Supplementary Material

Supplementary Methods

- 1. Adjudication
- 2. Diagnostic definitions
- 3. Biochemical analysis

Supplementary Tables

Supplementary Table S1: Characteristics of responders and non-responders at 3 months
Supplementary Table S2: RAND-12 scores in responders and in a normative population
Supplementary Table S3: Univariable linear regression analyses of candidate predictors and quality of life outcome scores.

Supplementary Table S4: Mediator analysis investigating which variables that could mediate the predictive value of an UAP diagnosis for the different outcomes (dependent variables). Variables that changed the unstandardized B more than 10% are marked* below.

Supplementary Methods

Adjudication

All routine clinical assessments were recorded and registered retrospectively. Demographic and clinical characteristics were obtained from electronic medical records. Two independent

cardiologists adjudicated the final diagnosis based on all available clinical, routine laboratory (including cTnT at admission and at 3 and 8-12 hours from admission), electrocardiogram (ECG), ultrasound, and imaging findings, including cardiac computed tomographic angiography and conventional angiography(1). A third adjudicator resolved disagreements. Specific diagnostic criteria were predefined for 22 different medical conditions based on guidelines that were available during planning of the study (see "Diagnostic definitions" below). NSTEMI was defined according to the third universal definition for MI, including a significant rise and fall of cTn with at least one value above the 99th percentile combined with symptoms of ischemia, ECG changes, and image evidence of loss of viable myocardium or intracoronary thrombus.(2) Delta values of 20% (baseline cTnT concentration >14 ng/L) or 50% (baseline cTnT concentration \leq 14 ng/L) in serial cTnT measures were regarded as significant, as suggested by the ESC in 2012.(1, 2) Since 2012, several studies have found a significantly lower 99th percentile concentration of cTn for women compared with men,(3-5) but knowledge of sex-specific cutoffs for women regarding diagnosing NSTEMI is partial because of a lack of data on pathophysiology.(6) Consequently, we chose to apply a common cutoff for all patients.

Diagnostic definitions

Myocardial infarction (AMI, MI): defined according to the third universal definition of myocardial infarction (7):

Detection of a rise and/or fall of cardiac biomarker values (preferably cardiac troponin) with at least one value above the 99th percentile upper reference limit (URL) and with at least one of the following:

- 1. Symptoms of ischemia
- 2. Development of pathologic Q waves in the electrocardiogram (ECG)
- New or presumed new significant ST-Segment-T wave (ST-T) changes or new left bundle branch block (LBBB).
- 4. Identification of an intracoronary thrombus by angiography or autopsy
- Imaging evidence of new loss of viable myocardium or a new regional wall motion abnormality

Unstable angina pectoris (UAP): defined as symptoms suggestive of an ACS without elevation in biomarkers with or without ECG changes indicative of ischemia.(8) *Stable angina* was defined as typical angina symptoms lasting >1 month without an increase in magnitude, duration or frequency of the pain and a known history of coronary artery disease.(9)

Pericarditis was diagnosed if at least two of four diagnostic criteria were present, as defined in several studies: typical pleuritic chest pain, detection of a pericardial rub on auscultation, typical ECG changes, new or increased amount of pericardial effusion on echocardiography.(10) *Myocarditis* was diagnosed according to the position statement of ESC from 2013.(11) *Takotsubo cardiomyopathy* was diagnosed with the modified criteria suggested by The Mayo Clinic in 2008.(12)

Heart failure was defined according to the ESC diagnostic criteria of 2016.(13)

Atrial fibrillation, atrial flutter and other supraventricular arrhythmias were diagnosed by

ECG findings and the lack of symptoms and biochemical results supporting another disease.

Aortic stenosis and other valvular diseases were diagnosed in accordance with

echocardiographic findings and a history supporting the valve disease as cause of the symptoms.(14)

Myalgia was defined as chest pain provoked by palpation in lack of cardiac disease.

GERD was based on gastroscopic findings, also in the lack of cardiac disease.

Cholecystitis were defined by the Tokyo Guidelines of 2006 while other abdominal diseases were defined according to operative, endoscopic or radiological findings.(15)

Pneumonia was defined by typical symptoms and a chest X-ray supporting the disease, while the diagnosis of both pulmonary embolism and pneumothorax was based on radiologic findings and the lack of concurrent cardiac disease.

