risk
24 25		high frailty risk		
26				
27 28				
28				
30				
31 32				
33				
34				
35 36				
37				
38				
39 40				
41				
42				
43 44				
44 45				
46				
47 48				
49				
50				
51 52				
53				
54				
55 56				
57				
58				
59 60				
00				

OR (95% CI), P for interaction

Age <85 years		
Low risk	•	Ref
Intermediate risk	_ →	3.03 (2.36 to 3.87), 0.00
High risk		4.37 (2.56 to 7.49), 0.99
Age ≥ 85 years		P (
Low risk		Ref
Intermediate risk		1.82 (1.35 to 2.44), 0.00
High risk		4.11 (2.23 to 7.58), 0.99
Female gender		
Low risk	•	Ref
Intermediate risk		2.30 (1.74 to 3.05), 0.25
High risk		4.57 (2.66 to 7.87), 0.94
Male gender		
Low risk	♦ .	Ref
Intermediate risk	│	2.89 (2.24 to 3.74), 0.25
High risk		4.47 (2.44 to 8.17), 0.94
Long hospital stay		
Age <85 years		
Low risk		Ref
Intermediate risk	→ ·	3.72 (3.10 to 4.46), 0.76
High risk		10.20 (6.58 to 15.81), 0.
Age ≥ 85 years		
Low risk	+	Ref
Intermediate risk	│	3.12 (2.41 to 4.03), 0.76
High risk		17.82 (4.43 to 13.81), 0.
Female gender		
Low risk	•	Ref
Intermediate risk		3.39 (2.75 to 4.17), 0.62
High risk		6.52 (4.14 to 10.25), 0.0
Male gender Low risk		
Intermediate risk	•	Ref
High risk		3.65 (2.95 to 4.51), 0.62
•		16.06 (9.05 to 28.49), 0.
Readmission within 30 days		
Age <85 years		
Low risk	•	Ref
Intermediate risk		1.05 (0.84 to 1.31), 0.32
High risk	•	1.12 (0.60 to 2.09), 0.98
Age ≥ 85 years		
Low risk	T	Ref
Intermediate risk		0.92 (0.66 to 1.27), 0.32
High risk		1.17 (0.52 to 2.67), 0.98
Female gender		
Low risk	J	Ref (0.76 to 1.28), 0.85
Intermediate risk		0.98 (0.76 to 1.28), 0.85
High risk		1.05 (0.53 to 2.07), 0.70
Male gender	1 I	2.4
Low risk	Ţ	Ref
Intermediate risk		1.02 (0.78 to 1.32), 0.85
High risk	•	1.28 (0.62 to 2.63), 0.70

-

BMJ Open

	Overall	Low Risk	Intermediate		Intermediate Risk	, OR (95% CI), P-value	
Dutcome	n (%)	n (%)	Risk, n (%)	unadjusted	Model 1	Model 2	Model 3
all-cause 30-day mortality	524 (10.7%)	221 (7.1%)	267 (16.2%)	2.53 (2.09 to 3.06), p<0.001	2.45 (2.03 to 2.97), p<0.001	2.52 (2.08 to 3.06), p<0.001	2.65 (2.17 to 3.25), p<0.001
Length of stay, median (IQR)*	5 (2, 9)	4 (2, 7)	7 (4, 12)	3.74 (3.34 to 4.14), p<0.001	3.76 (3.36 to 4.16), p<0.001	3.83 (3.45 to 4.21), p<0.001	3.77 (3.39 to 4.15), p<0.001
Long hospital stay >10 days	1010 (20.4%)	386 (12.3%)	543 (32.7%)	3.47 (2.99 to 4.02), p<0.001	3.50 (3.02 to 4.06), p<0.001	3.55 (3.06 to 4.12), p<0.001	3.66 (3.14 to 4.28), p<0.001
30-day readmission	586 (11.8%)	372 (11.8%)	195 (11.7%)	1.04 (0.88 to 1.24), p=0.643	1.06 (0.89 to 1.26), p=0.521	1.06 (0.89 to 1.26), p=0.503	1.04 (0.87 to 1.24), p=0.69
Functional impairment, n (%)							
Barthel Index, median (IQR)*	95 (70, 100)	100 (85, 100)	80 (55, 100)	-15.76 (-17.87 to -13.64), p<0.001	-15.01 (-17.1 to -12.92), p<0.001	-14.87 (-16.97 to -12.78), p<0.0010	-14.59 (-16.69 to -12.48), p<0.00
Barthel Index <95 points	1052 (46.5%)	529 (36.3%)	472 (62.9%)	2.98 (2.48 to 3.58), p<0.001	2.89 (2.4 to 3.47), p<0.001	2.85 (2.36 to 3.43), p<0.001	2.87 (2.37 to 3.47), p<0.001
Quality of Life, n(%)							
Impairment of mobility	408 (18.0%)	162 (11.1%)	217 (28.9%)	3.25 (2.59 to 4.08), p<0.001	3.14 (2.50 to 3.95), p<0.001	3.13 (2.49 to 3.94), p<0.001	3.1 (2.46 to 3.92), p<0.001
Impairment of self-care	1010 (44.5%)	480 (32.9%)	484 (64.4%)	3.69 (3.07 to 4.44), p<0.001	3.60 (2.99 to 4.35), p<0.001	3.56 (2.95 to 4.30), p<0.001	3.63 (2.99 to 4.4), p<0.001
Impairment of usual activities	1366 (60.2%)	767 (52.5%)	553 (73.5%)	2.51 (2.08 to 3.05), p<0.001	2.41 (1.99 to 2.93), p<0.001	2.35 (1.93 to 2.87), p<0.001	2.35 (1.92 to 2.87), p<0.001
Pain/discomfort	910 (42.7%)	574 (40.8%)	314 (46.3%)	1.25 (1.04 to 1.51), p=0.017	1.26 (1.04 to 1.51), p=0.015	1.22 (1.01 to 1.47), p=0.036	1.21 (1 to 1.47), p=0.047
Anxiety/depression	629 (30.3%)	394 (28.2%)	213 (33.2%)	1.26 (1.03 to 1.55), p=0.023	1.28 (1.04 to 1.56), p=0.018	1.25 (1.02 to 1.53), p=0.032	1.26 (1.02 to 1.55), p=0.029
EQ-VAS, mean (SD)*	70.8 (18.3)	72.1 (17.9)	68.2 (19.0)	-3.9 (-5.83 to -1.97), p<0.001	-3.87 (-5.81 to -1.93), p<0.001	-3.78 (-5.73 to -1.84), p<0.001	-3.75 (-5.69 to -1.81), p<0.001
lischarge other than home	1092 (22.0%)	504 (16.0%)	530 (31.9%)	2.46 (2.13 to 2.83), p<0.001	2.39 (2.07 to 2.75), p<0.001	2.39 (2.07 to 2.75), p<0.001	2.53 (2.18 to 2.92), p<0.001
		C C	•	l artile range; OR odds ratio; SD standa mpairment" (level 1) and "impairment"		ported impairment (level 2 and 3) were	analyzed.
adjusted for age (model 1), age and g	gender (model 2), and age, gend	ler and comorbic	lities that were not included in the cal	culation of the frailty risk score (mod	el 3)	
	culated reporting	regression coe	fficient 95% cor	ifidence interval, P-value			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Overall Low Risk High Risk High Risk (95% Cl), P-value						
Outcome	n (%)	n (%)	n (%)	unadjusted	Model 1	Model 2	Model 3
all-cause 30-day mortality	524 (10.7%)	221 (7.1%)	36 (25.2%)	4.40 (2.94 to 6.57), p<0.001	4.28 (2.86 to 6.41), p<0.001	4.49 (2.99 to 6.73), p<0.001	4.83 (3.17 to 7.37), p<0.001
Length of stay, median (IQR)*	5 (2, 9)	4 (2, 7)	11.5 (7, 18)	10.04 (8.92 to 11.16), p<0.001	10.06 (8.94 to 11.18), p<0.001	10.12 (9.06 to 11.19), p<0.001	10.07 (9.02 to 11.13), p<0.001
Long hospital stay >10 days	1010 (20.4%)	386 (12.3%)	81 (56.2%)	9.21 (6.51 to 13.01), p<0.001	9.28 (6.56 to 13.12), p<0.001	9.42 (6.66 to 13.33), p<0.001	9.75 (6.83 to 13.92), p<0.001
30-day readmission	586 (11.8%)	372 (11.8%)	19 (13.2%)	1.47 (0.95 to 2.26), p=0.081	1.49 (0.97 to 2.29), p=0.070	1.49 (0.97 to 2.30), p=0.069	1.67 (1.08 to 2.59), p=0.022
Functional impairment, n (%)							
Barthel Index, median (IQR)*	95 (70, 100)	100 (85, 100)	50 (20, 75)	-40.55 (-47.01 to -34.09), p<0.001	-40.29 (-46.66 to -33.93), p<0.001	-40.01 (-46.37 to -33.64), p<0.001	-39.70 (-46.06 to -33.33), p<0.00
Barthel Index <95 points	1052 (46.5%)	529 (36.3%)	51 (92.7%)	22.37 (8.04 to 62.23), p<0.001	23.74 (8.48 to 66.44), p<0.001	22.9 (8.19 to 64.06), p<0.001	25.03 (8.91 to 70.32), p<0.001
Quality of Life, n(%)							
Impairment of mobility	408 (18.0%)	162 (11.1%)	29 (51.8%)	8.61 (4.97 to 14.91), p<0.001	8.62 (4.95 to 15.01), p<0.001	8.57 (4.92 to 14.93), p<0.001	8.45 (4.82 to 14.81), p<0.001
Impairment of self-care	1010 (44.5%)	480 (32.9%)	46 (82.1%)	9.40 (4.70 to 18.79), p<0.001	9.67 (4.8 to 19.48), p<0.001	9.39 (4.66 to 18.90), p<0.001	9.59 (4.74 to 19.41), p<0.001
Impairment of usual activities	1366 (60.2%)	767 (52.5%)	46 (82.1%)	4.16 (2.08 to 8.31), p<0.001	4.19 (2.08 to 8.44), p<0.001	3.88 (1.92 to 7.82), p<0.001	3.98 (1.97 to 8.06), p<0.001
Pain/discomfort	910 (42.7%)	574 (40.8%)	22 (48.9%)	1.39 (0.77 to 2.52), p=0.278	1.39 (0.77 to 2.52), p=0.276	1.28 (0.70 to 2.34), p=0.413	1.28 (0.70 to 2.33), p=0.430
Anxiety/depression	629 (30.3%)	394 (28.2%)	22 (56.4%)	3.29 (1.73 to 6.26), p<0.001	3.29 (1.73 to 6.27), p<0.001	3.08 (1.61 to 5.89), p=0.001	3.11 (1.62 to 5.99), p=0.001
EQ-VAS, mean (SD)*	70.8 (18.3)	72.1 (17.9)	61.8 (17.6)	-10.3 (-17.53 to -3.08), p=0.005	-10.3 (-17.53 to -3.07), p=0.005	-10.13 (-17.37 to -2.90), p=0.006	-11.12 (-18.29 to -3.94), p=0.002
discharge other than home	1092 (22.0%)	504 (16.0%)	58 (40.3%)	3.54 (2.50 to 5.01), p<0.001	3.46 (2.44 to 4.90), p<0.001	3.46 (2.44 to 4.90), p<0.001	3.81 (2.68 to 5.42), p<0.001
95% CI confidence interval; EQ-VAS	EuroQol visual a	analog health sc	ale; IQR interq	 uartile range; OR odds ratio; SD star	ndard deviation;		
Quality of life measures were adapte	d from EQ-5D. V	Ve dichotomized	levels into "no	impairment" (level 1) and "impairme	nt" (levels 2 and 3). Frequencies of re	ported impairment (level 2 and 3) wer	e analyzed.
adjusted for age (model 1), age and	gender (model 2), and age, gend	er and comorb	pidities that were not included in the c	alculation of the frailty risk score (mod	lel 3)	
[*] linear regression analyses were ca	lculated reporting	g regression coe	fficient, 95% c	onfidence interval, P-value			

