Online Supplement

Effects of short-term exposure to air pollution on hospital admissions for autism spectrum disorder in Korean school-aged children: A nationwide time-series study

Kyoung-Nam Kim, Ji Hoon Sohn, Sung Joon Cho, Hwo Yeon Seo, Soontae Kim, Yun-Chul Hong

Table of Contents

Online Supplementary Table 1. Demographic and meteorological features of the regions in the Republic of Korea

Online Supplementary Table 2. Associations between PM_{2.5}, NO₂, and O₃ levels and hospital admissions for autism spectrum disorder in seven metropolitan cities and nine non-metropolitan regions

Online Supplementary Table 3. Associations of PM_{2.5}, NO₂, and O₃ levels with hospital admissions for autism spectrum disorder in a multiple-pollutant model

Online Supplementary Figure 1. Correlations among air pollutant levels (PM_{2.5}, NO₂, and O₃).

Online Supplementary Figure 2. Estimated weights of air pollution exposures in the weighted quantile sum regression analysis. PM_{2.5}, NO₂, and O₃ represent PM_{2.5} levels at lag day 1, NO₂

levels at lag day 5, and O₃ levels at lag day 4, respectively.

Online Supplementary Figure 3. Daily concentrations of PM2.5 and counts of hospital

admissions for autism spectrum disorder in Seoul, in January 2015.

Online Supplementary Table 1. Demographic and meteorological features of the regions in the

Republic of Korea

Region	Area (km ²)	Population ^a	Temperature (°C) ^b	Relative humidity (%) ^b
Seoul	605	9,794,304	12.8	59.8
Busan	770	3,414,950	15.0	61.8
Daegu	884	2,446,418	14.5	59.0
Incheon	1,063	2,662,509	11.6	71.5
Gwangju	501	1,475,745	14.2	67.1
Daejeon	539	1,501,859	13.2	69.5
Ulsan	1,061	1,082,567	14.4	63.6
Gyeonggi-do	10,187	11,379,459	11.8	67.3
Gangwon-do	16,828	1,471,513	11.2	66.1
Chungcheongbuk-do	7,408	1,512,157	11.7	66.7
Chungcheongnam-do	8,691	2,028,002	12.3	72.2
Jeollabuk-do	8,069	1,777,220	12.7	71.8
Jeollanam-do	12,335	1,741,499	13.6	72.5
Gyeongsangbuk-do	19,033	2,600,032	12.4	65.5
Gyeongsangnam-do	10,540	3,160,154	13.8	65.5
Jeju-do	1,850	531,905	16.1	72.7

^a 2010 census

^b Means during the study period (2011–2015)

Online Supplementary Table 2. Associations between PM_{2.5}, NO₂, and O₃ levels and hospital admissions for autism spectrum disorder in seven metropolitan cities and nine non-metropolitan regions^a

	Seven metropolitan cities			Nine non-metropolitan regions		
	PM _{2.5}	NO ₂	O ₃	PM _{2.5}	NO ₂	O ₃
	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR (95% CI)
Lag	0.91	0.75	1.00	0.79	0.88	0.98
day 0	(0.78, 1.05)	(0.55, 1.01)	(0.87, 1.14)	$(0.71, 0.87)^{*}$	(0.69, 1.13)	(0.89, 1.07)
Lag	1.16	1.07	1.11	1.19	1.13	1.01
day 1	(1.01, 1.34)*	(0.80, 1.43)	(0.97, 1.26)	$(1.08, 1.31)^*$	(0.89, 1.43)	(0.92, 1.10)
Lag	0.98	0.81	0.97	1.03	1.23	0.92
day 2	(0.89, 1.07)	$(0.68, 0.97)^*$	(0.89, 1.06)	(0.96, 1.09)	(1.06, 1.42)*	$(0.87, 0.98)^*$
Lag	0.91	0.83	0.92	0.95	1.22	0.97
day 3	(0.83, 1.003)	$(0.69, 0.99)^*$	(0.84, 1.00)*	(0.89, 1.02)	(1.05, 1.41)*	(0.91, 1.03)
Lag	0.96	1.03	0.94	1.00	1.16	1.08
day 4	(0.89, 1.04)	(0.90, 1.19)	(0.87, 1.01)	(0.94, 1.05)	$(1.03, 1.31)^*$	(1.03, 1.14)*
Lag	0.99	1.16	0.97	1.03	1.09	1.11
day 5	(0.90, 1.08)	(0.98, 1.37)	(0.89, 1.05)	(0.96, 1.09)	(0.95, 1.25)	(1.05, 1.17)*
Lag	0.96	1.08	0.98	1.01	1.03	1.01
day 6	(0.89, 1.03)	(0.96, 1.22)	(0.92, 1.05)	(0.96, 1.06)	(0.93, 1.14)	(0.97, 1.05)

^aThe results are presented for a 10.0 μ g/m³ increase for PM_{2.5} and 10.0 ppb for NO₂ and O₃,

respectively, in models adjusted for region, day, temperature, relative humidity, and population.

RR = relative risk; CI = confidence interval.

4

*p <0.05.

Online Supplementary Table 3. Associations of PM2.5, NO2, and O3 levels with hospital

	PM _{2.5}	NO ₂	O ₃	
	RR (95% CI)	RR (95% CI)	RR (95% CI)	
Lag day 0	0.84 (0.78, 0.90)	0.93 (0.81, 1.08)	1.00 (0.95, 1.06)	
Lag day 1	1.13 (1.06, 1.21)	1.00 (0.87, 1.15)	1.07 (1.01, 1.13)	
Lag day 2	1.05 (1.01, 1.10)	0.93 (0.85, 1.01)	1.01 (0.97, 1.05)	
Lag day 3	1.00 (0.95, 1.04)	0.96 (0.88, 1.05)	0.99 (0.96, 1.03)	
Lag day 4	0.99 (0.96, 1.03)	1.05 (0.98, 1.13)	1.01 (0.98, 1.04)	
Lag day 5	0.99 (0.94, 1.03)	1.09 (1.00, 1.18)	1.01 (0.97, 1.05)	
Lag day 6	0.95 (0.92, 0.99)	1.03 (0.97, 1.09)	0.99 (0.97, 1.02)	

admissions for autism spectrum disorder in a multiple-pollutant model^a

^a The results are presented for a 10.0 μ g/m³ increase for PM_{2.5} and 10.0 ppb for NO₂ and O₃ from the model incorporating all three air pollution exposures (PM_{2.5}, NO₂, and O₃) and adjusted for region, day, temperature, relative humidity, and population. RR = relative risk; CI = confidence interval.

Online Supplementary Figure 1. Correlations among air pollutant levels (PM_{2.5}, NO₂, and O₃).

Online Supplementary Figure 2. Estimated weights of air pollution exposures in the weighted quantile sum regression analysis. PM_{2.5}, NO₂, and O₃ represent PM_{2.5} levels at lag day 1, NO₂ levels at lag day 5, and O₃ levels at lag day 4, respectively.

8

Online Supplementary Figure 3. Daily concentrations of $PM_{2.5}$ and counts of hospital admissions for autism spectrum disorder in Seoul, in January 2015. ASD, autism spectrum disorder.