COPD was defined in accordance with the criteria by Stephens MB from 2008.(16)

NCCP was defined as chest pain without any specific clinical, radiologic or biochemical findings.

Biochemical analysis

Hs-cTnT was measured using the Roche Diagnostics hs-cTnT assay with limit of blank (LoB) 3 ng/L, limit of detection (LoD) 5 ng/L, 99th percentile 14 ng/L, measurement range $4 - 10\ 000$ ng/L and 10% analytical within-series coefficient of variation (CV_A) at 4.5 ng/L; CV_A was below 5% for concentrations of 10 ng/L or higher(17). Hs-cTnI was measured using the Abbott Diagnostics hs-cTnI assay. The assay has a LoB 0.9 ng/L, LoD 1.7 ng/L, 99th percentile 26 ng/L and measurement range 2-50 000 ng/L, with 10% CV_A at 4.6 ng/L(17).

Glucose, creatinine and lipids were measured using the Cobas 8000 from Roche Diagnostics. The glomerular filtration rate was estimated using the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration)(18) formula using an enzymatic isotope dilution mass spectrometry traceable creatinine assay (Roche Diagnostics) with a CV_A less than 3% for concentration > 60 µmol/L.

Supplementary Tables

Supplementary Table S1. Characteristics of responders and non-responders at 3 months. Continuous variables are reported as median values (25th percentile to 75th percentile), proportions are given as absolute numbers (percentages).

Parameter	Responder	Non-responder N=718	P-value
	N=774 (51.9%)	(48.3%)	1 -value
		(1000 / 0)	
Age, median (25th to 75th	66 (57-73)	58 (47-71)	< 0.001
percentile)			
Gender, female, n (%)	305 (39.4)	284 (39.6)	0.953
Risk factors, n (%)			
Hypertension	351 (45.3)	259 (36.1)	< 0.001
Hyperlipidemia (known)	342 (44.2)	237 (33.0)	< 0.001
Diabetes mellitus	94 (12.1)	82 (11.4)	0.665
Insulin-dependent	25 (3.2)	25 (3.5)	0.787
Family history (MI)	142 (18.3)	127 (17.7)	0.494
Unknown	66 (8.5)	74 (10.3)	0.239
Current smoker	135 (17.4)	147 (20.5)	0.135
Previous smoker	355 (45.9)	297 (41.4)	0.080
Medical history, n (%)			
Prior MI	147 (19.0)	137 (19.1)	0.965
Prior PCI	167 (21.6)	124 (17.3)	0.036
Prior CABG	58 (7.5)	52 (7.2)	0.853
Prior Heart Failure	26 (3.4)	25 (3.5)	0.896
Prior Stroke	25 (3.2)	17 (2.4)	0.350
Peripheral vascular disease	17 (2.2)	12 (1.7)	0.463
Revascularization	146 (18.9)	72 (10.0)	< 0.001
Biomarkers			
cTnT, ng/L	8.0 (4.0-18.0)	6.0 (3.0-14.0)	< 0.001
cTnI, ng/L	3.8 (1.94-11.31)	2.94 (1.50-7.50)	< 0.001

Supplementary Table S2: RAND-12 scores in responders and in the normative population. Data are reported as median values (25th and 75th percentile).

	Responders N= 774	General population N= 6240	P-value
PCS-12	50 (37-59)	52 (42-55)	0.383
MCS-12	51 (41-58)	58 (54-61)	< 0.001

