BMJ Open

## 2 Different exposure metrics of rotating night shift work and 3 hyperhomocysteinemia among Chinese steelworkers: a cross-

- 4 sectional study
- Shengkui Zhang,<sup>1</sup> Yongbin Wang,<sup>2</sup> Qinglin Li,<sup>1</sup> Zhende Wang,<sup>1</sup> Han Wang,<sup>1</sup> Chao Xue,<sup>1</sup> Ying Zhu,<sup>1</sup>
  Weijun Guan,<sup>1</sup> Juxiang Yuan<sup>1</sup>
- 7 1 Department of Epidemiology and Health Statistics, School of Public Health, North China
- 8 University of Science and Technology, Tangshan, Hebei Province, China
- 9 2 Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang
- 10 Medical University, Xinxiang, Henan Province, China
- 11 Correspondence to
- 12 Professor Juxiang Yuan;
- 13 yuanjx@ncst.edu.cn

## 14 Assessment of covariates

15 Smoking and drinking status were divided into "never", "ever" and "current". Dietary patterns were 16 assessed based on the DASH diet score.<sup>1</sup> The level of education was divided into three categories: "primary or illiterate," "middle or high school," and "university or college." The calculation of 17 18 metabolic equivalents was based on the International Physical Activity Questionnaire (IPAQ).<sup>2</sup> The sleep quality assessment was estimated using the Athens Insomnia Scale (AIS).<sup>3</sup> Sedentary 19 20 behaviour (hours/day) was assessed using a set of open-ended questions on the average working 21 days and rest days time spent over the last four weeks on: television viewing (including DVDs and 22 videos) and any other sitting during leisure time (including reading, studying, using a computer, and 23 playing video games).<sup>4</sup> The durations of sleep and sedentary behaviour were the weighted averages 24 of sleep and sedentary behaviour on working days and rest days, respectively. 25 Standard study protocols were used to train qualified physicians and nurses prior to this survey.

Standard study protocols were used to train qualified physicians and nurses prior to this survey.
Height and weight were measured three times each. The participants stood upright and barefoot in
light clothes. The height and weight data that were ultimately used for analysis were accurate to 0.1

28

cm and 0.1 kg. Body mass index (BMI) was defined as body weight (kg) divided by the square of 29 the body height (m<sup>2</sup>). Blood pressure measurements were performed three times at five-minute 30 intervals using an electronic sphygmomanometer (OMRON, HBP-1100, China), and the 31 participants were required to rest for more than ten minutes. Finally, the mean was obtained for 32 analysis. Elevated blood pressure was defined as current systolic blood pressure  $\geq 140$  mmHg, 33 diastolic blood pressure  $\geq 90$  mmHg, or if the patient was receiving antihypertensive therapy. 34 Participants were required to fast overnight before the abdominal ultrasound examination and blood 35 collection. Participants' anterior elbow vein blood was collected and centrifuged at room 36 temperature (3000 r/min, 15 minutes) immediately. All blood samples were tested in the central 37 laboratory of Tangshan Hongci Hospital Laboratory using automatic biochemical analysers 38 (mindrary, BS-800, China) within four hours. Total cholesterol (TC) ≥6.22 mmol/L, low-density 39 lipoprotein (LDL-C)  $\geq$ 4.11 mmol/L, or high-density lipoprotein (HDL-C)  $\leq$ 1.04 mmol/L or 40 triglycerides (TG)  $\geq$ 2.32 mmol/L, or patients undergoing lipid-lowering therapy were considered to demonstrate dyslipidaemia.<sup>5</sup> Alanine aminotransferase (ALT) >40 U/L, aspartate aminotransferase 41 42 (AST) > 40 U/L or glutamyl transpeptidase ( $\gamma$ -GT) > 58 U/L was defined as abnormal liver enzymes. 43 Diabetes was defined as fasting blood glucose  $\geq$ 7.0 mmol/L or if the patient was receiving 44 hypoglycaemic therapy. Assessment of estimated glomerular filtration rate (eGFR) was based on 45 the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.<sup>6</sup> The CKD-EPI formula is as follows: eGFR (mL/min/1.73 m<sup>2</sup>) = 141 × min (Scr/ $\kappa$ , 1)<sup> $\alpha$ </sup> × max (Scr/ $\kappa$ , 1)<sup>-1.209</sup> × 46 47  $0.993^{\text{Age}} \times (1.018 \text{ if female}) \times (1.159 \text{ if black})$ . Scr indicates serum creatinine (µmol/L),  $\kappa = 0.7$  for 48 females and 0.9 for males,  $\alpha = -0.329$  for females and -0.411 for males, min and max indicate the 49 minimum of Scr/ $\kappa$  or 1, the maximum of Scr/ $\kappa$  or 1, respectively. According to the Kidney Disease 50 Improving Global Outcomes 2012 recommendations, the range of GFR (mL/min/1.73 m<sup>2</sup>) was 51 classed into five categories: normal or high (GFR ≥90, G1), mildly decreased (GFR: 60-89, G2), 52 mildly to moderately decreased (GFR: 45-59, G3a), moderately to severely decreased (GFR: 30-53 44, G3b), severely decreased (GFR: 15–29, G4), and kidney failure (GFR <15, G5).<sup>7</sup> Based on these 54 classification criteria, only 22 (0.3%) participants had eGFR<60 mL/min/1.73 m<sup>2</sup> (G3a-G5), so we 55 combined these categories into G2 in the subsequent analysis and defined them as "decreased eGFR" 56 (<90 mL/min/1.73 m<sup>2</sup>). 57 Exposure to dust was defined as workers who may be exposed to productive dust (inorganic

dust, organic dust or mixed dust) during production (GBZ/T 229.1-2010).8 The total dust in the air

58

59 of the workplace was collected at the breathing zone with a filter membrane, and its concentration 60 was calculated based on the increased weight of the filter membrane and the amount of gas collected. 61 When the dust concentration in the air was  $\leq$ 50 mg/m<sup>3</sup>, a filter membrane with a diameter of 37 mm 62 or 40 mm was used; otherwise, a filter membrane with a diameter of 75 mm was used (GBZ/T 63 192.1–2007).<sup>9</sup> Exposure to heat stress work was defined as the average wet-bulb globe temperature (WBGT) index of the workplace being equal to or greater than 25°C in the process of production 64 65 (GBZ 2.2–2007).<sup>10</sup> The WBGT index was measured by a black-wet bulb globe thermometer. If there 66 was no productive heat source in the workplace, three measuring points were selected to take the 67 average value of the WBGT index; if where there was a productive heat source, 3 to 5 measuring 68 points were selected to take the average value of the WBGT index. If the workplace was isolated 69 into different thermal or ventilated environments, 2 measuring points were selected to take the 70 average value of the WBGT index (GBZ/T 189.7-2007).11 Exposure to industrial toxicants was 71 defined as workers who may be exposed to a variety of harmful chemicals (the toxicant specifically refers to carbon monoxide in this population) during production (GBZ/T 229.2-2010).<sup>12</sup> Carbon 72 73 monoxide or carbon dioxide in the air of the workplace was pumped into a non-dispersive infrared-74 ray (NDIR) analyzer and selectively absorbed its infrared rays. The concentration of carbon monoxide was determined according to the absorption value (GBZ/T 160.28-2004).<sup>13</sup> Exposure to 75 76 noise was defined as workers who were exposed to a noisy environment where the 8-h/d or 40-77 h/week equivalent A-weighted sound pressure level was  $\geq$ 80 dB, which may be harmful to health and hearing (GBZ/T 229.4–2012).<sup>14</sup> The workplace production noise was measured by a sound level 78 79 meter. If the distribution of the sound field in the workplace was uniform (between-field difference 80 of A-sound levels were less than 3 dB(A)), three measuring points were selected to take the average 81 value; otherwise, the workplace was divided into several sound level areas. In each sound field, two 82 measuring points were selected to take the average value (GBZ/T 189.8-2007).<sup>15</sup>

83 Table of contents

84 Table S1 Basic characteristics of participants according to sex

85 Table S2 Basic characteristics of participants according to duration of night shifts

- 86 **Table S3** Distribution of plasma total homocysteine levels according to age group
- Table S4 Independent effects of different exposure metrics of night shift work on HHcy among
- 88 night shift workers (ever or current)
- 89 Table S5 Interaction between duration and average frequency of night shifts on odds of HHcy
- Table S6 Multivariate-adjusted ORs between HHcy and different exposure metrics of night shift
   work according to sex
- **Table S7** Multivariate-adjusted ORs between HHcy and different exposure metrics of night shift
- 93 work after further adjusted for the main occupational hazards

## 94 Figure legends

- 95 **Figure S1** Associations of different exposure metrics of night shift work with HHcy odds.
- 96 **Figure S2** Prevalence of HHcy according to different exposure metrics of night shift work.
- 97 Figure S3 Associations of duration, cumulative number and cumulative length of night shifts with

98 tHcy (as a continuous or a binary variable) from restricted cubic spline models after deleting the last

- 99 1% quantile of the duration of night shifts, cumulative number of night shifts and cumulative length
- 100 of night shifts.