Table A2 Associations of high frailty risk with adverse clinical outcomes compared to the low frailty risk group.

BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3-4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5-6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	n/a
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8-9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8-9
Bias	9	Describe any efforts to address potential sources of bias	8-9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	n/a
		(e) Describe any sensitivity analyses	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 2	28 of 28
--------	----------

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10-11
		(b) Indicate number of participants with missing data for each variable of interest	n/a
		(c) Summarise follow-up time (eg, average and total amount)	n/a
Outcome data	15*	Report numbers of outcome events or summary measures over time	11-14
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	11-14
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	11-14
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	n/a
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	14
Discussion			
Key results	18	Summarise key results with reference to study objectives	15-16
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	16-17
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Validation of the Hospital Frailty Risk Score in a Tertiary Care Hospital in Switzerland: results of a prospective, observational study

	2141.0
Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026923.R1
Article Type:	Research
Date Submitted by the Author:	06-Nov-2018
Complete List of Authors:	Eckart, Andreas; Kantonsspital Aarau, University Department of Medicine Hauser, Stephanie; Universitat Basel Medizinische Fakultat Haubitz, Sebastian; Kantonsspital Aarau, University Department of Medicine; Kantonsspital Aarau, Division of Infectious Diseases, University Department of Medicine Struja, Tristan; Kantonsspital Aarau, University Department of Medicine; Kantonsspital Aarau, Division of Endocrinology, Diabetes and Metabolism, University Department of Medicine Kutz, Alexander; University Department of Medicine, Kantonsspital Aarau Koch, Daniel; University Department of Medicine, Kantonsspital Aarau Neeser, Olivia; University Department of Medicine, Kantonsspital Aarau Meier, Marc; University Department of Medicine, Kantonsspital Aarau Mueller, Beat; University Department of Medicine, Kantonsspital Aarau; Universitat Basel Medizinische Fakultat Schuetz, Philipp; University Department of Medicine, Kantonsspital Aarau; Universitat Basel Medizinische Fakultat
Primary Subject Heading :	Geriatric medicine
Secondary Subject Heading:	Geriatric medicine
Keywords:	GERIATRIC MEDICINE, HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PREVENTIVE MEDICINE
	·

SCHOLARONE[™] Manuscripts

Validation of the Hospital Frailty Risk Score in a Tertiary Care Hospital in Switzerland: results of a prospective, observational study ¹Andreas Eckart^{†*}, ²Stephanie I. Hauser^{*}, ^{1,3}Sebastian Haubitz, ¹Tristan Struja, ¹Alexander Kutz, ¹Daniel Koch, ¹Olivia Neeser, ¹Marc A. Meier, ^{1,2}Beat Mueller, and ^{1,2}Philipp Schuetz

eckartan@gmail.com; hauserstei@gmail.com; sebastian.haubitz@ksa.ch; tristan.struja@ksa.ch; kutz.alexander@gmail.com; daniel.koch@ksa.ch; olivia.neeser@ksa.ch; marc.meier@ksa.ch; happy.mueller@unibas.ch; schuetzph@gmail.com

¹Division of General Internal and Emergency Medicine; University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland ²Faculty of Medicine, University of Basel, Basel, Switzerland ³Division of Infectious Diseases, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland

*Andreas Eckart and Stephanie Hauser contributed equally to this work.

[†]Corresponding author:

Division of General Internal and Emergency Medicine University Department of Medicine Kantonsspital Aarau, Tellstrasse 25 5001 Aarau, Switzerland Email: eckartan@gmail.com Fax: +41 (0)62 838 98 73

Tel: +41 (0)62 838 95 17

 Word count: Abstract: 275/300; Main: 3004/4000

Number of Tables: 3, Number of Figures: 2, Number of References: 21

Supplementary material: Number of Tables: 3

to peet teriewony

ABSTRACT

Objectives: Recently, the Hospital Frailty Risk Score based on a derivation and validation study in the United Kingdom has been proposed as a low-cost, systematic screening tool to identify older, frail patients who are at greater risk of adverse outcomes and for whom a frailty-attuned approach might be useful. We aimed to validate this Score in an independent cohort in Switzerland.

Design: Secondary analysis of a prospective, observational study (TRIAGE study).Setting: One 600-bed tertiary care hospital in Aarau, Switzerland

Participants: Consecutive medical inpatients aged 75 years or older that presented to the emergency department or were electively admitted between October 2015 and April 2018.

Primary and secondary outcome measures: The primary endpoint was all-cause 30-day mortality. Secondary endpoints were length of hospital stay, hospital readmission, functional impairment, and quality of life measures. We used multivariate regression analyses.