	SAQ7-				SAQ7-		
Waniah la	AF	050/ C1	D	V	QL	050/ C1	D and law a
Variable	B	95% CI	P-value	Variable	B	95% CI	P-value
Age	-0.02	-0.10,	0.676	Age	0.008	-0.12,	0.898
Candan	0.14	0.06	0.020	Caular	2.0	0.14	0.241
Gender	-0.14	-2.87,	0.920	Gender	-2.00	-7.10,	0.241
aTnT	0.000	2.30	0.116	aTnT	0.02	0.001.0.4	0.027
CIIII	0.009	-0.002,	0.110	CIIII	0.02	0.001, 0.4	0.037
cTnI	0.001	0.000	0.115	cTnI	0.001	0.000	0.049
• m	0.001	0.001	0.115	0 mi	0.001	0.002	0.019
Prior MI	-6.44	-9.79	< 0.001	Prior MI	-5.41	-10.82	0.050
		3.09				0.002	
Prior PCI	-7.43	-10.63, -	< 0.001	Prior PCI	-7.40	-12.57, -	0.005
		4.23				2.24	
Prior CABG	-4.93	-9.86,	0.051	Prior CABG	-11.02	-19.28,	0.009
		0.012				2.75	
Prior Stroke	-1.95	-9.37,	0.607	Prior Stroke	-1.41	-7.08,	0.624
		5.48				4.25	
Prior Heart failure	-0.52	-9.37,	0.607	Prior Heart	-11.49	-23.20,	0.054
		5.48		failure		0.22	
Hypertension	-4.06	-6.716,	0.003	Hypertension	-6.11	-10.42, -	0.006
		-1.404				1.79	
Current smoker	-0.05	-3.54,	0.980	Current smoker	-8.04	-13.76,	0.006
D 1 1 1	1.65	3.45	0.066	D 1 1 1	6.51	2.32	0.102
Reduced renal	-4.65	-9.61,	0.066	Reduced renal	-6.71	-14.80,	0.103
Tunction	4.07	0.31	0.016	Tunction	5.01	1.30	0.002
Diabetes	-4.97	-9.02, -	0.016	Diabetes	-5.81	-12.37,	0.082
DMI	0.24	0.93	0.221	DMI	0.10	0.74	0.577
DIVII	-0.24	-0.03,	0.231	DIVII	-0.19	-0.85,	0.377
eGER	0.05	-0.04	0.280	eGER	0.03	-0.12	0.667
COLK	0.05	0.15	0.200	COLK	0.05	0.19	0.007
Revascularization	2.51	-0.88.	0.146	Revascularization	5.64	0.175.	0.043
		5.89				11.11	
NSTEMI	3.30	-0.49,	0.088	NSTEMI	4.79	-1.31,	0.124
		7.09				10.90	
UAP	-9.16	-12.66, -	< 0.001	UAP	-9.14	-14.78, -	0.002
		5.65				3.50	
Non-coronary	-2.34	-7.63,	0.386	Non-coronary	-8.76	-17.71,	0.055
cardiac disease		2.95		cardiac disease		0.19	
Non-cardiac disease	2.03	-3.36,	0.460	Non-cardiac	2.52	-6.36,	0.578
		7.42		disease		11.40	
NCCP	3.81	1.15, 6.47	0.005	NCCP	4.83	0.50, 9.16	0.029

Supplementary Table S3. Univariable linear regression analyses of candidate predictors and quality of life outcome scores.

	SAQ7-				SAQ7		
Variable	B	95% Cl	P-value	Variable	В	95% Cl	P-value
Age	-0.31	-0.43, - 0.20	< 0.001	Age	-0.11	-0.20, - 0.02	0.018
Gender	-1.46	-5.37, 2.42	0.461	Gender	-1.58	-4.59, 1.43	0.304
cTnT	0.006	-0.009, 0.02	0.435	cTnT	0.01	-0.001, 0.023	0.068
cTnI	0.0008	-0.001, 0.001	0.426	cTnI	0.001	0.000, 0.001	0.076
Prior MI	-11.40	-16.19, - 6.61	< 0.001	Prior MI	-7.94	-11.66, - 4.23	< 0.001
Prior PCI	-9.74	-14.38, - 5.14	< 0.001	Prior PCI	-8.20	-11.74, - 4.66	< 0.001