101

#### 102 Table S1 Basic characteristics of participants according to sex

| Voriables                                         | Total          | Female         | Male           |         |
|---------------------------------------------------|----------------|----------------|----------------|---------|
| Variables                                         | N=6846         | n=585          | n=6261         | P value |
| Current shift status, n (%)                       |                |                |                | < 0.001 |
| Never                                             | 1027 (15.0)    | 118 (20.2)     | 909 (14.5)     |         |
| Ever                                              | 1493 (21.8)    | 140 (23.9)     | 1353 (21.6)    |         |
| Current                                           | 4326 (63.2)    | 327 (55.9)     | 3999 (63.9)    |         |
| Duration of night shifts (years), n (%)           |                |                |                | < 0.001 |
| Never                                             | 1027 (15.0)    | 118 (20.2)     | 909 (14.5)     |         |
| Q1 (1–12)                                         | 1467 (21.4)    | 122 (20.9)     | 1345 (21.5)    |         |
| Q2 (13–20)                                        | 1491 (21.8)    | 130 (22.2)     | 1361 (21.7)    |         |
| Q3 (21–27)                                        | 1308 (19.1)    | 129 (22.1)     | 1179 (18.8)    |         |
| Q4 (28–43)                                        | 1553 (22.7)    | 86 (14.7)      | 1467 (23.4)    |         |
| Cumulative number of night shifts (nights), n (%) |                |                |                | < 0.001 |
| Never                                             | 1027 (15.0)    | 118 (20.2)     | 909 (14.5)     |         |
| Q1 (43–1131)                                      | 1455 (21.3)    | 117 (20.0)     | 1338 (21.4)    |         |
| Q2 (1132–1848)                                    | 1455 (21.3)    | 131 (22.4)     | 1324 (21.2)    |         |
| Q3 (1854–2584)                                    | 1456 (21.3)    | 139 (23.8)     | 1317 (21.0)    |         |
| Q4 (2585–5239)                                    | 1453 (21.2)    | 80 (13.7)      | 1373 (21.9)    |         |
| Cumulative length of night shifts (hours), n (%)  |                |                |                | < 0.001 |
| Never                                             | 1027 (15.0)    | 118 (20.2)     | 909 (14.5)     |         |
| Q1 (344–9488)                                     | 1452 (21.2)    | 118 (20.2)     | 1334 (21.3)    |         |
| Q2 (9490–15259)                                   | 1458 (21.3)    | 131 (22.4)     | 1327 (21.2)    |         |
| Q3 (15265–21293)                                  | 1456 (21.3)    | 134 (22.9)     | 1322 (21.1)    |         |
| Q4 (21295–53541)                                  | 1453 (21.2)    | 84 (14.4)      | 1369 (21.9)    |         |
| Average frequency of night shifts, n (%)          |                |                |                | < 0.001 |
| Never                                             | 1027 (15.0)    | 118 (20.2)     | 909 (14.5)     |         |
| <3 nights/month                                   | 1576 (23.0)    | 152 (26.0)     | 1424 (22.7)    |         |
| 3-7 nights/month                                  | 901 (13.2)     | 78 (13.3)      | 823 (13.1)     |         |
| >7 nights/month                                   | 3342 (48.8)    | 237 (40.5)     | 3105 (49.6)    |         |
| Average length of night shifts, n (%)             |                |                |                | 0.002   |
| Never                                             | 1027 (15.0)    | 118 (20.2)     | 909 (14.5)     |         |
| ≤8 hours/night                                    | 4442 (64.9)    | 365 (62.4)     | 4077 (65.1)    |         |
| 8–9 hours/night                                   | 810 (11.8)     | 57 (9.7)       | 753 (12.0)     |         |
| >9 hours/night                                    | 567 (8.3)      | 45 (7.7)       | 522 (8.3)      |         |
| Percentage of hours on night shifts, n (%)        |                |                |                | < 0.001 |
| Never                                             | 1027 (15.0)    | 118 (20.2)     | 909 (14.5)     |         |
| <20%                                              | 819 (12.0)     | 86 (14.7)      | 733 (11.7)     |         |
| 20%-30%                                           | 1056 (15.4)    | 86 (14.7)      | 970 (15.5)     |         |
| >30%                                              | 3944 (57.6)    | 295 (50.4)     | 3649 (58.3)    |         |
| Age (years), mean ± SD                            | $44.2 \pm 8.0$ | $44.0 \pm 5.1$ | $44.3 \pm 8.3$ | 0.406   |
| Age (years), n (%)                                |                |                |                | < 0.001 |
| 22–29                                             | 399 (5.8)      | 3 (0.5)        | 396 (6.3)      |         |

| 30–39                                         | 1745 (25.5)        | 131 (22.4)         | 1614 (25.8)        |         |
|-----------------------------------------------|--------------------|--------------------|--------------------|---------|
| 40-49                                         | 2979 (43.5)        | 426 (72.8)         | 2553 (40.8)        |         |
| 50-60                                         | 1723 (25.2)        | 25 (4.3)           | 1698 (27.1)        |         |
| BMI (kg/m <sup>2</sup> ), n (%)               |                    |                    |                    | <0.001  |
| <25                                           | 3466 (50.6)        | 414 (70.8)         | 3052 (48.75)       |         |
| 25–30                                         | 2830 (41.3)        | 143 (24.4)         | 2687 (42.9)        |         |
| ≥30                                           | 550 (8.0)          | 28 (4.8)           | 522 (8.3)          |         |
| Smoking status, n (%)                         |                    |                    |                    | <0.001  |
| Never                                         | 2809 (41.0)        | 513 (87.7)         | 2296 (36.7)        |         |
| Ever                                          | 547 (8.0)          | 20 (3.4)           | 527 (8.4)          |         |
| Current                                       | 3490 (51.0)        | 52 (8.9)           | 3438 (54.9)        |         |
| Drinking status, n (%)                        |                    |                    |                    | < 0.001 |
| Never                                         | 3926 (57.4)        | 526 (89.9)         | 3400 (54.3)        |         |
| Ever                                          | 392 (5.7)          | 23 (3.9)           | 369 (5.9)          |         |
| Current                                       | 2528 (36.9)        | 36 (6.2)           | 2492 (39.8)        |         |
| Education level, n (%)                        |                    |                    |                    | 0.656   |
| Primary or illiterate                         | 86 (1.3)           | 5 (0.9)            | 81 (1.3)           |         |
| Middle or high school                         | 5304 (77.5)        | 454 (77.6)         | 4850 (77.5)        |         |
| University or college                         | 1456 (21.3)        | 126 (21.5)         | 1330 (21.2)        |         |
| Physical activity (MET-h/week), median (IQR)  | 121.8 (84.0–150.7) | 103.8 (80.8–124.5) | 121.8 (84.0–153.3) | <0.001  |
| DASH score                                    | $21.7 \pm 2.2$     | $23.0\pm2.2$       | $21.5 \pm 2.2$     | <0.001  |
| Sedentary behavior (h), median (IQR)          | 2.6 (1.3-4.3)      | 4.0 (2.1–5.4)      | 2.5 (1.3-4.0)      | <0.001  |
| Sleep duration (h), mean ± SD                 | 6.8 ± 1.2          | $6.8 \pm 1.2$      | 6.8 ± 1.2          | 0.247   |
| Insomnia, n (%)                               | 2675 (39.1)        | 218 (37.3)         | 2457 (39.2)        | 0.348   |
| Diabetes, n (%)                               | 719 (10.5)         | 31 (5.3)           | 688 (11.0)         | <0.001  |
| Dyslipidemia, n (%)                           | 2781 (40.6)        | 138 (23.6)         | 2643 (42.2)        | <0.001  |
| Hypertension, n (%)                           | 1755 (25.6)        | 72 (12.3)          | 1683 (26.9)        | <0.001  |
| Liver enzyme abnormality, n (%)               | 1384 (20.2)        | 32 (5.5)           | 1352 (21.6)        | <0.001  |
| eGFR (mL/min/1.73 m <sup>2</sup> ), mean ± SD | $101.7 \pm 11.4$   | $102.3 \pm 12.5$   | $101.6 \pm 11.3$   | 0.207   |
| tHcy ( $\mu$ mol/L), mean ± SD                | 12.2 (10.1–16.8)   | 9.2 (7.9–11.2)     | 12.5 (10.4–17.4)   | < 0.001 |
| Hyperhomocysteinemia, n (%)                   | 2093 (30.6)        | 63 (10.8)          | 2030 (32.4)        | <0.001  |

103 BMI, body mass index; MET, metabolic equivalent units; IQR, interquartile range; DASH, dietary approaches to stop hypertension.

