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Pedigree-based genetic relatedness 

 

The Genetic covariance between two individuals can be computed using the pedigree 

information. For individuals A and B, a given pair in a pedigree, the genetic covariance is 

computed as r(A,B) = 2×coancestry(A,B) where the coancestry between A and B is 

calculated referring to the method presented by Falconer and Mackay in 1996 (Falconer and 

Mackay 1996): coancestry(A,B) = p(1/2)
n(p)

×(1 + ICommon Ancestor) where p is the number of 

paths in the pedigree linking A and B, n(p) the number of individuals (including A and B) for 

each path p and IX is the inbreeding coefficient of X also equal to the coancestry between the 

two parents of X, IX is set to 0 if X is a founder. 

 

Illustration: Consider, as an example, the pedigree below containing 18 individuals named 

{A, B, …, R} for the calculation of genetic covariance’s. 

 

 
 

Pedigree structure. 

 

The genetic relatedness between individuals N and O is equal to 0.266. This value is 

calculated as followed: 

The number of paths linking N and O from the pedigree structure above is p = 2. 

As illustrated below: 

 Path 1 contains n(1) = 3 individuals {N, K, O} with K as the common ancestor. 

Inbreeding coefficient of K, IK , is the coancestry between the two parents of K (F and G) 

and is null because F and G are not genetically linked. 

 Path 2 contains n(2) = 7 individuals {N, K, F, B, H, L, O} with B as the common 

ancestor. Inbreeding coefficient of B, IB , is null because B is a founder. 

Therefore, genetic relatedness between individuals N and O is: 

= 2×( 0.5 
n(1)

×(1+IK) + 0.5
n(2)

×(1+ IB) )  

= 2×( 0.5
 3

×(1+0) + 0.5
 7

×(1+0) ) = 0.266 
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Path 1 linking N and O.    Path 2 linking N and O. 

 

 

Defining an equivalent model design where individual effects are independent using the 

genetic relatedness matrix: 

 

Let us rename Y* = l (μ ). Y* can be consider as a linearization of the phenotype through the 

link function l. The expected mean of Y* and the variance of Y* are: 

 

(i) E(Y*) = E(Xβ + Zγ + ε) 

= E(Xβ) + E(Zγ) + E(ε) = X×E(β) + Z×E(γ) + E(ε) 

= Xβ (asymptomatically). 

 

(ii) Var(Y*) = Var(Xβ + Zγ + ε) 

= Var(Zγ + ε) (as Xβ is the fixed part, thus has variance equal 

to 0) 

  = Var(Zγ) + Var(ε)  (as γ and ε are independent) 

  = Z×Var(γ)×Z
T
 + Var(ε) (Z

T
 is the transpose of Z) 

  = Z(Aσg
2
)Z

T
 + Iσr

2
  

  = ZAZ
T
σg

2
 + Iσr

2
  

 

If individuals were independent, i.e. A = IN, variance of Y* could be expressed as ZZ
T
σg

2
 + 

Iσr
2
. However, using linear algebra theory by the method “Cholesky decomposition of a 

matrix”, we can show that there is an equivalent expression of the variance of Y* 

corresponding to the modeling of data from independent individuals, having γ* as an 

equivalent vector of random effects and Z* an equivalent design matrix relating γ* to Y* so 

that: 

Var(Y*) = Z*(Iσg
2
)Z*

T
 + Iσr

2
. Iσg

2
 is then the covariance matrix of the equivalent independent 

random individual effects γ*. 

 

Theorem: Cholesky decomposition of a matrix 

If A is a symmetric positive-definite matrix, there is a triangular matrix L so that A can be 

written as A = LL
T
. L can be seen as the “square root” of the matrix A. 

Note that the genetic relatedness matrix A computed using the pedigree information (Falconer 

and Mackay 1996) is a positive-definite matrix, unless identical twins are in the pedigree in 

which case it would be positive semi-definite. 