Prior CABG	-16.81	-23.99 -	<0.001	Prior CABG	-9.13	-14 66 -	0.001
The Child	10.01	9.63	-0.001		5.15	3.60	0.001
Prior Stroke	-5.38	-10.43, -	0.037	Prior Stroke	-3.13	-7.33,	0.106
		0.33				0.70	
Prior Heart failure	-17.15	-27.56, -	0.001	Prior Heart	-10.14	-18.16, -	0.013
		6.74		failure		2.12	
Hypertension	-6.62	-10.39, -	0.001	Hypertension	-5.01	-7.95, -	0.001
		2.85				2.07	
Current smoker	-5.49	-10.50	0.032	Current smoker	-3.54	-7.41,	0.073
		0.49				0.34	
Reduced renal	-16.64	-24.02, -	< 0.001	Reduced renal	-8.64	-14.11, -	0.002
function		9.27		function		3.16	
Diabetes	-5.27	-11.05,	0.074	Diabetes	-4.93	-9.41, -	0.031
		0.52				0.44	
BMI	-0.08	-0.67,	0.806	BMI	-0.15	-0.59,	0.526
		0.52				0.30	
eGFR	0.33	0.19, 0.47	< 0.001	eGFR	0.13	0.02, 0.24	0.017
Revascularization	3.48	-1.37,	0.159	Revascularization	4.10	0.29, 7.82	0.035
		8.33					
NSTEMI	3.34	-2.08,	0.226	NSTEMI	4.10	-0.12,	0.057
		8.77				8.32	
UAP	-6.86	-11.92, -	0.008	UAP	-8.70	-12.59, -	< 0.001
		1.81				4.81	
Non-coronary	-8.02	-15.2, -	0.039	Non-coronary	-5.86	-11.80,	0.053
cardiac disease		0.43		cardiac disease		0.08	
Non-cardiac disease	-2.17	-9.86,	0.581	Non-cardiac	1.44	-4.63,	0.643
		5.53		disease		7.50	
NCCP	4.93	1.14, 8.72	0.011	NCCP	4.33	1.38, 7.28	0.004

	PCS-12				MCS-12		
Variable	В	95% Cl	P-value	Variable	В	95% Cl	P-value
Age	-0.03	-0.09,	0.326	Age	0.002	-0.06,	0.988
		0.03				0.06	
Gender	-1.60	-4.02,	0.196	Gender	-1.79	-4.24,	0.151
		0.83				0.66	
cTnT	0.01	-0.002	0.103	cTnT	0.02	0.001,	0.052
						0.03	
cTnI	0.002	0.001,	0.070	cTnI	0.002	0.001,	0.064
		0.005				0.005	
Prior MI	-4.18	-7.35, -	0.010	Prior MI	-2.77	-5.98,	0.092
		1.01				0.45	
Prior PCI	-3.57	-6.62	0.021	Prior PCI	-2.40	-5.49,	0.127
						0.68	
Prior CABG	-4.36	-9.51,	0.097	Prior CABG	-1.49	-6.71,	0.574
		0.79				3.72	
Prior Stroke	-1.586	-3.99,	0.196	Prior Stroke	-2.34	-4.76,	0.059
		0.82				0.09	
Prior Heart failure	-6.22	-17.77,	0.290	Prior Heart	-4.89	-16.56,	0.411
		5.33		failure		6.78	
Hypertension	-3.86	-6.20, -	0.001	Hypertension	-2.12	-4.50,	0.082
		1.52				0.27	
Current smoker	-2.68	-5.76,	0.098	Current smoker	-3.77	-6.91, -	0.019
		0.49				0.63	
Reduced renal	-3.97	-10.89,	0.259	Reduced renal	2.15	-5.16,	0.562
function		2.96		function		9.46	
Diabetes	-4.70	-8.43, -	0.014	Diabetes	-2.44	-6.23,	0.207
		0.96				1.36	
BMI	-0.47	-0.85, -	0.015	BMI	-0.30	-0.69,	0.127
		0.09				0.09	
eGFR	-0.002	-0.12,	0.974	eGFR	-0.10	-0.22,	0.118
		0.12				0.03	
Revascularization	2.71	-0.39,	0.086	Revascularization	2.77	-0.37,	0.084
		5.82				5.91	
NSTEMI	3.04	-0.71,	0.112	NSTEMI	3.18	-0.61,	0.100
		6.80				6.97	