104 Values are expressed as the mean ± SD or median (IQR) or number (%); P-values were from Pearson's chi-square test for categorical 105 variables and Student's t test or Wilcoxon Scores (Rank Sums) for continuous variables. The cut-off points of the duration of night shifts 106 (range: 1 to 43 years), cumulative number of night shifts (range: 43 to 5239 nights), and cumulative length of night shifts (range: 344 to 107 53541 hours) were quarters of the corresponding continuous variables. The cut-off points of average frequency of night shifts (range: 0.1 108 to 10.3 nights/month), average length of night shifts (range: 8.0 to 12.0 hours/night), and percentage of hours on night shifts (range:0.1% 109 to 46.2%) were chosen to secure a reasonable number of observations in each category. 110

# Duration of night shifts (years) Variables Total Never Q1 (1-12) Q2 (13-20) Q3 (21-20)

Table S2 Basic characteristics of participants according to duration of night shifts

| Variables                                    | Total              | Never              | Q1 (1-12)          | Q2 (13-20)         | Q3 (21–28)         | Q4 (29–43)         | D 1     |
|----------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------|
|                                              | N=6846             | n=1027             | n=1454             | n=1469             | n=1439             | n=1457             | P value |
| Duration of employment (years), median (IQR) | 26.4 (18.5–29.6)   | 27.4 (17.3–30.4)   | 15.4 (9.4–27.8)    | 19.2 (15.9–23.7)   | 24.8 (23.4–27.4)   | 30.3 (29.4–34.4)   | <0.001  |
| Age (years), mean±SD                         | 44.2±8.0           | 44.±9.1            | 39.5±9.1           | 41.2±6.9           | 45.5±5.2           | 50.6±3.8           | <0.001  |
| Sex (male), n (%)                            | 6261 (91.5)        | 909 (88.5)         | 1336 (91.9)        | 1340 (91.2)        | 1296 (90.1)        | 1380 (94.7)        | <0.001  |
| BMI (kg/m <sup>2</sup> ), mean±SD            | 25.2±3.4           | 24.8±3.3           | 25.3±3.6           | 25.4±3.6           | 25.2±3.3           | 25.2±3.1           | < 0.001 |
| BMI (kg/m <sup>2</sup> ), n (%)              |                    |                    |                    |                    |                    |                    | < 0.001 |
| <25                                          | 3466 (50.6)        | 570 (55.5)         | 748 (51.4)         | 702 (47.8)         | 712 (49.5)         | 734 (50.4)         |         |
| 25–30                                        | 2830 (41.3)        | 393 (38.3)         | 565 (38.9)         | 617 (42.0)         | 624 (43.4)         | 631 (43.3)         |         |
| ≥30                                          | 550 (8.0)          | 64 (6.2)           | 141 (9.7)          | 150 (10.2)         | 103 (7.2)          | 92 (6.3)           |         |
| Smoking status, n (%)                        |                    |                    |                    |                    |                    |                    | < 0.001 |
| Never                                        | 2809 (41.0)        | 460 (44.8)         | 623 (42.9)         | 622 (42.3)         | 578 (40.2)         | 526 (36.1)         |         |
| Ever                                         | 547 (8.0)          | 53 (5.2)           | 115 (7.9)          | 124 (8.4)          | 146 (10.2)         | 109 (7.5)          |         |
| Current                                      | 3490 (51.0)        | 514 (50.1)         | 716 (49.2)         | 723 (49.2)         | 715 (49.7)         | 822 (56.4)         |         |
| Alcohol consumption, n (%)                   |                    |                    |                    |                    |                    |                    | <0.001  |
| Never                                        | 3926 (57.4)        | 630 (61.3)         | 908 (62.5)         | 870 (59.2)         | 789 (54.8)         | 729 (50.0)         |         |
| Ever                                         | 392 (5.7)          | 26 (2.5)           | 87 (6.0)           | 110 (7.5)          | 115 (8.0)          | 54 (3.7)           |         |
| Current                                      | 2528 (36.9)        | 371 (36.1)         | 459 (31.6)         | 489 (33.3)         | 535 (37.2)         | 674 (46.3)         |         |
| Education level, n (%)                       |                    |                    |                    |                    |                    |                    | < 0.001 |
| Primary or illiterate                        | 86 (1.3)           | 9 (0.9)            | 10 (0.7)           | 5 (0.3)            | 26 (1.8)           | 36 (2.5)           |         |
| Middle or high school                        | 5304 (77.5)        | 710 (69.1)         | 920 (63.3)         | 1073 (73.0)        | 1240 (86.2)        | 1361 (93.4)        |         |
| University or college                        | 1456 (21.3)        | 308 (30.0)         | 524 (36.0)         | 391 (26.6)         | 173 (12.0)         | 60 (4.12)          |         |
| Physical activity (MET-h/week), median (IQR) | 121.8 (84.0-150.7) | 116.3 (84.0–152.5) | 121.8 (84.0–152.2) | 121.8 (84.0-142.0) | 121.8 (84.0-150.2) | 121.8 (84.0-155.6) | 0.06    |

| DASH score, mean±SD                           | 21.7±2.2         | 21.7±2.1         | 21.6±2.2         | 21.5±2.2         | 21.8±2.2         | 21.7±2.2         | 0.592   |
|-----------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------|
| Sedentary behaviour (hours), median (IQR)     | 2.6 (1.3-4.3)    | 2.3 (1.3–3.7)    | 2.6 (1.3-4.0)    | 2.5 (1.1-4.5)    | 2.6 (1.2-4.3)    | 3.0 (1.5-4.5)    | < 0.001 |
| Sleep duration (hour), mean±SD                | 6.8±1.2          | 7.1±1.3          | 6.9±1.2          | 6.9±1.1          | 6.7±1.1          | 6.6±1.2          | 0.001   |
| Insomnia, n (%)                               | 2675 (39.1)      | 353 (34.4)       | 560 (38.5)       | 592 (40.3)       | 575 (40.0)       | 595 (40.8)       | 0.011   |
| Diabetes, n (%)                               | 719 (10.5)       | 102 (9.9)        | 119 (8.2)        | 118 (8.0)        | 149 (10.4)       | 231 (15.9)       | < 0.001 |
| Dyslipidemia, n (%)                           | 2781 (40.6)      | 388 (37.8)       | 558 (38.4)       | 640 (43.6)       | 586 (40.7)       | 609 (41.8)       | 0.013   |
| Hypertension, n (%)                           | 1755 (25.6)      | 255 (24.8)       | 294 (20.2)       | 319 (21.7)       | 388 (27.0)       | 499 (34.3)       | < 0.001 |
| Liver enzyme abnormality, n (%)               | 1384 (20.2)      | 171 (16.7)       | 299 (20.6)       | 360 (24.5)       | 276 (19.2)       | 278 (19.1)       | < 0.001 |
| eGFR (mL/min/1.73 m <sup>2</sup> ), mean ± SD | $101.7 \pm 11.4$ | $102.1 \pm 11.3$ | $104.1 \pm 12.4$ | $103.8 \pm 10.4$ | 100.8 ±10.7      | $97.8 \pm 10.9$  | < 0.001 |
| tHcy (µmol/L), median (IQR)                   | 12.2 (10.1–16.8) | 11.7 (9.8–15.8)  | 12.1 (10.1–16.8) | 12.0 (10.0–16.1) | 12.1 (10.1–17.0) | 12.9 (10.6–17.7) | < 0.001 |
| HHcy, n (%)                                   | 2093 (30.6)      | 280 (27.3)       | 441 (30.3)       | 418 (28.5)       | 442 (30.7)       | 512 (35.1)       | < 0.001 |

111 BMI, body mass index; MET, metabolic equivalent units; IQR, interquartile range; DASH, dietary approaches to stop hypertension; tHcy, total homocysteine; HHcy, hyperhomocysteinemia; eGFR, estimated glomerular filtration rate.

