SUPPLEMENTAL MATERIAL

Supplement Table 1 Search Strategy June 19th, 2021 (PubMed)

No	Search	Hits
1	((intracoronary) AND (electrocardiogram OR	480
	ECG OR EKG)) AND (st segment)	
2	Search 1; Filters: clinical trials	113

Note: We still screened all the articles' abstracts in case of omission.

Supplement Table 2 Characteristic of included studies.

Studies	Inclusion criteria	Exclusion criteria	Clinical endpoints	Definition of significant
				ST-segment changes on
				IC-ECG
Ikenaga, et al. 2018,	Patients with stable angina	(i) acute coronary	Major adverse cardiac	ST-segment elevation on
Japan[10]	pectoris who underwent	syndrome; (ii) elevated	event (MACE), which was	IC-ECG was defined as ST-
	elective PCI for a single,	preprocedural cardiac	defined as cardiac death,	segment elevation \geqslant 1
	native, de novo coronary	biomarker; (iii) reduced	MI, repeat	mm from baseline.
	lesion and performed FD-	renal function (Estimated	revascularization and/or	
	OCT and IC-ECG both at	glomerular filtration rate	hospitalization for heart	
	baseline and after the	<30 mL/min per 1.73m2).	failure.	
	procedure in this study.	Lesion-related exclusion		
		criteria were the vessels		
		within a myocardial		

territory of previous MI,
the left main trunk,
ostium lesions, extremely
tight lesions or tortuous
vessels where we
expected difficulty in
advancing
soft-tip guidewire or the
FD-OCT catheter, severe
calcified lesions needed
for debulking device,
target vessel reference
diameter of ≥4mm
expected limitation in FD-

		OCT evaluation and		
		angiographic evidence of		
		coronary dissection or		
		major side branch		
		(>1mm) occlusion after		
		the procedure.		
Wong, et al. 2013,	Patients with acute STEMI	patients aged <18 years,	The relationship between	Improvement in IC-ECG
Australia[6]	who underwent primary-	previous myocardial	intracoronary ST-segment	ST-segment elevation \geqslant
	PCI.	infarction in the same	resolution and MVO	1 mm immediately upon
		territory,	assessed by CMR 4 days	achieving TIMI 3 flow was
		contraindications to CMR	after primary-PCI.	defined as intracoronary
		(e.g., pacemaker		ST-segment resolution.
		implantation or		
		claustrophobia) and		

contraindication	to
gadopentetate	
dimeglumine (e	.g.,
known hypersensitivity	ı to
gadopentetate	
dimeglumine	or
creatinine clearance	\leqslant
60 mL/min/1.73 m2).	

of (1) age<21 years, (2) In hospital: ventricular The ST-segment elevation Hishikari, et al. 2016, Patients' symptoms Japan[7] ischemia that STEMI, (3) history of MI, arrhythmias, congestive on the IC-ECG was coronary or (4) history of PCI, (5) renal heart failure, cardiogenic defined as >0.1 mV were worsening occurring at rest for more insufficiency with a shock, and cardiac death. elevation compared with than 10 min within the past baseline serum creatinine Follow-up: corresponding Adverse the 12 unequivocal level >1.8 mg/dL (133 events included fatal isoelectric line. hours,

	changes on an admission	lmol/L), (6) multivessel	arrhythmias, cardiac	
	ECG elevated cardiac	CAD or left main CAD, (7)	death, nonfatal MI,	
	biomarkers and no	patients in whom the	revascularization or	
	contraindication for PCI	absence of significant	congestive heart failure	
		CAD or culprit lesion	requiring hospitalization.	
		could not be identified		
		according to the		
		angiogram, and (8) major		
		(>1.5 mm) side branch		
		occlusion after PCI.		
Uetani, et al. 2009	Consecutive patients who	1) emergency coronary	Post-procedure cardiac	The study defined
Japan[11]	underwent apparently	angioplasty within 24 h of	biomarkers and in	persistent ST-segment
	successful elective coronary	onset; 2) elevated pre-	hospital major adverse	elevation in the IcECG as
	stent implantations. All had	procedural cardiac	cardiac event, which was	an ischemic change.

angina,	documen	ted	biomarker;	3)	active	defined as cardiac death
myocardial	ischemia,	or	congestive he	eart	failure;	and MI.
both.			4) severe	9	lesion	
			characteristics	5	not	
			suitable for	r	soft-tip	
			guidewire; 5)	ang	ioplasty	
			with debulki	ing	device	
			(directional	C	oronary	
			atherectomy c	or ro	tational	
			atherectomy);	;	6)	
			Thrombolysis		In	
			Myocardial	In	farction	
			(TIMI) flow gra	ade :	1 to 2 of	
			target vessel a	it the	e end of	

procedure; and 7)

multivessel stenting in a

single procedure.