Results: Of 4957 included patients, 3150 (63.5%) were classified as low risk, 1663 (33.5%) intermediate risk, and 144 (2.9%) high risk for frailty. Compared to the low-risk group, patients in the moderate risk and high-risk groups had increased risk for 30-day mortality (odds ratio [OR] 2.53, 95%CI 2.09 to 3.06, P<0.001 and OR 4.40, 95%CI 2.94 to 6.57, P<0.001) with overall moderate discrimination (area under the ROC curve 0.66). The results remained robust after adjustment for important confounders. Similarly, we found longer length of hospital stay, more severe functional impairment and a lower quality of life in higher risk group patients. **Conclusion:** Our data confirms the prognostic value of the Hospital Frailty Risk Score to identify older, frail people at risk for mortality and adverse outcomes in an independent patient population.

STRENGTHS AND LIMITATIONS OF THE STUDY

Strength and limitations of this study

- This is the first study to validate the Hospital Frailty Risk Score following its publication and initial validation.
- The validation in a Swiss Tertiary care hospital is a first step in assessing the applicability of the risk score in multinational settings.
- In addition to associations with adverse clinical outcomes we assess associations of higher hospital frailty risk scores with functional impairment, quality of life, and need for post-acute care.
- Due to the study design there was no routine frailty assessment in our patients and we were not able to compare the score with other frailty assessments or screening scores.
- As the score is dependent of documentation and coding of ICD-10, variation in coding could contribute to misclassification.

INTRODUCTION

With the increase in the ageing, multimorbidity patient population, the proportion of frail patients is expected to further raise.¹ Frailty describes a state of increased risk for decline in health after an exposure to a stressor event (e.g., hospitalization for an acute illness) increasing the risk for adverse events such as falls, delirium, disability and death.²⁻⁴ Importantly, identifying patients at risk for frailty early during the course of hospitalization may help to improve treatment strategies including a comprehensive geriatric assessment to improve the care and outcomes of patients.⁵ Several tools to identify frailty have been developed in the last 20 years.⁶ Yet none has emerged as a gold standard. Current instruments show only a moderate power to identify frailty,⁷ and some tools require time consuming manual assessment ⁸⁹. Moreover, in most hospitals there is no routine assessment of older patients and only a subset of patients is screened for frailty⁶. For these reasons, patients who may benefit from a specific frailty-directed treatment approach may be missed in usual hospital care. To improve the care of frail patients, the recently published Hospital Frailty Risk score¹⁰ was developed for early identification of patients with characteristics of frailty, who are at risk of adverse health-care outcomes and who could be identified without any additional assessment apart from routinely collected data. The score relies on the diagnostic codes from the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10), a coding system that is implemented in many administrative hospital databases worldwide. This provides the opportunity to systematically screen older patients in a low-cost manner ¹⁰. In a three-step approach, this score was developed and later validated within three patient populations from the United Kingdom showing high prognostic performance. Still, international validation is needed before more widespread use of this score in other health care systems. Herein, we aimed to validate

the Hospital Frailty Risk Score in a Swiss tertiary care hospital. We investigated associations of the score with adverse clinical outcomes such as 30-day mortality, length of hospital stay, and 30-day readmission, as well as functional outcomes including functional impairment, quality of life and discharge location.

for beer teriew only

METHODS

Study design and study population

This is a secondary analysis of the TRIAGE study, a prospective, observational cohort study initially designed to understand the value of admission biomarkers to predict later adverse outcomes.^{11 12} We included consecutive medical patients presenting with a medical urgency at the Kantonsspital in Aarau (Switzerland), a 600-bed tertiary care hospital with most medical admissions entering the hospital over the ED. As an observational quality control study, the Institutional Review Boards (IRB) of the hospital approved the study and waived the need for individual informed consent (main Swiss IRB: Ethikkommission Kanton Aargau (EK 2012/059). The study was registered at the "ClinicalTrials.gov" registration website

(<u>http://www.clinicaltrials.gov/ct2/show/NCT01768494</u>) and the study protocol has been published previously.¹³

In accordance with the initial study, we selected medical inpatients aged 75 years or older, that were admitted between October 2015 and April 2018. The cohort includes elective and emergency admissions. In case of multiple admissions of the same patient, only the first admission was used for the analysis.

Patient and Public Involvement

Patients were not involved in the development of the research question or the design of the study.

Follow-up and initial data collection

We used ICD-10 diagnostic codes of the incident admission assigned to patients after discharge by professional hospital coders according to the information of medical records. The electronic records contained up to 38 diagnosis fields coded

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

according to ICD-10. Regarding follow-up, 30 days after hospital admission patients were contacted by telephone for a structured interview to obtain information on vital status, clinical outcomes, location of living and functional measurements. Functional status was obtained using the EQ-5D-3L standardized measure of health, which was administered as recommended ¹⁴. We assessed mobility, self-care, usual activities, pain or discomfort, and anxiety and depression, using dichotomized data with levels 2 and 3 indicating "impairment" and level 1 indicating "no impairment". Moreover, we used the EQ-VAS, recording the self-rated health on a visual analogue scale with values between 0 and 100 with higher points indicating better health states. We used the Barthel Index to measure activities of daily living (ADL)¹⁵, with a cutoff <95 points indicating functional impairment. We assessed readmission to any facility, location after discharge and identified patients who were living at home before hospital admission and were discharged to a location other than home. All information was stored in a centralized, password-secured database (SecuTrial®; interActive Systems GmbH, Berlin, Germany).

Calculation of the Hospital Frailty Risk Score

For each patient the Hospital Frailty Risk Score was calculated retrospectively using all available ICD-10 diagnostic codes that were documented for the particular admission as recommended ¹⁰. The score is an aggregate of 109 ICD-10 diagnostic codes that were found to be associated with frailty risk. Each of these ICD-10 diagnostic codes were awarded with specific values proportional to how strongly they predicted frailty. According to the aggregate score, patients were divided into the three frailty risk categories low risk (<5 points), intermediate risk (5-15 points), and high risk (> 15 points) as recommended ¹⁰.

BMJ Open

Research aims and statistical approach

We investigated associations of the Hospital Frailty Risk with adverse clinical outcomes. Our primary endpoint is all-cause 30-day mortality. Secondary endpoints include hospital length of stay, long hospital stay (>10 days), and hospital readmission within 30 days. Moreover, we examined associations with functional impairment using the Barthel-Index (<95 points indicating impairment), Quality of Life measurements using the EQ-5D standardized measure, and discharge location other than home, for patients that were living at home before admission.

Statistical analysis

We expressed patient characteristics using descriptive statistics including mean with standard deviation (SD), median with interquartile range (IQR), and frequencies, as appropriate. Frequency comparison was done using the χ^2 test.

To investigate associations of the Hospital Frailty Risk Score with outcomes we used univariate and multivariate regression analyses. Models were adjusted for age (model 1), age and gender (model 2), and age, gender and comorbidities that were not included in the calculation of the frailty risk score (model 3). We performed another analysis adjusting for the structured early warning score NEWS (national early warning score) to comprise physiological parameters that might be an important modifier of outcomes. NEWS was calculated retrospectively as recommended ¹⁶ based on admission data. We provide odds ratios (ORs) or regression coefficients (RCs) with 95% confidence intervals (95% CIs) as appropriate. We used receiver operating statistics reporting area under the curve (AUC) as a measure of discrimination. We considered AUCs of 0.6 to 0.7 as moderate, 0.7 to 0.8 as fair, 0.8 to 0.9 as good, and >0.9 as excellent. Also, for graphical illustration we generated Kaplan-Meier survival estimates stratified by frailty risk groups.

We repeated analyses in predefined subgroups stratified by age and gender.

All tests were two-tailed and carried out at 5% significance levels. Analyses were

performed with STATA 12.1 (Stata Corp., College Station, TX, USA).

στρ. C

RESULTS

Patient Population

A total of 4957 Patients with a median age of 82 years were included in this analysis. At time of admission the majority of patients (63.4%) resided at home. A total of 63.5% (3150) of patients were in the low frailty risk group, 33.5% (1663) in the intermediate risk group, and 2.9% (144) were in the high-risk group. Minimum score was 0 points, maximum score 30.3 points, quartiles were 1.4, 3.4, and 6.7 points, mean 4.5 points (SD 4.3). Baseline characteristics of the general population and stratified by Hospital Frailty Risk categories are listed in **Table 1**.

