Supplemental digital content for the article:

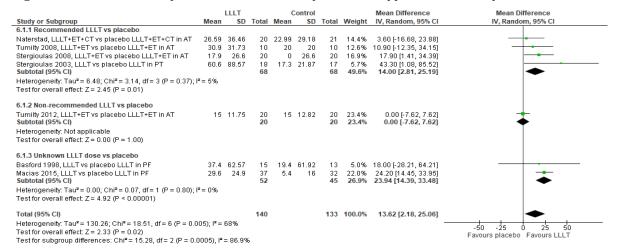
Efficacy of low-level laser therapy in patients with lower extremity tendinopathy or plantar fasciitis: systematic review and meta-analysis of randomised controlled trials

Contents

PubMed database search string
Excluded full text articles
Supplementary figures
Figure S1 Pain at follow-ups 4-8 weeks after completed therapy - LLLT versus placebo3
Figure S2 Subgroup pain results immediately after completed therapy - LLLT versus no intervention3
Figure S3 Pain at follow-ups 8 weeks after completed therapy - LLLT versus no intervention3
Figure S4 Overall and subgroup pain results - LLLT versus other interventions4
Figure S5 Pain at follow-ups 4-12 weeks after completed therapy - LLLT versus other interventions4
Figure S6 Disability at follow-ups 4-8 weeks after completed therapy - LLLT versus placebo4
Figure S7 Disability immediately after completed therapy - LLLT versus placebo5
Figure S8 Disability immediately after completed therapy - LLLT versus other interventions5
Figure S9 Disability immediately after completed therapy - LLLT versus no intervention5
Figure S10 Disability at follow-up 9 weeks after completed therapy - LLLT versus no intervention5
Sensitivity analyses6
Figure S11 Alternative LLLT dose subgrouping
Risk-of-bias within studies post-hoc analyses6
Figure S12 Blinded versus unblinded assessor
Figure S13 Blinded versus unblinded therapist
Risk-of-bias across studies - random versus fixed effects meta-analysis results of pain7
Figure S14 Random effects meta-analysis model
Figure S15 Fixed effects meta-analysis model
Figure S16 Funnel plot8

PubMed database search string

("Low-Level Light Therapy" [Mesh] OR LLLT [Title/Abstract] OR "low level" [Title/Abstract] OR "low power" [Title/Abstract] OR laser therap* [Title/Abstract] OR "laser acupuncture" [Title/Abstract] OR "HeNe" [Title/Abstract] OR "632 nm" [Title/Abstract] OR "Ga-Al-As" [Title/Abstract] OR "820 nm" [Title/Abstract] OR "830 nm" [Title/Abstract] OR "634 nm" [Title/Abstract] OR "GaAs" [Title/Abstract] OR "GaAs" [Title/Abstract] OR "904 nm" [Title/Abstract] OR Photobiomodulation [Title/Abstract] OR phototherap* [Title/Abstract] or "Pandinopathy" [Mesh] or tendi* [Title/Abstract] or tendo* [Title/Abstract] or "plantar fasciitis" [Title/Abstract] or "Fasciitis, Plantar" [Mesh] or "Policeman's Heel" [Title/Abstract] or "Iliotibial Band Syndrome" [Mesh] or Iliopsoas tendi* [Title/Abstract] or Jumper* [Title/Abstract] or Patella [Title/Abstract] or "Achill* [Title/Abstract] or "Achilles Tendon" [Mesh])