9

UAP	-3.63	-6.57, -	0.016	UAP	-0.97	-3.97,	0.525
		0.69				2.00	
Non-coronary	-0.004	-5.17,	0.999	Non-coronary	-0.86	-6.07,	0.747
cardiac disease		5.16		cardiac disease		4.36	
Non-cardiac disease	-1.96	-7.02,	0.445	Non-cardiac	-0.520	-5.63,	0.841
		3.09		disease		5.59	
NCCP	1.62	-0.76,	0.182	NCCP	-0.42	-2.83,	0.734
		4.00				1.96	

Supplementary Table S4: Mediator analysis investigating which variables that could
mediate the predictive value of an UAP diagnosis for the different outcomes (dependent
variables). Variables that changed the unstandardized B more than 10% are marked* below.

SAQ7-AF	В	SE	β (standardized)	t	P-value
	(unstandardized)				
$UAP \pm 10\% B$	-9.160	1.786	-0.184	-5.129	< 0.001
(-10.076 to -8.244)					
Revascularization*	5.077	1.742	0.107	2.914	0.004
UAP	-10.426	1.835	-0.209	-5.681	< 0.001
Age	-0.006	0.041	-0.005	-0.143	0.887
UAP	-9.061	1.789	-0.182	-5.066	< 0.001
Gender	-1.015	1.377	-0.027	-0.737	0.461
UAP	-9.239	1.799	-0.186	-5.136	< 0.001
cTnT	0.007	0.005	0.048	1.336	0.182
UAP	-9.098	1.793	-0.182	-5.075	< 0.001
Prior MI	-5.437	1.697	-0.115	-3.204	0.001
UAP	-8.353	1.788	-0.168	-4.672	< 0.001
Prior CABG	-2.339	2.538	-0.034	-0.921	0.357
UAP	-8.715	1.827	-0.175	-4.770	< 0.001
Hypertension	-3.450	1.339	-0.092	-2.576	0.010
UAP	-8.642	1.786	-0.174	-4.839	< 0.001
Reduced renal	-4.176	2.494	-0.075	-1.675	0.095
function					
UAP	-8.824	2.386	-0.166	-3.698	< 0.001
Diabetes	-3.933	2.042	-0.069	-1.926	0.054
UAP	-8.714	1.791	-0.175	-4.865	-1.926

SAQ7-QL	В	SE	β (standardized)	t	P-value
	(unstandardized)				
$UAP \pm 10\% B$	-9.143	2.872	-0.119	-3.183	0.002
(-10.067 to -8.228)					
Revascularization*	8.526	2.850	0.115	2.992	0.003
UAP	-11.188	2.953	-0.145	-3.789	< 0.001
Age	0.021	0.066	0.012	0.313	0.754
UAP	-9.014	2.880	-0.117	-3.130	0.002
Gender	-3.441	2.260	-0.057	-1.523	0.128
UAP	-9.428	2.887	-0.122	-3.266	0.001
cTnT	0.017	0.009	0.072	1.930	0.054
UAP	-8.962	2.880	-0.116	-3.112	0.002
Prior PCI*	-5.876	2.685	-0.084	-2.189	0.029
UAP	-7.532	2.939	-0.098	-2.563	0.011
Prior CABG*	-8.779	4.275	-0.078	-2.054	0.040
UAP	-7.780	2.924	-0.101	-2.661	0.008
Prior Heart failure	-12.017	5.928	-0.075	-2.027	0.043
UAP	-9.123	2.868	-0.118	-3.181	0.002
Hypertension	-5.548	2.196	-0.094	-2.527	0.012
UAP	-8.322	2.874	-0.108	-2.896	0.004

Current smoking	-8.155	2.897	-0.105	-2.815	0.005
UAP	-9.061	2.860	-1.118	-3.169	0.002
Diabetes	-4.763	3.338	-0.053	-1.427	0.154
UAP	-8.520	2.888	-0.111	-2.950	0.003