Table1 Baseline characteristics of the total cohort and stratified by frailty risk group

Oh ava ata viation	Total cohort		Frailty risk (points)		p-value
Characteristics		Low risk (<5)	Intermediate risk (5-15)	High risk (>15)	
N (%)	4957	3150 (63.5%)	1663 (33.5%)	144 (2.9%)	
Male gender, n (%)	2426 (49.0%)	1634 (52.0%)	733 (44.2%)	59 (41.0%)	<0.001
Age (years), median (IQR)	82 (78, 86)	82 (78, 85)	83 (79, 87)	83 (79, 87)	<0.001
Vital signs, median (IQR)					
Blood pressure systolic (mmHg)	148 (129, 168)	149 (131, 168)	147 (125, 166)	151 (132, 176.5)	0.007
Blood pressure diastolc (mmHg)	80 (68, 93)	80 (69, 93)	80 (68, 92)	80 (69, 97)	0.25
Pulse rate (bpm)	81.5 (70, 95.2)	80.5 (69, 94.8)	82 (70.9, 96)	85 (73, 101)	0.009
Oxygen saturation (%)	95.8 (92.8, 98)	96 (93.5, 98)	95.4 (92.1, 97.6)	95.05 (92, 97.4)	<0.001
Temperature (°C)	36.8 (36.4, 37.3)	36.8 (36.4, 37.3)	36.8 (36.4, 37.4)	36.6 (36.4, 37.1)	0.007
Comorbidities, n (%)					
Diabetes	698 (14.1%)	486 (15.4%)	205 (12.3%)	7 (4.9%)	<0.001
Malignant disease	494 (10.0%)	354 (11.2%)	131 (7.9%)	9 (6.2%)	<0.001
Chronic heart failure	699 (14.1%)	436 (13.8%)	249 (15.0%)	14 (9.7%)	0.17
COPD	257 (5.2%)	178 (5.7%)	75 (4.5%)	4 (2.8%)	0.099
Dementia	338 (6.8%)	104 (3.3%)	218 (13.1%)	16 (11.1%)	<0.001
Chronic renal disease	1282 (25.9%)	715 (22.7%)	540 (32.5%)	27 (18.8%)	<0.001
Hypertension	2608 (52.6%)	1726 (54.8%)	826 (49.7%)	56 (38.9%)	<0.001
Coronary heart disease	531 (10.7%)	424 (13.5%)	100 (6.0%)	7 (4.9%)	<0.001
Stroke	668 (13.5%)	193 (6.1%)	396 (23.8%)	79 (54.9%)	<0.001
Location prior to admission, n (%)					

Location prior to admission, n (%)

Home	3144 (63.4%)	2194 (69.7%)	895 (53.8%)	55 (38.2%)	<0.001
Home with assistance service	264 (5.3%)	107 (3.4%)	142 (8.5%)	15 (10.4%)	
Nursing home	370 (7.5%)	161 (5.1%)	190 (11.4%)	19 (13.2%)	
Other hospital	457 (9.2%)	275 (8.7%)	161 (9.7%)	21 (14.6%)	
Unknown or other	722 (14.6%)	413 (13.1%)	275 (16.5%)	34 (23.6%)	

COPD chronic obstructive pulmonary disease; IQR interquartile range

Associations of frailty risk score with mortality

A total of 524 (10.7%) patients died within 30 days of admission, consisting of 221 (7.1%) of those in the low risk group, 267 (16.2%) in the intermediate risk group and 36 (25.2%) in the high-risk group. Regression analyses showed corresponding ORs of 2.53 (95% CI 2.09 to 3.06, P<0.001) for the intermediate risk group and 4.40 (95% CI 2.94 to 6.57, P<0.001) for the high-risk group, respectively, compared to the low risk group. Results remained robust after adjustment for confounders (age, gender, and comorbidities not included in the score) (**Table 2, Figure 1**). We also investigated the discriminative performance of the score and found only moderate results for mortality (AUC 0.66) (**Table 3**).

BMJ Open **Table 2** Associations of elevated frailty risk groups with adverse clinical outcomes compared to the to

4				-				· (
5 6		Overall	Low Risk	Intermediate	High Risk		Intermediate Risk,	OR (95% CI), P-value	של High Risk, OR (או	95% CI), P-value
0 7	Outcome	n (%)	n (%)	Risk, n (%)	n (%)	P value	unadjusted	fully adjusted	unadjusted	fully adjusted
8	all-cause 30-day mortality	524 (10.7%)	221 (7.1%)	267 (16.2%)	36 (25.2%)	<0.001	2.53 (2.09 to 3.06), p<0.001	2.65 (2.17 to 3.25), p<0.001		4.83 (3.17 to 7.37), p<0.001
9	Length of stay, median (IQR)*	5 (2, 9)	4 (2, 7)	7 (4, 12)	11.5 (7, 18)	<0.001	3.74 (3.34 to 4.14), p<0.001	3.77 (3.39 to 4.15), p<0.001	2 10.04 (8.92 to 11.16), p<0.001	10.07 (9.02 to 11.13), p<0.001
10 11	Long hospital stay >10 days	1010 (20.4%)	386 (12.3%)	543 (32.7%)	81 (56.2%)	<0.001	3.47 (2.99 to 4.02), p<0.001	3.66 (3.14 to 4.28), p<0.001	9.21 (6.51 to 13.01), p<0.001	9.75 (6.83 to 13.92), p<0.001
12	30-day readmission	586 (11.8%)	372 (11.8%)	195 (11.7%)	19 (13.2%)	0.87	1.04 (0.88 to 1.24), p=0.643	1.04 (0.87 to 1.24), p=0.69	1.47 (0.95 to 2.26), p=0.081	1.67 (1.08 to 2.59), p=0.022
13	Functional impairment, n (%)									
14 15	Barthel Index, median (IQR)*	95 (70, 100)	100 (85, 100)	80 (55, 100)	50 (20, 75)	<0.001	-15.76 (-17.87 to -13.64), p<0.001	-14.59 (-16.69 to -12.48), p<0.00	-40.55 (-47.01 to -34.09), p<0.001	-39.7 (-46.06 to -33.33), p<0.001
16	Barthel Index <95 points	1052 (46.5%)	529 (36.3%)	472 (62.9%)	51 (92.7%)	<0.001	2.98 (2.48 to 3.58), p<0.001	2.87 (2.37 to 3.47), p<0.001	22.37 (8.04 to 62.23), p<0.001	25.03 (8.91 to 70.32), p<0.001
17 18	Quality of Life, n(%)									
10	Impairment of mobility	408 (18.0%)	162 (11.1%)	217 (28.9%)	29 (51.8%)	<0.001	3.25 (2.59 to 4.08), p<0.001	3.1 (2.46 to 3.92), p<0.001	8.61 (4.97 to 14.91), p<0.001	8.45 (4.82 to 14.81), p<0.001
20	Impairment of self-care	1010 (44.5%)	480 (32.9%)	484 (64.4%)	46 (82.1%)	<0.001	3.69 (3.07 to 4.44), p<0.001	3.63 (2.99 to 4.4), p<0.001	9.40 (4.7 to 18.79), p<0.001	9.59 (4.74 to 19.41), p<0.001
21 22	Impairment of usual activities	1366 (60.2%)	767 (52.5%)	553 (73.5%)	46 (82.1%)	<0.001	2.51 (2.08 to 3.05), p<0.001	2.35 (1.92 to 2.87), p<0.001	4.16 (2.08 to 8.31), p<0.001	3.98 (1.97 to 8.06), p<0.001
22	Pain/discomfort	910 (42.7%)	574 (40.8%)	314 (46.3%)	22 (48.9%)	0.039	1.25 (1.04 to 1.51), p=0.017	1.21 (1 to 1.47), p=0.047	1.39 (0.77 to 2.52), p=0.278	1.28 (0.7 to 2.33), p=0.43
24	Anxiety/depression	629 (30.3%)	394 (28.2%)	213 (33.2%)	22 (56.4%)	<0.001	1.26 (1.03 to 1.55), p=0.023	1.26 (1.02 to 1.55), p=0.029	3.29 (1.73 to 6.26), p<0.001	3.11 (1.62 to 5.99), p=0.001
25 26	EQ-VAS, mean (SD)*	70.8 (18.3)	72.1 (17.9)	68.2 (19.0)	61.8 (17.6)	<0.001	-3.9 (-5.83 to -1.97), p<0.001	-3.75 (-5.69 to -1.81), p<0.001	-10.3 (-17.53 to -3.08), p=0.005	-11.12 (-18.29 to -3.94), p=0.002
20	discharge other than home	1092 (22.0%)	504 (16.0%)	530 (31.9%)	58 (40.3%)	<0.001	2.46 (2.13 to 2.83), p<0.001	2.53 (2.18 to 2.92), p<0.001	3.54 (2.5 to 5.01), p<0.001	3.81 (2.68 to 5.42), p<0.001
28		1	I					2.53 (2.18 to 2.92), p<0.001		
29 30	95% CI confidence interval; EQ-VAS	EuroQol visual a	analog health sc	ale; IQR interqu	artile range; O	R odds rat	tio; SD standard deviation;	Ģ	+ φ	
31	Quality of life measures were adapted	d from EQ-5D. W	le dichotomized	levels into "no i	mpairment" (le	evel 1) and	l "impairment" (levels 2 and 3). Freq	uencies of reported impairment (le	g 2 and 3) were analyzed.	
32	The fully adjusted model was adjusted	d for age, gende	r, and comorbid	ities not include	d in the score					
33 34	* linear regression analyses were cal	culated reporting	regression coe	fficient, 95% cor	nfidence interv	al, P-value	2			
35									2 +	
36								Ģ		
37										
38 39									2 2	
40										
41										
42 43				_					<u>-</u>	
44				For peer I	review only	y - http:/	//bmjopen.bmj.com/site/al	oout/guidelines.xhtml		
45										
46										