Excluded full text articles

Author/Year/Reference	Reasons for exclusion
Abat et al. 2016 ¹	Impossible to isolate effect, combined treatments compared with other treatment
Aigner et al. 1996 ²	No control group
Ashok et al. 2018³	Lacks randomisation
Atik et al. 2018 ⁴	Commentary only
Bjordal et al. 2006 ⁵	Outcomes of interest not reported
Chang et al. 2015 ⁶	Outcomes of interest not reported
Cinar et al. 2013 ⁷	Conference paper only (author contacted)
Cinar et al. 2012 ⁸	Solely abstract available
Costantino et al. 20059	Not LLLT, high intensity laser therapy
Coughlin et al. 2014 ¹⁰	Solely abstract available
Fernandes et al. 1991 ¹¹	Mixed population with unclear inclusion of diagnosis
Foley et al. 2016 ¹²	Not LLLT, light emitting diode therapy
Jastifer et al. 2014 ¹³	No control group
Lögdberg-Andersson et al. 1994 ¹⁴	Only pooled data on lower and upper extremity available
Mardh et al. 2016 ¹⁵	Not LLLT, high intensity laser therapy
Meier et al. 1988 ¹⁶	Outcomes of interest not reported
Morimoto et al. 2013 ¹⁷	No control group
Mulcahy et al. 1995 18	Lacks credible control group, includes only 3 patients with tendinopathy
Notarnicola et al. 2014 ¹⁹	Not LLLT, high intensity laser therapy
Olivera et al. 2009 ²⁰	Animal study
Orellana-Molina et al. 2010 ²¹	Outcomes of interest not reported
Saxena et al. 2015²²	Not LLLT
Scott et al. 2011 ²³	Review
Siebert et al. 1987 ²⁴	Mixed population/diagnoses
Simunovic 1996 ²⁵	Narrative review
Suleymanoglu et al. 2014 ²⁶	Conference abstract
Takla et al. 2019 ²⁷	Used a combination of LLLT and light emitting diode therapy
Tumilty et al. 2015 ²⁸	Conference abstract
Tumilty et al. 2016²⁹	Not LLLT, high intensity laser therapy

LLLT, low-level laser therapy.

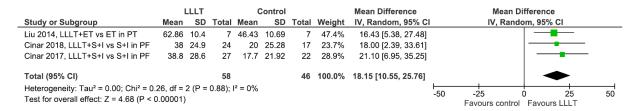

Supplementary figures

Figure S1 Pain at follow-ups 4-8 weeks after completed therapy - LLLT versus placebo

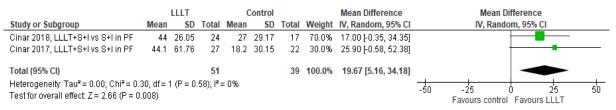

AT, Achilles tendinopathy; CT, cryotherapy; ESWT, Extracorporeal Shock Wave Therapy; ET, exercise therapy; I, insoles; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching; TU, Therapeutic Ultrasound.

Figure S2 Subgroup pain results immediately after completed therapy - LLLT versus no intervention

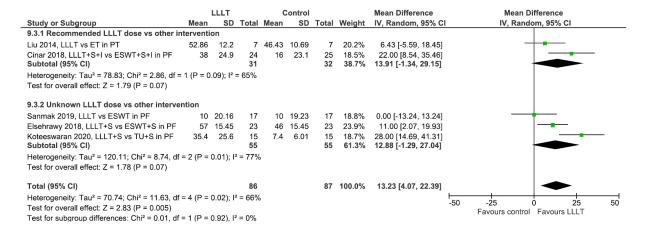

ET, exercise therapy; I, insoles; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching.

Figure S3 Pain at follow-ups 8 weeks after completed therapy - LLLT versus no intervention

ET, exercise therapy; I, insoles; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; S, stretching.

Figure S4 Overall and subgroup pain results - LLLT versus other interventions

ESWT, Extracorporeal Shock Wave Therapy; ET, exercise therapy; I, insoles; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S = stretching; TU, Therapeutic Ultrasound.

Figure S5 Pain at follow-ups 4-12 weeks after completed therapy - LLLT versus other interventions