Balian, et al. 2005, Italy[8]	Absence of cardiogenic	Patients with previous	Left ventricular ejection	ST-segment resolution
	shock, adequacy of	AMI, ventricular	fraction and infarct zone	was defined as a \geq 50%
	echocardiographic window,	conduction disturbances	wall motion score index.	decrease of ST-segment
	IRA occlusion (TIMI flow	on standard ECG, or		elevation compared to
	grade 0-1) or patency (TIMI	ventricular pacing were.		the corresponding
	flow grade 2) with a severe			baseline values.
	(>90%) stenosis, and a			
	successful primary stenting.			
Yajima, et al. 2001, Japan[9]	Patients with a first episode	contraindication of	coronary events, clinical	ST-segment elevation on
	of anterior myocardial	coronary	outcomes, left	IC-ECG was defined as ST-
	infarction underwent	angiogram, >50%	ventriculogram	segment elevation \geq 0.2

	emergency coronary	stenosis in the left main	measurements and	mV from baseline.
	angioplasty within 12 hours	coronary artery, >75%	myocardial viability	
	of onset.	stenosis in another major		
		coronary artery, prior		
		myocardial infarction,		
		cardiogenic shock,		
		cardiomyopathy, and		
		right or left bundle		
		branch block on the ECG.		
Balian, et al. 2006, Italy[12]	Men and women who were	Unstable patients,	Adverse events included	Intracoronary ST
	at least 18 years old, had	patients with ventricular	death, nonfatal MI, or a	deviation (elevation or
	normal CK-MB and cardiac	conduction disturbances	new coronary	depression) was
	troponin I (cTnI) values	on standard ECG or	revascularization	considered significant if
	before the procedure and	ventricular pacing, and	procedure. Major	\geqslant 1 mm compared with

	were in stable condition,	those who had	coronary events included	the corresponding
	without angina in the	procedural complications	death or nonfatal MI.	baseline value.
	previous 48 hours. Further	were excluded.		
	criteria for inclusion were			
	that the PCI procedure was			
	successful and an optimal			
	final result was obtained.			
Balian, et al. 2011, Italy[13]	Patients undergoing	prior ST segment	N/A	Compared to baseline, an
	elective coronary	elevation myocardial		IC-ECG ST-segment
	angiography with single-	infarction, prior coronary		deviation (elevation or
	vessel intermediate	revascularization, ostial		depression) \geqslant 1 mm
	stenosis (40–70% diameter	stenosis, presence of left		during adenosine
	narrowing) on quantitative	bundle branch block,		infusion was considered
	assessment were	non-sinus rhythm or		significant.

	considered for this study.	paced rhythm in resting	
		ECG and a	
		contraindication to	
		adenosine infusion.	
		Patients who were taking	
		digitalis or had ST/T wave	
		abnormalities that	
		precluded the	
		interpretation of ischemic	
		ECG were also excluded.	
Abaci, et al. 2003,	Recent (<1 month) Q-wave	Patients with poor N/A	Significant ST-segment
Turkey[14]	MI; angiographically	acoustic window,	elevation was defined as
	documented regional wall	postinfarction angina,	a new or worsening ST
	motion abnormality; single,	active congestive heart	segment elevation of \geq

	non-occlusive significant	failure, bundle branch	0.1 mV at 80 msec after
	stenosis (\geqslant 70% by	block, atrial fibrillation,	the J-point.
	quantitative	valvular disease,	
	measurements) in the IRA;	significant stenosis in the	
	and scheduled	non-IRA, and collateral	
	revascularization of the IRA	filling to the IRA.	
	for angiographic and clinical		
	reasons.		
FIESTA. 2018, Bulgaria[5]	Patients with stable or	patients with ST-segment N/A	An ST-segment
	unstable angina were	elevation myocardial	elevation >1 mm on the
	included. The inclusion	infarction and those with	IC-ECG was defined as
	criterion was angiographic	non-cardiac comorbid	significant ischemia
	bifurcation lesions in a	conditions with a life	based on the correlation
	native coronary artery with	expectancy of less than	with clinical events

a diameter \geqslant 2.5 mm and	one year. In addition,	observed	in	previous
\leqslant 4.5 mm and an side	patients with left main	studies.		
branch diameter \geqslant 2.0	coronary artery stenosis,			
mm.	total occlusion, lesion of			
	interest located at an			
	infarct-related artery,			
	subjects with LVEF <30%,			
	subjects with a moderate			
	or severe degree of			
	valvular heart disease or			
	primary cardiomyopathy			
	and patients with bundle			
	branch blocks, and atrial			
	fibrillation/flutter with no			