112 Values are expressed as the mean ± SD or median (IQR) or number (%); P-values were from Pearson's chi-square test for categorical variables and analysis of variance (ANOVA) or Kruskal-Wallis test for continuous variables.

#### 113 **Table S3** Distribution of plasma total homocysteine levels according to age group

|                             | Age group (years) |                 |                 |                  |         |
|-----------------------------|-------------------|-----------------|-----------------|------------------|---------|
| variables                   | 22–29             | 30–39           | 40-49           | 50-60            | P value |
| HHcy, n (%)                 |                   |                 |                 |                  | 0.001   |
| No                          | 269 (67.4)        | 1242 (71.2)     | 2111 (70.9)     | 1131 (65.6)      |         |
| Yes                         | 130 (32.6)        | 503 (28.8)      | 868 (29.1)      | 592 (34.4)       |         |
| tHcy (µmol/L), median (IQR) | 12.1 (10.2–17.3)  | 11.8 (9.9–16.7) | 12.0 (9.9–16.4) | 12.9 (10.6–17.3) | <0.001  |

114 tHcy, total homocysteine; HHcy, hyperhomocysteinemia.

115

## 116 **Table S4** Independent effects of different exposure metrics of night shift work on HHcy among

### 117 night shift workers (ever or current)

|                                   |                      | OR (95% CI)          |                      |  |  |  |
|-----------------------------------|----------------------|----------------------|----------------------|--|--|--|
| Exposure metrics                  | Model 1 <sup>a</sup> | Model 2 <sup>b</sup> | Model 3 <sup>c</sup> |  |  |  |
| Current shift status              |                      |                      |                      |  |  |  |
| Ever                              | 1.00                 | 1.00                 | 1.00                 |  |  |  |
| Current                           | 1.08 (0.92–1.26)     | 1.08 (0.92–1.27)     | 1.07 (0.92–1.27)     |  |  |  |
| Duration of night shifts          |                      |                      |                      |  |  |  |
| ≤20 years                         | 1.00                 | 1.00                 | 1.00                 |  |  |  |
| >20 years                         | 1.14 (1.01–1.29)     | 1.10 (0.94–1.28)     | 1.07 (0.91–1.25)     |  |  |  |
| Average frequency of night shifts |                      |                      |                      |  |  |  |
| $\leq$ 7 nights/month             | 1.00                 | 1.00                 | 1.00                 |  |  |  |
| >7 nights/month                   | 1.06 (0.92–1.23)     | 1.07 (0.92–1.24)     | 1.07 (0.91–1.24)     |  |  |  |
| Average length of night shifts    |                      |                      |                      |  |  |  |
| ≤8 hours/night                    | 1.00                 | 1.00                 | 1.00                 |  |  |  |
| >8 hours/night                    | 1.11 (0.97–1.27)     | 1.08 (0.94–1.24)     | 1.08 (0.94–1.24)     |  |  |  |

118 OR, odds ratio; CI, confidence intervals.

119 <sup>a</sup> Model 1, adjusted for current shift status, duration of night shifts, average frequency of night shifts, and average length of night shifts.

120 <sup>b</sup> Model 2, adjusted for current shift status, duration of night shifts, average frequency of night shifts, average length of night shifts, age,

121 and sex.

122 ° Model 3, adjusted for current shift status, duration of night shifts, average frequency of night shifts, average length of night shifts, age,

123 sex, BMI, smoking status, dyslipidaemia, hypertension, and decreased eGFR.

#### 124 **Table S5** Interaction between duration and average frequency of night shifts on odds of HHcy

|                                                                             | All               | Male              | Female             |
|-----------------------------------------------------------------------------|-------------------|-------------------|--------------------|
| Main effects, OR (95% CI)                                                   |                   |                   |                    |
| Duration of night shifts (>20 years vs ≤20 years)                           | 1.01 (0.83–1.23)  | 1.03 (0.84–1.26)  | 1.77 (0.45-6.91)   |
| Average frequency of night shifts (>7nights/month vs $\leq$ 7 nights/month) | 1.00 (0.83–1.22)  | 0.99 (0.81–1.20)  | 1.71 (0.64–4.59)   |
| ioint effect, OR (95% CI)                                                   | 1.20 (1.03–1.39)  | 1.20 (1.03–1.40)  | 1.12 (0.54–2.36)   |
| Aultiplicative interaction, OR (95% CI)                                     | 1.18 (0.90–1.55)  | 1.19 (0.90–1.56)  | 1.08 (0.21-5.58)   |
| Additive interaction <sup>a</sup>                                           |                   |                   |                    |
| Relative excess risk due to interaction, RERI (95% CI)                      | 0.18 (-0.09-0.46) | 0.19 (-0.09–0.47) | -1.36 (-4.27–1.56) |
| Attributable proportion due to interaction, AP (95% CI)                     | 0.15 (-0.08-0.38) | 0.16 (-0.07-0.39) | -1.21 (-3.91–1.49) |

125 **OR**, odds ratio; **CI**, confidence intervals; RERI, relative excess risk due to interaction; AP, attributable proportion due to interaction;

126 <sup>a</sup> If there is no biological interaction, RERI and AP are equal to 0.

127 Adjusted for age, sex, BMI, smoking status, dyslipidaemia, hypertension, and decreased eGFR.

128

#### 129 **Table S6** Multivariate-adjusted ORs between HHcy and different exposure metrics of night shift work according to sex

|                                            | Male        |              |                  | Female      |              |                  |
|--------------------------------------------|-------------|--------------|------------------|-------------|--------------|------------------|
| Exposure metrics                           | Н           | Нсу          | OB (050) CI)     | Н           | Нсу          | OD (05% CD)      |
|                                            | No, [n (%)] | Yes, [n (%)] | OR (95% CI)      | No, [n (%)] | Yes, [n (%)] | OR (95% CI)      |
| Current shift status, n (%)                |             |              |                  |             |              |                  |
| Never                                      | 641 (15.2)  | 268 (13.2)   | 1.00             | 106 (20.3)  | 12 (19.1)    | 1.00             |
| Ever                                       | 938 (22.2)  | 415 (20.4)   | 1.08 (0.89–1.29) | 124 (23.8)  | 16 (25.4)    | 1.05 (0.46–2.39) |
| Current                                    | 2652 (62.7) | 1347 (66.4)  | 1.24 (1.06–1.46) | 292 (55.9)  | 35 (55.6)    | 0.94 (0.46–1.92) |
| Duration of night shifts (years)           |             |              |                  |             |              |                  |
| Never                                      | 641 (15.2)  | 268 (13.2)   | 1.00             | 106 (20.3)  | 12 (19.1)    | 1.00             |
| Q1 (1–12)                                  | 918 (21.7)  | 427 (21.0)   | 1.14 (0.94–1.38) | 104 (19.9)  | 18 (28.6)    | 1.29 (0.57–2.91) |
| Q2 (13–20)                                 | 954 (22.6)  | 407 (20.1)   | 1.07 (0.88–1.30) | 118 (22.6)  | 12 (19.1)    | 0.78 (0.32-1.86) |
| Q3 (21–27)                                 | 792 (18.7)  | 387 (19.1)   | 1.20 (0.99–1.46) | 118 (22.6)  | 11 (17.5)    | 0.84 (0.35-2.04) |
| Q4 (28–43)                                 | 926 (21.9)  | 541 (26.7)   | 1.36 (1.13–1.64) | 76 (14.6)   | 10 (15.9))   | 1.04 (0.41–2.65) |
| P trend                                    |             |              | 0.002            |             |              | 0.629            |
| Cumulative number of night shifts (nights) |             |              |                  |             |              |                  |
| Never                                      | 641 (15.2)  | 268 (13.2)   | 1.00             | 106 (20.3)  | 12 (19.1)    | 1.00             |
| Q1 (43–1131)                               | 911 (21.5)  | 427 (21.0)   | 1.15 (0.95–1.39) | 101 (19.4)  | 16 (25.4)    | 1.22 (0.53–2.80) |
| Q2 (1132–1848)                             | 932 (22.0)  | 392 (19.3)   | 1.05 (0.87–1.28) | 118 (22.6)  | 13 (20.6)    | 0.79 (0.34–1.88) |
| Q3 (1854–2584)                             | 879 (20.8)  | 438 (21.6)   | 1.23 (1.02–1.48) | 127 (24.3)  | 12 (19.1)    | 0.86 (0.36-2.05) |
| Q4 (2585–5239)                             | 868 (20.5)  | 505 (24.9)   | 1.35 (1.12–1.63) | 70 (13.4)   | 10 (15.9)    | 1.14 (0.45–2.91) |
| <i>P</i> trend                             |             |              | 0.003            |             |              | 0.799            |
| Cumulative length of night shifts (hours)  |             |              |                  |             |              |                  |
| Never                                      | 641 (15.2)  | 268 (13.2)   | 1.00             | 106 (20.3)  | 12 (19.1)    | 1.00             |