		LLLT		(Control		Mean Difference			Mean Difference				
Study or Subgroup	Mean	l Mean	SD	Total	Weight	IV, Random, 95% CI								
10.3.1 Recommended LLLT dose vs other inter	vention													
Ulusoy 2017, LLLT+ET+S vs ESWT+ET+S in PF	39.4	40.41	8	38.6	44.4	20	7.8%	0.80 [-33.30, 34.90]			+	-		
Ulusoy 2017, LLLT+ET+S vs TU+ET+S in PF	39.4	40.41	9	31	31.8	17	9.6%	8.40 [-22.02, 38.82]		-	 •	_		
Cinar 2018, LLLT+S+I vs ESWT+S+I in PF Subtotal (95% CI)	44	24.9	24 41	22	35.13	25 62	26.1% 43.5%	22.00 [5.00, 39.00] 15.90 [2.30, 29.51]			-	_		
Heterogeneity: Tau² = 0.00; Chi² = 1.48, df = 2 (P Test for overall effect: Z = 2.29 (P = 0.02)	= 0.48); 13	²= 0%												
10.3.3 Unknown LLLT dose vs other intervention	n													
Sanmak 2019, LLLT vs ESWT in PF	20	32.64	17	30	39.76	17	14.3%	-10.00 [-34.45, 14.45]			 			
Yuzer 2006, LLLT vs steroid injection in PF Subtotal (95% CI)	48	22.91	26 43	38	23.32	30 47	42.2% 56.5 %	10.00 [-2.13, 22.13] 2.93 [-15.80, 21.67]		-				
Heterogeneity: Tau ^z = 103.01; Chi ^z = 2.06, df = 1 Test for overall effect: Z = 0.31 (P = 0.76)	(P = 0.15)); I² = 52	!%											
Total (95% CI)			84			109	100.0%	9.41 [-0.44, 19.26]			•			
Heterogeneity: Tau2 = 21.59; Chi2 = 4.77, df = 4 (i	P = 0.31);	$I^2 = 169$	6						-50	-25	0 25	50		
Test for overall effect: Z = 1.87 (P = 0.06)									-50		U 25 of Favours LLLT	50		
Test for subgroup differences: Chi2 = 1.21, df = 1	(P = 0.27)	$(1), 1^2 = 1$	7.0%							i avours contro	/ Tavouis LLLT			

AT, Achilles tendinopathy; CT, cryotherapy; ESWT, Extracorporeal Shock Wave Therapy; ET, exercise therapy; I, insoles; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching; TU, Therapeutic Ultrasound.

Figure S6 Disability at follow-ups 4-8 weeks after completed therapy - LLLT versus placebo

		LLLT		(Control			Std. Mean Difference	Std. Mean Difference		
Study or Subgroup		SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
8.1.1 Recommended LLLT dose vs placebo											
Naterstad, LLLT+ET+CT vs placebo LLLT+ET+CT in AT	2.03	1.72	20	1.44	3.11	21	23.8%	0.23 [-0.39, 0.84]	 		
Stergioulas 2003, LLLT vs placebo LLLT in PT Subtotal (95% CI)	5.5	8.04	18 38	2.5	13.71	17 38	20.2% 44.0 %	0.26 [-0.40, 0.93] 0.24 [-0.21, 0.70]			
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.01$, $df = 1$ ($P = 0.94$); $I^2 = Test$ for overall effect: $Z = 1.06$ ($P = 0.29$)	: 0%										
8.1.3 Unknown LLLT dose vs placebo											
Macias 2015, LLLT vs placebo LLLT in PF	11.5	25.68	37	10.2	21	32	40.1%	0.05 [-0.42, 0.53]			
Basford 1998, LLLT vs placebo LLLT in PF Subtotal (95% CI)	2.5	30.67	15 52	-7.5	22.96	13 45	16.0% 56.0 %	0.35 [-0.39, 1.10] 0.14 [-0.26, 0.54]			
Heterogeneity: Tau 2 = 0.00; Chi 2 = 0.44, df = 1 (P = 0.51); $ ^2$ = Test for overall effect: Z = 0.69 (P = 0.49)	: 0%										
Total (95% CI)			90			83	100.0%	0.19 [-0.11, 0.49]	-		
Heterogeneity: Tau ² = 0.00; Chi ² = 0.56, df = 3 (P = 0.91); I ² = Test for overall effect; Z = 1.22 (P = 0.22)	: 0%								-1 -0.5 0 0.5 1		
Test for subgroup differences: $Chi^2 = 0.11$, $df = 1$ (P = 0.73).	$I^2 = 0.9$	%							Favours placebo Favours LLLT		

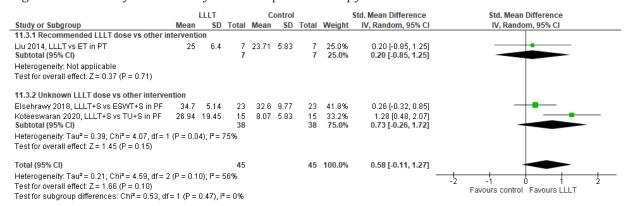

AT, Achilles tendinopathy; CT, cryotherapy; ET, exercise therapy; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy.