		identifiable isoelectric	
		line were excluded.	
Wang, et al. 2011, China[15]	Patients were included if	Patients were excluded if N/A	ST deviation (elevation or
	they (1) received elective	they (1) had increased	depression) was
	PCI for single vessel; (2) had	CK-MB or troponin T	considered significant
	unstable angina, which did	before PCI; (2) had	if >0.1 mV compared with
	not onset within 48 hours,	intraventricular block,	the corresponding
	with normal CK-MB or	ventricular escape, and	baseline value.
	troponin T before PCI; (3)	atrial fibrillation found on	
	had ideal results during the	ECG; (3) had complication	
	procedure.	occurred during the	
		procedures, including	
		slow flow, no flow, stent	
		thrombosis, acute	

coronary	occlusion,	and
----------	------------	-----

perforation.

Vassilev, et al. 2016,	At least 18 years old, with	patient with ST-segment N/A	An 0.5 mV ST-segment
Bulgaria[16]	stable or unstable angina,	elevation myocardial	elevation or depression
	angiographic bifurcation	infarction and those with	above or below J-point
	lesions located in a native	non-cardiac co-morbid	was accepted as
	coronary artery with	conditions with life	threshold for defining of
	diameter of \geqslant 2.5 mm	expectancy <1 year. The	ischemia occurrence.
	and \leqslant 4.5 mm and side	following patients were	
	branch with diameter of \geqslant	also excluded: 1) left	
	2.0 mm.	main coronary artery	
		stenosis, 2) total	
		occlusion before	
		occurrence of SB, 3)	

lesion of interest located
at infarct-related artery,
4) subjects with left
ventricular ejection
fraction < 30%, 5)
subjects with moderate
or severe degree valvular
heart disease or primary
cardiomyopathy, and 6)
patients with bundle
branch blocks, atrial
fibrillation patient with
ST-segment elevation
myocardial infarction and

those with non-cardiac	
co-morbid conditions	
with life expectancy <1	
year. The following	
patients were also	
excluded: 1) left main	
coronary artery stenosis,	
2) total occlusion before	
occurrence of SB, 3)	
lesion of interest located	
at infarct-related artery,	
4) subjects with left	
ventricular ejection	
fraction < 30%, 5)	

subjects with moderate
or severe degree valvular
heart disease or primary
cardiomyopathy, and 6)
patients with bundle
branch blocks, atrial
fibrillation/flutter with no
identifiable isoelectric
line.

PCI, percutaneous coronary intervention. FD-OCT, frequency-domain optical coherence tomography. IC-ECG, intracoronary electrocardiogram.

CAD, coronary artery disease. MI, myocardial infarction. STEMI, ST-segment elevation myocardial infarction. MVO, microvascular obstruction.

CMR, cardiac magnetic resonance. ECG, electrocardiogram. FFR, fractional flow reserve. IRA, infarct-related artery. TIMI, thrombolysis in

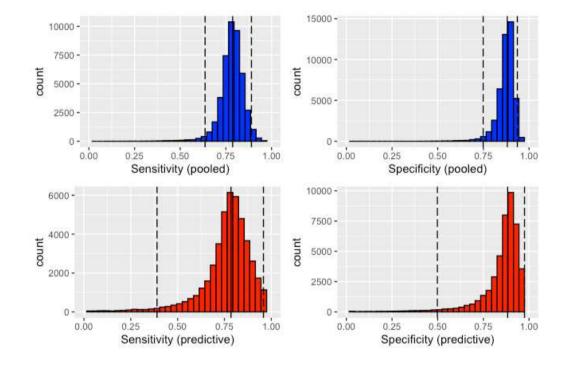
myocardial infarction. CK-MB, creatine kinase-myoglobin. LVEF, left ventricular ejection fraction.

Supplement Table 3 Quality assessment adapted from the Newcastle-Ottawa Scale for studies reported clinical outcomes.