Zhang S, et al. BMJ Open 2020; 10:e041576. doi: 10.1136/bmjopen-2020-041576

| Q1 (344–9488)                       | 904 (21.4)  | 430 (21.2)  | 1.16 (0.96–1.40) | 102 (19.5) | 16 (25.4) | 1.20 (0.52-2.74) |
|-------------------------------------|-------------|-------------|------------------|------------|-----------|------------------|
| Q2 (9490–15259)                     | 937 (22.2)  | 390 (19.2)  | 1.04 (0.86–1.27) | 117 (22.4) | 14 (22.2) | 0.91 (0.39-2.13) |
| Q3 (15265–21293)                    | 881 (20.8)  | 441 (21.7)  | 1.24 (1.02–1.50) | 126 (24.1) | 8 (12.7)  | 0.57 (0.22-1.48) |
| Q4 (21295–53541)                    | 868 (20.5)  | 501 (24.7)  | 1.33 (1.11–1.61) | 71 (13.6)  | 13 (20.6) | 1.43 (0.59–3.46) |
| P trend                             |             |             | 0.005            |            |           | 0.942            |
| Average frequency of night shifts   |             |             |                  |            |           |                  |
| Never                               | 641 (15.2)  | 268 (13.2)  | 1.00             | 106 (20.3) | 12 (19.1) | 1.00             |
| <3 nights/month                     | 976 (23.1)  | 448 (2.1)   | 1.11 (0.93–1.34) | 134 (25.7) | 18 (28.6) | 1.04 (0.46–2.32) |
| 3–7 nights/month                    | 562 (13.3)  | 261 (12.9)  | 1.14 (0.93–1.40) | 74 (14.2)  | 4 (6.4)   | 0.40 (0.12–1.34) |
| >7 nights/month                     | 2052 (48.5) | 1053 (51.9) | 1.26 (1.07–1.48) | 208 (39.9) | 29 (46.0) | 1.11 (0.54–2.30) |
| P trend                             |             |             | 0.003            |            |           | 0.861            |
| Average length of night shifts      |             |             |                  |            |           |                  |
| Never                               | 641 (15.2)  | 268 (13.2)  | 1.00             | 106 (20.3) | 12 (19.1) | 1.00             |
| ≤8 hours/night                      | 2754 (65.1) | 1323 (65.2) | 1.18 (1.01–1.39) | 328 (62.8) | 37 (58.7) | 0.89 (0.44–1.79) |
| 8–9 hours/night                     | 497 (11.8)  | 256 (12.6)  | 1.27 (1.03–1.57) | 54 (10.3)  | 3 (4.8)   | 0.43 (0.11-1.77) |
| >9 hours/night                      | 339 (8.0)   | 183 (9.0)   | 1.22 (0.96–1.54) | 34 (6.5)   | 11 (17.5) | 2.48 (0.96-6.43) |
| P trend                             |             |             | 0.058            |            |           | 0.149            |
| Percentage of hours on night shifts |             |             |                  |            |           |                  |
| Never                               | 641 (15.2)  | 268 (13.2)  | 1.00             | 106 (20.3) | 12 (19.1) | 1.00             |
| <20%                                | 499 (11.8)  | 234 (11.5)  | 1.14 (0.92–1.41) | 74 (14.2)  | 12 (19.1) | 1.21 (0.50–2.94) |
| 20%-30%                             | 670 (15.8)  | 300 (14.8)  | 1.09 (0.89–1.34) | 77 (14.8)  | 9 (14.3)  | 0.88 (0.33-2.34) |
| >30%                                | 2421 (57.2) | 1228 (60.5) | 1.24 (1.06–1.46) | 265 (50.8) | 30 (47.6) | 0.93 (0.45-1.91) |
| P trend                             |             |             | 0.008            |            |           | 0.677            |

130 HHcy, hyperhomocysteinemia; OR, odds ratio; CI, confidence intervals.

131 Adjusted for age, sex, BMI, smoking status, dyslipidaemia, hypertension, and decreased eGFR.

 Table S7 Multivariate-adjusted ORs between HHcy and different exposure metrics of night shift

 work after further adjustment for the main occupational hazards

| Even source motivies                             | OR (95% CI)      |                  |                  |  |  |
|--------------------------------------------------|------------------|------------------|------------------|--|--|
| Exposure metrics                                 | All              | Male             | Female           |  |  |
| Current shift status                             |                  |                  |                  |  |  |
| Never                                            | 1.00             | 1.00             | 1.00             |  |  |
| Ever                                             | 1.08 (0.90-1.30) | 1.08 (0.90-1.30) | 0.99 (0.43–2.27) |  |  |
| Current                                          | 1.25 (1.07–1.47) | 1.27 (1.08–1.49) | 0.89 (0.43–1.85) |  |  |
| Duration of night shifts (years)                 |                  |                  |                  |  |  |
| Never                                            | 1.00             | 1.00             | 1.00             |  |  |
| Q1 (1–12)                                        | 1.16 (0.96–1.39) | 1.15 (0.95–1.39) | 1.20 (0.52–2.73) |  |  |
| Q2 (13–20)                                       | 1.06 (0.88–1.29) | 1.08 (0.89–1.32) | 0.73 (0.30-1.78) |  |  |
| Q3 (21–27)                                       | 1.20 (0.99–1.45) | 1.22 (1.00–1.49) | 0.82 (0.33-2.04) |  |  |
| Q4 (28–43)                                       | 1.36 (1.13–1.64) | 1.38 (1.14–1.66) | 0.97 (0.38-2.49) |  |  |
| P trend                                          | 0.003            | 0.001            | 0.576            |  |  |
| Cumulative number of night shifts (nights)       |                  |                  |                  |  |  |
| Never                                            | 1.00             | 1.00             | 1.00             |  |  |
| Q1 (43–1131)                                     | 1.16 (0.97–1.40) | 1.16 (0.96–1.40) | 1.13 (0.49–2.63) |  |  |
| Q2 (1132–1848)                                   | 1.06 (0.87–1.28) | 1.07 (0.88–1.30) | 0.75 (0.31–1.81) |  |  |
| Q3 (1854–2584)                                   | 1.22 (1.01–1.47) | 1.24 (1.03–1.51) | 0.85 (0.35-2.05) |  |  |
| Q4 (2585–5239)                                   | 1.35 (1.12–1.63) | 1.36 (1.13–1.65) | 1.05 (0.41-2.71) |  |  |
| P trend                                          | 0.003            | 0.002            | 0.737            |  |  |
| Cumulative length of night shifts (hours)        |                  |                  |                  |  |  |
| Never                                            | 1.00             | 1.00             | 1.00             |  |  |
| Q1 (344–9488)                                    | 1.17 (0.97–1.41) | 1.17 (0.97–1.41) | 1.12 (0.48–2.59) |  |  |
| Q2 (9490–15259)                                  | 1.05 (0.87–1.27) | 1.06 (0.87–1.29) | 0.86 (0.36-2.03) |  |  |
| Q3 (15265–21293)                                 | 1.21 (1.01–1.47) | 1.25 (1.03–1.52) | 0.54 (0.20–1.43) |  |  |
| Q4 (21295–53541)                                 | 1.35 (1.12–1.63) | 1.35 (1.11–1.64) | 1.32 (0.54–3.22) |  |  |
| P trend                                          | 0.005            | 0.004            | 0.854            |  |  |
| Average frequency of night shifts (nights/month) |                  |                  |                  |  |  |
| Never                                            | 1.00             | 1.00             | 1.00             |  |  |
| <3                                               | 1.12 (0.94–1.34) | 1.12 (0.93–1.35) | 0.95 (0.42-2.16) |  |  |
| 3–7                                              | 1.12 (0.91–1.38) | 1.16 (0.94–1.43) | 0.37 (0.11–1.28) |  |  |
| >7                                               | 1.27 (1.08–1.50) | 1.28 (1.08–1.51) | 1.07 (0.50–2.45) |  |  |
| P trend                                          | 0.002            | 0.002            | 0.880            |  |  |
| Average length of night shifts (hours/night)     |                  |                  |                  |  |  |
| Never                                            | 1.00             | 1.00             | 1.00             |  |  |
| ≤8                                               | 1.18 (1.01–1.38) | 1.19 (1.02–1.41) | 0.82 (0.40-1.68) |  |  |
| 8-9                                              | 1.25 (1.01–1.54) | 1.28 (1.04–1.59) | 0.38 (0.90-1.63) |  |  |
| >9                                               | 1.28 (1.02–1.61) | 1.23 (0.97–1.56) | 2.37 (0.91-6.21) |  |  |
| P trend                                          | 0.028            | 0.052            | 0.169            |  |  |

