Online Supplemental File 2: Tables and Figure

Online Supplemental File 2 for 'Global prevalence of nontuberculous mycobacteria in adults with non-cystic fibrosis bronchiectasis 2006-2021: a systematic review and meta-analysis'.

Table of Contents

Table S1	Search strings	Page 2
Table S2	Characteristics of studies included in the systematic review and meta- analysis	Page 3-4
Table S3	Ratings of the quality of the evidence and Risk of Bias assessment	Page 5-7
Table S4	Statistics and re-calculation of NTM subspecies	Page 8
Figure S1	Re-calculating the prevalence of NTM in adults with non-cystic fibrosis bronchiectasis from 1990 to 2006 (Chu's study in 2014)	Page 9
References		Page 10

1

Table S1: Search strings

Database and date	Yield	Duplicates	Search String used
Medline Jan 31, 2022	414	0	"Bronchiectasis" [Mesh]) AND ("Nontuberculous Mycobacteria" OR "non tuberculous mycobacter" [Mesh]) AND ("Atypical Mycobacter" [Mesh] OR ("Mycobacter abscessus" [Mesh]) OR "Mycobacter avium complex" [Mesh] OR "Mycobacter chelonae" [Mesh] OR "Mycobacter fortuitum" [Mesh] OR "Mycobacter kansasii" [Mesh] OR "Mycobacter marinum" [Mesh] OR "Mycobacter scrofulaceum" [Mesh] OR "Mycobacter smegmatis" [Mesh] OR "Mycobacter ulcerans" [Mesh] OR "Mycobacter xenopi" [Mesh])
Embase Jan 31, 2022	678	32	"Bronchiectasis" [Mesh]) AND ("Nontuberculous Mycobacteria" OR "non tuberculous mycobacter" [Mesh]) AND ("Atypical Mycobacter" [Mesh] OR ("Mycobacter abscessus" [Mesh]) OR "Mycobacter avium complex" [Mesh] OR "Mycobacter chelonae" [Mesh] OR "Mycobacter fortuitum" [Mesh] OR "Mycobacter kansasii" [Mesh] OR "Mycobacter marinum" [Mesh] OR "Mycobacter scrofulaceum" [Mesh] OR "Mycobacter smegmatis" [Mesh] OR "Mycobacter ulcerans" [Mesh] OR "Mycobacter xenopi" [Mesh])
Cochrane Library Jan 31, 2022	19	9	Bronchiectasis AND Nontuberculous Mycobacteria" OR "non tuberculous mycobacter
Web of Science Jan 31, 2022	504	70	"nontuberculous mycobacter" OR TOPIC: "non tuberculous mycobacter") OR TOPIC: "Atypical Mycobacter") OR TOPIC: (("Mycobacter abscessus" or "Mycobacter avium complex" OR "Mycobacter chelonae" OR "Mycobacter fortuitum" OR "Mycobacter* kansasii OR "Mycobacter marinum" OR "Mycobacter scrofulaceum" OR "Mycobacter smegmatis" OR "Mycobacter ulcerans" OR "Mycobacter xenopi")) OR TOPIC: "ntm"
Total	1615	111	
Other sources Jan 31, 2022	514		'Nontuberculous Mycobacteria' OR 'non-cystic fibrosis bronchiectasis'; publication date from 2006 to 2021, including citations
111 duplicates v	were removed to	o give a total of	2014 studies

Table S2: Characteristics of studies included in the initial analysis of selected studies