Table 3 Discriminative Performance of the Hospital frailty Risk Score regarding

clinical and functional outcomes

Outcome	AUC (95% CI)
Clinical outcomes	
all-cause 30-day mortality	0.66 (0.63 to 0.68)
Long hospital stay (>10 days)	0.72 (0.7 to 0.74)
30-day readmission	0.54 (0.51 to 0.56)
Functional impairment	
Barthel Index <95 points, n (%)	0.69 (0.67 to 0.71)
Quality of Life, n (%)	
Impairment of mobility	0.71 (0.68 to 0.74)
Impairment of self-care	0.71 (0.69 to 0.73)
Impairment of usual activities	0.66 (0.63 to 0.68)
Pain/discomfort	0.54 (0.51 to 0.56)
Anxiety/depression	0.56 (0.53 to 0.58)
discharge other than home, n (%)	0.64 (0.63 to 0.66)

AUC area under the receiver operating curve; 95% CI 95% confidence interval

Quality of life measures were adapted from EQ-5D. We dichotomized levels into "no impairment" (level 1) and "impairment" (levels 2 and 3). Frequencies of reported impairment (level 2 and 3) were analyzed.

Associations of frailty risk score with other adverse clinical outcomes

We also found significant results regarding length of hospital stay and long hospital stay (>10 days). Compared to the low risk group corresponding ORs for long hospital stay were 3.47 (95% CI 2.99 to 4.02, P<0.001) for the intermediate risk group and 9.21 (95% CI 6.51 to 13.01, P<0.001) for the high-risk group. Again, results remained robust after adjustment for the confounders mentioned.

Regarding hospital readmission within 30 days we did only find a significant association for the high-risk group compared to the low-risk group in the fully adjusted model (fully adjusted OR 1.67, 95% CI 1.08 to 2.59, P=0.022) (**Table 2**).

BMJ Open

Associations with functional Impairment, quality of life, and location after discharge

Regarding functional status, we found significantly higher proportions of impairment (Barthel Index < 95 points) in higher frailty risk groups with corresponding ORs of 2.98 (95% CI 2.48 to 3.58, P<0.001) and 22.37 (95% CI 8.04 to 62.23, P<0.001). Similar results were found for quality of life measures 30 days after admission with corresponding ORs for the high-risk group of 8.61 (95% CI 4.97 to 14.91, P<0.001) for impairment of mobility, 9.40 (95% CI 4.7 to 18.79, P<0.001) for impaired self-care, 4.16 (95% CI 2.08 to 8.31, P<0.001) for impairment of usual activities, and 3.29 (95% CI 1.73 to 6.26, P<0.001) for suffering from anxiety or depression. Compared to patients in the low risk group, patients in the high-risk group that resided home at time of admission had a 3.5 fold increased risk of not being able to be discharged back home (OR 3.54 (95% CI 2.5 to 5.01, P<0.001) (**Table 2**).

Additional results of regression analyses of all models with stepwise adjustment for confounders are shown in the supplemental material (**Tables A1 & A2**).

Subgroup analyses and cut-offs

Analyses of subgroups showed similar associations of the Hospital Frailty Risk Score with 30-day mortality, long hospital stay, and hospital readmission among different age groups and stratified by gender with no evidence for effect modification (**Figure 2**).

ROC analyses of modified cut-offs of the risk score did not show significant differences in AUCs for the outcome 30-day mortality compared to the initial cut-offs (Supplementary material, **Table A3**).

DISCUSSION

Within this independent validation study including medical inpatients >75 years of age in a Swiss tertiary care setting, we found significant associations between the hospital frailty risk scores and several adverse clinical outcomes, specifically allcause 30-day mortality, hospital length of stay, and long hospital stay (>10 days). Moreover, we found significant associations of the intermediate and high-risk group with functional impairment, measured by the Barthel Index, and reduced quality of life, as assessed by the EQ-5D. Last, we found patients of the higher risk group that were admitted from home significantly less likely to return back home at time of discharge.

Compared to the three cohorts of the original publication (one development cohort and two validation cohorts) by Gilbert et al.¹⁰ a similar proportion of patients were classified in the intermediate-risk group (33.5% vs. 20.3 to 37.6%) but a smaller proportion of patients were classified in the high-risk group (2.9% vs. 9.0 to 20.0%). This might be due to variation in ICD-10 coding and different health care systems and patient populations studied. Regarding the tertiary nature of the setting, it can be expected that some older people with severe frailty might have been managed in other secondary care settings or geriatric clinics. However, compared to the results of Gilbert et al., we found even stronger associations of the high frailty risk group compared to the low-risk group with regard to 30-day mortality (adjusted OR 4.83, 95% CI 3.17 to 7.37, p<0.001 vs. adjusted OR 1.71, 95% CI 1.68 to 1.75), and long hospital stay (adjusted OR 9.75, 95% CI 6.83 to 13.92, p<0.001 vs. adjusted OR 6.03, 95% CI 5.92 to 6.10). Besides, results remained robust when adjusting for NEWS, a structured early warning score that comprises physiological parameters that might be an important modifier of outcomes.

BMJ Open

Regarding the discriminative performance of the Hospital frailty risk score we found similar results as Gilbert et al. with regard to 30-day mortality (AUC 0.66 vs. 0.60), long hospital stay (AUC 0.72 vs. 0.68), and hospital readmission within 30 days (AUC 0.54 vs. 0.56). Overall, these results show significant associations of the Hospital frailty risk score with adverse outcomes, however, with moderate discriminatory ability. Thus, future studies should aim to further refine the score to increase its sensitivity and specificity.

While we found the score to be helpful with strong prognostic abilities, in our cohort there were only few patients in the highest risk category with thus limited sensitivity. It is thus possible that the score could be further improved by changing the risk categories for specific patient populations.

To the best of our knowledge, this is the first study to validate the Hospital Frailty Risk Score following its publication and initial validation. Moreover, the validation in a Swiss tertiary care hospital in an unselected medical cohort including emergency admissions and elective admissions is a first step in assessing whether the risk score is applicable in multinational settings.

In addition to Gilbert et al. we were able to show associations of higher hospital frailty risk scores not only with adverse clinical outcomes but also with functional impairment, quality of life, and need for post-acute care. Our data thus extend the prior study and provides new evidence that the score is valuable in risk stratification of patients based on ICD10 codes.

A general strength of the score is the easy calculation using routine hospital data which provides a systematic method to screen for patients at risk for frailty without any need to apply a manual score bringing along resource intensive assessment and potential inter-operator reliability issues ^{8 9 17}. Moreover, instead of focusing only on

BMJ Open

symptoms and diagnoses that are known to be related to frailty, the score contains a wider set of ICD-10 codes focusing on codes that are actually in routine use. However, dependency of the ICD-10 codes from administrative databases is also a weakness of the score as they are coded only after hospital discharge and the score can only be applied early in the admission process to those with prior ICD-10 code records. In addition to that calculating the score based on previous admissions has potential to miss or misclassify frailty. Moreover, important components of frailty such as polypharmacy, general weakness and dependence with activities of daily living might not be adequately reflected in ICD-10 codes. Their absence may in part explain the relatively poor overlap of the score with the established frailty assessment tools Fried ¹⁸ and Rockwood scales ⁹ in the original study by Gilbert et al ¹⁰. This raises the question of whether the "hospital frailty risk score" is in fact measuring frailty, or whether it is predominantly a measure of comorbid disease and adverse outcome.