Percentage of hours on night shifts, n (%)

| Never   | 1.00             | 1.00             | 1.00             |
|---------|------------------|------------------|------------------|
| <20%    | 1.16 (0.94–1.43) | 1.15 (0.93–1.43) | 1.12 (0.45–2.78) |
| 20%-30% | 1.10 (0.90–1.34) | 1.11 (0.90–1.35) | 0.82 (0.31-2.20) |
| >30%    | 1.24 (1.06–1.46) | 1.26 (1.07–1.49) | 0.89 (0.43–1.86) |
| P trend | 0.010            | 0.006            | 0.628            |

OR, odds ratio; CI, confidence intervals.

Adjusted for age, sex (except for gender stratification), BMI, smoking status, dyslipidaemia, hypertension, decreased eGFR, dust exposure

(No or Yes), heat stress exposure (No or Yes), noise exposure (No or Yes), and carbon monoxide exposure (No or Yes)

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                | Model 1          | Model 2             | Model 3            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|---------------------|--------------------|--|
| Current Suff status         1.00         1.00         1.00           Ever         1.08 (091–129)         1.23 (1.05–1.44)         1.23 (1.05–1.44)         1.23 (1.06–1.44)           Duration of night shifts (years)         1.00         1.00         1.00 (0.89–1.28)         1.23 (1.06–1.44)           Never         1.00         1.00 (0.89–1.28)         1.00 (0.89–1.28)         1.00 (0.89–1.28)           Q1 (1–12)         1.16 (0.97–1.39)         1.13 (0.95–1.36)         1.00 (0.87–1.27)           Q2 (13–20)         1.04 (0.87–1.25)         1.04 (0.86–1.25)         1.09 (0.88–1.34)           Q4 (28–3)         1.47 (1.24–1.74)         1.33 (1.15–1.65)         0.001         0.003           Current digit shifts (nights)         Never         1.00         1.16 (0.96–1.3)         1.16 (0.96–1.3)           Never         1.00         1.00         1.04 (0.86–1.23)         1.16 (0.96–1.3)         1.16 (0.96–1.3)           Q2 (132–1848)         1.03 (0.86–1.23)         1.03 (0.85–1.24)         1.04 (0.86–1.25)         1.04 (0.86–1.25)           Q2 (132–1848)         1.19 (1.00–1.42)         1.02 (10.01–1.41)         1.16 (0.97–1.40)         1.04 (0.86–1.25)           Q2 (285–21.39)         1.20 (10.01–1.42)         1.33 (1.11–1.61)         1.33 (1.11–1.61)         1.34 (1.11–1.61)           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exposure metrics                                 | OR (95% CI)      | OR (95% CI)         | OR (95% CI)        |  |
| Never         1.00         1.00         1.00         1.00           Ever         1.25 (1.08-1.46)         1.23 (1.05-1.44)         1.23 (1.05-1.44)         1.23 (1.05-1.44)           Duration of night shifts (years)         1.00         1.00         1.00         1.00           Verer         1.00         1.00         1.00 (0.95-1.36)         1.15 (0.96-1.38)           Q2 (12-20)         1.17 (0.97-1.40)         1.17 (0.97-1.41)         1.13 (0.12-1.61)         1.00           Q4 (22-43)         1.47 (1.24-1.74)         1.33 (1.15-1.65)         0.001         0.003           Cumulative number of night shifts (nights)         0.001         0.001         0.001         0.001           Never         1.00         1.00         1.00         1.00         1.00         1.00           Q2 (112-144)         1.17 (0.98-1.39)         1.14 (0.95-1.36)         1.15 (0.96-1.39)         1.14 (0.95-1.36)         1.00           Q2 (112-144)         1.01 (0.96-1.39)         1.14 (0.95-1.36)         1.00         1.00         1.00           Q2 (112-144)         1.17 (0.98-1.39)         1.14 (0.95-1.36)         1.13 (0.96-1.39)         1.14 (0.95-1.36)         1.13 (0.96-1.39)           Q2 (122-144)         1.90 (0.66-1.22)         1.90 (0.66-1.22)         1.90 (0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Current shift status                             |                  |                     |                    |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Never                                            | 1.00             | 1.00                | 1.00               |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ever                                             | 1.08 (0.91–1.29) | 1.07 (0.89–1.28)    | 1.08 (0.90–1.29)   |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Current                                          | 1.25 (1.08–1.46) | 1.23 (1.05–1.44)    | 1.23 (1.06–1.44)   |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Duration of night shifts (years)                 |                  |                     |                    |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Never                                            | 1.00             | 1.00                | 1.00               |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q1 (1–12)                                        | 1.16 (0.97–1.39) | 1.13 (0.95–1.36)    | 1.15 (0.96–1.38)   |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q2 (13–20)                                       | 1.04 (0.87–1.25) | 1.04 (0.86–1.25)    | 1.05 (0.87–1.27)   |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q3 (21–27)                                       | 1.17 (0.97–1.40) | 1.17 (0.97–1.41)    | 1.19 (0.98–1.43)   |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q4 (28–43)                                       | 1.47 (1.24–1.74) | 1.38 (1.15–1.65)    | 1.35 (1.12–1.61)   |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P trend                                          | <0.001           | 0.001               | 0.003              |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cumulative number of night shifts (nights)       |                  |                     |                    |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Never                                            | 1.00             | 1.00                | 1.00               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O1 (43–1131)                                     | 1.17 (0.98–1.39) | 1.14 (0.95–1.36)    | 1.15 (0.96–1.38)   |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O2 (1132–1848)                                   | 1.03 (0.86–1.23) | 1.03(0.85 - 1.24) — | 1.04 (0.86–1.26) — |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O3 (1854–2584)                                   | 1.19 (1.00–1.42) | 1.20 (1.00–1.44)    | 1.21 (1.01–1.45)   |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04 (2585-5239)                                   | 1 47 (1 23–1 74) | 1 37 (1 14–1 65)    | 1 34 (1 11–1 61)   |  |
| $\begin{array}{c} \text{Cumulative length of night shifts (hours)} \\ \text{Never} & 1.00 \\ Q1 (344-9488) & 1.18 (0.99-1.41) \\ Q2 (9490-15259) & 1.02 (0.86-1.22) \\ Q3 (15265-21293) & 1.19 (1.00-1.42) \\ Q4 (21295-53541) & 1.46 (1.22-1.74) \\ \text{Vread} & \text{co.001} \\ \text{Never} & 1.00 \\ <3 & 1.12 (0.94-1.33) \\ 3-7 & 1.11 (0.91-1.32) \\ 77 & 1.28 (1.09-1.49) \\ 77 & 1.28 (1.09-1.49) \\ 77 & 1.28 (1.09-1.49) \\ \text{Vread} \\ \text{Never} & 1.00 \\ <48 & 1.18 (1.01-1.37) \\ \text{Frend} \\ \text{Never} & 1.00 \\ \text{Never} & 1.00 \\ <8 & 1.18 (1.01-1.37) \\ \text{P trend} \\ \text{Never} & 1.00 \\ \text{S}8 & 1.18 (1.01-1.37) \\ \text{P trend} \\ \text{Never} & 1.00 \\ \text{Never} &$ | P trend                                          | <0.001           | 0.001               | 0.004              |  |
| Never       1.00       1.00       1.00       1.16 $(0.97-1.40)$ Q1 (344-9488)       1.18 $(0.99-1.41)$ 1.15 $(0.96-1.39)$ 1.04 $(0.86-1.25)$ Q3 (1526-21293)       1.19 $(1.00-1.42)$ 1.18 $(0.99-1.42)$ 1.18 $(0.99-1.42)$ Q4 (21295-33541)       1.46 $(1.23-1.74)$ 1.37 $(1.14-1.65)$ 1.30 $(1.00-1.45)$ Verage frequency of night shifts (nights/month)       1.00       1.00       1.00       1.00         Never       1.00       1.00       1.00 $(0.93-1.33)$ 1.11 $(0.93-1.32)$ 1.11 $(0.93-1.33)$ 3-7       1.28 $(1.09-1.49)$ 1.25 $(1.07-1.47)$ 1.25 $(1.07-1.47)$ 1.25 $(1.07-1.47)$ P trend       0.001       0.003       0.004       0.004       0.004         Average length of night shifts (hours/night)       1.18 $(1.01-1.37)$ 1.21 $(0.99-1.48)$ 1.23 $(1.00-1.52)$ S9       1.39 $(1.11-1.73)$ 1.00       1.00       1.00         Verage of hours on night shifts       1.00 $(0.91-1.34)$ 1.20 $(1.09-1.48)$ 1.23 $(1.00-1.52)$ >9       1.39 $(1.10-1.37)$ 1.00 $(0.90-1.32)$ 1.23 $(1.02-1.43)$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cumulative length of night shifts (hours)        |                  |                     |                    |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Never                                            | 1.00             | 1.00                | 1.00               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 (344–9488)                                    | 1 18 (0 99–1 41) | 1 15 (0 96–1 39)    | 1 16 (0 97–1 40)   |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O2(9490-15259)                                   | 1 02 (0 86–1 22) | 1.02(0.84-1.23)     | 1 04 (0 86–1 25)   |  |
| $\begin{array}{c} (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $O_3(15265-21293)$                               | 1 19 (1 00–1 42) | 1 18 (0 99–1 42)    | 1 20 (1 00–1 45)   |  |