Author; year	Country	Data Source	Time of sampling	Mean age (Y)	Sample size	Patients with NTM	Study design	Method of detection	NTM [%]
1. McShane, et al. 2012 [1]	USA	University Referral Center	2009-2011	≥18	106	9	RS	Sputum culture	8.5
2. Xu, et al. 2014 [2]	China	Pulmonary Hospital	2009-2012	47.4	3857	431	RS	Sputum culture	11.2
3. Guan, et al. 2015 [3]	China	Outpatient Respiratory Clinics	2012-2013	44.6	144	5	PS	Sputum culture	3.5
4. Kadowaki, et al. 2015 [4]	Japan	Medical Center	2008-2012	73	147	26	RS	Sputum culture	17.7
5. Máiz, et al. 2016 [5]	Spain	Teaching hospitals	2012-2015	55.7	218	18	PS	Sputum culture	8.3
6. Izhakian, et al. [6] 2016	Israel	Rabin Medical Center	2006-2014	64	339	29	RS	Bronchoalveolar lavage cultures	8.6
7. Faverio, et al. 2016 [7]	Italy	San Gerardo Hospital	2006-2014	65	162	32	PS	Bronchoalveolar /sputum culture	19.8
8. Buscot, et al. 2016 [8]	France	University Hospital	2002-2012	61.0	196	7	RS	Sputum/ bronchoalveolar lavage culture	3.6
9. Dimakou, et al. 2016 [9]	Greece	Hospital of Chest Diseases	2009-2014	60.5	205	2	PS	Sputum culture	0.9
10.* Park, et al. 2016 [10]	Korea	University Hospital >5 years	2003-2013	59.6	155	69	RS	Sputum/BAL culture	44.5
11.* Aksamit, et al. 2017 [11]	USA	Bronchiectasis Research Registry	2008-2014	66	1,314	653	RS	Sputum culture	49.7
12.* Hsieh, et al. 2018 [12]	China	Bronchiectasis Medical Center	2005-2014	65.3	96	35	RS	Sputum culture	36.5
13. Sin, et al. 2019 [13]	Korea	National University Hospital	2005-2016	59.6	6957	1740	RS	Sputum culture	25
14.* Amorim, et al. 2019 [14]	Portugal	Bronchiectasis Referral Center	2011-2017	54.7	186	27	PS	Sputum culture	14.5
15.* Visser, et al. 2019 [15]	Australia	Australian Bronchiectasis Registry	2016-2018	71	169	40	PS	Sputum culture	23.6
16. Pieters, et al. 2019 [16]	Netherland	University Medical Center	2012-2016	60	120	6	RS	Sputum culture	5.0
17.* Dhar, et al. 2019 [17]	India	bronchiectasis registry	2015-2017	56	1299	8	PS	Sputum culture	0.6
Continued next pag	ge								

3

Author; year	Country	Data Source	Time of sampling	Mean age (Y)	Sample size	Patients with NTM	Study design	Method of detection	NTM [%]
18. Huang, et al. 2020 [18]	China	Medical Record Database	2002- 2016	65.5	8385	304	RS	Sputum culture	3.6
19. Darwish, et al. 2020 [19]	Egypt;	University Hospital	2017- 2018	55.2	40	3	PS	Sputum PCR	7.5
20.* Kwak, et al. 2020 [20]	Korea	Hospital	2011- 2019	62	221	35	PS	Sputum culture	15.8
21. Sharif, et al. 2020 [21]	Pakistan	Hospital	2017- 2019	NA	196	2	PS	Sputum culture	1.0
22.* Choate, et al. 2021 [22]	USA	Bronchiectasis & NTM Research Registry	2008- 2018	63.7	1831	885	RS	Sputum culture	48.3
23.* Metersky, et al. 2021 [23]	USA	Bronchiectasis & NTM Research Registry	NA-2020	61.1	410	47	PS	Sputum culture	11.5
24.Yin, et al. 2021 [24]	China	Hospital	2018- 2020	62	202	47	RS	Sputum/BAL culture	23.3

Abbreviations: NA: Not Available; NTM: Nontuberculous Mycobacteria; MBC: mycobacteria culture; AFB: acid fast bacillus smear; BAL: bronchoalveolar lavage; RS: Retrospective Study; PS: prospective Study; UK: United Kingdom; US: United States. PCR: Polymerase Chain Reaction.

Note: Bold type with an asterisk * indicate the studies with source/selection bias. Please refer to the supplementary Table S3.