			Se	lection		Comparability		Outcome		
	Represent	tativeness	Selection	Ascertainment	Demonstration	Comparability	Assessment	Was	Adequacy	-
	of the	exposed	of the	e of exposure	that outcome	of cohorts on	of outcome	follow-up	of follow	
Study	cohort		non-		of interest was	the basis of		long	up of	Total
Study			exposed		not present at	the design or		enough	cohorts	score
			cohort		start of study	analysis		for		
								outcomes		
								to occur		
Ikenaga, et	₩		₩	*			*	₩	*	6
al.										
2018[10]	ц.		ىد	<u>بد</u>		ىك بك	ц.	л.	ц.	
Wong, et	*		*	*		**	*	*	*	8
al. 2013[6]			-			**		*	ydar.	0
Hishikari, et al.	*		747	*		**	*	*	747	8
et al. 2016[7]										
Uetani, et	*		*	*		**	*			6
al.	Ť		T	Ť		TT	Ť			0
2009[11]										
Balian, et	₩		*	*			*	*	*	6
al. 2005[8]									-	-
Yajima, et	₩		*	*			₩			4
al. 2001[9]										
Balian, et	*		*	*			*	*	*	6
al.2006[12]										

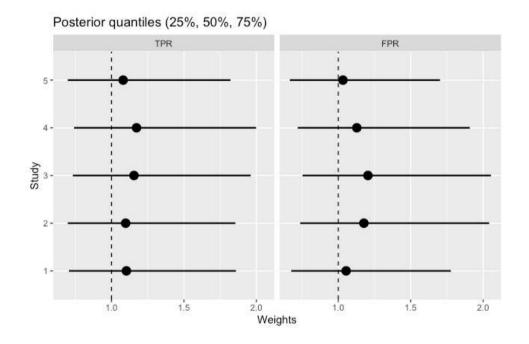
Supplement Table 4 Quality assessment adapted from QUADAS tool for diagnostic studies.

Question	Balian, et al.	Balian, et al.	Abaci, et al.	FIESTA.	Wang, et al.	Vassilev, et al.
Question	2006[12]	2011[13]	2003[14]	2018[5]	2011[15]	2016[16]
1. Was the spectrum of patients	Yes	Yes	Yes	Yes	Yes	Yes
representative of the patients who will						
receive the test in practice?						
2. Were selection criteria clearly described?	Yes	Yes	Yes	Yes	Yes	Yes
3. Is the reference standard likely to correctly	Yes	Yes	Yes	Yes	Yes	Yes
classify the target condition?						
4. Is the time period between reference	Yes	Yes	Yes	Yes	Yes	Yes
standard and index test short enough to be						
reasonably sure that the target condition did						
not change between the two tests?						
5. Did the whole sample or a random	Yes	Yes	Yes	Yes	Yes	Yes


selection of the sample, receive verification

6. Did patients receive the same reference	Yes	Yes	Yes	Yes	Yes	Yes
standard regardless of the index test result?						
7. Was the reference standard independent	Yes	Yes	Yes	Yes	Yes	Yes
of the index test (i.e. the index test did not						
form part of the reference standard)?						
8. Was the execution of the index test	Yes	Yes	Yes	Yes	Yes	Yes
described in sufficient detail to permit						
replication of the test?						
9. Was the execution of the reference	Yes	Yes	Yes	Yes	Yes	Yes
standard described in sufficient detail to						
permit its replication?						
10. Were the index test results interpreted	Yes	Yes	Yes	Unaware	Unaware	Unaware

without knowledge of the results of the


reference standard?

11. Were the reference standard results	Unaware	Unaware	Unaware	Unaware	Unaware	Unaware
interpreted without knowledge of the results						
of the index test?						
12. Were the same clinical data available	Yes	Yes	Yes	Yes	Yes	Yes
when test results were interpreted as would						
be available when the test is used in						
practice?						
13. Were uninterpretable/ intermediate test	Yes	Unaware	Yes	Unaware	Unaware	Unaware
results reported?						
14. Were withdrawals from the study	Yes	Unaware	Unaware	Yes	Unaware	Unaware
explained?						

Supplemental Figures and Figure Legends

Supplement Figure 1 Posterior distributions for the pooled sensitivity and specificity and their predictive posteriors. The pooled sensitivity and specificity (upper) were 0.78 (95% credibility intervals 0.64-0.89) and 0.87 (95% credibility intervals 0.75-0.94), respectively. And predictive posterior sensitivity and specificity (lower) were 0.76 (95% credibility intervals 0.39-0.96) and 0.85 (95% credibility intervals 0.50-0.98), respectively.

Supplement Figure 2 Posterior distributions of the component weights of the diagnostic studies. Study 1: Balian, et al, 2011; Study 2: FIESTA, 2018; Study 3: Balian, et al, 2006; Study 4: Wang, et al, 2011; Study 5: Vassilev, et al, 2016. The posterior probabilities of studies were almost centered at 1.0, providing no evidence that any of the studies gave conflict of evidence in relation to the sensitivity or specificity. TPR, true positive rate; FPR, false positive rate.