| $\begin{array}{c} 1.00 \\ \text{Prend} \\ \text{Average frequency of night shifts (nights/month)} \\ \text{Never} \\ < 3 \\ 3-7 \\ > 7 \\ 1.12 (0.94-1.33) \\ 3-7 \\ > 7 \\ 1.28 (1.09-1.49) \\ \text{P trend} \\ 0.001 \\ 3-7 \\ > 7 \\ 1.28 (1.09-1.49) \\ \text{P trend} \\ 0.001 \\ \text{Never} \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.15 (0.94-1.42) \\ 1.25 (1.07-1.47) \\ 0.003 \\ 0.022 \\ 0.031 \\ 1.25 (1.07-1.46) \\ 1.00 \\ 0.022 \\ 0.031 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.15 (0.94-1.42) \\ 1.23 (1.05-1.43) \\ 0.010 \\ 0.010 \\ 0.01 \\ 1.5 \\ 2 \\ 0.010 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ 0.010 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ 0.010 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ 0.010 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01$                                                                                                                                                                                                    | $O_4(21295-53541)$                               | 1 46 (1 23–1 74) | 1 37 (1 14–1 65)    |                    |  |
| Average frequency of night shifts (nights/month)       Never       1.00       1.00       1.00 $3$ 1.12 (0.94-1.33)       1.11 (0.93-1.32)       1.11 (0.93-1.33) $3$ -7       1.11 (0.91-1.36)       1.09 (0.89-1.34)       1.10 (0.91-1.35) $7$ 1.28 (1.09-1.49)       1.25 (1.07-1.47)       1.25 (1.07-1.47) $P$ trend       0.001       0.003       0.004         Average length of night shifts (hours/night)       1.18 (1.01-1.37)       1.16 (1.00-1.36)       1.17 (1.01-1.37) $8$ -9       1.25 (1.03-1.53)       1.21 (0.99-1.48)       1.23 (1.00-1.52)       1.27 (1.01-1.60) $9$ 1.39 (1.11-1.73)       1.30 (1.04-1.63)       0.022       0.031         Percentage of hours on night shifts       0.003       0.0022       0.031         Percentage of hours on night shifts       1.010 (0.91-1.34)       1.08 (0.89-1.31)       1.09 (0.90-1.32) $20\%$ 1.15 (0.94-1.40)       1.23 (1.05-1.44)       1.23 (1.05-1.43)       1.23 (1.05-1.43) $20\%$ 0.004       0.009       0.009       0.010       0.010 $4004$ 0.004       0.009       0.009       0.010       0.010 $4004$ 0.5       1       1.5       2 <t< td=""><td>P trend</td><td>&lt;0.001</td><td>0.003</td><td>0.006</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P trend                                          | <0.001           | 0.003               | 0.006              |  |
| Never1.001.001.001.00 $<3$ 1.12 (0.94-1.33)1.11 (0.91-1.36)1.09 (0.89-1.34)1.11 (0.93-1.33) $>7$ 1.28 (1.09-1.49)1.25 (1.07-1.47)1.25 (1.07-1.47) $>7$ 1.28 (1.09-1.49)0.0010.003Average length of night shifts (hours/night)1.001.00Never1.001.001.00 $\leq 8$ 1.18 (1.01-1.37)1.16 (1.00-1.36)1.17 (1.01-1.37) $8-9$ 1.25 (1.03-1.53)1.21 (0.99-1.48)1.23 (1.00-1.52) $>9$ 1.39 (1.11-1.73)1.30 (1.04-1.63)1.27 (1.01-1.60) $P$ trend0.0030.0220.031Percentage of hours on night shifts1.15 (0.94-1.40)1.16 (0.93-1.40) $Never$ 1.001.001.00 $<20\%$ 1.15 (0.94-1.40)1.12 (0.99-1.42) $>30\%$ 1.25 (1.07-1.46)1.23 (1.05-1.44) $P$ trend0.0040.009 $0.004$ 0.0090.001 $0.004$ 0.0090.001 $0.004$ 0.0090.009 $0.004$ 0.0090.009 $0.004$ 0.511.5 $2$ 0.511.5 $2$ 0.511.5 $2$ 0.511.5 $2$ 0.511.5 $2$ 0.511.5 $2$ 0.511.5 $2$ 0.511.5 $2$ 0.511.5 $2$ 0.511.5 $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Average frequency of night shifts (nights/month) |                  |                     |                    |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Never                                            | 1.00             | 1.00                | 1.00               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <3                                               | 1.12 (0.94–1.33) | 1.11 (0.93–1.32)    | 1.11 (0.93–1.33)   |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-7                                              | 1 11 (0 91–1 36) | 1 09 (0 89–1 34)    | 1 10 (0 91–1 35)   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >7                                               | 1 28 (1 09–1 49) | 1 25 (1 07–1 47)    | 1 25 (1 07–1 47)   |  |
| Average length of night shifts (hours/night)       non       non       non       non         Never       1.00       1.00       1.00       1.00       1.00 $\leq 8$ 1.18 (1.01–1.37)       1.16 (1.00–1.36)       1.17 (1.01–1.37) $8-9$ 1.25 (1.03–1.53)       1.21 (0.99–1.48)       1.23 (1.00–1.52) $>9$ 1.39 (1.11–1.73)       1.30 (1.04–1.63)       0.022       0.031         P trend       0.003       0.002       0.031       1.15 (0.94–1.42)         Percentage of hours on night shifts       1.16 (0.91–1.34)       1.08 (0.89–1.31)       1.09 (0.90–1.32) $20\%$ 1.10 (0.91–1.34)       1.23 (1.05–1.44)       1.23 (1.05–1.43) $P$ trend       0.004        1.23 (1.05–1.44)       0.010 $P$ trend       0.004        1.5       2       0.5       1       1.5       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P trend                                          | 0.001            | 0.003               | 0.004              |  |
| Never       1.00       1.00       1.00       1.00 $\leq 8$ 1.18 (1.01-1.37)       -       1.16 (1.00-1.36)       1.17 (1.01-1.37) $8-9$ 1.25 (1.03-1.53)       1.21 (0.99-1.48)       1.23 (1.00-1.52) $>9$ 1.39 (1.11-1.73)       -       1.30 (1.04-1.63)       0.022 $P$ trend       0.003       0.022       0.031         Percentage of hours on night shifts       -       1.15 (0.94-1.40)       1.16 (1.09-1.34)         Never       1.00       1.00       1.00       1.00 (0.90-1.32) $< 20\%$ 1.15 (1.07-1.46)       -       1.23 (1.05-1.44) $P$ trend       0.004       -       1.23 (1.05-1.44)       1.23 (1.05-1.43) $P$ trend       0.004       -       1.15 (2       0.5 1       1.5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average length of night shifts (hours/night)     |                  |                     |                    |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Never                                            | 1.00             | 1.00                | 1.00               |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ≤8                                               | 1 18 (1 01–1 37) | 1 16 (1 00–1 36)    | 1 17 (1 01–1 37)   |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8-9                                              | 1 25 (1 03–1 53) | 1 21 (0 99–1 48)    | 1 23 (1 00–1 52)   |  |
| P trend $0.003$ $0.022$ $0.031$ Percentage of hours on night shifts $1.00$ $1.00$ $1.00$ $1.00$ Never $1.00$ $1.00$ $1.00$ $1.00$ $1.15 (0.94-1.42)$ $20\%-30\%$ $1.10 (0.91-1.34)$ $1.08 (0.89-1.31)$ $1.09 (0.90-1.32)$ $>30\%$ $1.25 (1.07-1.46)$ $1.23 (1.05-1.44)$ $1.23 (1.05-1.43)$ P trend $0.004$ $0.5$ $1$ $1.5$ $2$ $0.5$ $1$ $1.5$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >9                                               | 1 39 (1 11–1 73) | 1 30 (1 04–1 63)    | 1 27 (1 01–1 60)   |  |
| Percentage of hours on night shifts       1.00       1.00       1.00 $<20\%$ 1.15 (0.94–1.40)       1.14 (0.93–1.40)       1.15 (0.94–1.42) $20\%-30\%$ 1.10 (0.91–1.34)       1.08 (0.89–1.31)       1.09 (0.90–1.32) $>30\%$ 1.25 (1.07–1.46)       1.23 (1.05–1.44)       1.23 (1.05–1.43) $P$ trend       0.004       0.5       1       1.5       2       0.5       1       1.5       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P trend                                          | 0.003            | 0.022               | 0.031              |  |
| Never $1.00$ $1.00$ $1.00$ $1.00$ $20\%$ $1.15 (0.94-1.40)$ $1.14 (0.93-1.40)$ $1.15 (0.94-1.42)$ $20\%$ $1.10 (0.91-1.34)$ $1.08 (0.89-1.31)$ $1.09 (0.90-1.32)$ > $30\%$ $1.25 (1.07-1.46)$ $1.23 (1.05-1.44)$ $1.23 (1.05-1.43)$ P trend $0.004$ $0.5$ $1$ $1.5$ $2$ $0.5$ $1$ $1.5$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Percentage of hours on night shifts              |                  |                     |                    |  |
| $\begin{array}{c} < 20\% \\ 20\% - 30\% \\ P \text{ trend} \end{array} \begin{array}{c} 1.15 (0.94 - 1.40) \\ 1.00 (0.91 - 1.34) \\ 0.004 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \end{array} \begin{array}{c} 1.14 (0.93 - 1.40) \\ 1.08 (0.89 - 1.31) \\ 1.08 (0.89 - 1.31) \\ 1.09 (0.90 - 1.32) \\ 1.23 (1.05 - 1.44) \\ 0.009 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \end{array} \begin{array}{c} 1.14 (0.93 - 1.40) \\ 1.09 (0.90 - 1.32) \\ 1.23 (1.05 - 1.43) \\ 0.010 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \end{array} \begin{array}{c} 1.13 (0.94 - 1.42) \\ 1.09 (0.90 - 1.32) \\ 1.23 (1.05 - 1.43) \\ 0.010 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \end{array} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Never                                            | 1.00             | 1.00                | 1.00               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <20%                                             | 1 15 (0 94–1 40) | 1 14 (0 93–1 40)    | 1 15 (0 94–1 42)   |  |
| $\begin{array}{c} 1.05 (0.07 - 1.35) \\ > 30\% \\ P \text{ trend} \end{array}$ $\begin{array}{c} 1.05 (0.07 - 1.46) \\ 0.004 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20%-30%                                          | 1 10 (0 91–1 34) | 1 08 (0 89–1 31)    | 1 09 (0 90 - 1 32) |  |
| $P \text{ trend} \qquad 0.004 \underbrace{-0.5 \ 1 \ 1.5 \ 2}_{0.009} \underbrace{-0.5 \ 1 \ 1.5 \ 2}_{0.5 \ 1 \ 1.5 \ 2} \underbrace{-0.010 \ -0.5 \ 1 \ 1.5 \ 2}_{0.5 \ 1 \ 1.5 \ 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >30%                                             | 1 25 (1 07–1 46) | 1 23 (1 05–1 44)    | 1 23 (1 05–1 43)   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P trend                                          | 0.004            | 0.009               | 0.010              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | 0.5 1 1.5 2      | 0.5 1 1.5 2         | 0.5 1 1.5 2        |  |