SAQ7-PL	В	SE	β (standardized)	t	P-value
	(unstandardized)				
$UAP\pm10\%~B$	-6.864	2.574	-0.098	-2.667	0.008
(-7.550 to -6.177)					
Revascularization*	5.485	2.531	0.082	2.167	0.031
UAP	-8.217	2.647	0.002	-3.104	0.002
Age*	-0.302	-0.057	-0.190	-5.271	< 0.001
UAP	-5.861	2.532	-0.083	-2.315	0.021
Gender	-2.074	1.980	-0.039	-1.047	0.295
UAP	-7.102	-7.102	-0.101	-2.745	0.006
cTnT	0.005	0.008	0.024	0.650	0.516
UAP	-7.052	2.573	-0.101	-2.741	0.006
Prior MI*	-10.772	2.453	-0.160	-4.391	< 0.001
UAP	-5.446	2.559	-0.077	-2.128	0.034
Prior CABG*	-15.401	3.747	-0.153	-4.110	< 0.001
UAP	-4.413	2.609	-0.063	-1.691	0.091
Prior Stroke	-5.219	2.563	-0.074	-2.036	0.042
UAP	-6.669	2.566	-0.095	-2.599	0.010
Prior Heart failure	-17.492	5.282	-0.120	-3.312	0.001
UAP	-6.995	2.555	-0.100	-2.738	0.006
Hypertension*	-6.159	1.926	-0.117	-3.197	0.001
UAP	-5.949	2.569	-0.085	-2.316	0.021
Current smoking	-5.775	2.542	-0.083	-2.272	0.023
UAP	-7.031	2.566	-0.100	-2.740	0.006
Reduced renal	-16.257	3.751	-0.196	-4.334	< 0.001
function					
UAP	-6.192	3.491	-0.080	-1.774	0.077
Diabetes	-4.466	2.954	-0.056	-1.512	0.131
UAP	-6.364	2.585	-0.091	-2.462	0.014

SAQ7 summary	В	SE	β (standardized)	t	P-value
	(unstandardized)				
$UAP \pm 10\% B$	-8.700	1.981	-0.156	-4.391	< 0.001
(-9.570 to -7.830)					
Revascularization*	6.630	1.949	0.124	3.402	0.001
UAP	-10.309	2.033	-0.184	-5.070	< 0.001
Age	-0.097	0.045	-0.076	-2.147	0.032
UAP	-8.331	1.981	-0.149	-4.205	< 0.001
Gender	-2.382	1.527	-0.056	-1.560	0.119
UAP	-8.945	1.994	-0.160	-4.486	< 0.001
cTnT	0.010	0.006	0.058	1.623	0.105
UAP	-8.675	1.987	-0.155	-4.365	< 0.001

Prior MI*	-7.100	1.886	-0.133	-3.764	< 0.001
UAP	-7.728	1.979	-0.138	-3.906	< 0.001
Prior CABG*	-6.903	2.856	-0.087	-2.417	0.016
UAP	-7.562	2.020	-0.135	-3.743	< 0.001
Prior Heart failure	-10.654	4.039	-0.093	-2.638	0.009
UAP	-8.731	1.975	-0.156	-4.420	< 0.001
Hypertension	-4.448	1.489	-0.106	-2.987	0.003
UAP	-8.026	1.981	-0.144	-4.052	< 0.001
Current smoking	-3.761	1.950	-0.068	-1.928	0.054
UAP	-8.680	1.979	-0.155	-4.385	< 0.001
Reduced renal	-8.176	2.770	-0.130	-2.952	0.003
function					
UAP	-7.894	2.655	-0.131	-2.973	0.003
Diabetes	-3.940	2.275	-0.062	-1.732	0.084
UAP	-8.218	1.991	-0.147	-4.128	< 0.001

PCS-12	В	SE	β (standardized)	t	P-value
10012	(unstandardized)		F(-	
$UAP \pm 10\% B$	-3.631	1.497	-0.124	-2.426	0.016
(-3.994 to -3.268)					
Revascularization*	3.990	1.619	0.130	2.464	0.014
UAP	-4.596	1.541	-0.157	-2.982	0.003
Age	-0.028	0.031	-0.046	-0.899	0.369
UAP	-3.554	1.499	-0.121	-2.371	0.018
Gender	-1.937	1.231	-0.081	-1.574	0.116
UAP	-3.859	1.503	-0.132	-2.567	0.011
cTnT	0.011	0.007	0.078	1.521	0.129
UAP	-3.558	1.493	0.007	-2.383	0.018
Prior MI*	-3.822	1.612	-0.121	-2.371	0.018
UAP	-3.241	1.496	-0.111	-2.166	0.031
Hypertension*	-3.579	1.193	-0.153	-3.001	0.003
UAP	-3.095	1.492	-0.106	-2.075	0.039
Current smoking	-2.628	1.579	-0.085	-1.664	0.097
UAP	-3.599	1.494	-0.123	-2.409	0.016
Diabetes	-4.286	1.900	-0.115	-2.256	0.025
UAP	-3.271	1.497	-0.112	-2.185	0.029
BMI	-0.469	0.191	-0.170	-2.457	0.015
UAP	-3.298	1.956	-0.116	-1.686	0.093