Table S3: Ratings of the quality of the evidence and Risk of Bias assessment

Study	Study Design	Domain	Source of bias	Support for Judgement	Review Author's Judgement	Risk of Bias
1. McShane, et al. 2012; US [1]	Retrospective cohort study	Attrition bias	Patient follow-up	Of all 114 patients. Two declined consent, and six patients did not follow up with the evaluation.	Eight patients were not available for the complete analysis.	Low
2. Xu, et al. 2014; Shanghai, China [2]	Retrospective cohort study	Detection bias	Detection bias	Diagnosis criterium was at least one positive culture result of NTM.	Only one positive culture result of NTM may be due to false positive or wrong operation.	Low
3. Guan, et al. 2015; Guangzhou, China [3]	Prospective randomized control cohort study	Selection bias	Patient population	Consecutively recruited from outpatient respiratory clinics.	Mild and severe symptom patients were excluded	Medium
4. Kadowaki, et al. 2015; Japan [4]	Retrospective cohort study	Selection bias	Patient selection	 Could not perform a full screening for immunodeficiency. Could not eliminate the possibility of cystic fibrosis 	 Patients with immunodeficiency were more vulnerable to NTM infection. CF patients might not be completely excluded. 	Low
5.* Máiz, et al. 2016; Spain [5]	Prospective cohort study	Source bias	Population selection	An observational study of historical cohorts from 4 Spanish teaching hospitals with multidisciplinary and standardized non-CF bronchiectasis outpatient clinics.	 Patients were outpatients, causing severe patients excluded. No unified standard for patient selection. 	High
6. Izhakian, et al. 2016; Israel [6]	Retrospective cohort study	Performance bias; Selection bias	Population selection	1.The study precluded patients not under medical care 2.The study is not generalizable to patients treated by other hospital staff members.	 Patients were in hospital with severe symptoms, causing outpatients excluded. Patients at the same location but from other hospital were not included. 	Medium
7. Faverio, et al. 2016; Italy [7]	Prospective cohort study	Selection bias	Population selection	Data were from outpatient clinic and only patients in a stable state were recruited.	Severe patients were excluded for data analysis.	Medium
8. Buscot, et al. 2016; France [8]	Retrospective cohort study	Attrition bias	Follow-up	Functional follow-up was available in 30% of patients with a median duration of 2.7 years.	Only 30% of patients could be followed up, cause attrition bias.	Low
9. Dimakou, et al. 2016; Greece [9]	Prospective cohort study	Detection bias	Detection methods	CF screening, sweat test, saccharin test, and electron microscopy and etc. were employed for patients with different symptoms.	A standard detection method is better for diagnosis and study.	Low

Study	Design	Bias Domain	Source of bias	Support for Judgement	Review Author's Judgement	Risk of Bias
10.* Park et al. 2016; Korean [10]	Retrospective cohort study	Source bias	Patient selection	The author only included the Non- CF bronchiectasis patients with followed- up for a minimum of 5 years with CT.	The patients were not selected randomly, but have been sick for more than 5 years, causing an overestimate of the prevalence of NTM.	High
11.* Aksamit, <i>et</i> <i>al.</i> 2017; US [11]	Retrospective cohort study	Source bias	Data source	Data was from Bronchiectasis Research Registry (BRR).	The cohort of patients enrolled from tertiary referral institutions with interest in NTM lung disease, the demographic information described is potentially biased, including overrepresentation of patients with NTM.	High
12.* Hsieh, et al. 2018; Taiwan, China [12]	Retrospective cohort study	Source bias; Selection bias	Data source and sample size	1. All 96 patients were from Linkou Medical Center. Patients with previous pulmonary tuberculosis and those who had received anti-NTM therapy were excluded. 2. Small sample population (<100).	Cases from medical center have source bias; Exclusion of some patients causes selection bias.	High
13. Sin, et al. 2019; South Korea [13]	Retrospective controlled cohort study	Detection bias	False positive	They diagnosed by the isolation of NTM from a respiratory specimen at least once.	Isolation of NTM only once may increase the prevalence due to false positive, causing higher infection rates.	Medium
14.* Amorim, et al. 2019; Portugal [14]	Prospective cohort study	Source bias; performance bias	Patient selection and sample size	1. The data was from a bronchiectasis referral center. 2. The sample size is lower than 200.	Cases from a bronchiectasis referral center have source bias; lower sample size increased the prevalence of NTM.	High
15.* Visser, et al. 2019; Australia [15]	Prospective cohort study	Selection bias; Attrition bias	Patient selection Incomplete and missing data	1. Potentially selects patients with prominent symptoms, more severe disease, and/or a higher prevalence of NTM. 2. predominantly represents non-indigenous patients 3. Patients with missing variable data were removed.	 Severe patients with prominent symptoms may cause a higher prevalence of NTM. Non-indigenous patients did not represent the whole population Data completeness limits the number of participants. 	High
16. Pieters et al. 2019; Netherland [16]	Retrospective cohort study	Performance bias	Incomplete data	The majority of patients were seen every 3 months at the outpatient clinic.	Not all the patients were seen every 3 months at the outpatient clinic.	Low