#### Figure S1 Associations of different exposure metrics of night shift work with HHcy odds. HHcy,

hyperhomocysteinemia; OR, odds ratio; CI, confidence intervals. Model 1: unadjusted; Model 2: adjusted for age and sex; Model 3: adjusted for age, sex, BMI, smoking status, dyslipidaemia, hypertension, and decreased eGFR.



Figure S2 Prevalence of HHcy according to different exposure metrics of night shift work. The number in the middle of each column indicates the number of subjects included in the category. \*P < 0.05 (vs. the "Never" group).



Figure S3 Associations of duration, cumulative number and cumulative length of night shifts with tHcy (as a continuous or a binary variable) from restricted cubic spline models after deleting the last 1% quantile of the duration of night shifts, cumulative number of night shifts and cumulative length of night shifts. "Difference in tHcy" indicates difference of tHcy (µmol/L) levels in the serum where the reference values for duration, cumulative number and cumulative length of night shifts are all 0 (never worked night shifts); Adjusted for age, sex, BMI, smoking status, dyslipidaemia, hypertension, and decreased eGFR. OR, odds ratio; CI, confidence interval; tHcy, total homocysteine; HHcy, hyperhomocysteinemia.

## References

- 1 Maskarinec G, Lim U, Jacobs S, et al. Diet Quality in Midadulthood Predicts Visceral Adiposity and Liver Fatness in Older Ages: The Multiethnic Cohort Study. *Obesity (Silver Spring, Md.)* 2017;25:1442-50.
- 2 Celis-Morales CA, Perez-Bravo F, Ibanez L, et al. Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers. *PLoS One* 2012;7:e36345.
- 3 Soldatos CR, Dikeos DG, Paparrigopoulos TJ. Athens Insomnia Scale: validation of an instrument based on ICD-10 criteria. *J. Psychosom. Res.* 2000;48:555-60.
- 4 Stamatakis E, Davis M, Stathi A, et al. Associations between multiple indicators of objectivelymeasured and self-reported sedentary behaviour and cardiometabolic risk in older adults. *Prev. Med.* 2012;54:82-7.
- 5 2016 Chinese guidelines for the management of dyslipidemia in adults. *J Geriatr Cardiol* 2018;15:1-29.
- 6 Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. *Ann. Intern. Med.* 2009;150:604-12.
- 7 Webster AC, Nagler EV, Morton RL, et al. Chronic Kidney Disease. *Lancet (London, England)* 2017;389:1238-52.
- 8 GBZ/T GBZ/T 229.1–2010 Classification of occupational hazards at workplaces. Part 1: Occupational exposure to industrial dust. http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121012 70490.htm
- 9 GBZ/T 192.1–2007 Determination of dust in the air of workplace. Part 1: Total dust concentration. http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121012\_70522.htm
- 10 GBZ 2.2–2007 Occupational exposure limits for hazardous agents in the workplace. Part 2: Physical agents. http://niohp.chinacdc.cn/zyysjk/zywsbzml/201303/t20130329\_79199.htm
- 11 GBZ/T 189.7–2007 Measurement of physical agents in workplace. Part 7: Heat Stress. http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121012\_70527.htm
- 12 GBZ/T 229.2–2010 Classification of occupational hazards at workplaces. Part 2: Occupational exposure to chemicals. http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121012 70489.htm
- 13. GBZ/T 160.28–2004 Methods for determination of inorganic carbon compounds in the air of workplace. http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121015\_70624.htm
- 14. GBZ/T 229.4–2012 Classification of occupational hazards at workplaces. Part 4: Occupational exposure to noise.

http://niohp.chinacdc.cn/zyysjk/zywsbzml/201307/t20130715\_84934.htm

 GBZ/T 189.8–2007 Measurement of physical agents in workplace. Part 8: Noise. http://niohp.chinacdc.cn/zyysjk/zywsbzml/201210/t20121012\_70526.htm