 

Equivalent model with independent random effects: We set A = LL
T
 then: 

Var(Y*) = Z(Aσg
2
)Z

T
 + Iσr

2
  

  = Z(LL
T
σg

2
)Z

T
 + Iσr

2
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  = ZLL
T
Z

T
σg

2
 + Iσr

2
  

  = (ZL)(ZL)
T
σg

2
 + Iσr

2
  

  = (Z*)(Z*)
T
σg

2
 + Iσr

2
  (where we set Z* = ZL) 

Then, if we define γ* = L
-1

γ, we can rewrite the model as: 

      Y* = Xβ + Z*γ* + ε  (because Zγ = Z(LL
-1

)γ = (ZL)(L
-1

γ) = Z*γ*), 

and the γi* are independent, in other terms Var(γ*) = Iσg
2
, as demonstrated below: 

We assumed that γ ~ N(0, Aσg
2
). Then γ* = L

-1
γ is also distributed as a multivariate Normal 

with mean E(γ*) = L
-1

E(γ) = L
-1

×0 = 0 and variance: 

Var(γ*) = (L
-1

)×Var(γ)×(L
-1

)
T
  

= (L
-1

)× Aσg
2
×(L

-1
)

T
  = (L

-1
)LL

T
(L

-1
)

T
σg

2
  

=  (L
-1

L)(L
-1

L)
T
σg

2
  

= Iσg
2
  

 

The random effects are now independent and then the classical mixed model assuming 

independence between levels (here individuals) is applied, and the estimate of fixed effects 

obtained are fine, i.e. corrected for genetic relationships. 
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Supplementary Tables 

 
Table S1 Number of person-trimesters contributed by number of children by age class and the number who had severe/moderate allergy symptoms, 

for whom malaria data were also available. AS – Asthma, AD – Atopic dermatitis, RC – Rhinoconjunctivitis. Shown also are the numbers of these 

individuals suffering from two or all three allergy conditions. 

 
Age group N° person-trimesters N° people AS AD RC AS+AD AS+RC AD+RC AS+AD+RC 

]1 7 6 1 2 2 0 1 0 0 

]2 21 9 0 1 3 0 0 0 0 

]3 48 11 1 1 2 0 0 1 0 

]4 119 12 1 2 3 0 0 1 0 

]5 102 11 3 4 3 2 1 2 1 

]6 125 11 1 1 0 0 0 0 0 

]7 303 11 1 2 1 1 0 0 0 

]8 340 12 1 1 1 1 0 0 0 

]9 362 10 2 0 1 0 1 0 0 

]10 610 17 1 0 3 0 0 0 0 

]11 77 4 2 1 0 0 0 0 0 

]12 484 16 3 0 3 0 1 0 0 

]13 390 10 1 0 0 0 0 0 0 

]14 105 3 0 0 1 0 0 0 0 

Total 3093 143 18 15 23 4 4 4 1 
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Table S2 Summary of total number of person-trimesters with non-malaria and 

symptomatic P. falciparum clinical presentations and total number of non-malaria 

episodes according to age class. Given are the number of people contributing to each type of 

presentation. 

 
 Age group (years) 

 <3·5 ≥3·5 

Total person-trimesters 1283 1810 

People 126 113 

Total P. falciparum symptomatic trimesters 963 1102 

People 114 108 

Total non-malaria episodes 754 1114 

People 123 109 
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Table S3 Effect of changing age threshold on impact of allergy on the risk of clinical malaria and concomitant parasite density. Given are Odds Ratio 

with 95% confidence intervals, for clinical malaria episodes and the beta coefficient and standard error for parasite density. Corresponding P values are also 

given. Values are from the nested GLMM analyses. 