Study	Design	Bias Domain	Source of bias	Support for Judgement	Review Author's Judgement	Risk of Bias
17.* Dhar, et al. 2019; India [17]	Prospective cohort study	Source Bias	Patient selection	All the patients were from Indian bronchiectasis registry centers.	Patients from registry centers would inevitably cause an overestimation of the prevalence of NTM infections.	High
18. Huang, et al. 2020; Taiwan, China [18]	Retrospective cohort study	Source bias; Detection bias	Patient Selection	1. Inability to completely confirm the bronchiectasis diagnosis. 2. A portion of bronchiectasis diagnoses based on clinical symptoms and chest radiographs, not a reliable diagnostic tool. 3. underestimated the prevalence of immunodeficiency in our cohort.	Some patients might not be bronchiectasis; immunodeficiency may cause high prevalence due to vulnerability.	Medium
19. Darwish, et al. 2020; Egypt [19]	Prospective cohort study	Detection bias Performance bias	NTM were detected by PCR Too small sample size	1. The sputum samples were assessed by PCR, and positive cases did another PCR after 2 months. 2. Sample size 40 < 200	PCR may cause false positive. The only study (of all 13 studies) NTM was not diagnosed by MBC; Small sample size increased prevalence	Medium
20.* Kwak, et al. 2020; South Korea [20]	Prospective cohort study	Source Bias	Patient selection	Only the patients without NTM infection were included, and then studied their NTM infection afterwards.	The patients are not random cases.	High
21. Sharif, et al. 2020; Pakistan [21]	Prospective cohort study	Source bias	Patient selection	This observational cohort study was conducted in the inpatient department only.	Inpatients were usually with severe symptoms, and that may cause overestimation.	Low
22.* Choate, et al. 2021; US [22]	Retrospective cohort study	Source Bias	Patient selection	All the patients were from the bronchiectasis and NTM Research Registry (BRR).	Patients from registry centers would cause an overestimation of the prevalence of NTM infections.	High
23.* Metersky et al. 2021; US [23]	Prospective cohort study	Source Bias	Patient selection	All the patients were from the bronchiectasis and NTM Research Registry (BRR).	Patients from registry centers would cause an overestimation of the prevalence of NTM infections.	High
24. Yin, et al. 2021; China [24]	Retrospective cohort study	Performance bias	Patient information collection	Much patient information was self-reported and recorded.	The self-reported information might be inaccurate and hidden.	low

Note: Bold type with an asterisk * indicate the studies with source/selection bias.

Subspecies of NTM	Numbe r of Studies	All NTM Isolated Patient*	Patients with NTM subspecies	% of NTM Subspecies **	McShane	Kadowaki	Máiz	Izhakian	Faverio	Kwak	Darwish	Buscot	Dimakou	Metersky	Yin	% of NTM Isolated patients
MAC	11	255	193	75.687	7	28	9	14	24	29	2	7	2	40	31	
M. simiae	3	56	10	17.857	1		1	8								
M. gordonae	3	59	7	11.864	1		2		4							
M. xenopi	1	9	1	11.111	1											
M. fortuitum	4	103	7	6.796	1		2	2						2		
M. abscessus	6	208	21	10.096			3	3	1	3				1	10	
M. chelonae	6	182	11	6.044	1		1	2	2					2	3	
M. lentiflavum	1	18	1	5.556			1									
M. kansasii	3	88	5	4.88	1				1						3	
M. terrae	1	47	1	2.128										1		
M. shimoidei	1	32	1	3.125					1							
Undetermined	3	82	6	7.317						4	1			1		
Sum (person)	7	1139			9	26	18	29	32	35	3	7	2	47	47	
sum (time)					13	28	19	29	33	36	3	7	2	47	47	
Bronchiectasis Patients					106	147	218	339	162	221	40	196	205	410	202	50.712

Table S4: Statistics and calculation of NTM subspecies

Note: Of all 14 included studies, only 9 provided detection methods of NTM subspecies. *The number of all NTM is the sum of all the patients in the studies with the subspecies. **The percentage (%) of NTM infected patients is the sum of all patients with NTM infection divided by the sum of all bronchiectasis patients in all the 9 studies.