Our report has several limitations. Firstly, this is a secondary analysis of a former prospective study. We did address this limitation by adjusting for confounders. Furthermore, as we were able to externally validate the previous findings accurately, we are confident that there is no additional bias. Second, due to the study design there was no routine frailty assessment in our patients. As a consequence, we were not able to compare the Hospital Frailty Risk score with other frailty assessments or screening scores. Yet, there is no unique accepted gold standard in frailty screening to compare it to as there are two major paradigms of frailty (frailty phenotype vs. frailty index) ^{2 17 19 20}. Using multiple clinical and functional outcomes as well as quality of life measures, we tried to address a broad variety of potential adverse outcomes associated with frailty.

BMJ Open

Thirdly, though we had a large sample size, only few patients were in the high frailty risk group, which may impact confidence intervals. Lastly, the score is dependent of documentation and coding of ICD-10. Thus, variation in coding could contribute to misclassification.

The development of a gold standard for frailty risk assessment has proven to be a challenging task ^{17 19}. The attempt has left us with a multitude of screening tools, suited for a variety of patient populations and a large variability of application methods ⁶. Recent research suggests that a single universal frailty measurement method may not be the best approach. As some methods are useful for broad population screenings whilst others are based on clinical assessment, a two-tiered system may be the way forward ²⁰. The Hospital Frailty Risk Score could be used as a screening tool to assess all older patients admitted to a hospital using all previously and currently documented ICD-10 codes. This could easily identify high-risk patients in need of a complete in-depth clinical assessment. As a low-cost, swift and consecutively widely used tool, the Hospital Frailty Risk Score could ensure that less patients with frailty are missed. Identifying frail patients is vital, as they may benefit from improved outcomes when they undergo geriatric assessment and receive a particular frailty-adjusted treatment approach ²¹.

The frailty risk score needs further validation in a wide variety of patient settings. Its place in the screening of geriatric patients, possibly in combination with other frailty assessment methods, as well as the practicability in clinical practice, has yet to be investigated. Furthermore, it remains unclear whether its theoretical benefits can be translated into improved patient care and patient outcome.

CONCLUSION

The Hospital Frailty Risk Score is an easy to use and low-cost tool using administrative hospital data to identify frail people at risk for adverse outcomes who might benefit from a standardized geriatric assessment and from a particular frailtyadjusted treatment approach. Our data further validate this score in an independent patient population.

Acknowledgments

This multidisciplinary and inter-professional trial was only possible in close collaboration with personnel from multiple departments within the Kantonsspital Aarau, including social services (Anja Keller, Regina Schmid), nursing (Susanne Schirlo, Petra Tobias), central laboratory (Martha Kaeslin, Renate Hunziker), medical control (Juergen Froehlich, Thomas Holler, Christoph Reemts), and information technology (Roger Wohler, Kurt Amstad, Ralph Dahnke, Sabine Storost), the Clinical Trial Unit (CTU) at the University Hospital of Basel (Stefan Felder, Timo Tondelli), and all participating patients, nurses, and physicians.

Author contributions

Prof. Philipp Schuetz had complete access to all study data and takes full responsibility for the integrity of the data and the accuracy of the analyses. BM and PS were involved in the conceptualization and design of the study. SH, AK, DK, BM and PS were responsible for the acquisition, analysis, or interpretation of the data. AE, SIH, and PS performed the statistical analyses and drafted the manuscript. TS, MAM, and ON reviewed the draft and revised the manuscript for important intellectual content. All authors approved the final version of the manuscript and the decision to submit the manuscript for publication. AE and SIH contributed equally to this work.

Research Funding: ThermoFisher provided an unrestricted research grant for the study. PS is supported by the Swiss National Science Foundation (SNSF Professorship, PP00P3_150531/1) and the Research Council of the Kantonsspital Aarau (1410.000.044).

Competing interests

All authors have no conflicts of interest relevant to this paper. The funding organization had no role in the design or conduct of the study, analysis and interpretation of the data, writing of the manuscript, or the decision to submit the manuscript for publication.

Data sharing statement:

Extra data can be accessed via the Dryad data repository at http://datadryad.org/ with the doi:10.5061/dryad.71638rk

References

- 1. Rechel B, Grundy E, Robine JM, et al. Ageing in the European Union. *Lancet (London, England)* 2013;381(9874):1312-22. doi: 10.1016/s0140-6736(12)62087-x [published Online First: 2013/04/02]
- 2. Clegg A, Young J, Iliffe S, et al. Frailty in elderly people. *Lancet (London, England)* 2013;381(9868):752-62. doi: 10.1016/s0140-6736(12)62167-9 [published Online First: 2013/02/12]
- 3. Hubbard RE, Peel NM, Samanta M, et al. Frailty status at admission to hospital predicts multiple adverse outcomes. *Age and ageing* 2017;46(5):801-06. doi: 10.1093/ageing/afx081 [published Online First: 2017/05/23]
- 4. Song X, Mitnitski A, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. *Journal of the American Geriatrics Society* 2010;58(4):681-7. doi: 10.1111/j.1532-5415.2010.02764.x [published Online First: 2010/03/30]
- Ellis G, Whitehead MA, O'Neill D, et al. Comprehensive geriatric assessment for older adults admitted to hospital. *Cochrane Database Syst Rev* 2011(7):Cd006211. doi: 10.1002/14651858.CD006211.pub2 [published Online First: 2011/07/08]
- 6. Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical practice: A review. *European journal of internal medicine* 2016;31:3-10. doi: 10.1016/j.ejim.2016.03.007 [published Online First: 2016/04/04]
- 7. Theou O, Brothers TD, Mitnitski A, et al. Operationalization of frailty using eight commonly used scales and comparison of their ability to predict all-cause mortality. *Journal of the American Geriatrics Society* 2013;61(9):1537-51. doi: 10.1111/jgs.12420 [published Online First: 2013/09/14]
- McCusker J, Bellavance F, Cardin S, et al. Detection of older people at increased risk of adverse health outcomes after an emergency visit: the ISAR screening tool. *Journal of the American Geriatrics Society* 1999;47(10):1229-37. [published Online First: 1999/10/16]
- 9. Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 2005;173(5):489-95. doi: 10.1503/cmaj.050051 [published Online First: 2005/09/01]
- 10. Gilbert T, Neuburger J, Kraindler J, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. *Lancet (London, England)* 2018;391(10132):1775-82. doi: 10.1016/s0140-6736(18)30668-8 [published Online First: 2018/05/01]
- 11. Kutz A, Hausfater P, Amin D, et al. The TRIAGE-ProADM Score for an Early Risk Stratification of Medical Patients in the Emergency Department - Development Based on a Multi-National, Prospective, Observational Study. *PloS one* 2016;11(12):e0168076. doi: 10.1371/journal.pone.0168076 [published Online First: 2016/12/23]
- 12. Schuetz P, Hausfater P, Amin D, et al. Biomarkers from distinct biological pathways improve early risk stratification in medical emergency patients: the multinational, prospective, observational TRIAGE study. *Critical care* 2015;19:377. doi: 10.1186/s13054-015-1098-z [published Online First: 2015/10/30]
- 13. Schuetz P, Hausfater P, Amin D, et al. Optimizing triage and hospitalization in adult general medical emergency patients: the triage project. *BMC emergency medicine*