A. Malaria episodes       B. Parasite density     

Age cut-off (years) OR 95% CI P value OR 95% CI P value Age cut-off beta coeff (se) P value beta coeff (se) P value 

Atopy above threshold below threshold Atopy above threshold below threshold 

1.5 1.80 1.25-2.59 1.7x10-3 1.57 0.85-2.89 0.15 1.5 0.70 (0.27) 9.2x10-3 0.54 (0.35) 0.12 

2.5 2.00 1.39-2.88 2.0x10-4 1.23 0.76-1.99 0.40 2.5 0.79 (0.26) 2.6x10-3 0.35 (0.29) 0.23 

3.5 2.02 1.39-2.93 2.1x10-4 1.38 0.92-2.08 0.12 3.5 0.85 (0.26) 9.5x10-4 0.37 (0.26) 0.15 

4.5 2.10 1.42-3.10 1.6x10-4 1.41 0.98-2.04 0.063 4.5 0.87 (0.25) 6.9x10-4 0.40 (0.23) 0.09 

5.5 1.64 1.07-2.52 0.02 1.67 1.17-2.37 0.004 5.5 0.73 (0.27) 7.4x10-3 0.48 (0.22) 3.4x10-3 

               

Asthma         Asthma      

               

1.5 1.98 1.29-3.03 1.8x10-3 1.46 0.69-3.19 0.34 1.5 0.66 (0.31) 0.03 0.30 (0.44) 0.48 

2.5 2.30 1.49-3.55 1.6x10-4 1.15 0.63-2.09 0.65 2.5 0.78 (0.30) 0.01 0.26 (0.36) 0.48 

3.5 2.33 1.50-3.61 1.5x10-4 1.50 0.90-2.50 0.12 3.5 0.82 (0.30) 6.2x10-3 0.43 (0.31) 0.17 

4.5 2.30 1.48-3.59 2.4x10-4 1.76 1.11-2.80 0.017 4.5 0.81 (0.29) 5.8x10-3 0.56 (0.28) 0.049 

5.5 1.98 1.22-3.22 0.006 2.06 1.33-3.18 0.0011 5.5 0.72 (0.31) 0.02 0.62 (0.27) 0.02 

               

Atopic Dermatitis         Atopic Dermatitis     

               

1.5 2.05 1.18-3.56 0.01 0.91 0.42-1.97 0.80 1.5 0.80 (0.37) 0.03 0.72 (0.46) 0.12 

2.5 2.49 1.36-4.57 3.1x10-3 0.82 0.44-1.53 0.53 2.5 0.77 (0.38) 0.044 0.52 (0.39) 0.19 

3.5 3.15 1.56-6.33 1.3x10-3 0.84 0.49-1.46 0.54 3.5 0.99 (0.40) 0.014 0.28 (0.35) 0.42 

4.5 3.79 1.61-8.92 2.3x10-3 0.94 0.57-1.57 0.82 4.5 0.98 (0.47) 0.036 0.29 (0.32) 0.37 

5.5 1.33 0.47-3.77 0.59 1.19 0.73-1.96 0.49 5.5 0.26 (0.61) 0.67 0.38 (0.31) 0.22 

               

Rhinoconjunctivitis         Rhinoconjunctivitis     

               

1.5 1.04 0.66-1.62 0.88 1.01 0.51-2.01 0.98 1.5 0.36 (0.32) 0.27 0.18 (0.41) 0.66 

2.5 1.01 0.64-1.61 0.96 0.96 0.55-1.68 0.89 2.5 0.28 (0.33) 0.40 0.25 (0.35) 0.48 

3.5 0.95 0.60-1.52 0.83 1.05 0.64-1.72 0.85 3.5 0.31 (0.32) 0.33 0.19 (0.31) 0.54 

4.5 0.87 0.54-1.42 0.59 1.06 0.68-1.66 0.79 4.5 0.20 (0.32) 0.53 0.22 (0.28) 0.44 

5.5 0.81 0.48-1.36 0.43 1.07 0.70-1.64 0.74 5.5 0.10 (0.33) 0.75 0.23 (0.27) 0.39 
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Table S4 Frequency of non-malaria episodes (number of days of presence divided by number of non-malaria episodes) according to allergic status 

and age group. The P value is that from the GLMM analyses of the effect of allergic status by age group on the number of non-malaria episodes per person-

trimester. 