Study	Events	Total				Proportion	95%-CI	Weight (fixed)	Weight (random)
Wickremasinghe 2005	2	100 -	-			0.02	[0.00; 0.07]	18.9%	21.6%
Wang 2008	7	105				0.07	[0.03; 0.13]	6.2%	13.2%
Lee 2004	56	866	<u>i</u>			0.06	[0.05; 0.08]	52.9%	27.0%
King 2007	2	89 -	-			0.02	[0.00; 0.08]	15.0%	20.0%
Palwatwichai 2002	3	50				0.06	[0.01; 0.17]	3.3%	8.7%
Fowler 2006	7	80		+		0.09	[0.04; 0.17]	3.7%	9.5%
Fixed effect model		1290				0.05	[0.04; 0.06]	100.0%	
Random effects model Heterogeneity: $I^2 = 61\%$, τ^2	² = 0.0004,	, p = 0.0	3			0.05	[0.03; 0.07]	-	100.0%
			0.05	0.1	0.15				

Figure S1: Re-calculating the prevalence of NTM in adults with non-cystic fibrosis bronchiectasis from 1990 to 2006 in Chu's paper "Prevalence of nontuberculous mycobacteria in patients with bronchiectasis: A meta-analysis" published in 2014 [25].

References

- 1 McShane PJ, Naureckas ET, Strek ME. Bronchiectasis in a Diverse US Population. *Chest* 2012;**142**:159–67. doi:10.1378/chest.11-1024
- 2 Xu J-F, Ji X-B, Fan L-C, *et al.* Nontuberculous mycobacteria lung infection in bronchiectasis in China: Prevalence and clinical characteristics. *Am J Respir Crit Care Med*

2014;:D109.http://www.embase.com/search/results?subaction=viewrecord&from=export &id=L71677790%5Cnhttp://dx.doi.org/10.1111/resp.12416%5Cnhttp://sfx.library.uu.nl/ut recht?sid=EMBASE&issn=13237799&id=doi:10.1111/resp.12416&atitle=Nontuberculou s+mycobacteria+lung+infec

- 3 Guan W, Gao Y, Xu G, *et al.* Aetiology of bronchiectasis in Guangzhou, southern China. *Respirology* 2015;**20**:739–48. doi:10.1111/resp.12528
- 4 Kadowaki T, Yano S, Wakabayashi K, *et al.* An analysis of etiology, causal pathogens, imaging patterns, and treatment of Japanese patients with bronchiectasis. *Respir Investig* 2015;**53**:37–44. doi:10.1016/j.resinv.2014.09.004
- 5 Máiz L, Girón R, Olveira C, *et al.* Prevalence and factors associated with nontuberculous mycobacteria in non-cystic fibrosis bronchiectasis: A multicenter observational study. *BMC Infect Dis* 2016;**16**:1–7. doi:10.1186/s12879-016-1774-x
- Izhakian S, Wasser WG, Fuks L, *et al.* Lobar distribution in non-cystic fibrosis bronchiectasis predicts bacteriologic pathogen treatment. *Eur J Clin Microbiol Infect Dis* 2016;**35**:791–
 6.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=m ed12&AN=26873379
- Faverio P, Stainer A, Bonaiti G, *et al.* Characterizing Non-Tuberculous Mycobacteria Infection in Bronchiectasis. *Int J Mol Sci* 2016;17:16.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fullt ext&D=med12&AN=27854334
- 8 Buscot M, Pottier H, Marquette C-H, *et al.* Phenotyping Adults with Non-Cystic Fibrosis Bronchiectasis: A 10-Year Cohort Study in a French Regional University Hospital Center. *Respiration* 2016;**92**:1–8. doi:10.1159/000446923
- 9 Dimakou K, Triantafillidou C, Toumbis M, *et al.* Non CF-bronchiectasis: Aetiologic approach, clinical, radiological, microbiological and functional profile in 277 patients. *Respir Med* 2016;**116**:1–7. doi:10.1016/j.rmed.2016.05.001
- 10 Park J, Kim S, Lee YJ, et al. Factors associated with radiologic progression of non-cystic fibrosis bronchiectasis during long-term follow-up. *Respirology* 2016;21:1049–54. doi:10.1111/resp.12768
- Aksamit TR, O'Donnell AE, Barker A, *et al.* Adult Patients With Bronchiectasis: A First Look at the US Bronchiectasis Research Registry. *Chest* 2017;151:982–92.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med13&AN=27889361
- 12 Hsieh MH, Lin CY, Wang CY, *et al.* Impact of concomitant nontuberculous mycobacteria and pseudomonas aeruginosa isolates in non-cystic fibrosis bronchiectasis. *Infect Drug Resist* 2018;**11**:1137–43. doi:10.2147/IDR.S169789