1	
2	
3	2013;13(1):12. doi: 10.1186/1471-227X-13-12 [published Online First:
4	
5	2013/07/05]
6	14. EuroQola new facility for the measurement of health-related quality of life. <i>Health</i>
7	policy (Amsterdam, Netherlands) 1990;16(3):199-208. [published Online First:
8	1990/11/05]
9	15. Wade DT, Collin C. The Barthel ADL Index: a standard measure of physical disability?
10	International disability studies 1988;10(2):64-7. [published Online First:
11	1988/01/01]
12	, , , ,
13	16. Physicians RCo. National Early Warning Score (NEWS) 2: Standardising the
14	assessment of acute-illness severity in the NHS. Updated report of a working
15	party, 2017.
16	17. Pritchard JM, Kennedy CC, Karampatos S, et al. Measuring frailty in clinical practice: a
17	comparison of physical frailty assessment methods in a geriatric out-patient
18	clinic. <i>BMC geriatrics</i> 2017;17(1):264. doi: 10.1186/s12877-017-0623-0
19	[published Online First: 2017/11/15]
20	
21	18. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a
22	phenotype. The journals of gerontology Series A, Biological sciences and medical
23	sciences 2001;56(3):M146-56. [published Online First: 2001/03/17]
24	19. Bouillon K, Kivimaki M, Hamer M, et al. Measures of frailty in population-based
25	studies: an overview. BMC geriatrics 2013;13:64. doi: 10.1186/1471-2318-13-64
26	[published Online First: 2013/06/22]
27	20. Cesari M, Gambassi G, van Kan GA, et al. The frailty phenotype and the frailty index:
28	
29	different instruments for different purposes. <i>Age and ageing</i> 2014;43(1):10-2.
30 21	doi: 10.1093/ageing/aft160 [published Online First: 2013/10/18]
31 32	21. Ellis G, Gardner M, Tsiachristas A, et al. Comprehensive geriatric assessment for
33	older adults admitted to hospital. <i>Cochrane Database Syst Rev</i> 2017;9:Cd006211.
34	doi: 10.1002/14651858.CD006211.pub3 [published Online First: 2017/09/13]
35	, , , , , ,
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	

FIGURES

Figure 1 Kaplan Meier survival estimates stratified by the three Hospital Frailty Risk

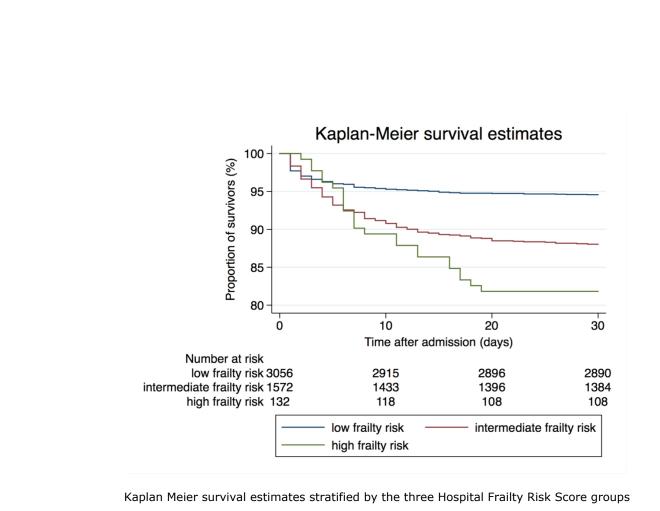

Score groups

Figure 2 Associations of elevated hospital frailty risk with adverse clinical outcomes

ierez onz

in subgroups stratified by age and gender

Legend: OR odds ratio, 95% CI 95% confidence interval

150x109mm (300 x 300 DPI)

BMJ Open

2		
3		
4		
5		
6 7		
8	OR (95% CI), P for interaction	
9	30-day mortality	
10	Age <85 years	
11	Low risk Ref Intermediate risk 3.03 (2.36 to 3.87), 0.003	
12	High risk	
13	Low risk Ref Intermediate risk 1.82 (1.35 to 2.44), 0.003	
14 15	High risk	
16	Low risk Ref Intermediate risk 2.30 (1.74 to 3.05), 0.251	
17	High risk 4.57 (2.66 to 7.87), 0.946	
18	Male gender Low risk Ref	
19	Intermediate risk 2.89 (2.24 to 3.74), 0.251 High risk 4.47 (2.44 to 8.17), 0.946	
20	Long hospital stay	
21	Age <85 years Low risk Ref Intermediate risk 3,72 (3,10 to 4,46), 0,761	
22	High risk 10.20 (6.58 to 15.81), 0.758	
23 24	Age ≥ 85 years Low risk	
25	Intermediate risk 3.12 (2.41 to 4.03), 0.761 High risk 17.82 (4.43 to 13.81), 0.758	
26	Female gender Low risk Ref	
27	Intermediate risk 3.39 (2.75 to 4.17), 0.625 High risk 6.52 (4.14 to 10.25), 0.016	
28	Male gender	
29	Intermediate risk 3.65 (2.95 to 4.51), 0.625	
30	High risk 16.06 (9.05 to 28.49), 0.016 Readmission within 30 days 16.06 (9.05 to 28.49), 0.016	
31	Age <85 years Low risk ♦ Ref	
32 33	Intermediate risk 1.05 (0.84 to 1.31), 0.327 High risk 1.12 (0.60 to 2.09), 0.985	
34	Age ≥ 85 years	
35	Low risk Ref Intermediate risk 0.92 (0.66 to 1.27), 0.327 High risk 1.17 (0.52 to 2.67), 0.985	
36	Female gender	
37	Low risk Ref Intermediate risk 0.98 (0.76 to 1.28), 0.859	
38	High risk 1.05 (0.53 to 2.07), 0.700 Male gender	
39	Low risk Ref Intermediate risk 1.02 (0.78 to 1.32), 0.859	
40 41	High risk 1.28 (0.62 to 2.63), 0.700	
41	0.3 1 3 10 30	
43		
44		
45	Associations of elevated hospital frailty risk with adverse clinical outcomes in subgroup	s stratified by age
46	and gender	
47	Legend: OR odds ratio, 95% CI 95% confidence interval	
48 49	5	
50		
51		
52		
53		
54		
55		
56 57		
57 58		
59		
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xht	ml

of 31	BMJ Open	pmjop
		en-2
		018-0
Table A1 Associations of intermediate frailty risk with adverse	e clinical outcomes compared to the	logv frailty risk group.

		In	ntermediate Risk, OR (95% CI), P-va	lue D	
Outcome	unadjusted	Model 1	Model 2	an Model 3	NEWS-adjusted
all-cause 30-day mortality	2.53 (2.09 to 3.06), p<0.001	2.45 (2.03 to 2.97), p<0.001	2.52 (2.08 to 3.06), p<0.001	2.65 (2.17 😨 3.25), p<0.001	2.05 (1.69 to 2.50), p<0.001
Length of stay, median (IQR)*	3.74 (3.34 to 4.14), p<0.001	3.76 (3.36 to 4.16), p<0.001	3.83 (3.45 to 4.21), p<0.001	3.77 (3.39 🙀 4.15), p<0.001	3.69 (3.28 to 4.09), p<0.001
Long hospital stay >10 days	3.47 (2.99 to 4.02), p<0.001	3.50 (3.02 to 4.06), p<0.001	3.55 (3.06 to 4.12), p<0.001	3.66 (3.14 to 4.28), p<0.001	3.44 (2.96 to 3.99), p<0.001
30-day readmission	1.04 (0.88 to 1.24), p=0.643	1.06 (0.89 to 1.26), p=0.521	1.06 (0.89 to 1.26), p=0.503	1.04 (0.87 🍄 1.24), p=0.69	0.99 (0.83 to 1.18), p=0.883
Functional impairment, n (%)				load	
Barthel Index, median (IQR)*	-15.76 (-17.87 to -13.64), p<0.001	-15.01 (-17.1 to -12.92), p<0.001	-14.87 (-16.97 to -12.78), p<0.0010	-14.59 (-16, 9 to -12.48), p<0.001	-15.45 (-17.59 to -13.31), p<0.001
Barthel Index <95 points	2.98 (2.48 to 3.58), p<0.001	2.89 (2.4 to 3.47), p<0.001	2.85 (2.36 to 3.43), p<0.001	2.87 (2.37 🛱 3.47), p<0.001	2.87 (2.38 to 3.45), p<0.001
Quality of Life, n(%)				http	
Impairment of mobility	3.25 (2.59 to 4.08), p<0.001	3.14 (2.50 to 3.95), p<0.001	3.13 (2.49 to 3.94), p<0.001	3.1 (2.46 to 3.92), p<0.001	3.17 (2.52 to 3.99), p<0.001
Impairment of self-care	3.69 (3.07 to 4.44), p<0.001	3.60 (2.99 to 4.35), p<0.001	3.56 (2.95 to 4.30), p<0.001	3.63 (2.99 to 4.4), p<0.001	3.55 (2.95 to 4.28), p<0.001
Impairment of usual activities	2.51 (2.08 to 3.05), p<0.001	2.41 (1.99 to 2.93), p<0.001	2.35 (1.93 to 2.87), p<0.001	2.35 (1.92 2.87), p<0.001	2.45 (2.02 to 2.98), p<0.001
Pain/discomfort	1.25 (1.04 to 1.51), p=0.017	1.26 (1.04 to 1.51), p=0.015	1.22 (1.01 to 1.47), p=0.036	1.21 (1 to £47), p=0.047	1.29 (1.07 to 1.55), p=0.008
Anxiety/depression	1.26 (1.03 to 1.55), p=0.023	1.28 (1.04 to 1.56), p=0.018	1.25 (1.02 to 1.53), p=0.032	1.26 (1.02 🙀 1.55), p=0.029	1.22 (1.00 to 1.50), p=0.053
EQ-VAS, mean (SD)*	-3.9 (-5.83 to -1.97), p<0.001	-3.87 (-5.81 to -1.93), p<0.001	-3.78 (-5.73 to -1.84), p<0.001	-3.75 (-5.6 g to -1.81), p<0.001	-3.57 (-5.52 to -1.61), p<0.001
discharge other than home	2.46 (2.13 to 2.83), p<0.001	2.39 (2.07 to 2.75), p<0.001	2.39 (2.07 to 2.75), p<0.001	2.53 (2.18 🔂 2.92), p<0.001	2.15 (1.86 to 2.48), p<0.001