Figure S7 Disability immediately after completed therapy - LLLT versus placebo

Study or Subgroup		LLLT		(Control		Std. Mean Difference			Std. Mean Difference		
		SD	Total	Mean	an SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI			
7.1.1 Recommended LLLT dose vs placebo												
Stergioulas 2003, LLLT vs placebo LLLT in PT	2.2	16.31	18	1.7	12.13	17	33.0%	0.03 [-0.63, 0.70]		-		
Naterstad, LLLT+ET+CT vs placebo LLLT+ET+CT in AT Subtotal (95% CI)	1.7	1.79	20 38	0.67	2.76	21 38	37.7% 70.8 %	0.43 [-0.19, 1.05] 0.25 [-0.21, 0.70]		4	_	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.74$, $df = 1$ (P = 0.39); $I^2 = 0.00$: 0%											
Test for overall effect: Z = 1.07 (P = 0.29)												
7.1.3 Unknown LLLT dose vs placebo												
Basford 1998, LLLT vs placebo LLLT in PF	4.5	21.54	16	2.5	18.56			0.10 [-0.61, 0.80]		-		
Subtotal (95% CI)			16			15	29.2%	0.10 [-0.61, 0.80]				
Heterogeneity: Not applicable												
Test for overall effect: $Z = 0.27$ (P = 0.79)												
Total (95% CI)			54			53	100.0%	0.20 [-0.18, 0.58]			-	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.86$, $df = 2$ (P = 0.65); $I^2 = 0.86$: 0%								<u> </u>	1 1	- ;	
Test for overall effect: Z = 1.04 (P = 0.30)									-2	Favours placebo Fa	ovoure LLLT	2
Test for subgroup differences: $Chi^2 = 0.12$, $df = 1$ (P = 0.73),	$ ^2 = 0^4$	%								ravours placebo F	avours LLL1	

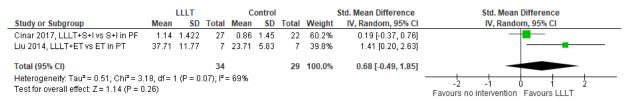

AT, Achilles tendinopathy; CT, cryotherapy; ET, exercise therapy; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy.

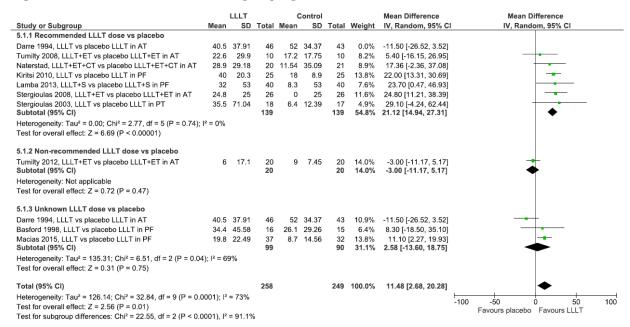
Figure S8 Disability immediately after completed therapy - LLLT versus other interventions

ET, exercise therapy; ESWT, Extracorporeal Shock Wave Therapy; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching; TU, Therapeutic Ultrasound.

Figure S9 Disability immediately after completed therapy - LLLT versus no intervention

ET, exercise therapy; I, insoles; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching.

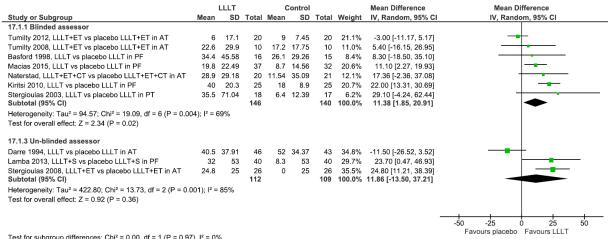
Figure S10 Disability at follow-up 9 weeks after completed therapy - LLLT versus no intervention



ET, exercise therapy; I, insoles; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching.