13	Sin S, Yun SY, Kim JM, et al. Mortality risk and causes of death in patients with non-
	cystic fibrosis bronchiectasis. Respir Res
	2019;20:271.http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=full
	text&D=prem&AN=31796019

- 14 Amorim A, Meira L, Redondo M, et al. Chronic Bacterial Infection Prevalence, Risk Factors, and Characteristics: A Bronchiectasis Population-Based Prospective Study. J Clin Med 2019;8:315. doi:10.3390/jcm8030315
- 15 Visser SK, Bye PTP, Fox GJ, *et al.* Australian adults with bronchiectasis: The first report from the Australian Bronchiectasis Registry. *Respir Med* 2019;**155**:97–103. doi:10.1016/j.rmed.2019.07.016
- 16 Pieters A, Bakker M, Hoek RAS, *et al.* Predicting factors for chronic colonization of Pseudomonas aeruginosa in bronchiectasis. *Eur J Clin Microbiol Infect Dis* 2019;**38**:2299–304. doi:10.1007/s10096-019-03675-z
- 17 Dhar R, Singh S, Talwar D, et al. Bronchiectasis in India: results from the European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) and Respiratory Research Network of India Registry. Lancet Glob Heal 2019;7:e1269–79. doi:10.1016/S2214-109X(19)30327-4
- 18 Huang H-Y, Chung F-T, Lo C-Y, *et al.* Etiology and characteristics of patients with bronchiectasis in Taiwan: a cohort study from 2002 to 2016. *BMC Pulm Med* 2020;**20**:45. doi:10.1186/s12890-020-1080-7
- 19 Darwish A., El Mahalawy I, El Dahdouh S., *et al.* Nontuberculous mycobacterium as a hidden cause of noncystic fibrosis bronchiectasis. *Egypt J Chest Dis Tuberc* 2020;**69**:46. doi:10.4103/ejcdt.ejcdt_75_19
- 20 Kwak N, Lee JH, Kim H-J, *et al.* New-onset nontuberculous mycobacterial pulmonary disease in bronchiectasis: tracking the clinical and radiographic changes. *BMC Pulm Med* 2020;**20**:293. doi:10.1186/s12890-020-01331-3
- 21 Sharif N, Baig MS, Sharif S, *et al.* Etiology, Clinical, Radiological, and Microbiological Profile of Patients with Non-cystic Fibrosis Bronchiectasis at a Tertiary Care Hospital of Pakistan. *Cureus* 2020;**12**. doi:10.7759/cureus.7208
- 22 Choate R, Aksamit TR, Mannino D, *et al.* Pseudomonas aeruginosa associated with severity of non-cystic fibrosis bronchiectasis measured by the modified bronchiectasis severity score (BSI) and the FACED: The US bronchiectasis and NTM Research Registry (BRR) study. *Respir Med* 2021;**177**:106285. doi:10.1016/j.rmed.2020.106285
- 23 Metersky ML, Choate R, Addrizzo-Harris D, *et al.* The Association of Long-term Macrolide Therapy and Nontuberculous Mycobacterial Culture Positivity in Patients With Bronchiectasis. *Chest* 2021;**160**:466–9. doi:10.1016/j.chest.2021.02.019
- 24 Yin H, Gu X, Wang Y, *et al.* Clinical characteristics of patients with bronchiectasis with nontuberculous mycobacterial disease in Mainland China: a single center cross-sectional study. *BMC Infect Dis* 2021;**21**:1216. doi:10.1186/s12879-021-06917-8
- 25 Chu H, Zhao L, Xiao H, *et al.* Prevalence of nontuberculous mycobacteria in patients with bronchiectasis: A meta-analysis. *Arch Med Sci* 2014;**10**:661–8. doi:10.5114/aoms.2014.44857