Supplementary material BMJ Open

Technical Appendix

A. Description of the Zero-inflated Negative Binomial (ZINB) model for modelling healthcare utilisation frequency

The ZINB model consists of two parts:

- i. a logistic regression model to model the probability of excess zero, or those not incurring utilisation of a specific healthcare service, i.e. potential non-users, and
- ii. a negative binomial model to model the frequency of utilisation of a specific healthcare service among patients with potential of incurring utilization, i.e. potential users.

The logistic model can be expressed by:

$$logit(p) = \beta_0 + \beta_1 INT + \beta_2 BASELINE + \beta_3 PS$$

where

p = probability of excess zero for the specific healthcare service post – enrolment
INT = indicator variable for patient enrolled in the intervention

BASELINE = log transformed pre - enrolment utilisation with 0.5 added to zero values

 $PS = \text{propensity score } \left(i.e. \frac{\exp(X'\widehat{\varphi})}{1 + \exp(X'\widehat{\varphi})}\right) \text{ where } X \text{ is a matrix of matched variables and } \widehat{\varphi}$

vector of the corresponding estimated parameters

For patients enrolled in the intervention, the odds of being 'not-at-risk' of incurring utilisation of a service would be $exp(\beta_1)$ times the odds of patients who were not enrolled.

The negative binomial model can be expressed by:

$$log(\mu) = \gamma_0 + \gamma_1 INT + \gamma_2 BASELINE + \gamma_3 PS + \log(TIME)$$

where

INT, BASELINE and PS have been defined

 $\mu=$ mean frequency of the specific healthcare service post - enrolment given covariate TIME= follow - up time

For patients enrolled in the intervention, the incidence rate of utilisation frequency would be $\exp(\gamma_1)$ times the incidence rate of patients who were not enrolled.

Supplementary material BMJ Open

B. Description of the two-part model (twopm) for modelling healthcare charges

The twopm consists of

- a probit regression model to model the probability of zero, or not incurring the specific healthcare charges, and
- a generalized linear model with log-link and gamma family to model charges of the specific healthcare service among patients incurring some charges.

The probit model can be expressed by:

$$\Phi^{-1}(q) = \beta_0 + \beta_1 INT + \beta_2 BASELINE + \beta_3 PS$$

where

INT, BASELINE and PS have been defined

 Φ^{-1} = the probit function (i. e. inverse cumulative distribution function for standard normal) q = probability of zero charges for the specific healthcare service post — enrolment

For patients enrolled in the intervention, the marginal effect (marginal probability) of zero charge for a specific healthcare service would be $\Phi(\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 \overline{BASELINE} + \hat{\beta}_3 \overline{PS})$, where $\overline{BASELINE}$ and \overline{PS} are mean values. For patients not enrolled in the intervention, the marginal effect would be $\Phi(\hat{\beta}_0 + \hat{\beta}_2 \overline{BASELINE} + \hat{\beta}_3 \overline{PS})$.

The generalized linear model with log-link and gamma family can be expressed by:

$$log(\pi) = \gamma_0 + \gamma_1 INT + \gamma_2 BASELINE + \gamma_3 PS + log(TIME)$$

where

INT, BASELINE, PS and TIME have been defined $\pi=$ mean charges of the specific healthcare service post — enrolment given covariate

For patients enrolled in the intervention, their mean healthcare charges would be $exp(\gamma_1)$ times that of patients who were not enrolled.