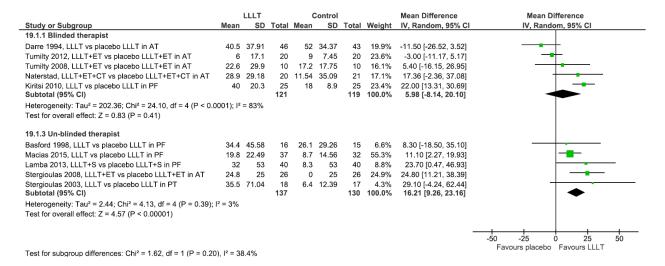
Sensitivity analyses

Allocating the study by Darre et al. 1994 to the unknown laser dose subgroup eliminates the statistical heterogeneity in the recommended laser dose subgroup and increases the estimate of placebo-controlled pain reduction to 21.12 mm VAS ((95% CI: 14.94 to 27.31), $I^2 = 0\%$, N = 278) immediately after completed therapy (Figure S11).


Figure S11 Alternative LLLT dose subgrouping

AT, Achilles tendinopathy; CT, cryotherapy; ET, exercise therapy; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching.

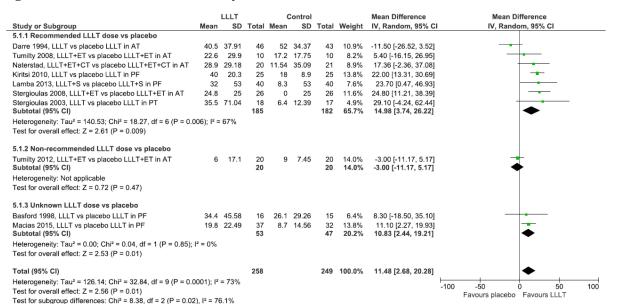
Risk-of-bias within studies post-hoc analyses


Figure S12 Blinded versus unblinded assessor

Test for subgroup differences: Chi² = 0.00, df = 1 (P = 0.97), $I^2 = 0\%$

AT, Achilles tendinopathy; CT, cryotherapy; ET, exercise therapy; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching.

Figure S13 Blinded versus unblinded therapist



AT, Achilles tendinopathy; CT, cryotherapy; ET, exercise therapy; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching.

Risk-of-bias across studies - random versus fixed effects meta-analysis results of pain

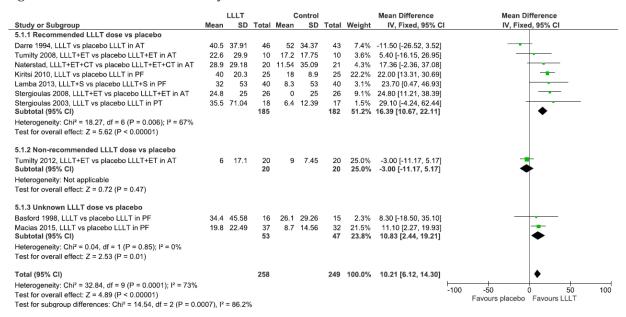
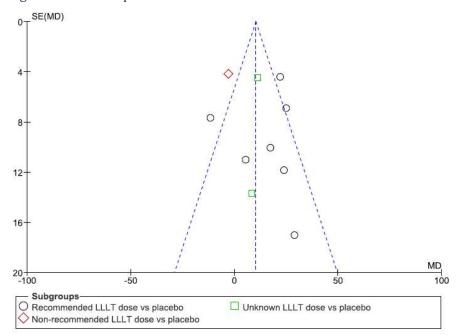

There was almost no difference between the pain point estimates of the random and fixed effects models (pain immediately after the end of therapy), that is, 11.48 mm versus 10.21 mm VAS, indicating that no small study bias exists (Figures S14 and S15).

Figure S14 Random effects meta-analysis model

AT, Achilles tendinopathy; CT, cryotherapy; ET, exercise therapy; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching.


Figure S15 Fixed effects meta-analysis model

AT, Achilles tendinopathy; CT, cryotherapy; ET, exercise therapy; LLLT, Low-Level Laser Therapy; PF, plantar fasciitis; PT, patellar tendinopathy; S, stretching.