 
Allergic condition Allergic status Age group (years) P value 

  (No/Yes) <3·5 >3·5   

Atopy N 78·2 85·9 0·105 

 Y 87·2 102·6  

Asthma N 79·6 87·3 0·319 

 Y 82·5 100·2  

Atopic dermatitis N 80·9 88·2 0·323 

 Y 73·4 101·9  

Rhinoconjunctivitis N 77·9 88·3 0·167 

 Y 94·9 91·8  
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Figure S1. Incidence of clinical cases per 100 person-trimesters in children under 15 years of age.  
 

0

20

40

60

80

100

120

19
94

:1

19
95

:1

19
96

:1

19
97

:1

19
98

:1

19
99

:1

20
00

:1

20
01

:1

20
02

:1

20
03

:1

20
04

:1

20
05

:1

20
06

:1

20
07

:1

20
08

:1

Year-trimester

In
c
id

e
n

c
e
 o

f 
c
li

n
ic

a
l 

c
a
s
e
s
 p

e
r 

1
0
0
 p

e
rs

o
n

-t
ri

m
e
s
te

rs

 



 9 

Figure S2. Cumulative incidence of clinical cases according to allergy class predicted by the statistical model.  
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Figure S3. Graphical control model for parasite density 

These figures provide a graphical checking of model goodness of fit. Figure A is the scatter plot of the natural logarithm of the observed parasite 

density and is compared to Figure B, which is the scatter plot of the natural logarithm of the predicted parasite density by the model; on both 

figures A and B the y-axes give the values for the log of the parasite density. Figure C shows the distribution of the residuals with the predicted 

values and Figure D is the histogram of the residuals; both figures C and D show the residuals normally distributed around zero. 
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Analysis using box-cox transformation and probit normalization 

The model we fitted on the parasite density ("pf_density") has used as outcome variable the natural logarithm of pf_density (equivalent to a Box-

Cox for which the parameter is null). As shown on Figure S4 the distribution of log(pf_density) is not perfectly normal, it is left-skewed. 

 

Figure S4. Histogram of pf_density and log(pf_density) 
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We add here the case for a Box-Cox transformation of the parasite density where the parameter is λ = 0.3, this parameter value was obtained as 

optimal using the R- function named "boxcox" from the "MASS" library. Then the Box-Cox transformation of the parasite density is y = 

(pf_density
0.3

 – 1)/0.3 having the distribution shown on Figure S5 below. 
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Figure S5. Histogram of the Box-Cox transformation of pf_density using a λ parameter of 0.3 
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With this Box-Cox transformed parasitemia as outcome variable, our results are maintained. Note that this distribution is not "perfectly" normal. 

However, the corresponding graphical control of the model adequation presented on Figure S6 below shows residuals more close to the normal 

distribution than those for log(pf_density) as outcome. 
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Figure S6. Graphical control of the model adequation for y = Box-Cox(pf_density, λ = 0.3) 
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Although using a mixed model approach based on an extreme value distribution would provide a more robust validation of these results, the 

method we used incorporating pedigree information was developed through an R-package known as "pedigreemm" that allows just for a limited 

number of distribution laws, which do not include extreme value distributions like the Gumbel or Weibull distributions. 

However, we tried the Probit normalization on the log(pf_density) to readjust its quantiles to those from a standard normal, and subsequently 

used the derived standard normal transformation of the log(pf_density) as outcome (see Figure S7  below, the three graphs presented in the first 

row of the graphs panel concern the log(pf_density) before Probit normalization and the three in the second row are for after Probit 

normalization. We can see on the histogram in blue color a good normal distribution of the y variable. 
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Figure S7. Probit normalization of the log(pf_density) 
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The results we obtained after this Probit normalization of the log(pf_density) confirmed the same findings. Also, the corresponding graphical 

control of the model adequation presented on Figure S8 below, shows a good normal distribution of residuals from this model. 
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Figure S8. Graphical control of the model adequation after Probit normalization of the log(pf_density) 
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