MCS-12	В	SE	β (standardized)	t	P-value
	(unstandardized)				
$UAP \pm 10\% B$	-0.970	1.524	-0.033	-0.636	0.525
(-1.067 to -0.873)					
Revascularization*	3.234	1.651	0.104	1.959	0.051
UAP	-1.797	1.572	-0.061	-1.143	0.254
Age	0.001	0.032	0.002	0.039	0.969
UAP	-0.996	1.526	-0.034	-0.653	0.514

Gender*	-1.898	1.252	-0.078	-1.516	0.130
UAP	-1.243	1.529	-0.042	-0.813	0.417
Prior Stroke	-2.337	1.234	-0.097	-1.893	0.059
UAP	-0.992	1.518	-0.034	-0.654	0.514
Current smoking	-3.767	1.600	-0.120	-2.354	0.019
UAP	-0.985	1.514	-0.033	-0.651	0.516

References

1. Tjora HL, Steiro OT, Langorgen J, Bjorneklett R, Nygard OK, Renstrom R, et al. Aiming toWards Evidence baSed inTerpretation of Cardiac biOmarkers in patients pResenting with chest pain-the WESTCOR study: study design. Scandinavian cardiovascular journal : SCJ. 2019:1-6.

2. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. European heart journal. 2012;33(20):2551-67.

3. Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem. 2010;56(2):254-61.

4. Saenger AK, Beyrau R, Braun S, Cooray R, Dolci A, Freidank H, et al. Multicenter analytical evaluation of a high-sensitivity troponin T assay. Clin Chim Acta. 2011;412(9-10):748-54.

5. Gore MO, Seliger SL, Defilippi CR, Nambi V, Christenson RH, Hashim IA, et al. Age- and sexdependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014;63(14):1441-8.

6. Romiti GF, Cangemi R, Toriello F, Ruscio E, Sciomer S, Moscucci F, et al. Sex-Specific Cut-Offs for High-Sensitivity Cardiac Troponin: Is Less More? Cardiovascular therapeutics. 2019;2019:9546931.

7. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012;33(20):2551-67.

8. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent STsegment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267-315.

9. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949-3003.

10. Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921-64.

11. Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(33):2636-48, 48a-48d.

12. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J. 2008;155(3):408-17.

13. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129-200.

14. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. European Heart Journal. 2017;38(36):2739-91.

15. Hirota M, Takada T, Kawarada Y, Nimura Y, Miura F, Hirata K, et al. Diagnostic criteria and severity assessment of acute cholecystitis: Tokyo Guidelines. J Hepatobiliary Pancreat Surg. 2007;14(1):78-82.

16. Stephens MB, Yew KS. Diagnosis of chronic obstructive pulmonary disease. Am Fam Physician. 2008;78(1):87-92.

17. Apple F KP, Hammarsten O, Saenger A, Body R, Lam SPC, Collinson P, Jaffe A, Ordoñez-Llanos J, Omland T. Committee on Clinical Applications of Cardiac Bio-Markers (C-CB). High-Sensitivity* Cardiac Troponin I and T Assay Analytical Characteristics Designated by Manufacturer v072020 www.iffc.org: The International Federation of Clinical Chemistry and Laboratory Medicine; 2020 [Available from: https://www.ifcc.org/media/478592/high-sensitivity-cardiac-troponin-i-and-t-assay-analytical-characteristics-designated-by-manufacturer-v072020.pdf.

18. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247-54.