Funnel plot of pain results immediately after completed therapy indicating that small study bias is absent (Figure S16).

Figure S16 Funnel plot

LLLT, Low-Level Laser Therapy; MD, mean difference; SE, standard error.

References

- 1. Abat F, Sánchez-Sánchez JL, Martín-Nogueras AM, et al. Randomized controlled trial comparing the effectiveness of the ultrasound-guided galvanic electrolysis technique (USGET) versus conventional electro-physiotherapeutic treatment on patellar tendinopathy. *J Exp Orthop* 2016;3(1):34. doi: 10.1186/s40634-016-0070-4 [published Online First: 2016/11/18]
- 2. Aigner N, Fialka C, Weinstabl R, et al. Laser acupuncture for patellar tendinitis in athletes. [German]. *Akupunktur* 1996;24(1):11-14.
- 3. Ashok N, Raghul, S., Sivakumar, V.P.R. Compare The Effects of Low-Level Laser and Ultrasonic Therapy in Subjects with Jumper's Knee. *International Journal of Research and Scientific Innovation* 2018;V(I)
- 4. Atik OS. Photobiomodulation for Achilles Tendinopathy. *Photomedicine and laser surgery* 2018;36(1):1-2. doi: http://dx.doi.org/10.1089/pho.2017.4361
- 5. Bjordal JM, Lopes-Martins RA, Iversen VV. A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. *Br J Sports Med* 2006;40(1):76-80; discussion 76-80. doi: 10.1136/bjsm.2005.020842 [published Online First: 2005/12/24]
- 6. Chang YP, Chiang H, Shih KS, et al. Effects of Therapeutic Physical Agents on Achilles Tendon Microcirculation. *J Orthop Sports Phys Ther* 2015;45(7):563-9. doi: 10.2519/jospt.2015.5681 [published Online First: 2015/06/04]
- 7. Cinar E, Uygur F. Extracorporeal shock wave therapy versus low intensity laser therapy in the treatment of heel pain. *Annals of the Rheumatic Diseases Conference: Annual European Congress of Rheumatology of the European League Against Rheumatism, EULAR* 2013;72(no pagination) doi: http://dx.doi.org/10.1136/annrheumdis-2013-eular.1709
- 8. Cinar E, Uygur F, Toprak Celenay S. The efficacy of low level laser therapy in the treatment of calcaneal spur. *Annals of the Rheumatic Disease Conference: Annual European Congress of Rheumatology of the European League Against Rheumatism, EULAR* 2012;71(no pagination) doi: http://dx.doi.org/10.1136/annrheumdis-2012-eular.1438
- 9. Costantino C, Pogliacomi F, Vaienti E. Cryoultrasound therapy and tendonitis in athletes: a comparative evaluation versus laser CO2 and t.e.ca.r. therapy. *Acta Biomed* 2005;76(1):37-41. [published Online First: 2005/08/25]
- 10. Coughlin M, Stevens F, Doty J, et al. Evaluation of low-level laser therapy at 635nm for the treatment of chronic plantar fasciitis: A placebo-controlled, randomized study. *Lasers in surgery and medicine* 2014;46:53-54. doi: http://dx.doi.org/10.1002/lsm.22229
- 11. Fernandes MS, Correia MG, Carvalho ML, et al. Laser therapy of inflammatory lesions of the soft parts of the locomotor system. [Portuguese]. *Acta medica portuguesa* 1991;4(6):293-96.
- 12. Foley J, Vasily DB, Bradle J, et al. 830 nm light-emitting diode (led) phototherapy significantly reduced return-to-play in injured university athletes: a pilot study. *Laser therapy* 2016;25(1):35-42. doi: 10.5978/islsm.16-OR-03 [published Online First: 2016/05/04]
- 13. Jastifer JR, Catena F, Doty JF, et al. Low-Level Laser Therapy for the Treatment of Chronic Plantar Fasciitis: A Prospective Study. *Foot & ankle international* 2014;35(6):566-71. doi: 10.1177/1071100714523275 [published Online First: 2014/02/11]
- 14. Lögdberg-Andersson M MS, Hazel Å. . Low level laser therapy of tendinitis and myofascial pain. A randomised double-blind controlled study. *Laser Therapy* 1997;9:79-86.
- 15. Mardh A, Lund I. High Power Laser for Treatment of Achilles Tendinosis a Single Blind Randomized Placebo Controlled Clinical Study. *Journal of lasers in medical sciences* 2016;7(2):92-8. doi: 10.15171/jlms.2016.16 [published Online First: 2016/06/23]
- 16. Meier JK, K. . Traitement laser de la tendinite. Médecine et hygiène 1988;46(1741):907-11.
- 17. Morimoto Y, Saito A, Tokuhashi Y. Low level laser therapy for sports injuries. *Laser therapy* 2013;22(1):17-20. [published Online First: 2013/10/25]
- 18. Mulcahy D, McCormack D, McElwain J, et al. Low level laser therapy: a prospective double blind trial of its use in an orthopaedic population. *Injury* 1995;26(5):315-17. doi: https://doi.org/10.1016/0020-1383(95)00048-E