95% Cl confidence interval; EQ-VAS EuroQol visual analog health scale; IQR interquatile range; NEWS national early warning score; OR odds ratio; SD standard deviation; Quality of life measures were adapted from EQ-5D. We dichotomized levels into "no impairment" (level 1) and "impairment" (levels 2 and 3). Frequencies of byeopretic model 1), age and gender (model 2), age, gender, and comorbidities not included in the score (model 3), and for NEWS which was calculated retrospectively based on admission data. * linear regression analyses were calculated reporting regression coefficient, 95% confidence interval, P-value For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

by guest. Protected by copyright.

BMJ Open **BMJ Open Table A2** Associations of high frailty risk with adverse clinical outcomes compared to the low frailty isk group.

			High Risk, OR (95% CI), P-value	15	
Outcome	unadjusted	Model 1	Model 2	Model 3	NEWS adjusted
all-cause 30-day mortality	4.40 (2.94 to 6.57), p<0.001	4.28 (2.86 to 6.41), p<0.001	4.49 (2.99 to 6.73), p<0.001	4.83 (3.17 💩 7.37), p<0.001	3.68 (2.41 to 5.60), p<0.001
Length of stay, median (IQR)*	10.04 (8.92 to 11.16), p<0.001	10.06 (8.94 to 11.18), p<0.001	10.12 (9.06 to 11.19), p<0.001	10.07 (9.0 ² to 11.13), p<0.001	9.98 (8.86 to 11.10), p<0.001
Long hospital stay >10 days	9.21 (6.51 to 13.01), p<0.001	9.28 (6.56 to 13.12), p<0.001	9.42 (6.66 to 13.33), p<0.001	بم. 9.75 (6.83 بل 13.92), p<0.001	9.10 (6.43 to 12.88), p<0.001
30-day readmission	1.47 (0.95 to 2.26), p=0.081	1.49 (0.97 to 2.29), p=0.070	1.49 (0.97 to 2.30), p=0.069	1.67 (1.08 s 2.59), p=0.022	1.38 (0.90 to 2.13), p=0.141
Functional impairment, n (%)				load	
Barthel Index, median (IQR)*	-40.55 (-47.01 to -34.09), p<0.001	-40.29 (-46.66 to -33.93), p<0.001	-40.01 (-46.37 to -33.64), p<0.001	-39.70 (-46006 to -33.33), p<0.001	-40.06 (-46.54 to -33.58), p<0.00
Barthel Index <95 points	22.37 (8.04 to 62.23), p<0.001	23.74 (8.48 to 66.44), p<0.001	22.9 (8.19 to 64.06), p<0.001	25.03 (8.9 gto 70.32), p<0.001	21.12 (7.58 to 58.83), p<0.001
Quality of Life, n(%)				http	
Impairment of mobility	8.61 (4.97 to 14.91), p<0.001	8.62 (4.95 to 15.01), p<0.001	8.57 (4.92 to 14.93), p<0.001	8.45 (4.82 🙀 14.81), p<0.001	8.29 (4.77 to 14.40), p<0.001
Impairment of self-care	9.40 (4.70 to 18.79), p<0.001	9.67 (4.8 to 19.48), p<0.001	9.39 (4.66 to 18.90), p<0.001	9.59 (4.74 👼 19.41), p<0.001	8.85 (4.42 to 17.73), p<0.001
Impairment of usual activities	4.16 (2.08 to 8.31), p<0.001	4.19 (2.08 to 8.44), p<0.001	3.88 (1.92 to 7.82), p<0.001	3.98 (1.97 🙅 8.06), p<0.001	4.00 (2.00 to 8.00), p<0.001
Pain/discomfort	1.39 (0.77 to 2.52), p=0.278	1.39 (0.77 to 2.52), p=0.276	1.28 (0.70 to 2.34), p=0.413	1.28 (0.70 to 2.33), p=0.430	1.45 (0.80 to 2.63), p=0.225
Anxiety/depression	3.29 (1.73 to 6.26), p<0.001	3.29 (1.73 to 6.27), p<0.001	3.08 (1.61 to 5.89), p=0.001	3.11 (1.62 5.99), p=0.001	3.11 (1.63 to 5.95), p=0.001
EQ-VAS, mean (SD)*	-10.3 (-17.53 to -3.08), p=0.005	-10.3 (-17.53 to -3.07), p=0.005	-10.13 (-17.37 to -2.90), p=0.006	-11.12 (-18 29 to -3.94), p=0.002	-9.77 (-17.01 to -2.54), p=0.008
discharge other than home	3.54 (2.50 to 5.01), p<0.001	3.46 (2.44 to 4.90), p<0.001	3.46 (2.44 to 4.90), p<0.001	3.81 (2.68 ∯ 5.42), p<0.001	3.09 (2.17 to 4.41), p<0.001

95% CI confidence interval; EQ-VAS EuroQol visual analog health scale; IQR interquartile range; NEWS national early warning score; OR odds ratio; SD standard deviation;

Quality of life measures were adapted from EQ-5D. We dichotomized levels into "no impairment" (level 1) and "impairment" (levels 2 and 3). Frequencies of we ported impairment (level 2 and 3) were analyzed. Models were adjusted for age (model 1), age and gender (model 2), age, gender, and comorbidities not included in the score (model 3), and for NEWS which was calculated retrospectively based on admission data.

* linear regression analyses were calculated reporting regression coefficient, 95% confidence interval, P-value

Table A3 ROC analyses of different frailty score cut-offs for the outcome 30-day mortality

I	low risk	inte	ermediate risk		high risk	AUC (95% CI)
Cut-off N	No of patients	Cut-off	No of patients	Cut-off	No of patients	
6	63.55 %	5-15	33.55 %	>15	2.9 %	0.624 (0.601 to 0.647)
<5 6	63.55 %	5-10	24.69 %	>10	11.76 %	0.629 (0.605 to 0.652)
<4 5	55.09 %	4-10	33.15 %	>10	11.76 %	0.636 (0.613 to 0.660)
-	55.09 %	4-9	30.18 %	>9		0.637 (0.613 to 0.660)

to perteries only

AUC, area under the receiver operating curve; 95% CI, 95% confidence interval

BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3-4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5-6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7
		(b) For matched studies, give matching criteria and number of exposed and unexposed	n/a
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8-9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8-9
Bias	9	Describe any efforts to address potential sources of bias	8-9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	n/a
		(e) Describe any sensitivity analyses	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright.

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	7
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	n/a
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	10-11
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	n/a
		(c) Summarise follow-up time (eg, average and total amount)	n/a
Outcome data	15*	Report numbers of outcome events or summary measures over time	11-14
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	11-14
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	11-14
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	n/a
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	14
Discussion			
Key results	18	Summarise key results with reference to study objectives	15-16
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	16-17
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2018-026923 on 15 January 2019. Downloaded from http://bmjopen.bmj.com/ on August 8, 2023 by guest. Protected by copyright.