- 19. Notarnicola A, Maccagnano G, Tafuri S, et al. CHELT therapy in the treatment of chronic insertional Achilles tendinopathy. *Lasers Med Sci* 2014;29(3):1217-25. doi: 10.1007/s10103-013-1510-3 [published Online First: 2013/12/20]
- 20. Oliveira FS, Pinfildi CE, Parizoto NA, et al. Effect of low level laser therapy (830 nm) with different therapy regimes on the process of tissue repair in partial lesion calcaneous tendon. *Lasers in surgery and medicine* 2009;41(4):271-76. doi: http://dx.doi.org/10.1002/lsm.20760
- 21. Orellana Molina A, Hernandez Diaz A, Larrea Cox PJ, et al. Laser infrarrojo frente a acupuntura en el tratamiento del espolon calcaneo (Infrared laser versus acupuncture in the treatment of heel spurs) [Spanish]. Revista de la Sociedad Espanola del Dolor 2010 Mar;17(2):69-77 2010
- 22. Saxena A, St Louis M, Fournier M. Vibration and pressure wave therapy for calf strains: a proposed treatment. *Muscles Ligaments Tendons J* 2013;3(2):60-2. doi: 10.11138/mltj/2013.3.2.060 [published Online First: 2013/07/28]
- 23. Scott A, Backman LJ, Speed C. Tendinopathy: Update on Pathophysiology. *Journal of Orthopaedic & Sports Physical Therapy* 2015;45(11):833-41. doi: 10.2519/jospt.2015.5884
- 24. Siebert W, Seichert N, Siebert B, et al. What is the efficacy of "soft" and "mid" lasers in therapy of tendinopathies? A double-blind study. *Archives of Orthopaedic and Trauma Surgery 1987 Oct; 106(6):358-363* 1987
- 25. Simunovic Z. Low level laser therapy with trigger points technique: A clinical study on 243 patients. *Journal of Clinical Laser Medicine and Surgery* 1996;14(4):163-67.
- 26. Suleymanoglu T, Esmaeilzadeh S, Sen EI, et al. The effects of radial shock wave therapy and low level laser therapy in the treatment of chronic plantar fasciitis: A randomized controlled trial. *Annals of the Rheumatic Diseases Conference: Annual European Congress of Rheumatology of the European League Against Rheumatism, EULAR* 2014;73(no pagination) doi: http://dx.doi.org/10.1136/annrheumdis-2014-eular.3359
- 27. Takla MKN, Rezk SSR. Clinical effectiveness of multi-wavelength photobiomodulation therapy as an adjunct to extracorporeal shock wave therapy in the management of plantar fasciitis: a randomized controlled trial. *Lasers in Medical Science* 2019 Apr;34(3):583-593 2019
- 28. Tumilty S, Baxter GD. Heavy load eccentric exercise for achilles tendinopathy; too much of a good thing? *Physiotherapy (United Kingdom)* 2015;101:eS1546-eS47. doi: http://dx.doi.org/org/10.1016/j.physio.2015.03.1541
- 29. Tumilty S, Mani R, Baxter GD. Photobiomodulation and eccentric exercise for Achilles tendinopathy: a randomized controlled trial. *Lasers in Medical Science 2016 Jan;31(1):127-135* 2016